1
|
Pogorzelska-Dyrbuś J, Nowicka-Suszko D, Piotrowska A, Woźniak Z, Dzięgiel P, Szepietowski JC. Enhanced Expression of N-Cadherin, but Not of E-Cadherin, in Cutaneous Squamous Cell Carcinoma in Comparison to Basal Cell Carcinoma. Cancers (Basel) 2024; 16:4247. [PMID: 39766148 PMCID: PMC11674879 DOI: 10.3390/cancers16244247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Adhesion molecules including E-cadherin and N-cadherin have been proven to contribute to the carcinogenesis process. It has been demonstrated that an increased expression or appearance of N-cadherin, as well as a reduction in the expression of E-cadherin, are documented in many cancers, often leading to the loss of intercellular adhesion and acquisition of a more invasive or even metastatic mesenchymal phenotype. The aim of this study was to assess the expression of E-cadherin and N-cadherin, as well as markers of proliferation Ki67 in basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). METHODS A total of 123 tumor paraffin specimens, including 73 BCC and 50 SCC cases, were obtained from multiple anatomical locations. The expression of E-Cadherin and N-Cadherin, including the percentage of stained cells, was assessed using a four-grade scale, with Ki-67 assessed on the five-grade scale. RESULTS A significantly higher expression of N-cadherin was observed in SCC compared to BCC, with 14% of SCC cases having a more than 50% expression of N-cadherin, and 10% with 26-50% expression, in comparison with 2.7% and 8.2% in BCC, respectively (p < 0.001). No significant differences were observed with regard to E-cadherin expression between SCC and BCC. CONCLUSIONS Our results suggest that N-cadherin expression might contribute to the acquisition of the mesenchymal phenotype, SCC, when compared with BCC, with a high expression of E-cadherin in both tumors explaining their overall low rate of metastases; however, further research on the role of adhesion molecules in these tumors is needed.
Collapse
Affiliation(s)
| | - Danuta Nowicka-Suszko
- University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Aleksandra Piotrowska
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.P.); (P.D.)
| | - Zdzisław Woźniak
- Department of General and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.P.); (P.D.)
| | - Jacek C. Szepietowski
- Department of Dermato-Venereology, 4th Military Hospital, 53-114 Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
2
|
Su Y, Mei L, Jiang T, Wang Z, Ji Y. Novel role of lncRNAs regulatory network in papillary thyroid cancer. Biochem Biophys Rep 2024; 38:101674. [PMID: 38440062 PMCID: PMC10909982 DOI: 10.1016/j.bbrep.2024.101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common endocrine malignancy. The incidence of PTC has increased annually worldwide. Thus, PTC diagnosis and treatment attract more attention. Noncoding RNAs (lncRNAs) play crucial roles in PTC progression and act as prognostic biomarkers. Moreover, microRNAs (miRNAs) and epithelial-mesenchymal transition (EMT)-associated proteins have potential biomarkers for diagnosing and treating PTC. However, the correlation of lncRNAs with miRNAs and EMT-associated proteins needs further clarification. The present review highlights the recent advances of lncRNAs in PTC. We significantly summarized the two molecular regulatory mechanisms in PTC progress, including lncRNAs-miRNAs-protein signaling axes and lncRNAs-EMT pathways. This review will help our understanding of the association between lncRNAs and PTC and may assist us in evaluating the prognosis for PTC patients. Taken together, targeting the lncRNAs regulatory network has promising applications in diagnosing and treating PTC.
Collapse
Affiliation(s)
- Yuanhao Su
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong, University, Xi'an, 710004, China
| | - Lin Mei
- Scientific Research Center and Precision Medical Institute, The Second Affiliated, Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tiantian Jiang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong, University, Xi'an, 710004, China
| | - Zhidong Wang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong, University, Xi'an, 710004, China
| | - Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated, Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
3
|
Ji S, Guo Y, Ding J, Hong W, Yan Z, Cai Z, Yue H, Qiu X, Sang N. Nontargeted Identification of Organic Components in Fine Particulate Matter Related to Lung Tumor Metastasis Based on an Adverse Outcome Pathway Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4083-4091. [PMID: 38373277 DOI: 10.1021/acs.est.3c07395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Emerging studies implicate fine particulate matter (PM2.5) and its organic components (OCs) as urgent hazard factors for lung cancer progression in nonsmokers. Establishing the adverse outcome pathway (AOP)-directed nontargeted identification method, this study aimed to explore whether PM2.5 exposure in coal-burning areas promoted lung tumor metastasis and how we identify its effective OCs to support traceability and control of regional PM2.5 pollution. First, we used a nude mouse model of lung cancer for PM2.5 exposure and found that the exposure significantly promoted the hematogenous metastases of A549-Luc cells in lung tissues and the adverse outcomes (AOs), with key events (KEs) including the changed expression of epithelial-mesenchymal transition (EMT) markers, such as suppression of E-cad and increased expression of Fib. Subsequently, using AOs and KEs as adverse outcome directors, we identified a total of 35 candidate chemicals based on the in vitro model and nontargeted analysis. Among them, tributyl phosphate (C12H27O4P), 2-bromotetradecane (C14H29Br), and methyl decanoate (C11H22O2) made greater contributions to the AOs. Finally, we clarified the interactions between these OCs and EMT-activating transcription factors (EMT-ATFs) as the molecular initiation event (MIE) to support the feasibility of the above identification strategy. The present study updates a new framework for identifying tumor metastasis-promoting OCs in PM2.5 and provides solid data for screening out chemicals that need priority control in polluted areas posing higher lung cancer risk.
Collapse
Affiliation(s)
- Shaoyang Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030031, P. R. China
| | - Yuqiong Guo
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030031, P. R. China
| | - Jinjian Ding
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, P. R. China
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Wenjun Hong
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, P. R. China
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030031, P. R. China
| | - Zhihong Cai
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030031, P. R. China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030031, P. R. China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030031, P. R. China
| |
Collapse
|
4
|
Xiao Y, Zhou L, Andl T, Zhang Y. YAP1 controls the N-cadherin-mediated tumor-stroma interaction in melanoma progression. Oncogene 2024; 43:884-898. [PMID: 38308096 PMCID: PMC10942861 DOI: 10.1038/s41388-024-02953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
The hallmark of epithelial-to-mesenchymal transition (EMT) is the switch from epithelial cadherin (E-cadherin) to neural cadherin (N-cadherin), allowing melanoma cells to form a homotypic N-cadherin-mediated adhesion with stromal fibroblasts. However, how cadherin switching is initiated, maintained, and regulated in melanoma remains elusive. Here, we report a novel mechanism underlying cadherin switching in melanoma cells that is regulated by stromal Yes-associated protein 1 (YAP1) signaling. The progression of a BRAF-mutant mouse melanoma was suppressed in vivo upon YAP1 ablation in cancer-associated fibroblasts (CAFs). On the contrary, overexpressing YAP1 in CAFs accelerated melanoma development. By RNA-Seq, N-cadherin was identified as a major downstream effector of YAP1 signaling in CAFs. YAP1 silencing reduced N-cadherin expression in CAFs, leading to the downregulation of N-cadherin in neighboring melanoma cells. N-cadherin ablation inhibited the PI3K-AKT signaling pathway in melanoma cells and melanoma cell proliferation. The findings suggest that YAP1 depletion in CAFs induces the downregulation of p-AKT signaling in melanoma cells through the N-cadherin-mediated interaction between melanoma cells and CAFs. The data underscore an important role of CAFs in regulating N-cadherin-mediated adhesion and signaling in melanoma and highlight that disentangling cadherin-mediated cell-cell interactions can potentially disrupt tumor-stroma interactions and reverse the tumor cell invasive phenotype.
Collapse
Affiliation(s)
- Yao Xiao
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Linli Zhou
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Thomas Andl
- Burnett School of Biological Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
5
|
Wu HM, Chen LH, Chiu WJ, Tsai CL. Kisspeptin Regulates Cell Invasion and Migration in Endometrial Cancer. J Endocr Soc 2024; 8:bvae001. [PMID: 38264268 PMCID: PMC10805434 DOI: 10.1210/jendso/bvae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Indexed: 01/25/2024] Open
Abstract
Kisspeptin (a product of the KISS1 gene and its receptor) plays an important role in obstetrics, gynecology, and cancer cell metastasis and behavior. In hypothalamic-pituitary-gonadal axis and placentation, Kisspeptin/Kisspeptin receptor affects hormone release and represses trophoblast invasion into maternal deciduae. Endometrial cancer is one of the common gynecological cancers and is usually accompanied by metastasis, the risk factor that causes death. Recently, research has demonstrated that Kisspeptin/Kisspeptin receptor expression in aggressive-stage endometrial cancer tissues. However, the detailed mechanism of Kisspeptin/Kisspeptin receptor in regulating the motility of endometrial cancers is not well understood. In this study, we use endometrial cancer cell lines RL95-2, Ishikawa, HEC-1-A, and HEC-1-B as models to explore the molecular mechanism of Kisspeptin on cell motility. First, we discovered that Kisspeptin/Kisspeptin receptor was expressed in endometrial cancer cells, and Kisspeptin significantly regulated the migration and invasion of endometrial cancer cells. Furthermore, we explored the epithelial-mesenchymal transition marker expression and the underlying signals were regulated on Kisspeptin treatment. In conclusion, we suggest that Kisspeptin regulates endometrial cancer cell motility via FAK and Src expression and the ERK1/2, N-Cadherin, E-Cadherin, beta-Catenin, Twist, and matrix metalloproteinase signaling pathways. We expect these molecules could be candidates for the development of new approaches and therapeutic targets.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| | - Wei-Jung Chiu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| | - Chia-Lung Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| |
Collapse
|
6
|
Liman N, Sağsöz H. The immunolocalization of cadherins and beta-catenin in the cervix and vagina of cycling cows. Vet Res Commun 2023; 47:1155-1175. [PMID: 36729278 DOI: 10.1007/s11259-023-10075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/14/2023] [Indexed: 02/03/2023]
Abstract
The adherens junctions (AJs) maintain the epithelial cell layers' structural integrity and barrier function. AJs also play a vital role in various biological and pathological processes. AJs perform these functions through the cadherin-catenin adhesion complex. This study investigated the presence, cell-specific localization, and temporal distribution of AJ components such as classical type I cadherins and beta-catenin in the cow cervix and vagina during the estrous cycle. Immunohistochemistry and Western blot analysis results demonstrated that beta-catenin and epithelial (E)-, neural (N)-, and placental (P)-cadherins are expressed in the cow cervix and vagina during the estrous cycle. These adhesion molecules were localized in the membrane and cytoplasm of the ciliated and non-ciliated cervical cells and the stratified vaginal epithelial cells. Positive immunostaining for P-, N-cadherin, and beta-catenin was also observed in the vascular endothelial cells of the cervical and vaginal stroma. Quantitative immunohistochemistry examinations revealed that in the cervical and vaginal epithelia, P-cadherin's optical density values (ODv) were the highest; in contrast, the N-cadherin ODv were the lowest. The ODv of P-cadherin and beta-catenin in the cervical epithelium and E-cadherin in the vagina were significantly higher in the luteal phase versus the follicular phase of the estrous cycle. Furthermore, the ODv of P-cadherin, N-cadherin, and beta-catenin in the cervix's central and peripheral epithelial regions were different during the estrous cycle. These findings indicate that classical cadherins and beta-catenin in the cervix and vagina exhibit cell- and tissue-specific expression patterns under the influence of estrogen and progesterone hormones during the estrous cycle.
Collapse
Affiliation(s)
- Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey.
| | - Hakan Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
7
|
Xio Y, Zhou L, Andl T, Zhang Y. YAP1 controls the N-cadherin-mediated tumor-stroma interaction in melanoma progression. RESEARCH SQUARE 2023:rs.3.rs-2944243. [PMID: 37546745 PMCID: PMC10402251 DOI: 10.21203/rs.3.rs-2944243/v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is crucial for melanoma cells to escape keratinocyte control, invade underlying dermal tissues, and metastasize to distant organs. The hallmark of EMT is the switch from epithelial cadherin (E-cadherin) to neural cadherin (N-cadherin), allowing melanoma cells to form a homotypic N-cadherin-mediated adhesion with stromal fibroblasts. However, how "cadherin switching" is initiated, maintained, and regulated in melanoma remains unknown. Here, we show that upon Yes-associated protein 1 (YAP1) ablation in cancer-associated fibroblasts (CAFs), the progression of a BRAF-mutant mouse melanoma was significantly suppressed in vivo, and overexpressing YAP1 in CAFs accelerated melanoma growth. CAFs require the YAP1 function to proliferate, migrate, remodel the cytoskeletal machinery and matrix, and promote cancer cell invasion. By RNA-Seq, N-cadherin was identified as a major downstream effector of YAP1 signaling in CAFs. YAP1 silencing led to N-cadherin downregulation in CAFs, which subsequently induced the downregulation of N-cadherin in neighboring melanoma cells. N-cadherin downregulation inhibited the PI3K-AKT signaling pathway in melanoma cells and suppressed melanoma growth in vivo, supporting the role of N-cadherin as an adhesive and signaling molecule in melanoma cells. This finding suggests that YAP1 depletion in CAFs induces the downregulation of p-AKT signaling in melanoma cells through the N-cadherin-mediated interaction between melanoma cells and CAFs. Importantly, our data underscore that CAFs can regulate N-cadherin-mediated interactions with melanoma cells. Thus, disentangling cadherin-mediated cell-cell interactions can potentially disrupt tumor-stroma interactions and reverse the tumor cell invasive phenotype.
Collapse
|
8
|
Ali AN, Ghoneim SM, Ahmed ER, El-Farouk Abdel Salam LO, Anis Saleh SM. Cadherin switching in oral squamous cell carcinoma: A clinicopathological study. J Oral Biol Craniofac Res 2023; 13:486-494. [PMID: 37293580 PMCID: PMC10245331 DOI: 10.1016/j.jobcr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 12/21/2022] [Accepted: 05/01/2023] [Indexed: 06/10/2023] Open
Abstract
Background and aim Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide as it represents the sixth most common cancer. Numerous molecular mechanisms have been explained to regulate OSCC progression, including epithelial-mesenchymal transition (EMT). Cadherin switching is the pivotal process that controls EMT in which E-cadherin reduces while N-cadherin elevates. This work aimed to clarify the role of cadherin switching in OSCC. Material and methods Thirty paraffin-embedded tissue blocks of OSCC including six cases with lymph node metastasis were subjected to immunohistochemical staining using antibodies against E&N-cadherins. Cell cultures were performed using OSCC cell lines (SCC-15/SCC-25) from the human tongue. F-12K medium (Kaighn's Modification of Ham's F12 Medium) was added as EMT inducing media. E&N-cadherin mRNA gene expression levels were detected by real time-polymerase chain reaction (RT-PCR). Results Cadherin switching through N-cadherin elevation and E-cadherin reduction was evaluated at the histopathologic level in primary and metastatic OSCC as well as at the genetic level within OSCC cell culture. Cadherin switching showed a significant correlation between E&N-cadherins at different histopathological grades of OSCC and in metastatic OSCC. Moreover, the level of mRNA gene expression of E&N-cadherins in human 15 SCC and 25 SCC cell lines with EMT-inducing media exhibited a significant correlation. Conclusions Cadherin switching is a crucial event in the EMT process. It may be used as a significant tool in the study of OSCC progression. Cadherin switching plays a significant role in the invasion and metastasis of OSCC.
Collapse
Affiliation(s)
- Ahmed Noaman Ali
- Oral Pathology, Oral Pathology Department, Faculty of Dentistry, Tanta University, Egypt
| | | | | | | | | |
Collapse
|
9
|
Nascimento RB, Machado IAR, Silva JC, Faria LAS, Borba FC, Porto LPA, Santos JN, Ramalho LMP, Rodini CO, Rodrigues MFSD, Paiva KBS, Xavier FCA. Differential expression of Cadherins switch and Caveolin-2 during stages of oral carcinogenesis. J Oral Maxillofac Pathol 2023; 27:507-514. [PMID: 38033949 PMCID: PMC10683880 DOI: 10.4103/jomfp.jomfp_28_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 12/02/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) accounts for 90% of oral malignancies, which may be preceded by oral potentially malignant disorders (OPMDs). Cancer progression involves the downregulation of epithelial markers (E-cadherin) and the upregulation of mesenchymal markers (N-cadherin), which together characterise the epithelial-mesenchymal transition (EMT). Furthermore, caveolin can act on cell adhesion and migration events that regulate the expression of the E-cadherin/α-β-catenin complex, thus favouring aggressive biological behaviour. This study aimed to analyse the immunoexpression of E-cadherin, N-cadherin and caveolin-2 at different stages of oral carcinogenesis to identify reliable biomarkers to predict malignant potential. Methods Expressions of E-cadherin and N-cadherin in 14 normal oral mucosae (NOM), 14 OPMD and 33 OSCC specimens were evaluated using immunohistochemistry. Clinicopathological parameters were also assessed. Results E-cadherin immunoexpression was significantly reduced during the progression of oral carcinogenesis (P = 0.0018). N-cadherin immunoexpression did not show any statistical differences between these groups. However, a representative number of N-cadherin-positive OSCC cases did not express E-cadherin. The expression of caveolin-2 increased significantly with the progression of the disease, from NOM to OSCC (P value: 0.0028). Conclusion These findings indicate that cadherin switch and caveolin-2 immunoexpression may be regulatory events in oral carcinogenesis.
Collapse
Affiliation(s)
- Rebeca B. Nascimento
- PhD in Dentistry and Health, Department of Propaedeutics and Integrated Clinical, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Isadora A. R. Machado
- PhD in Dentistry and Health, Department of Propaedeutics and Integrated Clinical, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Jamerson C. Silva
- PhD Student in Dentistry and Health Postgraduated Program, Department of Propaedeutics and Integrated Clinical, School of Dentistry, Federal University of Bahia, Recife, PE, Brazil
| | - Lorena A. S. Faria
- DDS, Department of Propaedeutics and Integrated Clinical, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Fernanda C. Borba
- DDS, Department of Propaedeutics and Integrated Clinical, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Lia P. A. Porto
- PhD in Dentistry, Health Sciences Center, School of Dentistry, Federal University of Pernambuco, Recife, PE, Brazil
| | - Jean N. Santos
- PhD Professor, Surgical Pathology Laboratory, Department of Propaedeutics and Integrated Clinical, School of Dentistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Luciana M. P. Ramalho
- PhD Professor, Surgical Pathology Laboratory, Department of Propaedeutics and Integrated Clinical, School of Dentistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Camila O. Rodini
- PhD Professor, Department of Biological Sciences, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Fernanda S. D. Rodrigues
- PhD Professor, Biophotonics Applied to Health Sciences Postgraduated Program, University of the Ninth of July, São Paulo, SP, Brazil
| | - Katiúcia B. S. Paiva
- PhD Professor, Extracellular Matrix Biology and Cellular Interaction Laboratory, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Flávia C. A. Xavier
- PhD Professor, Surgical Pathology Laboratory, Department of Propaedeutics and Integrated Clinical, School of Dentistry, Federal University of Bahia, Salvador, BA, Brazil
| |
Collapse
|
10
|
Pandey P, Suyal G, Pasbola K, Sharma R. NGS-based profiling identifies miRNAs and pathways dysregulated in cisplatin-resistant esophageal cancer cells. Funct Integr Genomics 2023; 23:111. [PMID: 36995552 DOI: 10.1007/s10142-023-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Esophageal cancer (EC) incidence remains to be on a global rise supported by an unchanged recurrence and 5-year survival rate owing to the development of chemoresistance. Resistance to cisplatin, one of the majorly used chemotherapeutic drugs in EC, is a major nuisance. This study sheds light on miRNA dysregulation and its inverse relation with dysregulated mRNAs to guide pathways into the manifestation of cisplatin resistance in EC. A cisplatin-resistant version of an EC cell line was established and comparative profiling by NGS with the parental cell line was employed to identify dysregulation in miRNA and mRNA levels. Protein-protein interaction network analysis was done using Cytoscape, followed by Funrich pathway analysis. Furthermore, selective significant miRNAs were validated using qRT-PCR. miRNA-mRNA integrated analysis was carried out using the Ingenuity Pathway Analysis (IPA) tool. Expression of various established resistance markers supported the successful establishment of cisplatin-resistant cell line. Whole-cell small RNA sequencing and transcriptome sequencing identified 261 miRNAs and 1892 genes to be significantly differentially expressed (DE), respectively. Pathway analysis indicated enrichment of EMT signaling, supported by NOTCH, mTOR, TNF receptor, and PI3K-mediated AKT signaling pathways, in chemoresistant cells. Validation by qRT-PCR confirmed upregulation of miR-10a-5p, miR-618, miR-99a-5p, and miR-935 and downregulation of miR-335-3p, miR-205-5p, miR-944, miR-130a-3p, and miR-429 in resistant cells. Pathway analysis that followed IPA analysis indicated that the dysregulation of these miRNAs and their target genes may be instrumental in the development and regulation of chemoresistance via p53 signaling, xenobiotic metabolism, and NRF2-mediated oxidative stress. This study concludes the interplay between miRNA and mRNA as an important aspect and occurrence in guiding the regulation, acquisition, and maintenance of chemoresistance in esophageal cancer in vitro.
Collapse
Affiliation(s)
- Prerna Pandey
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | - Geetika Suyal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
- Zonal Technology Management & Business Planning and Development Unit (ZTM & BPD Unit), Indian Council of Agricultural Research- Indian Agricultural Research Institute (ICAR-IARI), Pusa, New Delhi, India
| | - Kiran Pasbola
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India.
| |
Collapse
|
11
|
Siegel JB, Nasarre P, Hsu L, Mukherjee R, Gormley M, Richardson B, Khan I, Morningstar JE, Hilliard E, O’Bryan JP, Helke KL, Spruill L, Dolloff NG, Klauber-DeMore N. Secreted frizzled related-protein 2 is prognostic for human pancreatic cancer patient survival and is associated with fibrosis. Cancer Biomark 2023; 38:287-300. [PMID: 37955079 PMCID: PMC10977449 DOI: 10.3233/cbm-220044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/14/2023] [Indexed: 11/14/2023]
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the deadliest cancers, with five-year survival rates of 9%. We hypothesized that secreted frizzled-related protein 2 (SFRP2) may influence stromal growth in pancreatic cancer, since it increases fibrosis and collagen production in non-neoplastic pathologies. We assessed SFRP2 value as a biomarker and assessed its function in PDAC. SFRP2 gene expression in patients with PDAC was analyzed using TCGA data. Disease free survival (DFS) was analyzed using Kaplan Meier test. The effect of KRAS inhibition on SFRP2 expression in PDAC cells was assessed. The associations of stromal content with SFPR2 mRNA and protein with fibrosis were analyzed. The role of SFRP2 in mesenchymal transformation was assessed by western blot in fibroblasts. Of all cancers in TCGA, SFRP2 levels were highest in PDAC, and higher in PDAC than normal tissues (n= 234, p= 0.0003). High SFRP2 levels correlated with decreased DFS (p= 0.0097). KRAS inhibition reduced SFRP2 levels. Spearman correlation was 0.81 between stromal RNA and SFRP2 in human PDAC, and 0.75 between fibrosis and SFRP2 levels in PDAC tumors. SFRP2-treated fibroblasts displayed mesenchymal characteristics. SFRP2 is prognostic for PDAC survival, regulated by KRAS, and associated with PDAC fibrosis.
Collapse
Affiliation(s)
- Julie B. Siegel
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick Nasarre
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Lillian Hsu
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Rupak Mukherjee
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Meghan Gormley
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bailey Richardson
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Imran Khan
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Jordan E. Morningstar
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston SC, USA
| | - Eleanor Hilliard
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - John P. O’Bryan
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Nathan G. Dolloff
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Nancy Klauber-DeMore
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
12
|
Chen Y, Hong C, Zhou Q, Qin Z. Roles of Cadherin2 in Thyroid Cancer. Front Oncol 2022; 12:804287. [PMID: 35756646 PMCID: PMC9218104 DOI: 10.3389/fonc.2022.804287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background The majority of drug-resistant cells in Thyroid cancer (THCA) tend to exhibit an Epithelial mesenchymal transition (EMT) phenotype, and abnormal expression of the cell adhesion molecule Cadherin2 (CDH2) is a hallmark of EMT. However, the roles of CDH2 in THCA and its underlying mechanisms are unknown. Methods We analyzed the CDH2 expression in The Cancer Genome Atlas (TCGA) database and screened for genes positively associated with CDH2. Small interfering RNA and cell transfection were used for knocking down CDH2 in THCA cells, cell counting kit-8 (CCK-8) assay and immunofluorescence to detect cell proliferation. Binding miRNAs of CDH2 and CDH2-associated genes were predicted using the Encyclopedia of RNA Interactomes (ENCORI) database. The expression of genes in clinical THCA tissues was investigated from the Human Protein Atlas (HPA) database and validated by qRT-PCR. We conducted the cell functions pathways of CDH2 and CDH2-associated gene FRMD3 by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. We also showed the correlation between CDH2 and FRMD3 expression and tumor immune infiltration. Results The expression of CDH2 was significantly higher in THCA tumor tissues compared to normal tissues. Moreover, there were strongly associations of CDH2 expression with the stages T and N. Cellular function assays showed that CDH2 exerted its growth-promoting activity of THCA. To better understand how CDH2 was regulated in THCA, we sought genes associated with CDH2. Correlation analysis revealed that there were negative correlations between genes (CDH2, FRMD3) and miRNAs (hsa-miR-410-3p, hsa-miR-411-5p, hsa-miR-299-5p). Moreover, CDH2 and FRMD3 expression were significantly higher in tumor tissues than in normal tissues, while hsa-miR-410-3p, hsa-miR-411-5p and hsa-miR-299-5p were significantly decreased in tumor tissues compared with normal tissues in THCA. GO and KEEG results showed that CDH2 and FRMD3 were strongly associated with immune-related functions. High expression of CDH2 and FRMD3 was linked to the suppression of immune cells. There were strong negativity correlations between CDH2, FRMD3 and T-cell exhaustion factors. Conclusion Our data indicated that CDH2 and CDH2-related gene FRMD3 might have the critical effects on altering tumors becoming ‘cold tumors’ eventually leading to immune checkpoint inhibitor resistance.
Collapse
Affiliation(s)
- Yun Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chaojin Hong
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qihao Zhou
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhiquan Qin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
13
|
Pogorzelska-Dyrbus J, Szepietowski JC. Adhesion Molecules in Non-melanoma Skin Cancers: A Comprehensive Review. In Vivo 2021; 35:1327-1336. [PMID: 33910810 DOI: 10.21873/invivo.12385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most frequently diagnosed cancers, generating significant medical and financial problems. Cutaneous carcinogenesis is a very complex process characterized by genetic and molecular alterations, and mediated by various proteins and pathways. Cell adhesion molecules (CAMs) are transmembrane proteins responsible for cell-to-cell and cell-to-extracellular matrix adhesion, engaged in all steps of tumor progression. Based on their structures they are divided into five major groups: cadherins, integrins, selectins, immunoglobulins and CD44 family. Cadherins, integrins and CD44 are the most studied in the context of non-melanoma skin cancers. The differences in expression of adhesion molecules may be related to the invasiveness of these tumors, through the loss of tissue integrity, neovascularization and alterations in intercellular signaling processes. In this article, each group of CAMs is briefly described and the present knowledge on their role in the development of non-melanoma skin cancers is summarized.
Collapse
Affiliation(s)
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
14
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
Gogola-Mruk J, Hoffmann-Młodzianowska M, Kamińska K, Ptak A. Mixtures of persistent organic pollutants increase ovarian granulosa tumor cell line migration and spheroid invasion by upregulating MMP2 expression and activity via IGF1R. Toxicology 2021; 452:152715. [PMID: 33571556 DOI: 10.1016/j.tox.2021.152715] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 12/22/2022]
Abstract
Granulosa cell tumors (GCT) of the ovary have a good prognosis. Recurrence tends to be late; however, > 66 % of patients with recurrent GCT die from the disease. Most recurrences are abdominopelvic, although distant metastases have been documented. Here, we tested the hypothesis that a mixture of persistent endocrine-disrupting chemicals (EDCs) stimulates the invasion of GCT cells. We selected perfluorooctanoate (PFOA, 2 ng/mL), perfluorooctanesulfonate (PFOS, 8 ng/mL), 2,2-dichlorodiphenyldichloroethylene (p,p'-DDE, 1 ng/mL), polychlorinated biphenyl 153 (PCB153, 100 pg/mL), and hexachlorobenzene (HCB, 50 pg/mL), which have the highest measured concentrations in follicular fluid of women undergoing treatment with assisted reproductive technology. The human GCT cell lines COV434 and KGN have been used as in vitro models of juvenile (JGCT) and adult (AGCT) GCT subtypes, respectively. Cells were treated with a mixture of the test compounds for 15 min prior to analysis of protein phosphorylation; for 4 h prior to analysis in a circular chemorepellent-induced defect assay; for 6 h prior to analysis of matrix metalloproteinase 2 (MMP2) activity; for 24 h prior to analysis of migration, invasion, and gene expression; and for 48 h prior to analysis of protein expression. First, we showed that KGN cells migrated and exhibited invasive behavior. By contrast, COV434 cells lacked migration and invasion potential. Moreover, expression of mesenchymal genes and the gene encoding MMP2 was higher in KGN cells, and that of epithelial genes lower, than that in COV434 cells. Treatment of KGN cells with the EDC mixture stimulated cell migration, invasion, and lymphatic dissemination. The results suggest that the role of the EDC mixture in AGCT invasion is not related to changes in expression of epithelial and mesenchymal genes; rather, it is related to increased expression and activity of MMP2. Additionally, silencing insulin-like growth factor 1 (IGF1R) in AGCT abolished the stimulatory effect of the EDC mixture on KGN spheroid invasion. These results demonstrate that the EDC mixture increased KGN spheroid invasion by stimulating expression and activity of MMP2 via IGF1R.
Collapse
Affiliation(s)
- Justyna Gogola-Mruk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Marta Hoffmann-Młodzianowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Kinga Kamińska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
16
|
AlMusawi S, Ahmed M, Nateri AS. Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clin Transl Med 2021; 11:e308. [PMID: 33635003 PMCID: PMC7868082 DOI: 10.1002/ctm2.308] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Carcinomas are complex heterocellular systems containing epithelial cancer cells, stromal fibroblasts, and multiple immune cell-types. Cell-cell communication between these tumor microenvironments (TME) and cells drives cancer progression and influences response to existing therapies. In order to provide better treatments for patients, we must understand how various cell-types collaborate within the TME to drive cancer and consider the multiple signals present between and within different cancer types. To investigate how tissues function, we need a model to measure both how signals are transferred between cells and how that information is processed within cells. The interplay of collaboration between different cell-types requires cell-cell communication. This article aims to review the current in vitro and in vivo mono-cellular and multi-cellular cultures models of colorectal cancer (CRC), and to explore how they can be used for single-cell multi-omics approaches for isolating multiple types of molecules from a single-cell required for cell-cell communication to distinguish cancer cells from normal cells. Integrating the existing single-cell signaling measurements and models, and through understanding the cell identity and how different cell types communicate, will help predict drug sensitivities in tumor cells and between- and within-patients responses.
Collapse
Affiliation(s)
- Shaikha AlMusawi
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
| | - Mehreen Ahmed
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Abdolrahman S. Nateri
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
17
|
Butera G, Brandi J, Cavallini C, Scarpa A, Lawlor RT, Scupoli MT, Marengo E, Cecconi D, Manfredi M, Donadelli M. The Mutant p53-Driven Secretome Has Oncogenic Functions in Pancreatic Ductal Adenocarcinoma Cells. Biomolecules 2020; 10:biom10060884. [PMID: 32526853 PMCID: PMC7356389 DOI: 10.3390/biom10060884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
The cancer secretome is a rich repository of useful information for both cancer biology and clinical oncology. A better understanding of cancer secretome is particularly relevant for pancreatic ductal adenocarcinoma (PDAC), whose extremely high mortality rate is mainly due to early metastasis, resistance to conventional treatments, lack of recognizable symptoms, and assays for early detection. TP53 gene is a master transcriptional regulator controlling several key cellular pathways and it is mutated in ~75% of PDACs. We report the functional effect of the hot-spot p53 mutant isoforms R175H and R273H on cancer cell secretome, showing their influence on proliferation, chemoresistance, apoptosis, and autophagy, as well as cell migration and epithelial-mesenchymal transition. We compared the secretome of p53-null AsPC-1 PDAC cells after ectopic over-expression of R175H-mutp53 or R273H-mutp53 to identify the differentially secreted proteins by mutant p53. By using high-resolution SWATH-MS technology, we found a great number of differentially secreted proteins by the two p53 mutants, 15 of which are common to both mutants. Most of these secreted proteins are reported to promote cancer progression and epithelial-mesenchymal transition and might constitute a biomarker secreted signature that is driven by the hot-spot p53 mutants in PDAC.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (G.B.); (M.T.S.)
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Chiara Cavallini
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, 37134 Verona, Italy;
| | - Aldo Scarpa
- Department of Diagnostics and Public health, Section of Pathology, University of Verona, 37134 Verona, Italy;
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Rita T. Lawlor
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (G.B.); (M.T.S.)
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, 37134 Verona, Italy;
| | - Emílio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Italy, ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Italy, ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Italy, CAAD, corso Trieste 15/A, 28100 Novara, Italy
- Correspondence: (M.M.); (M.D.); Tel.: +39-032-1660810 (M.M.); +39-045-8027281 (M.D.); Fax: +39-045-8027170 (M.D.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (G.B.); (M.T.S.)
- Correspondence: (M.M.); (M.D.); Tel.: +39-032-1660810 (M.M.); +39-045-8027281 (M.D.); Fax: +39-045-8027170 (M.D.)
| |
Collapse
|
18
|
Role of Collagen Fiber Morphology on Ovarian Cancer Cell Migration Using Image-Based Models of the Extracellular Matrix. Cancers (Basel) 2020; 12:cancers12061390. [PMID: 32481580 PMCID: PMC7352517 DOI: 10.3390/cancers12061390] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Remodeling of the extracellular matrix (ECM) is an important part in the development and progression of many epithelial cancers. However, the biological significance of collagen alterations in ovarian cancer has not been well established. Here we investigated the role of collagen fiber morphology on cancer cell migration using tissue engineered scaffolds based on high-resolution Second-Harmonic Generation (SHG) images of ovarian tumors. The collagen-based scaffolds are fabricated by multiphoton excited (MPE) polymerization, which is a freeform 3D method affording submicron resolution feature sizes (~0.5 µm). This capability allows the replication of the collagen fiber architecture, where we constructed models representing normal stroma, high-risk tissue, benign tumors, and high-grade tumors. These were seeded with normal and ovarian cancer cell lines to investigate the separate roles of the cell type and matrix morphology on migration dynamics. The primary finding is that key cell–matrix interactions such as motility, cell spreading, f-actin alignment, focal adhesion, and cadherin expression are mainly determined by the collagen fiber morphology to a larger extent than the initial cell type. Moreover, we found these aspects were all enhanced for cells on the highly aligned, high-grade tumor model. Conversely, the weakest corresponding responses were observed on the more random mesh-like normal stromal matrix, with the partially aligned benign tumor and high-risk models demonstrating intermediate behavior. These results are all consistent with a contact guidance mechanism. These models cannot be synthesized by other conventional fabrication methods, and we suggest this approach will enable a variety of studies in cancer biology.
Collapse
|
19
|
The Role of Carcinogenesis-Related Biomarkers in the Wnt Pathway and Their Effects on Epithelial-Mesenchymal Transition (EMT) in Oral Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12030555. [PMID: 32121061 PMCID: PMC7139589 DOI: 10.3390/cancers12030555] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
As oral squamous cell carcinoma (OSCC) can develop from potentially malignant disorders (PMDs), it is critical to develop methods for early detection to improve the prognosis of patients. Epithelial-mesenchymal transition (EMT) plays an important role during tumor progression and metastasis. The Wnt signaling pathway is an intercellular pathway in animals that also plays a fundamental role in cell proliferation and regeneration, and in the function of many cell or tissue types. Specific components of master regulators such as epithelial cadherin (E-cadherin), Vimentin, adenomatous polyposis coli (APC), Snail, and neural cadherin (N-cadherin), which are known to control the EMT process, have also been implicated in the Wnt cascade. Here, we review recent findings on the Wnt signaling pathway and the expression mechanism. These regulators are known to play roles in EMT and tumor progression, especially in OSCC. Characterizing the mechanisms through which both EMT and the Wnt pathway play a role in these cellular pathways could increase our understanding of the tumor genesis process and may allow for the development of improved therapeutics for OSCC.
Collapse
|
20
|
Valentiner U, Knips J, Pries R, Clauditz T, Münscher A, Sauter G, Wollenberg B, Schumacher U. Selectin Binding Sites Are Involved in Cell Adhesive Properties of Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11111672. [PMID: 31661833 PMCID: PMC6896014 DOI: 10.3390/cancers11111672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
The formation of distant metastases often determines the fate of patients with head and neck squamous cell carcinoma (HNSCC). The expression of cell adhesion molecules (CAMs) and their ligands of the leukocyte adhesion cascade has been associated with metastatic competence in several malignant entities. In this study, human HNSCC cell lines were analyzed in vitro and in a spontaneous metastatic xenograft model. Immunohistochemical analyses of several CAMs were performed on xenograft tumors and tissue microarrays (TMA) from 453 patients with head and neck squamous cell carcinomas with full histo-pathological and clinical follow-up data. UTSCC 24A and 24B cells bind to E-selectin in vitro, show E-selectin dependent binding to human umbilical vein endothelial cells (HUVECs), and express sLeX. All HNSCC cells engrafted into severe combined immunodeficient (SCID) mice, and UTSCC 24A cells formed sporadically spontaneous lung metastases. The expression of CAMs varied between the cell lines, but a correlation between tumor growth and metastatic potential did not exist. None of the CAMS or their ligands could be identified to be of prognostic relevance in the TMA study. The in vitro results indicate that E-selectin and sLeX are involved in the adhesion of HNSCC cells to endothelium. However, specific prognostic markers chosen from the leukocyte adhesion cascade for HNSCC were not identified.
Collapse
Affiliation(s)
- Ursula Valentiner
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Jillian Knips
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Ralph Pries
- Department of Ear, Nose and Throat, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Adrian Münscher
- Department of Otolaryngology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Barbara Wollenberg
- Department of Ear, Nose and Throat, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
21
|
Cao ZQ, Wang Z, Leng P. Aberrant N-cadherin expression in cancer. Biomed Pharmacother 2019; 118:109320. [DOI: 10.1016/j.biopha.2019.109320] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
|
22
|
Cell Type-Specific TGF-β Mediated EMT in 3D and 2D Models and Its Reversal by TGF-β Receptor Kinase Inhibitor in Ovarian Cancer Cell Lines. Int J Mol Sci 2019; 20:ijms20143568. [PMID: 31336560 PMCID: PMC6678358 DOI: 10.3390/ijms20143568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022] Open
Abstract
Transcriptome profiling of 3D models compared to 2D models in various cancer cell lines shows differential expression of TGF-β-mediated and cell adhesion pathways. Presence of TGF-β in these cell lines shows an increased invasion potential which is specific to cell type. In the present study, we identified exogenous addition of TGF-β can induce Epithelial to Mesenchymal Transition (EMT) in a few cancer cell lines. RNA sequencing and real time PCR were carried out in different ovarian cancer cell lines to identify molecular profiling and metabolic profiling. Since EMT induction by TGF-β is cell-type specific, we decided to select two promising ovarian cancer cell lines as model systems to study EMT. TGF-β modulation in EMT and cancer invasion were successfully depicted in both 2D and 3D models of SKOV3 and CAOV3 cell lines. Functional evaluation in 3D and 2D models demonstrates that the addition of the exogenous TGF-β can induce EMT and invasion in cancer cells by turning them into aggressive phenotypes. TGF-β receptor kinase I inhibitor (LY364947) can revert the TGF-β effect in these cells. In a nutshell, TGF-β can induce EMT and migration, increase aggressiveness, increase cell survival, alter cell characteristics, remodel the Extracellular Matrix (ECM) and increase cell metabolism favorable for tumor invasion and metastasis. We concluded that transcriptomic and phenotypic effect of TGF-β and its inhibitor is cell-type specific and not cancer specific.
Collapse
|
23
|
Abdallah RA, Abdou AG, Abdelwahed M, Ali H. Immunohistochemical Expression of E- and N-Cadherin in Nodular Prostatic Hyperplasia and Prostatic Carcinoma. J Microsc Ultrastruct 2019; 7:19-27. [PMID: 31008053 PMCID: PMC6442322 DOI: 10.4103/jmau.jmau_46_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background: Different theories have been postulated to explain the development of nodular prostatic hyperplasia (NPH). Epithelial to mesenchymal transition (EMT) is a physiologic process in which the epithelial cells lose their polarity and cell-cell adhesion and acquire a mesenchymal phenotype. Aim: The aim of the present study is to investigate the potential role of E- and N-cadherin in the induction of EMT in NPH and prostatic carcinoma. Methods: This study was carried out on 55 cases of NPH and 20 cases prostatic carcinoma for evaluation of immunohistochemical expression of E and N cadherins. Results: Most NPH (54/55 cases, 98.2%) and all cases of prostatic carcinoma showed positive N-cadherin expression in prostatic glands and stroma. High percentage of N-cadherin expression by stromal cells was significantly in favor of prostatic carcinoma compared to NPH. High percentage of N-cadherin expression by epithelial cells of carcinoma group was significantly associated with young age while its high expression by stromal cells was significantly associated with multicentricity. About 96.4% of NPH and 75% of prostatic carcinoma showed positive E-cadherin expression with a significant difference. No significant association between E-cadherin and N-cadherins in both NPH and prostatic carcinoma was identified. Conclusions: The prominent expression of N-cadherin in large numbers of NPH and prostate carcinoma cases in the epithelial and stromal components could point to the occurrence of EMT in those diseases. It also opens a new gate for treatment of those patients by targeting N-cadherin molecule. The absence of inverse association between E-cadherin and N-cadherins in NPH and prostatic carcinoma may indicate that cadherin switch is not an essential step for the development of EMT.
Collapse
Affiliation(s)
| | - Asmaa Gaber Abdou
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebein El Kom, Egypt
| | - Moshira Abdelwahed
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebein El Kom, Egypt
| | - Hend Ali
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebein El Kom, Egypt
| |
Collapse
|
24
|
Wolf GT, Winter W, Bellile E, Nguyen A, Donnelly CR, McHugh JB, Thomas D, Amlani L, Rozek L, Lei YL. Histologic pattern of invasion and epithelial-mesenchymal phenotype predict prognosis in squamous carcinoma of the head and neck. Oral Oncol 2018; 87:29-35. [PMID: 30527240 PMCID: PMC6293994 DOI: 10.1016/j.oraloncology.2018.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/11/2018] [Accepted: 10/06/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Disruption of E-cadherin function and increased expression of vimentin and the transcriptional oncogene, SOX2, are thought to characterize epithelial to mesenchymal transition (EMT) in HNSCC that contributes to invasive and metastatic behavior. To determine if such changes relate to prognosis or host immune response, expression of these markers and correlations with clinical characteristics, histologic worst pattern of invasion (WPOI) and tumor infiltrating lymphocytes (TIL) and survival were assessed. METHODS Immunohistologic expression of markers was determined in tissue microarrays from 274 previously untreated HNSCC patients. Expression was correlated with levels of TILs in microcores and WPOI in biopsy specimens. Correlations were assessed by Kruskal-Wallis testing and Spearman correlation coefficients where appropriate. Overall and relapse-free survival were analyzed with Cox proportional hazards models. Median follow up was 60.0 months. RESULTS Loss of E-cadherin expression was significantly associated with low or absent SOX2 expression (R = 0.433, p < 0.0001). SOX2 expression and low grade WPOI were significantly associated with favorable overall (OS) and relapse free (RFS) survival in multivariable analysis. E-cadherin expression did not correlate with TILs, however WPOI score correlated indirectly with CD4, CD8, and FoxP3 levels. When grouped by primary treatment, lower grades (1, 2) of WPOI predicted improved RFS and OS in patients treated with primary surgery but not for patients treated with chemoradiation. CONCLUSION The findings suggest that SOX2 expression and WPOI are significant prognostic factors and that WPOI correlates with decreased T cell infiltration. The combination of markers and TILs might be useful in selecting patients for primary surgery.
Collapse
Affiliation(s)
- Gregory T Wolf
- Departments of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48176, United States.
| | - William Winter
- Departments of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48176, United States
| | - Emily Bellile
- Departments of Biostatistics, University of Michigan, Ann Arbor, MI 48176, United States
| | - Ariane Nguyen
- Departments of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48176, United States
| | - C R Donnelly
- Departments of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48176, United States
| | - Jonathan B McHugh
- Departments of Pathology, University of Michigan, Ann Arbor, MI 48176, United States
| | - Dafydd Thomas
- Departments of Pathology, University of Michigan, Ann Arbor, MI 48176, United States
| | - Lahin Amlani
- Departments of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48176, United States
| | - Laura Rozek
- Departments of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48176, United States
| | - Yu L Lei
- Departments of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48176, United States
| |
Collapse
|
25
|
Wang H, Unternaehrer JJ. Epithelial-mesenchymal Transition and Cancer Stem Cells: At the Crossroads of Differentiation and Dedifferentiation. Dev Dyn 2018; 248:10-20. [DOI: 10.1002/dvdy.24678] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/29/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hanmin Wang
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| | - Juli J. Unternaehrer
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| |
Collapse
|
26
|
Gao Y, Qu Y, Zhou Q, Ma Y. SIRT6 inhibits proliferation and invasion in osteosarcoma cells by targeting N-cadherin. Oncol Lett 2018; 17:1237-1244. [PMID: 30655890 DOI: 10.3892/ol.2018.9676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/02/2018] [Indexed: 11/05/2022] Open
Abstract
SIRT6, is a member of the NAD-dependent sirtuin family of enzymes, and has been reported as a novel tumor suppressor gene or oncogene, dependent on the type of cancer. However, the role of SIRT6 in osteosarcoma has not been investigated. The present study demonstrated that the expression of SIRT6 was downregulated in osteosarcoma tissues and osteosarcoma cell lines when compared with adjacent tissues or osteoblastic cell lines. Kaplan-Meier analysis was performed to evaluate the prognostic significance of SIRT6. The overall survival of patients with higher expression of SIRT6 was significantly longer than patients with lower expression. Subsequently, MTT and invasion assays were performed to detect the biological functions of SIRT6 in osteosarcoma cells in vitro. The results revealed that overexpression of SIRT6 inhibited SAOS-2 and MG-63 cell proliferation and invasion. Knockdown of SIRT6 enhanced cell ability for the proliferation and invasion. A qChIP assay, luciferase reporter assay, reverse transcription-quantitative polymerase chain reaction and western blotting confirmed that CDH2 (N-cadherin) was a target of SIRT6. SIRT6 overexpression suppressed N-cadherin on the mRNA and protein levels. In addition, it was confirmed that the promotional effect of Si-SIRT6 on OS cell growth and invasion was suppressed by downregulating N-cadherin. The present study suggested that SIRT6 may serve as a tumor suppressor during the development of osteosarcoma. In addition, N-cadherin may be a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yi Gao
- Department of Orthopedics and Traumatology, First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yuxing Qu
- Department of Orthopedics, Changzhou City Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213000, P.R. China
| | - Qi Zhou
- Department of Orthopedics, Changzhou City Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213000, P.R. China
| | - Yong Ma
- Department of Orthopedics and Traumatology, First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
27
|
Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018; 18:939. [PMID: 30285678 PMCID: PMC6167798 DOI: 10.1186/s12885-018-4845-0] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
In many types of solid tumours, the aberrant expression of the cell adhesion molecule N-cadherin is a hallmark of epithelial-to-mesenchymal transition, resulting in the acquisition of an aggressive tumour phenotype. This transition endows tumour cells with the capacity to escape from the confines of the primary tumour and metastasise to secondary sites. In this review, we will discuss how N-cadherin actively promotes the metastatic behaviour of tumour cells, including its involvement in critical signalling pathways which mediate these events. In addition, we will explore the emerging role of N-cadherin in haematological malignancies, including bone marrow homing and microenvironmental protection to anti-cancer agents. Finally, we will discuss the evidence that N-cadherin may be a viable therapeutic target to inhibit cancer metastasis and increase tumour cell sensitivity to existing anti-cancer therapies.
Collapse
Affiliation(s)
- Krzysztof Marek Mrozik
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | - Chee Man Cheong
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew Christopher William Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia. .,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
28
|
Russo G, Theisen U, Fahr W, Helmsing S, Hust M, Köster RW, Dübel S. Sequence defined antibodies improve the detection of cadherin 2 (N-cadherin) during zebrafish development. N Biotechnol 2018; 45:98-112. [DOI: 10.1016/j.nbt.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 12/18/2022]
|
29
|
Sunil Gowda SN, Rajasowmiya S, Vadivel V, Banu Devi S, Celestin Jerald A, Marimuthu S, Devipriya N. Gallic acid-coated sliver nanoparticle alters the expression of radiation-induced epithelial-mesenchymal transition in non-small lung cancer cells. Toxicol In Vitro 2018; 52:170-177. [PMID: 29928970 DOI: 10.1016/j.tiv.2018.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Radiotherapy is the most widely used treatment method for treating cancer with or without surgery and chemotherapy. In lung cancer, it is one of the important treatment steps in excising the tumor from the lung tissue; unfortunately, radiation can induce epithelial- mesenchymal transition (EMT), a typical physiological process in which cuboidal shaped epithelial cell loses its phenotype and acquires mesenchymal-like phenotype thus, increases the metastasis progression in the body. To prevent EMT mediated metastasis, we aimed to 1) synthesize silver nanoparticles by using Gallic acid, a potential antioxidant which acts as stabilizing and reducing agent in the form of silver nanoparticle (GA-AgNPs) 2) to analyze its effect on EMT markers during radiation-induced EMT in A549 cells. METHODS A549 cells were irradiated with 8Gy (X-ray) and treated with GA-AgNPs at a fixed concentration under in vitro condition. GA-AgNPs were prepared and characterized for absorption, potential stability, size and morphology by UV-Visible spectrophotometer, Zeta potential and Transmission electron microscopy respectively. After irradiation, the morphology changes were observed using an inverted microscope, the gene and protein expression of EMT markers were analyzed by RT-PCR and western blotting. RESULTS/CONCLUSION GA-AgNPs are in nano size with fair stability. The synthesized nanoparticles suppressed the EMT markers including Vimentin, N-cadherin, Snail-1 and increased E-cadherin expression which might inhibit cancer cells to acquire radio resistant metastasis potential.
Collapse
Affiliation(s)
- S N Sunil Gowda
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - S Rajasowmiya
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Vellingiri Vadivel
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - S Banu Devi
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - A Celestin Jerald
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - S Marimuthu
- Vishnu Cancer Center, Thanjavur, Tamil Nadu, India
| | - N Devipriya
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
30
|
Hseu YC, Chang GR, Pan JY, Rajendran P, Mathew DC, Li ML, Liao JW, Chen WTL, Yang HL. Antrodia camphorata inhibits epithelial-to-mesenchymal transition by targeting multiple pathways in triple-negative breast cancers. J Cell Physiol 2018; 234:4125-4139. [PMID: 30146779 DOI: 10.1002/jcp.27222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/16/2018] [Indexed: 12/28/2022]
Abstract
Antrodia camphorata (AC) exhibits potential for engendering cell-cycle arrest as well as prompting apoptosis and metastasis inhibition in triple-negative breast cancer (TNBC) cells. We performed the current study to explore the anti-epithelial-to-mesenchymal transition (EMT) properties of fermented AC broth in TNBC cells. Our results illustrated that noncytotoxic concentrations of AC (20-60 μg/ml) reversed the morphological changes (fibroblastic-to-epithelial phenotype) as well as the EMT by upregulating the observed E-cadherin expression. Furthermore, we discovered treatment with AC substantially inhibit the Twist expression in human TNBC (MDA-MB-231) cells as well as in those that were transfected with Twist. In addition, we determined AC to decrease the observed Wnt/β-catenin nuclear translocation through a pathway determined to be dependent on GSK3β. Notably, AC treatment consistently inhibited the EMT by downregulating mesenchymal marker proteins like N-cadherin, vimentin, Snail, ZEB-1, and fibronectin; at that same time upregulating epithelial marker proteins like occludin and ZO-1. Bioluminescence imaging that was executed in vivo demonstrated AC substantially suppressed breast cancer metastasis to the lungs. Notably, we found that western blot analysis confirmed that AC decreased lung metastasis as demonstrated by upregulation of E-cadherin expression in biopsied lung tissue. Together with our results support the anti-EMT activity of AC, indicating AC as having the potential for acting as an anticancer agent for the treatment of human TNBC treatment.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Geng-Ruei Chang
- Institute of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Jian-You Pan
- Institute of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Peramaiyan Rajendran
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Dony Chacko Mathew
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Mei-Ling Li
- Department of Nutrition, Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung, Taiwan
| | - William Tzu-Liang Chen
- Division of Colorectal Surgery, Department of Surgery, Center of Minimally Invasive Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsin-Ling Yang
- Department of Nutrition, Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
31
|
Nguyen PT, Nguyen D, Chea C, Miyauchi M, Fujii M, Takata T. Interaction between N-cadherin and decoy receptor-2 regulates apoptosis in head and neck cancer. Oncotarget 2018; 9:31516-31530. [PMID: 30140387 PMCID: PMC6101147 DOI: 10.18632/oncotarget.25846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/15/2018] [Indexed: 11/25/2022] Open
Abstract
N-cadherin is a neural cell adhesion molecule that aberrantly occurs in head and neck cancers to promote cancer cell growth. However, the underlying mechanisms remain unclear. Here we report that N-cadherin increases cancer cell growth by inhibiting apoptosis. Apoptosis eliminates old, unnecessary, and unhealthy cells. However, tumor cells have the ability of avoiding apoptosis that increases cancer cell growth. Recent studies have found that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in tumor cells by reacting with four distinct cell surface receptors: TRAIL-R1 (DR-4), TRAIL-R2 (DR-5), TRAIL-R3 (DcR-1), and TRAIL-R4 (DcR-2). Among these TRAIL receptors, the death receptors DR-4 and DR-5 transmit apoptotic signals owing to the death domain in the intracellular portion. Conversely, the decoy receptors DcR-1 and DcR-2 lack a complete intracellular portion, so neither can transmit apoptotic signals. DcR-1 or DcR-2 overexpression suppresses TRAIL-induced apoptosis. In this study, N-cadherin overexpression increased DcR-2 expression and decreased DR-5 expression. In contrast, knockdown of N-cadherin expression upregulated DR-5 expression and downregulated DcR-2 expression. A significantly positive relationship between N-cadherin and DcR-2 expression was also found in HNSCC specimens. Those specimens with a lower apoptotic index showed a higher expression of N-cadherin and/or DcR-2. In addition, we demonstrated that N-cadherin interacts directly with DcR-2. Notably, DcR-2 induces cancer cell survival through the cleavage of caspases and PARP by activating MAPK/ERK pathway and suppressing NF-kB/ p65 phosphorylation, which has a very important role in resistance to chemotherapy.
Collapse
Affiliation(s)
- Phuong Thao Nguyen
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan.,Department of Global Dental Medicine and Molecular Oncology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Dung Nguyen
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chanbora Chea
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makiko Fujii
- Department of Global Dental Medicine and Molecular Oncology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
32
|
CD146 mediates an E-cadherin-to-N-cadherin switch during TGF-β signaling-induced epithelial-mesenchymal transition. Cancer Lett 2018; 430:201-214. [PMID: 29777784 DOI: 10.1016/j.canlet.2018.05.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 01/05/2023]
Abstract
Cadherin switch is an initiating factor of epithelial-mesenchymal transition (EMT) and is intimately correlated with cancer metastatic potential; however, its underlying mechanisms remain unclear. Here, using a transforming growth factor-β (TGF-β)-induced EMT model, we provide explicit evidence that CD146, with elevated expression and activity in a variety of cancers, is a key factor involved in the cadherin switch. We show that CD146 can be induced by TGF-β signaling. Moreover, CD146 expression is positively correlated with the activation levels of STAT3/Twist and ERK pathways. Transcriptional response of the CD146/STAT3/Twist cascade inhibits E-cadherin expression, whereas the CD146/ERK cascade enhances N-cadherin expression. CD146 overexpression also significantly promotes EMT in both mouse embryonic fibroblasts (MEFs) and ovarian cancer cells. Clinically, ovarian cancer patients with detectable CD146 expression had a significantly lower survival rate than that of patients without CD146 expression. Furthermore, CD146-deficient MEFs exhibited decreased motility as a result of reversion in this cadherin switch, strongly suggesting that targeting CD146 is a potential strategy for cancer treatment. Therefore, CD146-mediated regulation of the E-cadherin-to-N-cadherin switch provides an insight into the general mechanisms of EMT as well as cancer metastasis.
Collapse
|
33
|
Luo Y, Yu T, Zhang Q, Fu Q, Hu Y, Xiang M, Peng H, Zheng T, Lu L, Shi H. Upregulated N-cadherin expression is associated with poor prognosis in epithelial-derived solid tumours: A meta-analysis. Eur J Clin Invest 2018; 48:e12903. [PMID: 29405291 PMCID: PMC5887888 DOI: 10.1111/eci.12903] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/28/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND N-cadherin is an important molecular in epithelial-mesenchymal transition (EMT) and has been reported to be associated with aggressive behaviours of tumours. However, prognostic value of N-cadherin in solid malignancies remains controversially. MATERIALS AND METHODS The Pubmed/MELINE and EMBASE databases were used for a comprehensive literature searching. Pooled risk ratio (RR) and hazard ratio (HR) with their corresponding 95% confidence intervals (CIs) were employed to quantify the prognostic role. RESULTS Involving 36 studies with 5705 patients were performed to investigate relationships between N-cadherin upregulation and clinicopathological features, survival. Results suggested upregulated N-cadherin was associated with lymph node metastasis (RR = 1.16, 95% CI [1.00, 1.35]), higher histological grade (RR = 1.36, 95%CI [1.14, 1.62]), angiolymphatic invasion (RR = 1.19, 95% CI [1.06, 1.34]) and advanced clinical stage (RR = 1.32, 95% CI [1.06, 1.64]), while upregulated N-cadherin was apt to be associated with distant metastasis (RR = 1.43, 95% CI [0.99, 2.05]). Moreover, N-cadherin was correlated with poor prognosis of 3-year survival (HR = 1.78, 95% CI [1.51, 2.10]), 5-year survival (HR = 1.57, 95% CI [1.17, 2.10]) and overall survival (OS) (HR = 1.32, 95% CI [1.20, 1.44]). Subgroup analyses according to cancer types were also conducted for applying these conclusions to some tumours more properly. No publication bias was found except subgroup analysis of distant metastasis (P = .652 for Begg's test and 0.023 for Egger's test). CONCLUSIONS Taken together, upregulation of N-cadherin is associated with more aggressive behaviours of epithelial-derived solid malignancies and can be regarded as a predictor of poor survival.
Collapse
Affiliation(s)
- Yong Luo
- State Key Laboratory of Biotherapy and Department of Head and Neck OncologyWest China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Ting Yu
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Qiongwen Zhang
- State Key Laboratory of Biotherapy and Department of Head and Neck OncologyWest China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Qingyu Fu
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Yuzhu Hu
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Mengmeng Xiang
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Haoning Peng
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Tianying Zheng
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Li Lu
- College of Computer ScienceSichuan UniversityChengduSichuanChina
| | - Huashan Shi
- State Key Laboratory of Biotherapy and Department of Head and Neck OncologyWest China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| |
Collapse
|
34
|
Wang X, Zhang W, Sun X, Lin Y, Chen W. Cancer-associated fibroblasts induce epithelial-mesenchymal transition through secreted cytokines in endometrial cancer cells. Oncol Lett 2018; 15:5694-5702. [PMID: 29563996 PMCID: PMC5858056 DOI: 10.3892/ol.2018.8000] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
Endometrial cancer (EC) is the most common malignant gynecological disease. Cancer-associated fibroblasts (CAFs) serve an important role in the development and progression of EC through epithelial-mesenchymal transition (EMT). The aim of the present study was to examine the association between CAFs and EMT, and the possible mechanisms of action. Firstly, the CAFs and normal fibroblasts (NFs) were isolated and cultured, then an immunofluorescence assay was performed to analyze the purity and level of activation of CAFs and NFs, and then the conditional medium (CM) of CAFs and NFs was prepared. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting examined the expression levels of epithelial (E)-cadherin, neural (N)-cadherin and vimentin. A Matrigel® invasion assay and wound healing assay were used to analyze the effect of the CM on invasion and migration. An ELISA assay also measured the levels of various cytokines in the CM. In addition, EMT-associated proteins in metastatic lung tissues were detected by immunohistochemical assay. The results indicated that the CM of CAFs may decrease the level of E-cadherin, and increase the levels of N-cadherin and vimentin, while increasing the levels of invasion and metastasis in EC cells. The concentration of epidermal growth factor, transforming growth factor-β, hepatic growth factor and fibroblast growth factor in the CM of CAFs increased significantly, in comparison with the NFs group (P<0.05). The exogenous growth factors induced migration and invasion of EC cells. CAFs induced lung metastasis and the EMT process in vivo. These data suggested that cancer-associated fibroblasts may induce EMT through the secreted cytokines in endometrial cancer cells.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Weijiang Zhang
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiwen Sun
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yan Lin
- Guangzhou Youdi Biotechnology Company, Guangzhou, Guangdong 510006, P.R. China
| | - Wei Chen
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
35
|
Di Domenico M, Giordano A. Signal transduction growth factors: the effective governance of transcription and cellular adhesion in cancer invasion. Oncotarget 2018; 8:36869-36884. [PMID: 28415812 PMCID: PMC5482705 DOI: 10.18632/oncotarget.16300] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
Giulio Bizzozero classified the tissues concerning their capacity to self-renew during the adult life in labile, stable and permanent tissues. In 1940 Viktor Hamburger and Rita Levi Montalcini exposed the possibility to induce the growth of permanent cells thanks to a specific ligand Nerve Growth Factor (NGF). Stanley Cohen purified a protein the Epidermal Growth Factor (EGF), able to induce epidermis proliferation and to elicit precocious eye disclosure and teeth eruption, establishing the “inverse” relationships between the proliferation and differentiation. These two biological effects induced by EGF were according to EGFR signaling is involved in a large array of cellular functions such as proliferation, survival, adhesion, migration and differentiation. This review is focused on the key role of growth factors signaling and their downstream effectors in physiological and in pathological phenomena, the authors highlight the governance of Growth factors during the EMT in cancer invasion.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Italy.,IRCCS Institute of Women's Health Malzoni Clinic, Avellino, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
36
|
Bruner HC, Derksen PWB. Loss of E-Cadherin-Dependent Cell-Cell Adhesion and the Development and Progression of Cancer. Cold Spring Harb Perspect Biol 2018; 10:a029330. [PMID: 28507022 PMCID: PMC5830899 DOI: 10.1101/cshperspect.a029330] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical cadherins are the key molecules that control cell-cell adhesion. Notwithstanding this function, it is also clear that classical cadherins are more than just the "glue" that keeps the cells together. Cadherins are essential regulators of tissue homeostasis that govern multiple facets of cellular function and development, by transducing adhesive signals to a complex network of signaling effectors and transcriptional programs. In cancer, cadherins are often inactivated or functionally inhibited, resulting in disease development and/or progression. This review focuses on E-cadherin and its causal role in the development and progression of breast and gastric cancer. We provide a summary of the biochemical consequences and consider the conceptual impact of early (mutational) E-cadherin loss in cancer. We advocate that carcinomas driven by E-cadherin loss should be considered "actin-diseases," caused by the specific disruption of the E-cadherin-actin connection and a subsequent dependence on sustained actomyosin contraction for tumor progression. Based on the available data from mouse and human studies we discuss opportunities for targeted clinical intervention.
Collapse
Affiliation(s)
- Heather C Bruner
- Department of Medicine, University of California at San Diego, La Jolla, California 92093
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| |
Collapse
|
37
|
Wu HM, Huang HY, Schally AV, Chao A, Chou HH, Leung PCK, Wang HS. Growth hormone-releasing hormone antagonist inhibits the invasiveness of human endometrial cancer cells by down-regulating twist and N-cadherin expression. Oncotarget 2018; 8:4410-4421. [PMID: 28032599 PMCID: PMC5354842 DOI: 10.18632/oncotarget.13877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/01/2016] [Indexed: 11/25/2022] Open
Abstract
More than 25% of patients diagnosed with endometrial carcinoma have invasive primary cancer accompanied by metastases. Growth hormone-releasing hormone (GHRH) plays an important role in reproduction. Here, we examined the effect of a GHRH antagonist on the motility of endometrial cancer cells and the mechanisms of action of the antagonist in endometrial cancer. Western blotting and immunohistochemistry (IHC) were used to determine the expression of the GHRH receptor protein. The activity of Twist and N-cadherin was determined by Western blotting. Cell motility was assessed by an invasion and migration assay. GHRH receptor siRNA was applied to knockdown the GHRH receptor in endometrial cancer cells. The GHRH antagonist inhibited cell motility in a dose-dependent manner. The GHRH antagonist inhibited cell motility and suppressed the expression of Twist and N-cadherin, and the suppression was abolished by GHRH receptor siRNA pretreatment. Moreover, the inhibition of Twist and N-cadherin with Twist siRNA and N-cadherin siRNA, respectively, suppressed cell motility. Our study indicates that the GHRH antagonist inhibited the cell motility of endometrial cancer cells through the GHRH receptor via the suppression of Twist and N-cadherin. Our findings represent a new concept in the mechanism of GHRH antagonist-suppressed cell motility in endometrial cancer cells and suggest the possibility of exploring GHRH antagonists as potential therapeutics for the treatment of human endometrial cancer.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan R.O.C
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan R.O.C
| | - Andrew V Schally
- Veterans Affairs Medical Center and Departments of Pathology and Medicine, Division of Hematology/Oncology, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan R.O.C
| | - Hung-Hsueh Chou
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan R.O.C
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia V6H3V5, Canada
| | - Hsin-Shih Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan R.O.C
| |
Collapse
|
38
|
Retzbach EP, Sheehan SA, Nevel EM, Batra A, Phi T, Nguyen ATP, Kato Y, Baredes S, Fatahzadeh M, Shienbaum AJ, Goldberg GS. Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target. Oral Oncol 2018; 78:126-136. [PMID: 29496040 DOI: 10.1016/j.oraloncology.2018.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/14/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022]
Abstract
Oral cancer has become one of the most aggressive types of cancer, killing 140,000 people worldwide every year. Current treatments for oral cancer include surgery and radiation therapies. These procedures can be very effective; however, they can also drastically decrease the quality of life for survivors. New chemotherapeutic treatments are needed to more effectively combat oral cancer. The transmembrane receptor podoplanin (PDPN) has emerged as a functionally relevant oral cancer biomarker and chemotherapeutic target. PDPN expression promotes tumor cell migration leading to oral cancer invasion and metastasis. Here, we describe the role of PDPN in oral squamous cell carcinoma progression, and how it may be exploited to prevent and treat oral cancer.
Collapse
Affiliation(s)
- Edward P Retzbach
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Stephanie A Sheehan
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Evan M Nevel
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Amber Batra
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Tran Phi
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Angels T P Nguyen
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Yukinari Kato
- New Industry Creation Hatchery Center, Tohoku University; Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Soly Baredes
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Mahnaz Fatahzadeh
- Department of Diagnostic Sciences, New Jersey School of Dental Medicine, Rutgers University, Newark, NJ 07103 USA
| | - Alan J Shienbaum
- Department of Pathology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Gary S Goldberg
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| |
Collapse
|
39
|
Fan M, Liu Y, Xia F, Wang Z, Huang Y, Li J, Wang Z, Li X. Increased expression of EphA2 and E-N cadherin switch in primary hepatocellular carcinoma. TUMORI JOURNAL 2018; 99:689-96. [DOI: 10.1177/030089161309900608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aim To investigate the expression and clinical significance of ephrin type-A receptor 2 and epithelial-mesenchymal transition-related proteins in primary hepatocellular carcinoma. Methods Tissues from 52 primary hepatocellular carcinomas and 12 human normal liver tissues were detected for expression of ephrin type-A receptor 2, E-cadherin, and N-cadherin by immunochemistry. Cinicopathological features of hepatocellular carcinoma and tumor recurrence after operation were studied for the association with these molecular expressions and E-N cadherin switch. Results Increased expressions of ephrin type-A receptor 2 and N-cadherin and reduced expression of E-cadherin were significantly detected in hepatocellular carcinoma compared with normal liver tissues. Univariate analysis showed that there were close associations between unfavorable clinicopathological features and expressions of ephrin type-A receptor 2, E-cadherin, N-cadherin, and E-N cadherin switch. Ephrin type-A receptor 2 and E-cadherin expressions were confirmed as independent prognostic factors when corrected with age, gender, AFP, HBsAg, liver cirrhosis, tumor size, nodules, capsule, portal vein invasion, cell differentiation, and TNM stage. Conclusions The overexpression of ephrin type-A receptor 2 protein is correlated with the number of tumors, capsular integrity, portal vein cancer thrombus and clinical stages. Epithelial-mesenchymal transition regulated by ephrin type-A receptor 2 is involved in the aggressive clinicopathological features and prognosis, suggesting that the receptor may play an important role in the progression and metastasis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Min Fan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
- Department of Geriatrics, Xiangya Second Hospital, Central South University, Changsha
| | - Yu Liu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
- Department of General Surgery, Yueyang First People's Hospital, Yueyang, China
| | - Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
| | - Zhuolu Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
| | - Yun Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
| | - Jingdong Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
| | - Zhiming Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
| |
Collapse
|
40
|
Meshalkina DA, Shevtsov MA, Dobrodumov AV, Komarova EY, Voronkina IV, Lazarev VF, Margulis BA, Guzhova IV. Knock-down of Hdj2/DNAJA1 co-chaperone results in an unexpected burst of tumorigenicity of C6 glioblastoma cells. Oncotarget 2017; 7:22050-63. [PMID: 26959111 PMCID: PMC5008343 DOI: 10.18632/oncotarget.7872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/20/2016] [Indexed: 01/04/2023] Open
Abstract
The chaperone system based on Hsp70 and proteins of the DnaJ family is known to protect tumor cells from a variety of cytotoxic factors, including anti-tumor therapy. To analyze whether this also functions in a highly malignant brain tumor, we knocked down the expression of Hsp70 (HSPA1A) and its two most abundant co-chaperones, Hdj1 (DNAJB1) and Hdj2 (DNAJA1) in a C6 rat glioblastoma cell line. As expected, tumor depletion of Hsp70 caused a substantial reduction in its growth rate and increased the survival of tumor-bearing animals, whereas the reduction of Hdj1 expression had no effect. Unexpectedly, a reduction in the expression of Hdj2 led to the enhanced aggressiveness of the C6 tumor, demonstrated by its rapid growth, metastasis formation and a 1.5-fold reduction in the lifespan of tumor-bearing animals. The in vitro reduction of Hdj2 expression reduced spheroid density and simultaneously enhanced the migration and invasion of C6 cells. At the molecular level, a knock-down of Hdj2 led to the relocation of N-cadherin and the enhanced activity of metalloproteinases 1, 2, 8 and 9, which are markers of highly malignant cancer cells. The changes in the actin cytoskeleton in Hdj2-depleted cells indicate that the protein is also important for prevention of the amoeboid-like transition of tumor cells. The results of this study uncover a completely new role for the Hdj2 co-chaperone in tumorigenicity and suggest that the protein is a potential drug target.
Collapse
Affiliation(s)
- Darya A Meshalkina
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Maxim A Shevtsov
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia.,First I.P. Pavlov State Medical University of St. Petersburg, St. Petersburg 197022, Russia
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Elena Y Komarova
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Irina V Voronkina
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Vladimir F Lazarev
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
41
|
Dual targeting mesoporous silica nanoparticles for inhibiting tumour cell invasion and metastasis. Int J Pharm 2017; 534:71-80. [DOI: 10.1016/j.ijpharm.2017.09.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/12/2017] [Accepted: 09/23/2017] [Indexed: 12/12/2022]
|
42
|
Cousin H. Cadherins function during the collective cell migration of Xenopus Cranial Neural Crest cells: revisiting the role of E-cadherin. Mech Dev 2017; 148:79-88. [PMID: 28467887 PMCID: PMC5662486 DOI: 10.1016/j.mod.2017.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022]
Abstract
Collective cell migration is a process whereby cells move while keeping contact with other cells. The Xenopus Cranial Neural Crest (CNC) is a population of cells that emerge during early embryogenesis and undergo extensive migration from the dorsal to ventral part of the embryo's head. These cells migrate collectively and require cadherin mediated cell-cell contact. In this review, we will describe the key features of Xenopus CNC migration including the key molecules driving their migration. We will also review the role of the various cadherins during Xenopus CNC emergence and migration. Lastly, we will discuss the recent and seemingly controversial findings showing that E-cadherin presence is essential for CNC migration.
Collapse
Affiliation(s)
- Hélène Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
43
|
Messica Y, Laser-Azogui A, Volberg T, Elisha Y, Lysakovskaia K, Eils R, Gladilin E, Geiger B, Beck R. The role of Vimentin in Regulating Cell Invasive Migration in Dense Cultures of Breast Carcinoma Cells. NANO LETTERS 2017; 17:6941-6948. [PMID: 29022351 DOI: 10.1021/acs.nanolett.7b03358] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cell migration and mechanics are tightly regulated by the integrated activities of the various cytoskeletal networks. In cancer cells, cytoskeletal modulations have been implicated in the loss of tissue integrity and acquisition of an invasive phenotype. In epithelial cancers, for example, increased expression of the cytoskeletal filament protein vimentin correlates with metastatic potential. Nonetheless, the exact mechanism whereby vimentin affects cell motility remains poorly understood. In this study, we measured the effects of vimentin expression on the mechano-elastic and migratory properties of the highly invasive breast carcinoma cell line MDA231. We demonstrate here that vimentin stiffens cells and enhances cell migration in dense cultures, but exerts little or no effect on the migration of sparsely plated cells. These results suggest that cell-cell interactions play a key role in regulating cell migration, and coordinating cell movement in dense cultures. Our findings pave the way toward understanding the relationship between cell migration and mechanics in a biologically relevant context.
Collapse
Affiliation(s)
- Yonatan Messica
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Adi Laser-Azogui
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Tova Volberg
- Department of Molecular Cell Biology, Weizmann Institute of Science , Rehovot, 7610001, Israel
| | - Yair Elisha
- Department of Molecular Cell Biology, Weizmann Institute of Science , Rehovot, 7610001, Israel
| | - Kseniia Lysakovskaia
- Division of Theoretical Bioinformatics, German Cancer Research Center , 69120 Heidelberg, Germany
- BioQuant and IPMB, University of Heidelberg , 69120 Heidelberg, Germany
- International Max Planck Research School for Molecular Biology, Georg-August-University Göttingen , 37077 Göttingen, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center , 69120 Heidelberg, Germany
- BioQuant and IPMB, University of Heidelberg , 69120 Heidelberg, Germany
| | - Evgeny Gladilin
- Division of Theoretical Bioinformatics, German Cancer Research Center , 69120 Heidelberg, Germany
- BioQuant and IPMB, University of Heidelberg , 69120 Heidelberg, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research , 06466 Seeland, Germany
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science , Rehovot, 7610001, Israel
| | - Roy Beck
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| |
Collapse
|
44
|
Yun Y, Gao R, Yue H, Guo L, Li G, Sang N. Sulfate Aerosols Promote Lung Cancer Metastasis by Epigenetically Regulating the Epithelial-to-Mesenchymal Transition (EMT). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11401-11411. [PMID: 28901751 DOI: 10.1021/acs.est.7b02857] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Secondary inorganic aerosols (SIA), particularly sulfate aerosols, are central particulate matter (PM) constituents of severe haze formation in China and exert profound impacts on human health; however, our understanding of the mechanisms by which sulfate aerosols cause malignancy in lung carcinogenesis remains incomplete. Here, we show that exposure to secondary inorganic aerosols induced the invasion and migration of lung epithelial cells, and that (NH4)2SO4 exerted the most serious effects in vitro and promoted lung tumor metastasis in vivo. This action was associated with alterations of phenotype markers in the epithelial-to-mesenchymal transition (EMT), such as the up-regulation of fibronectin (Fn1) and the down-regulation of E-cadherin (E-cad). Hypoxia-inducible factor 1α (HIF-1α)-Snail signaling, regulated by the generation of reactive oxygen species (ROS), was involved in the (NH4)2SO4-induced EMT, and the potent antioxidant N-acetylcysteine (NAC) inhibited the activation of HIF-1α-Snail and blocked the EMT, cell invasion, and migration in response to (NH4)2SO4. Additionally, CpG hypermethylation in the E-cad promoter regions partly contributed to the (NH4)2SO4-regulated E-cad repression, and the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-Aza) restored the (NH4)2SO4-induced down-regulation of E-cad. Our findings reveal a potential mechanistic basis for exploring the association between sulfate aerosol exposure and increased malignancy during lung carcinogenesis, and suggest new approaches for the treatment, improvement, and prevention of lung cancer resulting from sulfate aerosol exposure in severe haze-fog.
Collapse
Affiliation(s)
- Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Lin Guo
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| |
Collapse
|
45
|
Kourtidis A, Lu R, Pence LJ, Anastasiadis PZ. A central role for cadherin signaling in cancer. Exp Cell Res 2017; 358:78-85. [PMID: 28412244 PMCID: PMC5544584 DOI: 10.1016/j.yexcr.2017.04.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022]
Abstract
Cadherins are homophilic adhesion molecules with important functions in cell-cell adhesion, tissue morphogenesis, and cancer. In epithelial cells, E-cadherin accumulates at areas of cell-cell contact, coalesces into macromolecular complexes to form the adherens junctions (AJs), and associates via accessory partners with a subcortical ring of actin to form the apical zonula adherens (ZA). As a master regulator of the epithelial phenotype, E-cadherin is essential for the overall maintenance and homeostasis of polarized epithelial monolayers. Its expression is regulated by a host of genetic and epigenetic mechanisms related to cancer, and its function is modulated by mechanical forces at the junctions, by direct binding and phosphorylation of accessory proteins collectively termed catenins, by endocytosis, recycling and degradation, as well as, by multiple signaling pathways and developmental processes, like the epithelial to mesenchymal transition (EMT). Nuclear signaling mediated by the cadherin associated proteins β-catenin and p120 promotes growth, migration and pluripotency. Receptor tyrosine kinase, PI3K/AKT, Rho GTPase, and HIPPO signaling, are all regulated by E-cadherin mediated cell-cell adhesion. Finally, the recruitment of the microprocessor complex to the ZA by PLEKHA7, and the subsequent regulation of a small subset of miRNAs provide an additional mechanism by which the state of epithelial cell-cell adhesion affects translation of target genes to maintain the homeostasis of polarized epithelial monolayers. Collectively, the data indicate that loss of E-cadherin function, especially at the ZA, is a common and crucial step in cancer progression.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ruifeng Lu
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Lindy J Pence
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
46
|
Vimentin is a potential prognostic factor for tongue squamous cell carcinoma among five epithelial-mesenchymal transition-related proteins. PLoS One 2017; 12:e0178581. [PMID: 28570699 PMCID: PMC5453552 DOI: 10.1371/journal.pone.0178581] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/15/2017] [Indexed: 01/11/2023] Open
Abstract
We aimed to investigate the association of the expression levels of five epithelial-mesenchymal transition (EMT)-related proteins (Snail, Twist, E-cadherin, N-cadherin, and Vimentin) with tumorigenesis, pathologic parameters and prognosis in tongue squamous cell carcinoma (TSCC) patients by immunohistochemistry of tissue microarray. The expression levels of Snail, E-cadherin, N-cadherin and Vimentin were significantly different between the tumor adjacent normal and tumor tissues. In tumor tissues, lower E-cadherin and higher N-cadherin levels were associated with a higher grade of cell differentiation, advanced stage of disease, and lymph node metastasis. However, higher Vimentin expression was associated with poor cell differentiation and lymph node metastasis. Patients with low E-cadherin expression had poor disease-specific survival (DSS). Conversely, positive N-cadherin and higher Vimentin expression levels were associated with poor DSS and disease-free survival. Notably, our multivariate Cox regression model indicated that high Vimentin expression was an adverse prognostic factor for DSS in TSCC patients, even after the adjustment for cell differentiation, pathological stage, and expression levels of Snail, Twist, E-cadherin, and N-cadherin. Snail, E-cadherin, N-cadherin, and Vimentin were associated with tumorigenesis and pathological outcomes. Among the five EMT-related proteins, Vimentin was a potential prognostic factor for TSCC patients.
Collapse
|
47
|
Pazos MC, Abramovich D, Bechis A, Accialini P, Parborell F, Tesone M, Irusta G. Gamma secretase inhibitor impairs epithelial-to-mesenchymal transition induced by TGF-β in ovarian tumor cell lines. Mol Cell Endocrinol 2017; 440:125-137. [PMID: 27908834 DOI: 10.1016/j.mce.2016.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
Abstract
Ovarian cancer is characterized by being highly metastatic, a feature that represents the main cause of failure of the treatment. This study investigated the effects of γ-secretase inhibition on the TGF-β-induced epithelial-mesenchymal transition (EMT) process in ovarian cancer cell lines. SKOV3 cells incubated in the presence of TGF-β showed morphological and biochemical changes related to EMT, which were blocked by co-stimulation with TGF-β and the γ-secretase inhibitor DAPT. In SKOV3 and IGROV1 cells, the co-stimulation blocked the cadherin switch and the increase in the transcription factors Snail, Slug, Twist and Zeb1 induced by TGF-β. DAPT impaired the translocation of phospho-β-catenin to the inner cell compartment observed in TGF-β-treated cells, but was not able to block the induction at protein level induced by TGF-β. Moreover, the inhibitor blocked the increased cell migration and invasiveness ability of both cell lines induced by TGF-β. Notch target genes (Hes1 and Hey1) were induced by TGF-β, decreased by DAPT treatment and remained low in the presence of both stimuli. However, DAPT alone caused no effects on most of the parameters analyzed. These results demonstrate that the γ-secretase inhibitor used in this study exerted a blockade on TGF-β-induced EMT in ovarian cancer cells.
Collapse
Affiliation(s)
- M C Pazos
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| | - D Abramovich
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| | - A Bechis
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| | - P Accialini
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| | - F Parborell
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| | - M Tesone
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| | - G Irusta
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
48
|
Xu Y, Chang R, Xu F, Gao Y, Yang F, Wang C, Xiao J, Su Z, Bi Y, Wang L, Zha X. N‐Glycosylation at Asn 402 Stabilizes N‐Cadherin and Promotes Cell–Cell Adhesion of Glioma Cells. J Cell Biochem 2017; 118:1423-1431. [DOI: 10.1002/jcb.25801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Yaolin Xu
- Central Hospital of Minhang DistrictFudan UniversityShanghaiChina
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Glycoconjugate ResearchMinistry of HealthShanghaiChina
| | - Ruiqi Chang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Glycoconjugate ResearchMinistry of HealthShanghaiChina
| | - Fulin Xu
- Central Hospital of Minhang DistrictFudan UniversityShanghaiChina
| | - Yan Gao
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Glycoconjugate ResearchMinistry of HealthShanghaiChina
| | - Fuming Yang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Glycoconjugate ResearchMinistry of HealthShanghaiChina
| | - Can Wang
- Shanghai Institute for Food and Drug ControlShanghaiChina
| | - Jin Xiao
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Glycoconjugate ResearchMinistry of HealthShanghaiChina
| | - Zuopeng Su
- Central Hospital of Minhang DistrictFudan UniversityShanghaiChina
| | - Yongyan Bi
- Central Hospital of Minhang DistrictFudan UniversityShanghaiChina
| | - Liying Wang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Glycoconjugate ResearchMinistry of HealthShanghaiChina
- Key Laboratory of Molecular MedicineMinistry of EducationShanghaiChina
| | - Xiliang Zha
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Glycoconjugate ResearchMinistry of HealthShanghaiChina
- Key Laboratory of Molecular MedicineMinistry of EducationShanghaiChina
| |
Collapse
|
49
|
Merzoug-Larabi M, Spasojevic C, Eymard M, Hugonin C, Auclair C, Karam M. Protein kinase C inhibitor Gö6976 but not Gö6983 induces the reversion of E- to N-cadherin switch and metastatic phenotype in melanoma: identification of the role of protein kinase D1. BMC Cancer 2017; 17:12. [PMID: 28056869 PMCID: PMC5217271 DOI: 10.1186/s12885-016-3007-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
Background Melanoma is a highly metastatic type of cancer that is resistant to all standard anticancer therapies and thus has a poor prognosis. Therefore, metastatic melanoma represents a significant clinical problem and requires novel and effective targeted therapies. The protein kinase C (PKC) family comprises multiple isoforms of serine/threonine kinases that possess distinct roles in cancer development and progression. In this study, we determined whether inhibition of PKC could revert a major process required for melanoma progression and metastasis; i.e. the E- to N-cadherin switch. Methods The cadherin switch was analyzed in different patient-derived primary tumors and their respective metastatic melanoma cells to determine the appropriate cellular model (aggressive E-cadherin-negative/N-cadherin-positive metastasis-derived melanoma cells). Next, PKC inhibition in two selected metastatic melanoma cell lines, was performed by using either pharmacological inhibitors (Gö6976 and Gö6983) or stable lentiviral shRNA transduction. The expression of E-cadherin and N-cadherin was determined by western blot. The consequences of cadherin switch reversion were analyzed: cell morphology, intercellular interactions, and β-catenin subcellular localization were analyzed by immunofluorescence labeling and confocal microscopy; cyclin D1 expression was analyzed by western blot; cell metastatic potential was determined by anchorage-independent growth assay using methylcellulose as semi-solid medium and cell migration potential by wound healing and transwell assays. Results Gö6976 but not Gö6983 reversed the E- to N-cadherin switch and as a consequence induced intercellular interactions, profound morphological changes from elongated mesenchymal-like to cuboidal epithelial-like shape, β-catenin translocation from the nucleus to the plasma membrane inhibiting its oncogenic function, and reverting the metastatic potential of the aggressive melanoma cells. Comparison of the target spectrum of these inhibitors indicated that these observations were not the consequence of the inhibition of conventional PKCs (cPKCs), but allowed the identification of a novel serine/threonine kinase, i.e. protein kinase Cμ, also known as protein kinase D1 (PKD1), whose specific inhibition allows the reversion of the metastatic phenotype in aggressive melanoma. Conclusion In conclusion, our study suggests, for the first time, that while cPKCs don’t embody a pertinent therapeutic target, inhibition of PKD1 represents a novel attractive approach for the treatment of metastatic melanoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-3007-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Caroline Spasojevic
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France.,Département de Génétique, Institut Curie, Unité de Pharmacogénomique, Paris, 75248, France
| | - Marianne Eymard
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France
| | - Caroline Hugonin
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France
| | - Christian Auclair
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France
| | - Manale Karam
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France. .,Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, 5825, Qatar.
| |
Collapse
|
50
|
Cardenas C, Alvero AB, Yun BS, Mor G. Redefining the origin and evolution of ovarian cancer: a hormonal connection. Endocr Relat Cancer 2016; 23:R411-22. [PMID: 27440787 DOI: 10.1530/erc-16-0209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022]
Abstract
Ovarian cancer has the highest mortality of all female reproductive cancers. Late diagnosis, tumour heterogeneity and the development of chemoresistance contribute to this statistic and work against patient survival. Current studies have revealed novel concepts that impact our view on how ovarian cancer develops. The greatest impact is on our understanding that, as a disease, ovarian cancer has multiple cellular origins and that these malignant precursors are mostly derived from outside of the ovaries. In this review, we propose a new concept of a step-wise developmental process that may underwrite ovarian tumorigenesis and progression: (1) migration/recruitment to the ovaries; (2) seeding and establishment in the ovaries; (3) induction of a dormant cancer stage; and (4) expansion and tumor progression. We will discuss the relationship of each step with the changing ovarian function and milieu during the reproductive age and the subsequent occurrence of menopause. The realization that ovarian cancer development and progression occurs in distinct steps is critical for the search of adequate markers for early detection that will offer personalized strategies for prevention and therapy.
Collapse
Affiliation(s)
- Carlos Cardenas
- Department of ObstetricsGynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ayesha B Alvero
- Department of ObstetricsGynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bo Seong Yun
- Department of Obstetrics and GynecologyCHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - Gil Mor
- Department of ObstetricsGynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|