1
|
Suzuki M, Kawauchi K, Machiyama H, Hirata H, Ishiwata S, Fujita H. Dynamic Remodeling of Mechano-Sensing Complexes in Suspended Fibroblast Cell-Sheets Under External Mechanical Stimulus. Biotechnol Bioeng 2025. [PMID: 40270085 DOI: 10.1002/bit.28996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025]
Abstract
Freestanding cell-sheets are valuable bio-materials for use in regenerative medicine and tissue engineering. Because cell-sheets experience various mechanical stimulations during handling, it is important to understand the responses of cells to these stimulations. Here, we demonstrate changes in the localization of various proteins during the stretching of fibroblast cell-sheets. These proteins are known to be involved in mechano-sensing. Upon stretching, actin filaments appear parallel to the stretching direction. At cell-cell junctions, β-catenin forms clusters that co-localize with accumulated vinculin and zyxin as well as the actin filaments. The p130 Crk-associated substrate, known to be present in focal adhesions, is also recruited to these clusters and phosphorylated. Our results suggest that mechano-sensing machinery is formed at cell-cell junctions when the cell-sheets are stretched.
Collapse
Affiliation(s)
- Madoka Suzuki
- Institute for Protein Research, The University of Osaka, Suita, Osaka, Japan
| | - Keiko Kawauchi
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo, Japan
| | - Hiroaki Machiyama
- Department of Immunology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hiroaki Hirata
- Department of Life Science and Biotechnology, Kanazawa Institute of Technology, Hakusan, Ishikawa, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hideaki Fujita
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Hiroshima, Japan
| |
Collapse
|
2
|
Moazzeni S, Kyker-Snowman K, Cohen RI, Wang H, Li R, Shreiber DI, Zahn JD, Shi Z, Lin H. N-Cadherin based adhesion and Rac1 activity regulate tension polarization in the actin cortex. Sci Rep 2025; 15:4296. [PMID: 39905109 PMCID: PMC11794589 DOI: 10.1038/s41598-025-88537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025] Open
Abstract
Tension-adhesion interplay is a crucial mechanism in multicellular organisms that determines the tension differential among internal and external interfaces, which in turn, mediates tissue surface tension and cell sorting, morphogenesis and remodeling, and cancer progression. Cadherins are widely believed to be involved, yet key aspects of the process are neither well characterized nor quantified. This study demonstrates the critical role of N-cadherin in driving tension polarization throughout the actin cortical network. N-cadherin regulates both tension increase at the cell-medium (external) interface and decrease at the cell-cell (internal) interface, and their quantitative magnitudes, both absolute and relative, strongly depend on the surface density of N-cadherin. Furthermore, the strength of tension polarization also increases with respect to the number of cell-cell interfaces for cells within a multicellular cluster. The cadherin-actin contractility linkage is mediated by Rac1, which serves as a molecular switch to trigger cortex remodeling and contraction via myosin II. Inhibition of Rac1 activity decreases tension polarization and leads to reduced coherence in both small clusters and spheroids. These results provide a pathway to reconcile opposing theories for tissue surface tension generation and perspectives in cancer treatment.
Collapse
Affiliation(s)
- Seyedsajad Moazzeni
- Department of Mechanical & Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ, 08854, USA
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Kelly Kyker-Snowman
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Rick I Cohen
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Ran Li
- Department of Mechanical & Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ, 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA.
| | - Hao Lin
- Department of Mechanical & Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Wang W, Camley BA. Limits on the accuracy of contact inhibition of locomotion. Phys Rev E 2024; 109:054408. [PMID: 38907435 PMCID: PMC11193850 DOI: 10.1103/physreve.109.054408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/25/2024] [Indexed: 06/24/2024]
Abstract
Cells that collide with each other repolarize away from contact, in a process called contact inhibition of locomotion (CIL), which is necessary for correct development of the embryo. CIL can occur even when cells make a micron-scale contact with a neighbor-much smaller than their size. How precisely can a cell sense cell-cell contact and repolarize in the correct direction? What factors control whether a cell recognizes it has contacted a neighbor? We propose a theoretical model for the limits of CIL where cells recognize the presence of another cell by binding the protein ephrin with the Eph receptor. This recognition is made difficult by the presence of interfering ligands that bind nonspecifically. Both theoretical predictions and simulation results show that it becomes more difficult to sense cell-cell contact when it is difficult to distinguish ephrin from the interfering ligands, or when there are more interfering ligands, or when the contact width decreases. However, the error of estimating contact position remains almost constant when the contact width changes. This happens because the cell gains spatial information largely from the boundaries of cell-cell contact. We study using statistical decision theory the likelihood of a false-positive CIL event in the absence of cell-cell contact, and the likelihood of a false negative where CIL does not occur when another cell is present. Our results suggest that the cell is more likely to make incorrect decisions when the contact width is very small or so large that it nears the cell's perimeter. However, in general, we find that cells have the ability to make reasonably reliable CIL decisions even for very narrow (micron-scale) contacts, even if the concentration of interfering ligands is ten times that of the correct ligands.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
4
|
Hagelaars MJ, Nikolic M, Vermeulen M, Dekker S, Bouten CVC, Loerakker S. A computational analysis of the role of integrins and Rho-GTPases in the emergence and disruption of apical-basal polarization in renal epithelial cells. PLoS Comput Biol 2024; 20:e1012140. [PMID: 38768266 PMCID: PMC11142725 DOI: 10.1371/journal.pcbi.1012140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/31/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Apical-basal polarization in renal epithelial cells is crucial to renal function and an important trigger for tubule formation in kidney development. Loss of polarity can induce epithelial-to-mesenchymal transition (EMT), which can lead to kidney pathologies. Understanding the relative and combined roles of the involved proteins and their interactions that govern epithelial polarity may provide insights for controlling the process of polarization via chemical or mechanical manipulations in an in vitro or in vivo setting. Here, we developed a computational framework that integrates several known interactions between integrins, Rho-GTPases Rho, Rac and Cdc42, and polarity complexes Par and Scribble, to study their mutual roles in the emergence of polarization. The modeled protein interactions were shown to induce the emergence of polarized distributions of Rho-GTPases, which in turn led to the accumulation of apical and basal polarity complexes Par and Scribble at their respective poles, effectively recapitulating polarization. Our multiparametric sensitivity analysis suggested that polarization depends foremost on the mutual inhibition between Rac and Rho. Next, we used the computational framework to investigate the role of integrins and GTPases in the generation and disruption of polarization. We found that a minimum concentration of integrins is required to catalyze the process of polarization. Furthermore, loss of polarization was found to be only inducible via complete degradation of the Rho-GTPases Rho and Cdc42, suggesting that polarization is fairly stable once it is established. Comparison of our computational predictions against data from in vitro experiments in which we induced EMT in renal epithelial cells while quantifying the relative Rho-GTPase levels, displayed that EMT coincides with a large reduction in the Rho-GTPase Rho. Collectively, these results demonstrate the essential roles of integrins and Rho-GTPases in the establishment and disruption of apical-basal polarity and thereby provide handles for the in vitro or in vivo regulation of polarity.
Collapse
Affiliation(s)
- Maria J. Hagelaars
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Milica Nikolic
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Maud Vermeulen
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Sylvia Dekker
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Carlijn V. C. Bouten
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Sandra Loerakker
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| |
Collapse
|
5
|
LaGuardia JS, Shariati K, Bedar M, Ren X, Moghadam S, Huang KX, Chen W, Kang Y, Yamaguchi DT, Lee JC. Convergence of Calcium Channel Regulation and Mechanotransduction in Skeletal Regenerative Biomaterial Design. Adv Healthc Mater 2023; 12:e2301081. [PMID: 37380172 PMCID: PMC10615747 DOI: 10.1002/adhm.202301081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Cells are known to perceive their microenvironment through extracellular and intracellular mechanical signals. Upon sensing mechanical stimuli, cells can initiate various downstream signaling pathways that are vital to regulating proliferation, growth, and homeostasis. One such physiologic activity modulated by mechanical stimuli is osteogenic differentiation. The process of osteogenic mechanotransduction is regulated by numerous calcium ion channels-including channels coupled to cilia, mechanosensitive and voltage-sensitive channels, and channels associated with the endoplasmic reticulum. Evidence suggests these channels are implicated in osteogenic pathways such as the YAP/TAZ and canonical Wnt pathways. This review aims to describe the involvement of calcium channels in regulating osteogenic differentiation in response to mechanical loading and characterize the fashion in which those channels directly or indirectly mediate this process. The mechanotransduction pathway is a promising target for the development of regenerative materials for clinical applications due to its independence from exogenous growth factor supplementation. As such, also described are examples of osteogenic biomaterial strategies that involve the discussed calcium ion channels, calcium-dependent cellular structures, or calcium ion-regulating cellular features. Understanding the distinct ways calcium channels and signaling regulate these processes may uncover potential targets for advancing biomaterials with regenerative osteogenic capabilities.
Collapse
Affiliation(s)
- Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Dean T. Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Antiguas A, DeMali KA, Dunnwald M. IRF6 Regulates the Delivery of E-Cadherin to the Plasma Membrane. J Invest Dermatol 2022; 142:314-322. [PMID: 34310950 PMCID: PMC8784568 DOI: 10.1016/j.jid.2021.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/03/2023]
Abstract
IRF6 is a transcription factor that is required for craniofacial development and epidermal morphogenesis. Specifically, Irf6-deficient mice lack the terminally differentiated epidermal layers, leading to an absence of barrier function. This phenotype also includes intraoral adhesions due to the absence of the oral periderm, leading to the mislocalization of E-cadherin and other cell‒cell adhesion proteins of the oral epithelium. However, the mechanisms by which IRF6 controls the localization of cell adhesion proteins are not understood. In this study, we show that in human and murine keratinocytes, loss of IRF6 leads to a breakdown of epidermal sheets after mechanical stress. This defect is due to a reduction of adhesion proteins at the plasma membrane. Dynamin inhibitors rescued the IRF6-dependent resistance of epidermal sheets to mechanical stress, but only inhibition of clathrin-mediated endocytosis rescued the localization of junctional proteins at the membrane. Our data show that E-cadherin recycling but not its endocytosis is affected by loss of IRF6. Overall, we demonstrate a role for IRF6 in the delivery of adhesion proteins to the cell membrane.
Collapse
Affiliation(s)
- Angelo Antiguas
- Department of Anatomy and Cell Biology, The University of Iowa, IA, 52242
| | - Kris A. DeMali
- Department of Biochemistry and Dermatology, The University of Iowa, IA, 52242
| | - Martine Dunnwald
- Department of Anatomy and Cell Biology, The University of Iowa, IA, 52242
| |
Collapse
|
7
|
Integrin αEβ7 + T cells direct intestinal stem cell fate decisions via adhesion signaling. Cell Res 2021; 31:1291-1307. [PMID: 34518654 DOI: 10.1038/s41422-021-00561-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal stem cell (ISC) differentiation is regulated precisely by a niche in the crypt, where lymphocytes may interact with stem and transient amplifying (TA) cells. However, whether and how lymphocyte-stem/TA cell contact affects ISC differentiation is largely unknown. Here, we uncover a novel role of T cell-stem/TA cell contact in ISC fate decisions. We show that intestinal lymphocyte depletion results in skewed ISC differentiation in mice, which can be rescued by T cell transfer. Mechanistically, integrin αEβ7 expressed on T cells binds to E-cadherin on ISCs and TA cells, triggering E-cadherin endocytosis and the consequent Wnt and Notch signaling alterations. Blocking αEβ7-E-cadherin adhesion suppresses Wnt signaling and promotes Notch signaling in ISCs and TA cells, leading to defective ISC differentiation. Thus, αEβ7+ T cells regulate ISC differentiation at single-cell level through cell-cell contact-mediated αEβ7-E-cadherin adhesion signaling, highlighting a critical role of the T cell-stem/TA cell contact in maintaining intestinal homeostasis.
Collapse
|
8
|
Greig J, Bulgakova NA. Interplay between actomyosin and E-cadherin dynamics regulates cell shape in the Drosophila embryonic epidermis. J Cell Sci 2020; 133:jcs242321. [PMID: 32665321 DOI: 10.1242/jcs.242321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/01/2020] [Indexed: 01/03/2023] Open
Abstract
Precise regulation of cell shape is vital for building functional tissues. Here, we study the mechanisms that lead to the formation of highly elongated anisotropic epithelial cells in the Drosophila epidermis. We demonstrate that this cell shape is the result of two counteracting mechanisms at the cell surface that regulate the degree of elongation: actomyosin, which inhibits cell elongation downstream of RhoA (Rho1 in Drosophila) and intercellular adhesion, modulated via clathrin-mediated endocytosis of E-cadherin (encoded by shotgun in flies), which promotes cell elongation downstream of the GTPase Arf1 (Arf79F in Drosophila). We show that these two mechanisms do not act independently but are interconnected, with RhoA signalling reducing Arf1 recruitment to the plasma membrane. Additionally, cell adhesion itself regulates both mechanisms - p120-catenin, a regulator of intercellular adhesion, promotes the activity of both Arf1 and RhoA. Altogether, we uncover a complex network of interactions between cell-cell adhesion, the endocytic machinery and the actomyosin cortex, and demonstrate how this network regulates cell shape in an epithelial tissue in vivo.
Collapse
Affiliation(s)
- Joshua Greig
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Natalia A Bulgakova
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
9
|
Gori M, Altomare A, Cocca S, Solida E, Ribolsi M, Carotti S, Rainer A, Francesconi M, Morini S, Cicala M, Pier Luca Guarino M. Palmitic Acid Affects Intestinal Epithelial Barrier Integrity and Permeability In Vitro. Antioxidants (Basel) 2020; 9:417. [PMID: 32414055 PMCID: PMC7278681 DOI: 10.3390/antiox9050417] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022] Open
Abstract
Palmitic acid (PA), a long-chain saturated fatty acid, might activate innate immune cells. PA plays a role in chronic liver disease, diabetes and Crohn's disease, all of which are associated with impaired intestinal permeability. We investigated the effect of PA, at physiological postprandial intestinal concentrations, on gut epithelium as compared to lipopolysaccharide (LPS) and ethanol, using an in vitro gut model, the human intestinal epithelial cell line Caco-2 grown on transwell inserts. Cytotoxicity and oxidative stress were evaluated; epithelial barrier integrity was investigated by measuring the paracellular flux of fluorescein, and through RT-qPCR and immunofluorescence of tight junction (TJ) and adherens junction (AJ) mRNAs and proteins, respectively. In PA-exposed Caco-2 monolayers, cytotoxicity and oxidative stress were not detected. A significant increase in fluorescein flux was observed in PA-treated monolayers, after 90 min and up to 360 min, whereas with LPS and ethanol, this was only observed at later time-points. Gene expression and immunofluorescence analysis showed TJ and AJ alterations only in PA-exposed monolayers. In conclusion, PA affected intestinal permeability without inducing cytotoxicity or oxidative stress. This effect seemed to be faster and stronger than those with LPS and ethanol. Thus, we hypothesized that PA, besides having an immunomodulatory effect, might play a role in inflammatory and functional intestinal disorders in which the intestinal permeability is altered.
Collapse
Affiliation(s)
- Manuele Gori
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Annamaria Altomare
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Silvia Cocca
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Eleonora Solida
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Mentore Ribolsi
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Simone Carotti
- Microscopic and Ultrastructural Anatomy Unit, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy; (S.C.); (M.F.); (S.M.)
| | - Alberto Rainer
- Tissue Engineering Laboratory, Department of Engineering, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Maria Francesconi
- Microscopic and Ultrastructural Anatomy Unit, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy; (S.C.); (M.F.); (S.M.)
| | - Sergio Morini
- Microscopic and Ultrastructural Anatomy Unit, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy; (S.C.); (M.F.); (S.M.)
| | - Michele Cicala
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Michele Pier Luca Guarino
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| |
Collapse
|
10
|
Wang Y, Xiao Y, Long S, Fan Y, Zhang X. Role of N-Cadherin in a Niche-Mimicking Microenvironment for Chondrogenesis of Mesenchymal Stem Cells In Vitro. ACS Biomater Sci Eng 2020; 6:3491-3501. [PMID: 33463167 DOI: 10.1021/acsbiomaterials.0c00149] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
During the development of natural cartilage, mesenchymal condensation is the starting event of chondrogenesis, and mesenchymal stem cells (MSCs) experienced a microenvironment transition from primarily cell-cell interactions to a later stage, where cell-extracellular matrix (ECM) interactions dominate. Although micromass pellet culture has been developed to mimic mesenchymal condensation in vitro, the molecular mechanism remains elusive, and the transition from cell-cell to cell-ECM interactions has been poorly recapitulated. In this study, we first constructed MSC microspheres (MMs) and investigated their chondrogenic differentiation with functional blocking of N-cadherin. The results showed that early cartilage differentiation and cartilage-specific matrix deposition of MSCs in the group with the N-cadherin antibody were significantly postponed. Next, poly(l-lysine) treatment was transiently applied to promote the expression of N-cadherin gene, CDH2, and the treatment-promoted MSC chondrogenesis. Upon one-day culture in MMs with established cell-cell adhesions, collagen hydrogel-encapsulated MMs (CMMs) were constructed to simulate the cell-ECM interactions, and the collagen microenvironment compensated the inhibitory effects from N-cadherin blocking. Surprisingly, chondrogenic-differentiated cell migration, which has important implications in cartilage repair and integration, was found in the CMMs without N-cadherin blocking. In conclusion, our study demonstrated that N-cadherin plays the critical role in early mesenchymal condensation, and the collagen hydrogel provides a supportive microenvironment for late chondrogenic differentiation. Therefore, sequential presentations of cell-cell adhesion and cell-ECM interaction in an engineered microenvironment seem to be a promising strategy to facilitate MSC chondrogenic differentiation.
Collapse
Affiliation(s)
- Yonghui Wang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shihe Long
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
11
|
Guagliardo NA, Klein PM, Gancayco CA, Lu A, Leng S, Makarem RR, Cho C, Rusin CG, Breault DT, Barrett PQ, Beenhakker MP. Angiotensin II induces coordinated calcium bursts in aldosterone-producing adrenal rosettes. Nat Commun 2020; 11:1679. [PMID: 32245948 PMCID: PMC7125102 DOI: 10.1038/s41467-020-15408-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Aldosterone-producing zona glomerulosa (zG) cells of the adrenal gland arrange in distinct multi-cellular rosettes that provide a structural framework for adrenal cortex morphogenesis and plasticity. Whether this cyto-architecture also plays functional roles in signaling remains unexplored. To determine if structure informs function, we generated mice with zG-specific expression of GCaMP3 and imaged zG cells within their native rosette structure. Here we demonstrate that within the rosette, angiotensin II evokes periodic Cav3-dependent calcium events that form bursts that are stereotypic in form. Our data reveal a critical role for angiotensin II in regulating burst occurrence, and a multifunctional role for the rosette structure in activity-prolongation and coordination. Combined our data define the calcium burst as the fundamental unit of zG layer activity evoked by angiotensin II and highlight a novel role for the rosette as a facilitator of cell communication.
Collapse
Affiliation(s)
| | - Peter M Klein
- Departments of Pharmacology, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | | | - Adam Lu
- Departments of Pharmacology, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | | | - Chelsea Cho
- Departments of Pharmacology, Charlottesville, VA, USA
| | - Craig G Rusin
- Department of Pediatrics-Cardiology, Baylor College of Medicine, and Harvard Stem Cell Institute, Cambridge, MA, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | | | - Mark P Beenhakker
- Departments of Pharmacology, Charlottesville, VA, USA.
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
12
|
Gonschior H, Haucke V, Lehmann M. Super-Resolution Imaging of Tight and Adherens Junctions: Challenges and Open Questions. Int J Mol Sci 2020; 21:ijms21030744. [PMID: 31979366 PMCID: PMC7037929 DOI: 10.3390/ijms21030744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
The tight junction (TJ) and the adherens junction (AJ) bridge the paracellular cleft of epithelial and endothelial cells. In addition to their role as protective barriers against bacteria and their toxins they maintain ion homeostasis, cell polarity, and mechano-sensing. Their functional loss leads to pathological changes such as tissue inflammation, ion imbalance, and cancer. To better understand the consequences of such malfunctions, the junctional nanoarchitecture is of great importance since it remains so far largely unresolved, mainly because of major difficulties in dynamically imaging these structures at sufficient resolution and with molecular precision. The rapid development of super-resolution imaging techniques ranging from structured illumination microscopy (SIM), stimulated emission depletion (STED) microscopy, and single molecule localization microscopy (SMLM) has now enabled molecular imaging of biological specimens from cells to tissues with nanometer resolution. Here we summarize these techniques and their application to the dissection of the nanoscale molecular architecture of TJs and AJs. We propose that super-resolution imaging together with advances in genome engineering and functional analyses approaches will create a leap in our understanding of the composition, assembly, and function of TJs and AJs at the nanoscale and, thereby, enable a mechanistic understanding of their dysfunction in disease.
Collapse
Affiliation(s)
- Hannes Gonschior
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; (H.G.); (V.H.)
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; (H.G.); (V.H.)
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; (H.G.); (V.H.)
- Correspondence:
| |
Collapse
|
13
|
Eren Cimenci C, Kurtulus GU, Caliskan OS, Guler MO, Tekinay AB. N-Cadherin Mimetic Peptide Nanofiber System Induces Chondrogenic Differentiation of Mesenchymal Stem Cells. Bioconjug Chem 2019; 30:2417-2426. [PMID: 31415164 DOI: 10.1021/acs.bioconjchem.9b00514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cadherins are vital for cell-to-cell interactions during tissue growth, migration, and differentiation processes. Both biophysical and biochemical inputs are generated upon cell-to-cell adhesions, which determine the fate of the mesenchymal stem cells (MSCs). The effect of cadherin interactions on the MSC differentiation still remains elusive. Here we combined the N-Cadherin mimetic peptide (HAV-PA) with the self-assembling E-PA and the resultant N-cadherin mimetic peptide nanofibers promoted chondrogenic differentiation of MSCs in conjunction with chondrogenic factors as a synthetic extracellular matrix system. Self-assembly of the precursor peptide amphiphile molecules HAV-PA and E-PA enable the organization of HAV peptide residues in close proximity to the cell interaction site, forming a supramolecular N-cadherin-like system. These bioactive peptide nanofibers not only promoted viability and enhanced adhesion of MSCs but also augmented the expression of cartilage specific matrix components compared to the nonbioactive control nanofibers. Overall, the N-cadherin mimetic peptide nanofiber system facilitated MSC commitment into the chondrogenic lineage presenting an alternative bioactive platform for stem-cell-based cartilage regeneration.
Collapse
Affiliation(s)
- Cagla Eren Cimenci
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM) , Bilkent University , Ankara 06800 , Turkey
| | - Gozde Uzunalli Kurtulus
- Department of Comparative Pathobiology , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Ozum S Caliskan
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM) , Bilkent University , Ankara 06800 , Turkey
| | - Mustafa O Guler
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM) , Bilkent University , Ankara 06800 , Turkey.,Eryigit Biomedical Devices Research and Development Center , Ankara 06380 , Turkey.,Neuroscience Graduate Program , Bilkent University , Ankara 06800 , Turkey
| |
Collapse
|
14
|
Mao W, Guo Z, Dai Y, Nie J, Li B, Pei H, Zhou G. LNC CRYBG3 inhibits tumor growth by inducing M phase arrest. J Cancer 2019; 10:2764-2770. [PMID: 31258784 PMCID: PMC6584918 DOI: 10.7150/jca.31703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are usually associated with tumor development and progression and some of them are dysregulated in various human cancers. The mechanisms underlying their dysregulation are worth further study. Here, we demonstrate that the expression level of LNC CRYBG3 is correlated with 1501 aberrantly expressed proteins in A549 cells (non-small cell lung cancer (NSCLC) cells). LNC CRYBG3 overexpression results in M phase arrest and promoted cell death, whereas LNC CRYBG3 knockdown did not elicit the opposite effects. The overexpression of LNC CRYBG3 inhibits cell proliferation both in vitro and in vivo. Moreover, it upregulates the expression of cyclin B1 and the phosphorylation of H3, whereas it inhibited the expression of cyclin-dependent kinase 6 and cyclin D1. Taken together, these findings suggest that LNC CRYBG3 regulates the cell cycle process of A549 cells, suggesting its potential application for the treatment of this disease.
Collapse
Affiliation(s)
- Weidong Mao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Bingyan Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
15
|
Pei H, Hu W, Guo Z, Chen H, Ma J, Mao W, Li B, Wang A, Wan J, Zhang J, Nie J, Zhou G, Hei TK. Long Noncoding RNA CRYBG3 Blocks Cytokinesis by Directly Binding G-Actin. Cancer Res 2018; 78:4563-4572. [PMID: 29934435 PMCID: PMC6095725 DOI: 10.1158/0008-5472.can-18-0988] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 01/05/2023]
Abstract
The dynamic interchange between monomeric globular actin (G-actin) and polymeric filamentous actin filaments (F-actin) is fundamental and essential to many cellular processes, including cytokinesis and maintenance of genomic stability. Here, we report that the long noncoding RNA LNC CRYBG3 directly binds G-actin to inhibit its polymerization and formation of contractile rings, resulting in M-phase cell arrest. Knockdown of LNC CRYBG3 in tumor cells enhanced their malignant phenotypes. Nucleotide sequence 228-237 of the full-length LNC CRYBG3 and the ser14 domain of β-actin is essential for their interaction, and mutation of either of these sites abrogated binding of LNC CRYBG3 to G-actin. Binding of LNC CRYBG3 to G-actin blocked nuclear localization of MAL, which consequently kept serum response factor (SRF) away from the promoter region of several immediate early genes, including JUNB and Arp3, which are necessary for cellular proliferation, tumor growth, adhesion, movement, and metastasis. These findings reveal a novel lncRNA-actin-MAL-SRF pathway and highlight LNC CRYBG3 as a means to block cytokinesis and to treat cancer by targeting the actin cytoskeleton.Significance: Identification of the long noncoding RNA LNC CRYBG3 as a mediator of microfilament disorganization marks it as a novel therapeutic antitumor strategy. Cancer Res; 78(16); 4563-72. ©2018 AACR.
Collapse
Affiliation(s)
- Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Huaiyuan Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Ji Ma
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Weidong Mao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyan Li
- Medical College of Soochow University, Suzhou, China
| | - Aiqing Wang
- Medical College of Soochow University, Suzhou, China
| | - Jianmei Wan
- Medical College of Soochow University, Suzhou, China
| | - Jian Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Tom K Hei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.
- Center for Radiological Research, College of Physician and Surgeons, Columbia University, New York, New York
| |
Collapse
|
16
|
Kannan N, Tang VW. Myosin-1c promotes E-cadherin tension and force-dependent recruitment of α-actinin to the epithelial cell junction. J Cell Sci 2018; 131:jcs.211334. [PMID: 29748378 DOI: 10.1242/jcs.211334] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/02/2018] [Indexed: 12/26/2022] Open
Abstract
Actomyosin II contractility in epithelial cell plays an essential role in tension-dependent adhesion strengthening. One key unsettling question is how cellular contraction transmits force to the nascent cell-cell adhesion when there is no stable attachment between the nascent adhesion complex and actin filament. Here, we show that myosin-1c is localized to the lateral membrane of polarized epithelial cells and facilitates the coupling between actin and cell-cell adhesion. Knockdown of myosin-1c compromised the integrity of the lateral membrane, reduced the generation of tension at E-cadherin, decreased the strength of cell-cell cohesion in an epithelial cell monolayer and prevented force-dependent recruitment of junctional α-actinin. Application of exogenous force to cell-cell adhesions in a myosin-1c-knockdown cell monolayer fully rescued the localization defect of α-actinin, indicating that junction mechanoregulation remains intact in myosin-1c-depleted cells. Our study identifies a role of myosin-1c in force transmission at the lateral cell-cell interface and underscores a non-junctional contribution to tension-dependent junction regulation.
Collapse
Affiliation(s)
- Nivetha Kannan
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801 USA
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801 USA
| |
Collapse
|
17
|
Durgan J, Florey O. Cancer cell cannibalism: Multiple triggers emerge for entosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:831-841. [PMID: 29548938 DOI: 10.1016/j.bbamcr.2018.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022]
Abstract
Entosis is a form of epithelial cell engulfment and cannibalism prevalent in human cancer. Until recently, the only known trigger for entosis was loss of attachment to the extracellular matrix, as often occurs in the tumour microenvironment. However, two new studies now reveal that entosis can also occur among adherent epithelial cells, induced by mitosis or glucose starvation. Together, these findings point to the intriguing notion that certain hallmark properties of cancer cells, including anchorage independence, aberrant proliferation and metabolic stress, can converge on the induction of cell cannibalism, a phenomenon so frequently observed in tumours. In this review, we explore the molecular, cellular and biophysical mechanisms underlying entosis and discuss the impact of cell cannibalism on tumour biology.
Collapse
Affiliation(s)
- J Durgan
- Babraham Institute, Cambridge, UK.
| | - O Florey
- Babraham Institute, Cambridge, UK
| |
Collapse
|
18
|
Yang Y, Li Z, Chen G, Li J, Li H, Yu M, Zhang W, Guo W, Tian W. GSK3β regulates ameloblast differentiation via Wnt and TGF-β pathways. J Cell Physiol 2018; 233:5322-5333. [PMID: 29215720 DOI: 10.1002/jcp.26344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023]
Abstract
Wnt and TGF-β signaling pathways participate in regulating a variety of cell fates during organogenesis, including tooth development. Despite well-documented, the specific mechanisms, especially how these two pathways act coordinately in regulating enamel development, remain unknown. In this study, we identified Glycogen Synthase Kinase 3 beta (GSK3β), a negative regulator of Wnt signal pathway, participated in ameloblast differentiation via Wnt and TGF-β pathways during enamel development. In vitro rat mandible culture treated with specific GSK3β inhibitor SB415286 displayed enamel defects, accompanied by disrupted ameloblasts polarization, while odontoblasts and dentin appeared to be unaffected. Moreover, after GSK3β knockdown by lentivirus-mediated RNA silencing, HAT-7 cells displayed abnormal cell polarity and cell adhesion, and failed to synthesize appreciable amounts of ameloblast-specific proteins. More importantly, inactivation of GSK3β caused upregulated Wnt and downregulated TGF-β pathway, while reactivation of TGF-β signaling or suppression of Wnt signaling partially rescued the differentiation defects of ameloblasts caused by the GSK3β knock-down. Taken together, these results suggested that GSK3β was essential for ameloblasts differentiation, which might be indirectly mediated through Wnt and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Yaling Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lanzhou Hospital of Stomatology, Lanzhou, Gansu Province, China
| | - Ziyue Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiping Zhang
- Lanzhou Hospital of Stomatology, Lanzhou, Gansu Province, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pedodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Yonemura S. Actin filament association at adherens junctions. THE JOURNAL OF MEDICAL INVESTIGATION 2017; 64:14-19. [PMID: 28373611 DOI: 10.2152/jmi.64.14] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The adherens junction (AJ) is a cadherin-based and actin filament associated cell-to-cell junction. AJs can contribute to tissue morphogenesis and homeostasis and their association with actin filaments is crucial for the functions. There are three types of AJs in terms of the mode of actin filament/AJ association. Among many actin-binding proteins associated with AJs, α-catenin is one of the most important actin filament/AJ linkers that functions in all types of AJs. Although α-catenin in cadherin-catenin complex appears to bind to actin filaments within cells, it fails to bind to actin filaments in vitro mysteriously. Recent report revealed that α-catenin in the complex can bind to actin filaments in vitro when forces are applied to the filament. In addition to force-sensitive vinculin binding, α-catenin has another force-sensitive property of actin filament-binding. Elucidation of its significance and the molecular mechanism is indispensable for understanding AJ formation and maintenance during tissue morphogenesis, function and repair. J. Med. Invest. 64: 14-19, February, 2017.
Collapse
Affiliation(s)
- Shigenobu Yonemura
- Department of Cell Biology, Tokushima University Graduate School of Medical Science, Ultrastructural Research Team, RIKEN Center for Life Science Technologies
| |
Collapse
|
20
|
Schmutz CF, Hatton TD, Blomfield MP, Chandler BD, Benedick TC, Hansen MDH. A cellular automaton based on plasma membrane turnover accurately recapitulates cell mechanics during epithelial scattering. J Theor Biol 2017. [PMID: 28648562 DOI: 10.1016/j.jtbi.2017.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epithelial cells can be triggered to actively detach from epithelial tissues and become solitary, migratory and invasive. This process occurs repeatedly in development, where it is termed epithelial-mesenchymal transition (EMT), and can be recapitulated as epithelial scattering in cell culture models. Detachment of cell-cell junctions involves changes in contractile forces, actin cytoskeletal organization, changes in cell-substrate adhesion properties, surface presentation of cell-cell adhesion molecules, and gene expression. That these cellular processes affect each other and share molecular components creates difficulties in generating hypotheses and designing experiments to understand the mechanics of epithelial scattering. Computational modeling is proving a powerful too in such instances. Here we develop a cellular automaton to reveal insights into how cells rupture epithelial cell-cell junctions during scattering. The model is optimized for realistic and stable recapitulation of behavior of single cells, then for realistic simulation of multiple cells forming epithelial colonies. With a workable model of epithelial cell behavior, we then alter model parameters and assess whether we can realistically mimic epithelial scattering. Adjusting model parameters to recapitulate epithelial scattering reveals that induction of cell migration is the major driver of epithelial scattering.
Collapse
Affiliation(s)
- Christian F Schmutz
- Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT 84602, USA
| | - Trey D Hatton
- Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT 84602, USA
| | - Michael P Blomfield
- Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT 84602, USA
| | - Benjamin D Chandler
- Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT 84602, USA
| | - Trent C Benedick
- Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT 84602, USA
| | - Marc D H Hansen
- Physiology and Developmental Biology, Brigham Young University, 4005 LSB, Provo, UT 84602, USA.
| |
Collapse
|
21
|
Ebnet K. Junctional Adhesion Molecules (JAMs): Cell Adhesion Receptors With Pleiotropic Functions in Cell Physiology and Development. Physiol Rev 2017; 97:1529-1554. [PMID: 28931565 DOI: 10.1152/physrev.00004.2017] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Junctional adhesion molecules (JAM)-A, -B and -C are cell-cell adhesion molecules of the immunoglobulin superfamily which are expressed by a variety of tissues, both during development and in the adult organism. Through their extracellular domains, they interact with other adhesion receptors on opposing cells. Through their cytoplasmic domains, they interact with PDZ domain-containing scaffolding and signaling proteins. In combination, these two properties regulate the assembly of signaling complexes at specific sites of cell-cell adhesion. The multitude of molecular interactions has enabled JAMs to adopt distinct cellular functions such as the regulation of cell-cell contact formation, cell migration, or mitotic spindle orientation. Not surprisingly, JAMs regulate diverse processes such as epithelial and endothelial barrier formation, hemostasis, angiogenesis, hematopoiesis, germ cell development, and the development of the central and peripheral nervous system. This review summarizes the recent progress in the understanding of JAMs, including their characteristic structural features, their molecular interactions, their cellular functions, and their contribution to a multitude of processes during vertebrate development and homeostasis.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, Cells-In-Motion Cluster of Excellence (EXC1003-CiM), and Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| |
Collapse
|
22
|
Bachir AI, Horwitz AR, Nelson WJ, Bianchini JM. Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells. Cold Spring Harb Perspect Biol 2017; 9:9/7/a023234. [PMID: 28679638 DOI: 10.1101/cshperspect.a023234] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell adhesions link cells to the extracellular matrix (ECM) and to each other and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping, functional modules. These modules establish physical associations with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as to sense and translate the mechanical properties of the cellular environment into changes in cell organization and behavior. Here, we review the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions and how adhesion molecules mediate cross talk between cell-ECM and cell-cell adhesion sites.
Collapse
Affiliation(s)
- Alexia I Bachir
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - Alan Rick Horwitz
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - W James Nelson
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Julie M Bianchini
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
23
|
Delineating the Common Biological Pathways Perturbed by ASD's Genetic Etiology: Lessons from Network-Based Studies. Int J Mol Sci 2017; 18:ijms18040828. [PMID: 28420080 PMCID: PMC5412412 DOI: 10.3390/ijms18040828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/26/2022] Open
Abstract
In recent decades it has become clear that Autism Spectrum Disorder (ASD) possesses a diverse and heterogeneous genetic etiology. Aberrations in hundreds of genes have been associated with ASD so far, which include both rare and common variations. While one may expect that these genes converge on specific common molecular pathways, which drive the development of the core ASD characteristics, the task of elucidating these common molecular pathways has been proven to be challenging. Several studies have combined genetic analysis with bioinformatical techniques to uncover molecular mechanisms that are specifically targeted by autism-associated genetic aberrations. Recently, several analysis have suggested that particular signaling mechanisms, including the Wnt and Ca2+/Calmodulin-signaling pathways are often targeted by autism-associated mutations. In this review, we discuss several studies that determine specific molecular pathways affected by autism-associated mutations, and then discuss more in-depth into the biological roles of a few of these pathways, and how they may be involved in the development of ASD. Considering that these pathways may be targeted by specific pharmacological intervention, they may prove to be important therapeutic targets for the treatment of ASD.
Collapse
|
24
|
Lapierre LA, Manning EH, Mitchell KM, Caldwell CM, Goldenring JR. Interaction of phosphorylated Rab11-FIP2 with Eps15 regulates apical junction composition. Mol Biol Cell 2017; 28:1088-1100. [PMID: 28228550 PMCID: PMC5391185 DOI: 10.1091/mbc.e16-04-0214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 01/26/2017] [Accepted: 02/17/2017] [Indexed: 12/25/2022] Open
Abstract
MARK2 regulates the establishment of polarity in Madin-Darby canine kidney (MDCK) cells in part through phosphorylation of serine 227 of Rab11-FIP2. We identified Eps15 as an interacting partner of phospho-S227-Rab11-FIP2 (pS227-FIP2). During recovery from low calcium, Eps15 localized to the lateral membrane before pS227-FIP2 arrival. Later in recovery, Eps15 and pS227-FIP2 colocalized at the lateral membrane. In MDCK cells expressing the pseudophosphorylated FIP2 mutant FIP2(S227E), during recovery from low calcium, Eps15 was trapped and never localized to the lateral membrane. Mutation of any of the three NPF domains within GFP-FIP2(S227E) rescued Eps15 localization at the lateral membrane and reestablished single-lumen cyst formation in GFP-FIP2(S227E)-expressing cells in three-dimensional (3D) culture. Whereas expression of GFP-FIP2(S227E) induced the loss of E-cadherin and occludin, mutation of any of the NPF domains of GFP-FIP2(S227E) reestablished both proteins at the apical junctions. Knockdown of Eps15 altered the spatial and temporal localization of pS227-FIP2 and also elicited formation of multiple lumens in MDCK 3D cysts. Thus an interaction of Eps15 and pS227-FIP2 at the appropriate time and location in polarizing cells is necessary for proper establishment of epithelial polarity.
Collapse
Affiliation(s)
- Lynne A Lapierre
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232.,Nashville VA Medical Center, Nashville, TN 37212
| | - Elizabeth H Manning
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232.,Nashville VA Medical Center, Nashville, TN 37212
| | - Kenya M Mitchell
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232.,Nashville VA Medical Center, Nashville, TN 37212
| | - Cathy M Caldwell
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232.,Nashville VA Medical Center, Nashville, TN 37212
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232 .,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232.,Nashville VA Medical Center, Nashville, TN 37212.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232.,Vanderbilt Ingram Cancer Center, Nashville, TN 37232
| |
Collapse
|
25
|
Chen DY, Zhang R, Liu Y, Zhou T, Li X, Gao S, Zhang J, Cui XN. Effects of cinobufacini injection on hepatocarcinoma cell proliferation, invasion and metastasis. RSC Adv 2016. [DOI: 10.1039/c6ra08923b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background & aims: to explore the effects of Cinobufacini Injection (CI) on proliferation and invasion of hepatocarcinoma cells cultured with lymphatic endothelial cells (LECs), and lymphatic metastasis inhibition in immunocompetent mice.
Collapse
Affiliation(s)
- Dong-yan Chen
- Department of Oncology
- The First Affiliate Hospital of Dalian Medical University
- Dalian
- China
| | - Rui Zhang
- Department of Colorectal Surgery
- Dalian Medical University Clinical Oncology College
- Liaoning Cancer Hospital and Institute
- Shenyang
- China
| | - Ying Liu
- Department of Oncology
- Affiliated Zhongshan Hospital of Dalian University
- Dalian
- China
| | - Tao Zhou
- Department of Oncology
- The First Affiliate Hospital of Dalian Medical University
- Dalian
- China
| | - Xiang Li
- Department of Oncology
- The First Affiliate Hospital of Dalian Medical University
- Dalian
- China
| | - Shan Gao
- Department of Oncology
- The First Affiliate Hospital of Dalian Medical University
- Dalian
- China
| | - Jian Zhang
- Department of General Surgery
- The First Affiliate Hospital of Dalian Medical University
- Dalian
- China
| | - Xiao-nan Cui
- Department of Oncology
- The First Affiliate Hospital of Dalian Medical University
- Dalian
- China
| |
Collapse
|
26
|
Collinet C, Rauzi M, Lenne PF, Lecuit T. Local and tissue-scale forces drive oriented junction growth during tissue extension. Nat Cell Biol 2015; 17:1247-58. [PMID: 26389664 DOI: 10.1038/ncb3226] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/20/2015] [Indexed: 12/16/2022]
Abstract
Convergence-extension is a widespread morphogenetic process driven by polarized cell intercalation. In the Drosophila germ band, epithelial intercalation comprises loss of junctions between anterior-posterior neighbours followed by growth of new junctions between dorsal-ventral neighbours. Much is known about how active stresses drive polarized junction shrinkage. However, it is unclear how tissue convergence-extension emerges from local junction remodelling and what the specific role, if any, of junction growth is. Here we report that tissue convergence and extension correlate mostly with new junction growth. Simulations and in vivo mechanical perturbations reveal that junction growth is due to local polarized stresses driven by medial actomyosin contractions. Moreover, we find that tissue-scale pulling forces at the boundary with the invaginating posterior midgut actively participate in tissue extension by orienting junction growth. Thus, tissue extension is akin to a polarized fluid flow that requires parallel and concerted local and tissue-scale forces to drive junction growth and cell-cell displacement.
Collapse
Affiliation(s)
- Claudio Collinet
- Aix Marseille Université, CNRS, IBDM UMR7288 13009 Marseille, France
| | - Matteo Rauzi
- EMBL Heidelberg, Meyerhofstrasse 1 69117 Heidelberg, Germany
| | | | - Thomas Lecuit
- Aix Marseille Université, CNRS, IBDM UMR7288 13009 Marseille, France
| |
Collapse
|
27
|
Abstract
Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.
Collapse
Key Words
- AB, Apicobasal
- AJ, Adherens junction
- Amot, Angiomotin
- Arp2/3, Actin-related protein-2/3
- Baz, Bazooka
- C. elegans, Caenorhabditis elegans
- CA, Constitutively-active
- CD2AP, CD2-associated protein
- Caco2, Human colon carcinoma
- Cdc42
- Cora, Coracle
- Crb, Crumbs
- DN, Dominant-negative
- Dia1, Diaphanous-related formin 1
- Dlg, Discs large
- Drosophila, Drosophila melanogaster
- Dys-β, Dystrobrevin-β
- ECM, Extracellular matrix
- Ect2, Epithelial cell transforming sequence 2 oncogene
- Eya1, Eyes absent 1
- F-actin, Filamentous actin
- FRET, Fluorescence resonance energy transfer
- GAP, GTPase-activating protein
- GDI, Guanine nucleotide dissociation inhibitor
- GEF, Guanine nucleotide exchange factor
- GTPases
- JACOP, Junction-associated coiled-coiled protein
- JAM, Junctional adhesion molecule
- LKB1, Liver kinase B1
- Lgl, Lethal giant larvae
- MDCK, Madin-Darby canine kidney
- MTOC, Microtubule-organizing center
- NrxIV, Neurexin IV
- Pals1, Protein associated with Lin-7 1
- Par, Partitioning-defective
- Patj, Pals1-associated TJ protein
- ROCK, Rho-associated kinase
- Rac
- Rho
- Rich1, RhoGAP interacting with CIP4 homologues
- S. cerevisiae, Saccharomyces cerevisiae
- S. pombe, Schizosaccharomyces pombe
- SH3BP1, SH3-domain binding protein 1
- Scrib, Scribble
- Std, Stardust
- TEM4, Tumor endothelial marker 4
- TJ, Tight junction
- Tiam1, T-cell lymphoma invasion and metastasis-inducing protein 1
- WASp, Wiskott-aldrich syndrome protein
- Yrt, Yurt
- ZA, zonula adherens
- ZO, Zonula occludens
- aPKC, Atypical Protein Kinase C
- apicobasal
- epithelia
- junction
- par
- polarity
- α-cat, Alpha-catenin
- β-cat, Beta-Catenin
- β2-syn, Beta-2-syntrophin
Collapse
Affiliation(s)
- Natalie Ann Mack
- a School of Life Sciences; Queens Medical Center ; University of Nottingham ; Nottingham , UK
| | | |
Collapse
|
28
|
Klompstra D, Anderson DC, Yeh JY, Zilberman Y, Nance J. An instructive role for C. elegans E-cadherin in translating cell contact cues into cortical polarity. Nat Cell Biol 2015; 17:726-35. [PMID: 25938815 PMCID: PMC4449804 DOI: 10.1038/ncb3168] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 03/25/2015] [Indexed: 12/15/2022]
Abstract
Cell contacts provide spatial cues that polarize early embryos and epithelial cells. The homophilic adhesion protein E-cadherin is required for contact-induced polarity in many cells. However, it is debated whether E-cadherin functions instructively as a spatial cue, or permissively by ensuring adequate adhesion so that cells can sense other contact signals. In Caenorhabditis elegans, contacts polarize early embryonic cells by recruiting the RhoGAP PAC-1 to the adjacent cortex, inducing PAR protein asymmetry. Here we show that the E-cadherin HMR-1, which is dispensable for adhesion, functions together with the α-catenin HMP-1, the p120 catenin JAC-1, and the previously uncharacterized linker PICC-1 (human CCDC85A-C) to bind PAC-1 and recruit it to contacts. Mislocalizing the HMR-1 intracellular domain to contact-free surfaces draws PAC-1 to these sites and depolarizes cells, demonstrating an instructive role for HMR-1 in polarization. Our findings identify an E-cadherin-mediated pathway that translates cell contacts into cortical polarity by directly recruiting a symmetry-breaking factor to the adjacent cortex.
Collapse
Affiliation(s)
- Diana Klompstra
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Dorian C. Anderson
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Justin Y. Yeh
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Yuliya Zilberman
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
29
|
Fang S, Chen L, Yu M, Cheng B, Lin Y, Morris-Natschke SL, Lee KH, Gu Q, Xu J. Synthesis, antitumor activity, and mechanism of action of 6-acrylic phenethyl ester-2-pyranone derivatives. Org Biomol Chem 2015; 13:4714-26. [PMID: 25800703 PMCID: PMC4390547 DOI: 10.1039/c5ob00007f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the scaffolds of caffeic acid phenethyl ester (CAPE) as well as bioactive lactone-containing compounds, 6-acrylic phenethyl ester-2-pyranone derivatives were synthesized and evaluated against five tumor cell lines (HeLa, C6, MCF-7, A549, and HSC-2). Most of the new derivatives exhibited moderate to potent cytotoxic activity. Moreover, HeLa cell lines showed higher sensitivity to these compounds. In particular, compound showed potent cytotoxic activity (IC50 = 0.50-3.45 μM) against the five cell lines. Further investigation on the mechanism of action showed that induced apoptosis, arrested the cell cycle at G2/M phases in HeLa cells, and inhibited migration through disruption of the actin cytoskeleton. In addition, ADMET properties were also calculated in silico, and compound showed good ADMET properties with good absorption, low hepatotoxicity, and good solubility, and thus, could easily be bound to carrier proteins, without inhibition of CYP2D6. A structure-activity relationship (SAR) analysis indicated that compounds with ortho-substitution on the benzene ring exhibited obviously increased cytotoxic potency. This study indicated that compound is a promising compound as an antitumor agent.
Collapse
Affiliation(s)
- Sai Fang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen T, Wang C, Wu F, Zhang X, Yang H, Deng X, He Q, Li W, Li G. Altered localization of p120 catenin in the cytoplasm rather than the membrane correlates with poor prognosis in esophageal squamous cell carcinoma. PLoS One 2015; 10:e0118645. [PMID: 25785604 PMCID: PMC4364898 DOI: 10.1371/journal.pone.0118645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/06/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND P120 catenin (p120ctn), a regulator of cell adhesion, has previously been found in many malignancies, and suggested a role in invasion, metastasis and survival. The aim of this study was to investigate correlations between altered localization of p120ctn and clinical-pathological characteristics in esophageal squamous cell carcinoma (ESCC). METHODS Immunohistochemical staining for p120ctn was performed on tissue samples from 118 patients with ESCC. The expression of p120ctn was scored for intensity and cellular localization by Image-pro Plus 6.0. Correlations between immunohistochemical staining of p120ctn and pathological characteristics and clinical prognosis were determined using SPSS 18.0 software. RESULTS Membrane expression of p120ctn in ESCCs was lower than that in adjacentnormal esophageal epithelial tissues (P = 0.041), while overall cellular expression of p120ctn was not different between the two tissue types (P = 0.787). Furthermore, neither overall cellular expression nor localized membrane expression was associated with histological and clinical variables. The high ratio of membrane expression to overall cellular expression (M/C) of p120ctn was inversely associated with lymph node invasion (P = 0.001), tumor differentiation (P = 0.012) and advanced tumor stage (P = 0.005); however, it was poorly associated with T stage (P = 0.274). The high M/C ratio of p120ctn was inversely correlated with poor survival; the 5-year OS (overall survival) and the 5-year DFS (disease free survival) for the high M/C ratio group were significantly higher than those of the low M/C ratio group (41.0% vs. 6.7%, P = 0.000; 44.1% vs. 24.9%, P = 0.007). Both the M/C ratio of p120ctn and N status were independent variables for the prediction of overall survival (P = 0.007 and P = 0.027). The M/C of p120ctn predicted a 0.49-fold risk of ESCC death (p = 0.007, 95% CI 0.29-0.83). CONCLUSIONS The reduced M/C ratio of p120ctn acted as an independent prognostic factor for ESCC patient survival and for the migration and invasive behavior of the disease.
Collapse
Affiliation(s)
- Tian Chen
- Department of Radiotherapy, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang, P.R. China
| | - Chen Wang
- Department of Gastroenterology, Taizhou Enze Medical Center Luqiao Hospital, Taizhou, Zhejiang, P.R. China
| | - Fang Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xuebang Zhang
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Han Yang
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xia Deng
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Qiancheng He
- Department of General Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Wenfeng Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Gang Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
31
|
Son K, Smith TC, Luna EJ. Supervillin binds the Rac/Rho-GEF Trio and increases Trio-mediated Rac1 activation. Cytoskeleton (Hoboken) 2015; 72:47-64. [PMID: 25655724 DOI: 10.1002/cm.21210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/21/2015] [Indexed: 01/06/2023]
Abstract
We investigated cross-talk between the membrane-associated, myosin II-regulatory protein supervillin and the actin-regulatory small GTPases Rac1, RhoA, and Cdc42. Supervillin knockdown reduced Rac1-GTP loading, but not the GTP loading of RhoA or Cdc42, in HeLa cells with normal levels of the Rac1-activating protein Trio. No reduction in Rac1-GTP loading was observed when supervillin levels were reduced in Trio-depleted cells. Conversely, overexpression of supervillin isoform 1 (SV1) or, especially, isoform 4 (SV4) increased Rac1 activation. Inhibition of the Trio-mediated Rac1 guanine nucleotide exchange activity with ITX3 partially blocked the SV4-mediated increase in Rac1-GTP. Both SV4 and SV1 co-localized with Trio at or near the plasma membrane in ruffles and cell surface projections. Two sequences within supervillin bound directly to Trio spectrin repeats 4-7: SV1-171, which contains N-terminal residues found in both SV1 and SV4 and the SV4-specific differentially spliced coding exons 3, 4, and 5 within SV4 (SV4-E345; SV4 amino acids 276-669). In addition, SV4-E345 interacted with the homologous sequence in rat kalirin (repeats 4-7, amino acids 531-1101). Overexpressed SV1-174 and SV4-E345 affected Rac1-GTP loading, but only in cells with endogenous levels of Trio. Trio residues 771-1057, which contain both supervillin-interaction sites, exerted a dominant-negative effect on cell spreading. Supervillin and Trio knockdowns, separately or together, inhibited cell spreading, suggesting that supervillin regulates the Rac1 guanine nucleotide exchange activity of Trio, and potentially also kalirin, during cell spreading and lamellipodia extension.
Collapse
Affiliation(s)
- Kyonghee Son
- Department of Cell and Developmental Biology, Program in Cell & Developmental Dynamics, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | |
Collapse
|
32
|
Whish S, Dziegielewska KM, Møllgård K, Noor NM, Liddelow SA, Habgood MD, Richardson SJ, Saunders NR. The inner CSF-brain barrier: developmentally controlled access to the brain via intercellular junctions. Front Neurosci 2015; 9:16. [PMID: 25729345 PMCID: PMC4325900 DOI: 10.3389/fnins.2015.00016] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/12/2015] [Indexed: 12/04/2022] Open
Abstract
In the adult the interface between the cerebrospinal fluid and the brain is lined by the ependymal cells, which are joined by gap junctions. These intercellular connections do not provide a diffusional restrain between the two compartments. However, during development this interface, initially consisting of neuroepithelial cells and later radial glial cells, is characterized by “strap” junctions, which limit the exchange of different sized molecules between cerebrospinal fluid and the brain parenchyma. Here we provide a systematic study of permeability properties of this inner cerebrospinal fluid-brain barrier during mouse development from embryonic day, E17 until adult. Results show that at fetal stages exchange across this barrier is restricted to the smallest molecules (286Da) and the diffusional restraint is progressively removed as the brain develops. By postnatal day P20, molecules the size of plasma proteins (70 kDa) diffuse freely. Transcriptomic analysis of junctional proteins present in the cerebrospinal fluid-brain interface showed expression of adherens junctional proteins, actins, cadherins and catenins changing in a development manner consistent with the observed changes in the permeability studies. Gap junction proteins were only identified in the adult as was claudin-11. Immunohistochemistry was used to localize at the cellular level some of the adherens junctional proteins of genes identified from transcriptomic analysis. N-cadherin, β - and α-catenin immunoreactivity was detected outlining the inner CSF-brain interface from E16; most of these markers were not present in the adult ependyma. Claudin-5 was present in the apical-most part of radial glial cells and in endothelial cells in embryos, but only in endothelial cells including plexus endothelial cells in adults. Claudin-11 was only immunopositive in the adult, consistent with results obtained from transcriptomic analysis. These results provide information about physiological, molecular and morphological-related permeability changes occurring at the inner cerebrospinal fluid-brain barrier during brain development.
Collapse
Affiliation(s)
- Sophie Whish
- Department of Pharmacology and Therapeutics, University of Melbourne Parkville, VIC, Australia
| | | | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Institute of Cellular and Molecular Medicine, University of Copenhagen Copenhagen, Denmark
| | - Natassya M Noor
- Department of Pharmacology and Therapeutics, University of Melbourne Parkville, VIC, Australia
| | - Shane A Liddelow
- Department of Pharmacology and Therapeutics, University of Melbourne Parkville, VIC, Australia ; Department of Neurobiology, Stanford University Palo Alto, CA, USA
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, University of Melbourne Parkville, VIC, Australia
| | | | - Norman R Saunders
- Department of Pharmacology and Therapeutics, University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
33
|
Favale NO, Santacreu BJ, Pescio LG, Marquez MG, Sterin-Speziale NB. Sphingomyelin metabolism is involved in the differentiation of MDCK cells induced by environmental hypertonicity. J Lipid Res 2015; 56:786-800. [PMID: 25670801 DOI: 10.1194/jlr.m050781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids (SLs) are relevant lipid components of eukaryotic cells. Besides regulating various cellular processes, SLs provide the structural framework for plasma membrane organization. Particularly, SM is associated with detergent-resistant microdomains. We have previously shown that the adherens junction (AJ) complex, the relevant cell-cell adhesion structure involved in cell differentiation and tissue organization, is located in an SM-rich membrane lipid domain. We have also demonstrated that under hypertonic conditions, Madin-Darby canine kidney (MDCK) cells acquire a differentiated phenotype with changes in SL metabolism. For these reasons, we decided to evaluate whether SM metabolism is involved in the acquisition of the differentiated phenotype of MDCK cells. We found that SM synthesis mediated by SM synthase 1 is involved in hypertonicity-induced formation of mature AJs, necessary for correct epithelial cell differentiation. Inhibition of SM synthesis impaired the acquisition of mature AJs, evoking a disintegration-like process reflected by the dissipation of E-cadherin and β- and α-catenins from the AJ complex. As a consequence, MDCK cells did not develop the hypertonicity-induced differentiated epithelial cell phenotype.
Collapse
Affiliation(s)
- Nicolás Octavio Favale
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Bruno Jaime Santacreu
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucila Gisele Pescio
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Gabriela Marquez
- IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja , La Rioja, Argentina
| | | |
Collapse
|
34
|
Marçal-Pessoa AF, Bassi-Branco CL, Salvatierra CDSB, Stoppiglia LF, Ignacio-Souza LM, de Lima Reis SR, Veloso RV, de Barros Reis MA, Carneiro EM, Boschero AC, Arantes VC, Latorraca MQ. A low-protein diet during pregnancy prevents modifications in intercellular communication proteins in rat islets. Biol Res 2015; 48:3. [PMID: 25654754 PMCID: PMC4362834 DOI: 10.1186/0717-6287-48-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/07/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Gap junctions between β-cells participate in the precise regulation of insulin secretion. Adherens junctions and their associated proteins are required for the formation, function and structural maintenance of gap junctions. Increases in the number of the gap junctions between β-cells and enhanced glucose-stimulated insulin secretion are observed during pregnancy. In contrast, protein restriction produces structural and functional alterations that result in poor insulin secretion in response to glucose. We investigated whether protein restriction during pregnancy affects the expression of mRNA and proteins involved in gap and adherens junctions in pancreatic islets. An isoenergetic low-protein diet (6% protein) was fed to non-pregnant or pregnant rats from day 1-15 of pregnancy, and rats fed an isocaloric normal-protein diet (17% protein) were used as controls. RESULTS The low-protein diet reduced the levels of connexin 36 and β-catenin protein in pancreatic islets. In rats fed the control diet, pregnancy increased the levels of phospho-[Ser(279/282)]-connexin 43, and it decreased the levels of connexin 36, β-catenin and beta-actin mRNA as well as the levels of connexin 36 and β-catenin protein in islets. The low-protein diet during pregnancy did not alter these mRNA and protein levels, but avoided the increase of levels of phospho-[Ser(279/282)]-connexin 43 in islets. Insulin secretion in response to 8.3 mmol/L glucose was higher in pregnant rats than in non-pregnant rats, independently of the nutritional status. CONCLUSION Short-term protein restriction during pregnancy prevented the Cx43 phosphorylation, but this event did not interfer in the insulin secretion.
Collapse
Affiliation(s)
- Ana Flávia Marçal-Pessoa
- Mestrado em Ciências da Saúde, Faculdade de Ciências Médicas, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| | - Carmen Lucia Bassi-Branco
- Departamento de Ciências Básicas em Saúde, Faculdade de Ciências Médicas, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| | | | - Luiz Fabrizio Stoppiglia
- Departamento de Psicologia, Instituto de Educação, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| | - Letícia Martins Ignacio-Souza
- Departamento de Alimentos e Nutrição, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| | - Sílvia Regina de Lima Reis
- Departamento de Alimentos e Nutrição, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| | - Roberto Vilela Veloso
- Departamento de Alimentos e Nutrição, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| | | | - Everardo Magalhães Carneiro
- Departamento de Anatomia, Biologia Celular e Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Antonio Carlos Boschero
- Departamento de Anatomia, Biologia Celular e Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Vanessa Cristina Arantes
- Departamento de Alimentos e Nutrição, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| | - Márcia Queiroz Latorraca
- Departamento de Alimentos e Nutrição, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
35
|
Wu Y, Kanchanawong P, Zaidel-Bar R. Actin-delimited adhesion-independent clustering of E-cadherin forms the nanoscale building blocks of adherens junctions. Dev Cell 2015; 32:139-54. [PMID: 25600236 DOI: 10.1016/j.devcel.2014.12.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/20/2014] [Accepted: 12/01/2014] [Indexed: 11/16/2022]
Abstract
E-cadherin is the major adhesion receptor in epithelial adherens junctions, which connect cells to form tissues and are essential for morphogenesis and homeostasis. The mechanism by which E-cadherin monomers cluster and become organized in adherens junctions remains poorly understood. Here, using superresolution microscopy techniques in combination with structure-informed functional mutations, we found that loosely organized clusters of approximately five E-cadherin molecules that form independently of cis or trans interactions, and that are delimited by the cortical F-actin meshwork, are the precursors of trans-ligated adhesive clusters that make up the adherens junction. The density of E-cadherin clusters was wide ranged, and notably, we could detect densities consistent with the crystal lattice structure at the core of adhesive clusters, which were dependent on extracellular domain interactions. Thus, our results elucidate the nanoscale architecture of adherens junctions, as well as the molecular mechanisms driving its assembly.
Collapse
Affiliation(s)
- Yao Wu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117575, Singapore.
| |
Collapse
|
36
|
Mooren OL, Li J, Nawas J, Cooper JA. Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier. Mol Biol Cell 2014; 25:4115-29. [PMID: 25355948 PMCID: PMC4263454 DOI: 10.1091/mbc.e14-05-0976] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Actin assembly downstream of WAVE2 in endothelial cells is necessary to engage transmigrating lymphocytes, promote the transcellular route of migration, and close junctional pores after the lymphocyte moves away. In addition, WAVE2 is necessary for endothelial monolayer integrity. The vascular endothelium is a highly dynamic structure, and the integrity of its barrier function is tightly regulated. Normally impenetrable to cells, the endothelium actively assists lymphocytes to exit the bloodstream during inflammation. The actin cytoskeleton of the endothelial cell (EC) is known to facilitate transmigration, but the cellular and molecular mechanisms are not well understood. Here we report that actin assembly in the EC, induced by Arp2/3 complex under control of WAVE2, is important for several steps in the process of transmigration. To begin transmigration, ECs deploy actin-based membrane protrusions that create a cup-shaped docking structure for the lymphocyte. We found that docking structure formation involves the localization and activation of Arp2/3 complex by WAVE2. The next step in transmigration is creation of a migratory pore, and we found that endothelial WAVE2 is needed for lymphocytes to follow a transcellular route through an EC. Later, ECs use actin-based protrusions to close the gap behind the lymphocyte, which we discovered is also driven by WAVE2. Finally, we found that ECs in resting endothelial monolayers use lamellipodial protrusions dependent on WAVE2 to form and maintain contacts and junctions between cells.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110
| | - Jinmei Li
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110
| | - Julie Nawas
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110
| |
Collapse
|
37
|
Povarova OI, Uversky VN, Kuznetsova IM, Turoverov KK. Actinous enigma or enigmatic actin: Folding, structure, and functions of the most abundant eukaryotic protein. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e34500. [PMID: 28232879 PMCID: PMC5314930 DOI: 10.4161/idp.34500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 02/06/2023]
Abstract
Being the most abundant protein of the eukaryotic cell, actin continues to keep its secrets for more than 60 years. Everything about this protein, its structure, functions, and folding, is mysteriously counterintuitive, and this review represents an attempt to solve some of the riddles and conundrums commonly found in the field of actin research. In fact, actin is a promiscuous binder with a wide spectrum of biological activities. It can exist in at least three structural forms, globular, fibrillar, and inactive (G-, F-, and I-actin, respectively). G-actin represents a thermodynamically instable, quasi-stationary state, which is formed in vivo as a result of the energy-intensive, complex posttranslational folding events controlled and driven by cellular folding machinery. The G-actin structure is dependent on the ATP and Mg2+ binding (which in vitro is typically substituted by Ca2+) and protein is easily converted to the I-actin by the removal of metal ions and by action of various denaturing agents (pH, temperature, and chemical denaturants). I-actin cannot be converted back to the G-form. Foldable and “natively folded” forms of actin are always involved in interactions either with the specific protein partners, such as Hsp70 chaperone, prefoldin, and the CCT chaperonin during the actin folding in vivo or with Mg2+ and ATP as it takes place in the G-form. We emphasize that the solutions for the mysteries of actin multifunctionality, multistructurality, and trapped unfolding can be found in the quasi-stationary nature of this enigmatic protein, which clearly possesses many features attributed to both globular and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Olga I Povarova
- Laboratory of structural dynamics, stability, and folding of proteins; Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia
| | - Vladimir N Uversky
- Laboratory of structural dynamics, stability, and folding of proteins; Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| | - Irina M Kuznetsova
- Laboratory of structural dynamics, stability, and folding of proteins; Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; St. Petersburg State Polytechnical University; St. Petersburg, Russia
| | - Konstantin K Turoverov
- Laboratory of structural dynamics, stability, and folding of proteins; Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; St. Petersburg State Polytechnical University; St. Petersburg, Russia
| |
Collapse
|
38
|
Fortugno P, Josselin E, Tsiakas K, Agolini E, Cestra G, Teson M, Santer R, Castiglia D, Novelli G, Dallapiccola B, Kurth I, Lopez M, Zambruno G, Brancati F. Nectin-4 mutations causing ectodermal dysplasia with syndactyly perturb the rac1 pathway and the kinetics of adherens junction formation. J Invest Dermatol 2014; 134:2146-2153. [PMID: 24577405 DOI: 10.1038/jid.2014.119] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/16/2014] [Accepted: 02/04/2014] [Indexed: 01/19/2023]
Abstract
Defective nectin-1 and -4 have been implicated in ectodermal dysplasia (ED) syndromes with variably associated features including orofacial and limb defects. In particular, nectin-1 mutations cause cleft lip/palate ED (CLPED1; OMIM#225060), whereas defective nectin-4 is associated with ED-syndactyly syndrome (EDSS1; OMIM#613573). Although the broad phenotypic overlap suggests a common mode of action of nectin-1 and -4, little is known about the pathogenic mechanisms involved. We report the identification of, to our knowledge, a previously undescribed nectin-4 homozygous p.Val242Met missense mutation in a patient with EDSS1. We used patient skin biopsy and primary keratinocytes, as well as nectin-4 ectopic expression in epithelial cell lines, to characterize functional consequences of p.Val242Met and p.Thr185Met mutations, the latter previously identified in compound heterozygosity with a truncating mutation. We show that nectin-4-altered expression perturbs nectin-1 clustering at keratinocyte contact sites and delays, but does not impede cell-cell aggregation and cadherin recruitment at adherens junctions (AJs). Moreover, trans-interaction of nectin-1 and -4 induces the activation of Rac1, a member of the Rho family of small GTPases, and regulates E-cadherin-mediated cell-cell adhesion. These data outline a synergistic action of nectin-1 and -4 in the early steps of AJ formation and implicate this interaction in modulating the Rac1 signaling pathway.
Collapse
Affiliation(s)
- Paola Fortugno
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emmanuelle Josselin
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille University, Marseille, France; Inserm-U1068 (Laboratoire d'Oncologie Moléculaire), CNRS-UMR7258, Marseille, France; Institut Paoli-Calmettes, Marseille, France
| | | | - Emanuele Agolini
- Mendel Laboratory, Casa Sollievo Della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Gianluca Cestra
- IBPM, Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Massimo Teson
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome, Italy
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome, Italy
| | - Giuseppe Novelli
- Genetics Section, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Bruno Dallapiccola
- Department of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Marc Lopez
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille University, Marseille, France; Inserm-U1068 (Laboratoire d'Oncologie Moléculaire), CNRS-UMR7258, Marseille, France; Institut Paoli-Calmettes, Marseille, France
| | - Giovanna Zambruno
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome, Italy
| | - Francesco Brancati
- Department of Medical, Oral and Biotechnological Sciences, Gabriele D'Annunzio University of Chieti-Pescara, Chieti, Italy; Medical Genetics Unit, Policlinico Tor Vergata University Hospital, Rome, Italy.
| |
Collapse
|
39
|
Cui J, Wang H, Liu S, Qiu X, Jiang Z, Wang X. Transcriptome analysis of the gill of Takifugu rubripes using Illumina sequencing for discovery of SNPs. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 10:44-51. [DOI: 10.1016/j.cbd.2014.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/01/2022]
|
40
|
Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 2014; 15:225-42. [PMID: 24651541 DOI: 10.1038/nrm3775] [Citation(s) in RCA: 528] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cells require apical-basal plasma membrane polarity to carry out crucial vectorial transport functions and cytoplasmic polarity to generate different cell progenies for tissue morphogenesis. The establishment and maintenance of a polarized epithelial cell with apical, basolateral and ciliary surface domains is guided by an epithelial polarity programme (EPP) that is controlled by a network of protein and lipid regulators. The EPP is organized in response to extracellular cues and is executed through the establishment of an apical-basal axis, intercellular junctions, epithelial-specific cytoskeletal rearrangements and a polarized trafficking machinery. Recent studies have provided insight into the interactions of the EPP with the polarized trafficking machinery and how these regulate epithelial polarization and depolarization.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, 1300 York Avenue, LC-301 New York City, New York 10065, USA
| | - Ian G Macara
- Department of Cell & Developmental Biology, Vanderbilt University Medical Center, 465 21st Avenue South, U 3209 MRB III, Nashville Tennessee 37232, USA
| |
Collapse
|
41
|
Plestant C, Strale PO, Seddiki R, Nguyen E, Ladoux B, Mège RM. Adhesive interactions of N-cadherin limit the recruitment of microtubules to cell–cell contacts through organization of actomyosin. J Cell Sci 2014; 127:1660-71. [DOI: 10.1242/jcs.131284] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
ABSTRACT
Adhesive interactions of cadherins induce crosstalk between adhesion complexes and the actin cytoskeleton, allowing strengthening of adhesions and cytoskeletal organization. The underlying mechanisms are not completely understood, and microtubules (MTs) might be involved, as for integrin-mediated cell–extracellular-matrix adhesions. Therefore, we investigated the relationship between N-cadherin and MTs by analyzing the influence of N-cadherin engagement on MT distribution and dynamics. MTs progressed less, with a lower elongation rate, towards cadherin adhesions than towards focal adhesions. Increased actin treadmilling and the presence of an actomyosin contractile belt, suggested that actin relays inhibitory signals from cadherin adhesions to MTs. The reduced rate of MT elongation, associated with reduced recruitment of end-binding (EB) proteins to plus ends, was alleviated by expression of truncated N-cadherin, but was only moderately affected when actomyosin was disrupted. By contrast, destabilizing actomyosin fibers allowed MTs to enter the adhesion area, suggesting that tangential actin bundles impede MT growth independently of MT dynamics. Blocking MT penetration into the adhesion area strengthened cadherin adhesions. Taken together, these results establish a crosstalk between N-cadherin, F-actin and MTs. The opposing effects of cadherin and integrin engagement on actin organization and MT distribution might induce bias of the MT network during cell polarization.
Collapse
Affiliation(s)
- Charlotte Plestant
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
| | - Pierre-Olivier Strale
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
| | - Rima Seddiki
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
- Institut Jacques Monod, UMR7592 CNRS, Université Paris Diderot, 75013 Paris, France
| | - Emmanuelle Nguyen
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Benoit Ladoux
- Institut Jacques Monod, UMR7592 CNRS, Université Paris Diderot, 75013 Paris, France
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - René-Marc Mège
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
42
|
Truffi M, Dubreuil V, Liang X, Vacaresse N, Nigon F, Han SP, Yap AS, Gomez GA, Sap J. RPTPα controls epithelial adherens junctions, linking E-cadherin engagement to c-Src-mediated phosphorylation of cortactin. J Cell Sci 2014; 127:2420-32. [PMID: 24652832 DOI: 10.1242/jcs.134379] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epithelial junctions are fundamental determinants of tissue organization, subject to regulation by tyrosine phosphorylation. Homophilic binding of E-cadherin activates tyrosine kinases, such as Src, that control junctional integrity. Protein tyrosine phosphatases (PTPs) also contribute to cadherin-based adhesion and signaling, but little is known about their specific identity or functions at epithelial junctions. Here, we report that the receptor PTP RPTPα (human gene name PTPRA) is recruited to epithelial adherens junctions at the time of cell-cell contact, where it is in molecular proximity to E-cadherin. RPTPα is required for appropriate cadherin-dependent adhesion and for cyst architecture in three-dimensional culture. Loss of RPTPα impairs adherens junction integrity, as manifested by defective E-cadherin accumulation and peri-junctional F-actin density. These effects correlate with a role for RPTPα in cellular (c)-Src activation at sites of E-cadherin engagement. Mechanistically, RPTPα is required for appropriate tyrosine phosphorylation of cortactin, a major Src substrate and a cytoskeletal actin organizer. Expression of a phosphomimetic cortactin mutant in RPTPα-depleted cells partially rescues F-actin and E-cadherin accumulation at intercellular contacts. These findings indicate that RPTPα controls cadherin-mediated signaling by linking homophilic E-cadherin engagement to cortactin tyrosine phosphorylation through c-Src.
Collapse
Affiliation(s)
- Marta Truffi
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Bâtiment Lamarck, Case 7042, 35 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Véronique Dubreuil
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Bâtiment Lamarck, Case 7042, 35 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Xuan Liang
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Nathalie Vacaresse
- Biotech Research and Innovation Centre and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Fabienne Nigon
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Bâtiment Lamarck, Case 7042, 35 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Siew Ping Han
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Alpha S Yap
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Guillermo A Gomez
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Jan Sap
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Bâtiment Lamarck, Case 7042, 35 Rue Hélène Brion, F-75205 Paris Cedex 13, France Biotech Research and Innovation Centre and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
43
|
Affiliation(s)
- Ronen Zaidel-Bar
- Mechanobiology Institute Singapore and Department of Bioengineering, National University of Singapore, Singapore 117411.
| |
Collapse
|
44
|
SERCA2 dysfunction in Darier disease causes endoplasmic reticulum stress and impaired cell-to-cell adhesion strength: rescue by Miglustat. J Invest Dermatol 2014; 134:1961-1970. [PMID: 24390139 DOI: 10.1038/jid.2014.8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/31/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
Darier disease (DD) is a severe dominant genetic skin disorder characterized by the loss of cell-to-cell adhesion and abnormal keratinization. The defective gene, ATP2A2, encodes sarco/endoplasmic reticulum (ER) Ca2+ -ATPase isoform 2 (SERCA2), a Ca2+ -ATPase pump of the ER. Here we show that Darier keratinocytes (DKs) display biochemical and morphological hallmarks of constitutive ER stress with increased sensitivity to ER stressors. Desmosome and adherens junctions (AJs) displayed features of immature adhesion complexes: expression of desmosomal cadherins (desmoglein 3 (Dsg3) and desmocollin 3 (Dsc3)) and desmoplakin was impaired at the plasma membrane, as well as E-cadherin, β-, α-, and p120-catenin staining. Dsg3, Dsc3, and E-cadherin showed perinuclear staining and co-immunostaining with ER markers, indicative of ER retention. Consistent with these abnormalities, intercellular adhesion strength was reduced as shown by a dispase mechanical dissociation assay. Exposure of normal keratinocytes to the SERCA2 inhibitor thapsigargin recapitulated these abnormalities, supporting the role of loss of SERCA2 function in impaired desmosome and AJ formation. Remarkably, treatment of DKs with the orphan drug Miglustat, a pharmacological chaperone, restored mature AJ and desmosome formation, and improved adhesion strength. These results point to an important contribution of ER stress in DD pathogenesis and provide the basis for future clinical evaluation of Miglustat in Darier patients.
Collapse
|
45
|
Weis WI, Nelson WJ, Dickinson DJ. Evolution and cell physiology. 3. Using Dictyostelium discoideum to investigate mechanisms of epithelial polarity. Am J Physiol Cell Physiol 2013; 305:C1091-5. [PMID: 24067914 DOI: 10.1152/ajpcell.00233.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In Metazoa, a polarized epithelium forms a single-cell-layered barrier that separates the outside from the inside of the organism. In tubular epithelia, the apical side of the cell is constricted relative to the basal side, forming a wedge-shaped cell that can pack into a tube. Apical constriction is mediated by actomyosin activity. In higher animals, apical actomyosin is connected between cells by specialized cell-cell junctions that contain a classical cadherin, the Wnt signaling protein β-catenin, and the actin-binding protein α-catenin. The molecular mechanisms that lead to selective accumulation of myosin at the apical surface of cells are poorly understood. We found that the nonmetazoan Dictyostelium discoideum forms a polarized epithelium that surrounds the stalk tube at the tip of the multicellular fruiting body. Although D. discoideum lacks a cadherin homolog, it expresses homologs of β- and α-catenin. Both catenins are essential for formation of the tip epithelium, polarized protein secretion, and proper multicellular morphogenesis. Myosin localizes apically in tip epithelial cells, and it appears that constriction of this epithelial tube is required for proper morphogenesis. Localization of myosin II is controlled by the protein IQGAP1 and its binding partners cortexillins I and II, which function downstream of α- and β-catenin to exclude myosin from the basolateral cortex and promote apical accumulation of myosin. These studies show that the function of catenins in cell polarity predates the evolution of Wnt signaling and classical cadherins, and that apical localization of myosin is a morphogenetic mechanism conserved from nonmetazoans to vertebrates.
Collapse
Affiliation(s)
- William I Weis
- Program in Cancer Biology, Stanford University, Stanford, California
| | | | | |
Collapse
|
46
|
Huang RYJ, Guilford P, Thiery JP. Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci 2013; 125:4417-22. [PMID: 23165231 DOI: 10.1242/jcs.099697] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ruby Yun-Ju Huang
- Department of Obstetrics and Gynaecology, National University Hospital, 119074, Singapore
| | | | | |
Collapse
|
47
|
Zhang Z, Rankin SA, Zorn AM. Different thresholds of Wnt-Frizzled 7 signaling coordinate proliferation, morphogenesis and fate of endoderm progenitor cells. Dev Biol 2013; 378:1-12. [PMID: 23562607 DOI: 10.1016/j.ydbio.2013.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/06/2013] [Accepted: 02/22/2013] [Indexed: 11/27/2022]
Abstract
Wnt signaling has multiple dynamic roles during development of the gastrointestinal and respiratory systems. Differential Wnt signaling is thought to be a critical step in Xenopus endoderm patterning such that during late gastrula and early somite stages of embryogenesis, Wnt activity must be suppressed in the anterior to allow the specification of foregut progenitors. However, the foregut endoderm also expresses the Wnt-receptor Frizzled 7 (Fzd7) as well as several Wnt ligands suggesting that the current model may be too simple. In this study, we show that Fzd7 is required to transduce a low level of Wnt signaling that is essential to maintain foregut progenitors. Foregut-specific Fzd7-depletion from the Xenopus foregut resulted in liver and pancreas agenesis. Fzd7-depleted embryos failed to maintain the foregut progenitor marker hhex and exhibited decreased proliferation; in addition the foregut cells were enlarged with a randomized orientation. We show that in the foregut Fzd7 signals via both the Wnt/β-catenin and Wnt/JNK pathways and that different thresholds of Wnt-Fzd7 activity coordinate progenitor cell fate, proliferation and morphogenesis.
Collapse
Affiliation(s)
- Zheng Zhang
- Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the College of Medicine, University of Cincinnati, Cincinnati OH 45229, USA
| | | | | |
Collapse
|
48
|
Grange J, Moody JD, Ascione MPA, Hansen MDH. Zyxin-VASP interactions alter actin regulatory activity in zyxin-VASP complexes. Cell Mol Biol Lett 2013; 18:1-10. [PMID: 23076992 PMCID: PMC6275665 DOI: 10.2478/s11658-012-0035-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/12/2012] [Indexed: 01/21/2023] Open
Abstract
Cell-cell and cell-substrate adhesions are sites of dramatic actin rearrangements and where actin-membrane connections are tightly regulated. Zyxin-VASP complexes localize to sites of cell-cell and cell-substrate adhesion and function to regulate actin dynamics and actin-membrane connections at these sites. To accomplish these functions, zyxin recruits VASP to cellular sites via proline-rich binding sites near zyxin's amino terminus. While the prevailing thought has been that zyxin simply acts as a scaffold protein for VASP binding, the identification of a LIM domain-VASP interaction could complicate this view. Here we assess how zyxin-VASP binding through both the proline rich motifs and the LIM domains alters specific VASP functions. We find that neither individual interaction alters VASP's actin regulatory activities. In contrast, however, we find that full-length zyxin dramatically reduces VASP-mediated actin bundling and actin assembly. Taken together, these results suggest a model where zyxin-VASP complexes occur in complex organizations with suppressed actin regulatory activity.
Collapse
Affiliation(s)
- Jacob Grange
- Physiology and Developmental Biology, Brigham Young University, 574 WIDB Provo, Brigham, UT 84602 USA
| | - James D. Moody
- Physiology and Developmental Biology, Brigham Young University, 574 WIDB Provo, Brigham, UT 84602 USA
| | - Marc P. A. Ascione
- Physiology and Developmental Biology, Brigham Young University, 574 WIDB Provo, Brigham, UT 84602 USA
| | - Marc D. H. Hansen
- Physiology and Developmental Biology, Brigham Young University, 574 WIDB Provo, Brigham, UT 84602 USA
| |
Collapse
|
49
|
Collinet C, Lecuit T. Stability and dynamics of cell-cell junctions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:25-47. [PMID: 23481189 DOI: 10.1016/b978-0-12-394311-8.00002-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adherens junctions display dual properties of robustness and plasticity. In multicellular organisms, they support both strong cell-cell adhesion and rapid cell-cell contact remodeling during development and wound healing. The core components of adherens junctions are clusters of cadherin molecules, which mediate cell-cell adhesion through homophilic interactions in trans. Interactions of cadherins with the actin cytoskeleton are essential for providing both stability and plasticity to adherens junctions. Cadherins regulate the turnover of actin by regulating its polymerization and anchor tensile actomyosin networks at the cell cortex. In turn, actin regulates cadherin turnover by regulating its endocytosis and actomyosin networks exert forces driving remodeling of cell-cell contacts. The interplay between adherens junctions and contractile actomyosin networks has striking outcomes during epithelial morphogenesis. Their integrated dynamics result in different morphogenetic patterns shaping tissues and organs.
Collapse
Affiliation(s)
- Claudio Collinet
- Institut de Biologie du Développement de Marseille Luminy (IBDML), Unite Mixte de Recherche 6216, Case 907, Marseille, France
| | | |
Collapse
|
50
|
Schwarz M, Münzel PA, Braeuning A. Non-melanoma skin cancer in mouse and man. Arch Toxicol 2012; 87:783-98. [PMID: 23266722 DOI: 10.1007/s00204-012-0998-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/12/2012] [Indexed: 12/30/2022]
Abstract
As a frontier organ, skin is exposed to different environmental and/or occupational chemicals which cause cutaneous cancers in experimental animals. In mice, 7,12-dimethylbenz[a]anthrancene (DMBA) and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) are frequently used as skin model tumor initiator and promoter, respectively. The sequential administration of DMBA and TPA leads to the appearance of a large number of benign papillomas, of which some convert later into invasive squamous cell carcinomas (SCC). At the molecular level, initiation of carcinogenesis in mouse skin consists in the mutational activation of the Ha-ras oncoprotein. HA-RAS mutations are rare in human SCC, but HA-RAS-mutated tumors appear in melanoma patients treated with B-raf inhibitors, indicating that initiated, HA-RAS-mutated stem cells also reside in human skin. Similarly, UV-induced human SCC show footprint mutations in the tumor suppressor gene TP53 which are also observed in UV-induced mouse SCC. Strong species differences exist with respect to phorbol ester-mediated tumor promotion. While certain mouse strains are very susceptible, other rodent species are much less sensitive. Likewise, humans appear to be much more resistant to phorbol ester-mediated skin toxicity. Papilloma formation as a result of a chemical insult is uncommon in men, questioning the relevance of this preneoplastic lesion for humans. However, skin tumorigenesis in the experimental situation and in humans appears to follow common molecular mechanisms, even though there are species differences in the morphological correlates to the preneoplastic state. Therefore, we recommend not simply labeling them as irrelevant for human risk assessment.
Collapse
Affiliation(s)
- Michael Schwarz
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Wilhelmstr. 56, 72074, Tübingen, Germany.
| | | | | |
Collapse
|