1
|
Baghy K, Szakadáti H, Kovalszky I. Decorin the antifibrotic proteoglycan and its progression in therapy. Am J Physiol Cell Physiol 2025; 328:C1853-C1865. [PMID: 40279258 DOI: 10.1152/ajpcell.01075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/22/2025] [Accepted: 04/22/2025] [Indexed: 04/27/2025]
Abstract
Fibrosis, which underlies numerous chronic diseases, is characterized by excessive extracellular matrix (ECM) accumulation, resulting in disrupted tissue architecture. Decorin, a small leucine-rich proteoglycan synthesized primarily by fibroblasts and myoblasts, has emerged as a potent antifibrotic agent mainly by inhibiting transforming growth factor-β (TGF-β), which is a major driver of fibrosis in various tissues and organs such as the heart, eyes, skin, liver, muscle, etc. Numerous therapeutic applications of decorin showcase its ability to reduce fibrosis and improve tissue function. Advances in treatments utilizing recombinant protein, gene-delivery systems, and biomaterials, such as decorin-loaded hydrogels, have demonstrated decorin's potential to improve localized and systemic fibrosis therapies. This review discusses recent advances in decorin's antifibrotic potential and its therapeutic applications.
Collapse
Affiliation(s)
- Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Helga Szakadáti
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Yang Y, McCullough CG, Seninge L, Guo L, Kwon WJ, Zhang Y, Li NY, Gaddam S, Pan C, Zhen H, Torkelson J, Glass IA, Charville GW, Que J, Stuart JM, Ding H, Oro AE. A spatiotemporal and machine-learning platform facilitates the manufacturing of hPSC-derived esophageal mucosa. Dev Cell 2025; 60:1359-1376.e10. [PMID: 39798574 PMCID: PMC12055484 DOI: 10.1016/j.devcel.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 12/12/2024] [Indexed: 01/15/2025]
Abstract
Human pluripotent stem cell-derived tissue engineering offers great promise for designer cell-based personalized therapeutics, but harnessing such potential requires a deeper understanding of tissue-level interactions. We previously developed a cell replacement manufacturing method for ectoderm-derived skin epithelium. However, it remains challenging to manufacture the endoderm-derived esophageal epithelium despite possessing a similar stratified epithelial structure. Here, we employ single-cell and spatial technologies to generate a spatiotemporal multi-omics cell census for human esophageal development. We identify the cellular diversity, dynamics, and signal communications for the developing esophageal epithelium and stroma. Using Manatee, a machine-learning algorithm, we prioritize the combinations of candidate human developmental signals for in vitro derivation of esophageal basal cells. Functional validation of Manatee predictions leads to a clinically compatible system for manufacturing human esophageal mucosa.
Collapse
Affiliation(s)
- Ying Yang
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Carmel Grace McCullough
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Lucas Seninge
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Lihao Guo
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, AZ, USA
| | - Woo-Joo Kwon
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nancy Yanzhe Li
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Cory Pan
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Hanson Zhen
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Jessica Torkelson
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Ian A Glass
- Birth Defect Research Laboratory Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY, USA
| | - Joshua M Stuart
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Hongxu Ding
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, AZ, USA.
| | - Anthony E Oro
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Plümers R, Jelinek S, Lindenkamp C, Osterhage MR, Knabbe C, Hendig D. Investigation on ABCC6-Deficient Human Hepatocytes Generated by CRISPR-Cas9 Genome Editing. Cells 2025; 14:576. [PMID: 40277901 PMCID: PMC12025709 DOI: 10.3390/cells14080576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Patients affected by the rare disease pseudoxanthoma elasticum (PXE) exhibit the calcification of elastic fibers in ocular, dermal, and vascular tissues. These symptoms are triggered by mutations in the ATP-binding cassette transporter subfamily C member 6 (ABCC6), whose substrate remains unknown. Interestingly, ABCC6 is predominantly expressed in the liver tissue, leading to the hypothesis that PXE is a metabolic disorder. We developed a genome-editing system targeting ABCC6 in human immortalized hepatocytes (HepIms) for further investigations. The HepIms were transfected with an ABCC6-specific clustered regulatory interspaced short palindromic repeat (CRISPR-Cas9) genome-editing plasmid, resulting in the identification of a heterozygous (htABCC6HepIm) and a compound heterozygous (chtABCC6HepIm) clone. These clones were analyzed for key markers associated with the PXE pathobiochemistry. Hints of impaired lipid trafficking, defects in the extracellular matrix remodeling, the induction of calcification inhibitor expression, and the down regulation of senescence and inflammatory markers in ABCC6-deficienct HepIms were found. Our ABCC6 knock-out model of HepIms provides a valuable tool for studying the metabolic characteristics of PXE in vitro. The initial analysis of the clones mirrors various features of the PXE pathobiochemistry and provides an outlook on future research approaches.
Collapse
Affiliation(s)
- Ricarda Plümers
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Institut für Laboratoriums- und Transfusionsmedizin, Universitätsklinik der Ruhr-Universität Bochum, Medizinische Fakultät OWL (Universität Bielefeld), Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Yamashita R, Tsutsui S, Mizumoto S, Watanabe T, Yamamoto N, Nakano K, Yamada S, Okamura T, Furuichi T. CANT1 Is Involved in Collagen Fibrogenesis in Tendons by Regulating the Synthesis of Dermatan/Chondroitin Sulfate Attached to the Decorin Core Protein. Int J Mol Sci 2025; 26:2463. [PMID: 40141107 PMCID: PMC11941851 DOI: 10.3390/ijms26062463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Tendons are connective tissues that join muscles and bones and are rich in glycosaminoglycans (GAGs). Decorin is a proteoglycan with one dermatan sulfate (DS) or chondroitin sulfate (CS) chain (a type of GAG) attached to its core protein and is involved in regulating the assembly of collagen fibrils in the tendon extracellular matrix (ECM). Calcium-activated nucleotidase 1 (CANT1), a nucleotidase that hydrolyzes uridine diphosphate into uridine monophosphate and phosphate, plays an important role in GAG synthesis in cartilage. In the present study, we performed detailed histological and biochemical analyses of the tendons from Cant1 knockout (Cant1-/-) mice. No abnormalities were observed in the tendons on postnatal day 1 (P1); however, remarkable hypoplasia was observed on P30 and P180. The collagen fibrils were more angular and larger in the Cant1-/- tendons than in the control (Ctrl) tendons. In the Cant1-/- tendons, the DS/CS content was significantly reduced, and the DC/CS chains attached to the decorin core protein became shorter than those in the Ctrl tendons. No abnormalities were observed in the proliferation and differentiation of tendon fibroblasts (tenocytes) in the Cant1-/- mice. These results strongly suggest that CANT1 dysfunction causes defective DS/CS synthesis, followed by impairment of decorin function, which regulates collagen fibrogenesis in the tendon ECM. Multiple joint dislocations are a clinical feature of Desbuquois dysplasia type 1 caused by human CANT1 mutations. The multiple joint dislocations associated with this genetic disorder may be attributed to tendon fragility resulting from CANT1 dysfunction.
Collapse
Affiliation(s)
- Rina Yamashita
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan;
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Saki Tsutsui
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.)
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan;
| | - Noritaka Yamamoto
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku 162-8655, Japan (T.O.)
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.)
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku 162-8655, Japan (T.O.)
| | - Tatsuya Furuichi
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan;
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| |
Collapse
|
5
|
Carbone FP, Ancona P, Volinia S, Terrazzan A, Bianchi N. Druggable Molecular Networks in BRCA1/BRCA2-Mutated Breast Cancer. BIOLOGY 2025; 14:253. [PMID: 40136510 PMCID: PMC11940086 DOI: 10.3390/biology14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
Mutations in the tumor suppressor genes BRCA1 and BRCA2 are associated with the triple-negative breast cancer phenotype, particularly aggressive and hard-to-treat tumors lacking estrogen, progesterone, and human epidermal growth factor receptor 2. This research aimed to understand the metabolic and genetic links behind BRCA1 and BRCA2 mutations and investigate their relationship with effective therapies. Using the Cytoscape software, two networks were generated through a bibliographic analysis of articles retrieved from the PubMed-NCBI database. We identified 98 genes deregulated by BRCA mutations, and 24 were modulated by therapies. In particular, BIRC5, SIRT1, MYC, EZH2, and CSN2 are influenced by BRCA1, while BCL2, BAX, and BRIP1 are influenced by BRCA2 mutation. Moreover, the study evaluated the efficacy of several promising therapies, targeting only BRCA1/BRCA2-mutated cells. In this context, CDDO-Imidazolide was shown to increase ROS levels and induce DNA damage. Similarly, resveratrol decreased the expression of the anti-apoptotic gene BIRC5 while it increased SIRT1 both in vitro and in vivo. Other specific drugs were found to induce apoptosis selectively in BRCA-mutated cells or block cell growth when the mutation occurs, i.e., 3-deazaneplanocin A, genistein or daidzein, and PARP inhibitors. Finally, over-representation analysis on the genes highlights ferroptosis and proteoglycan pathways as potential drug targets for more effective treatments.
Collapse
Affiliation(s)
- Francesca Pia Carbone
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| |
Collapse
|
6
|
Tiraplegui C, Garaikoetxea M, Sádaba A, San Ildefonso-García S, Goñi-Olóriz M, Fernández-Celis A, Martín-Núñez E, Álvarez V, Sádaba R, Anand V, Jover E, Navarro A, López-Andrés N. Sex differences in aortic valve inflammation and remodeling in chronic severe aortic regurgitation. Am J Physiol Heart Circ Physiol 2025; 328:H693-H710. [PMID: 39804841 DOI: 10.1152/ajpheart.00645.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/22/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Aortic regurgitation (AR) is more prevalent in males, although cellular and molecular mechanisms underlying the sex differences in prevalence and pathophysiology are unknown. This study evaluates the impact of sex on aortic valve (AV) inflammation and remodeling and the cellular differences in valvular interstitial cells (VICs) and valvular endothelial cells (VECs) in patients with AR. A total of 144 patients (27.5% female) with severe chronic AR were included. AVs were analyzed by imaging, histological, and molecular biology techniques (ELISA, RT-PCR). VICs and VECs isolated from patients with AR were characterized and further treated with transforming growth factor (TGF)-β. Anatomically, male had smaller index aortic dimensions and greater AV thickness. Proteome profiler analyzes in AVs (n = 40/sex) evidenced higher expression of inflammatory markers in male and that was further validated (interleukins, chemokines). Histological composition showed higher expression of inflammatory mediators and collagen thick fibers in AVs from male. Male VICs and VECs secreted higher levels of inflammatory markers than female cells. Interestingly, male VICs produced higher amounts of collagen type I and lower fibronectin and aggrecan, whereas male VECs secreted lower decorin. TGF-β exclusively enhanced inflammation in male VICs and decorin and aggrecan in female VICs. Compared with male, AVs from female were thinner, less inflamed, and fibrotic. VICs seem to be the key cell type responsible for the sex-differences. Valvular inflammation associated with an active remodeling process could be a key pathophysiological process involved in AR.NEW & NOTEWORTHY The pathogenesis of chronic aortic regurgitation (AR) is different in male and female. Female patients with AR showed less aortic valve inflammation and collagen accumulation as compared with male. Valvular cells from female patients secreted less inflammatory molecules and collagen and higher levels of proteoglycans. Valvular interstitial cells from females were more sensitive to transforming growth factor (TGF)-β-induced proteoglycans secretion. Our study opens a new perspective oriented toward sex-specific molecular pathways and therapeutic targets in chronic severe AR.
Collapse
Affiliation(s)
- Carolina Tiraplegui
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Mattie Garaikoetxea
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Alba Sádaba
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Susana San Ildefonso-García
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Miriam Goñi-Olóriz
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Ernesto Martín-Núñez
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Virginia Álvarez
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Rafael Sádaba
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Vidhu Anand
- Department of Cardiovascular Medicine, Mayo Clinic Rochester, Rochester, Minnesota, United States
| | - Eva Jover
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Adela Navarro
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- F-CRIN INI-CRCT, Pamplona, Spain
| |
Collapse
|
7
|
Gomes MLNP, Krijnen PAJ, Middelkoop E, Niessen HWM, Boekema BKHL. Fetal Skin Wound Healing: Key Extracellular Matrix Components and Regulators in Scarless Healing. J Invest Dermatol 2025; 145:280-302. [PMID: 39152955 DOI: 10.1016/j.jid.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/19/2024]
Abstract
Fetal skin at early gestational stage is able to regenerate and heal rapidly after wounding. The exact mechanisms and molecular pathways involved in this process are however still largely unknown. The numerous differences in the skin of the early fetus versus skin in later developmental stages might provide clues for the mechanisms of scarless healing. This review summarizes the differences between mammalian fetal skin and the skin at later developmental phases in healthy and wounded conditions, focusing on extracellular matrix components, which are crucial factors in the microenvironment that direct cells and tissue functions and hence the wound healing process.
Collapse
Affiliation(s)
- Madalena Lopes Natário Pinto Gomes
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esther Middelkoop
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands; Department of Cardio-thoracic Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Bouke K H L Boekema
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands.
| |
Collapse
|
8
|
Franca CM, Lima Verde ME, Silva-Sousa AC, Mansoorifar A, Athirasala A, Subbiah R, Tahayeri A, Sousa M, Fraga MA, Visalakshan RM, Doe A, Beadle K, Finley M, Dimitriadis E, Bays J, Uroz M, Yamada KM, Chen C, Bertassoni LE. Perivascular cells function as key mediators of mechanical and structural changes in vascular capillaries. SCIENCE ADVANCES 2025; 11:eadp3789. [PMID: 39792671 PMCID: PMC11721577 DOI: 10.1126/sciadv.adp3789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM. Capillaries engineered in altered fibrotic collagen had abnormal migration of perivascular cells, reduced pericyte differentiation, increased leakage, and higher regulation of inflammatory/remodeling genes, all regulated via NOTCH3, a known mediator of endothelial-perivascular cell communication. Capillaries engineered either with endothelial cells alone or with perivascular cells silenced for NOTCH3 expression showed a minimal response to ECM alterations. These findings reveal a previously unknown mechanism of vascular response to changes in the ECM in health and disease.
Collapse
Affiliation(s)
- Cristiane M. Franca
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Maria Elisa Lima Verde
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Alice Correa Silva-Sousa
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Amin Mansoorifar
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Avathamsa Athirasala
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Ramesh Subbiah
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Anthony Tahayeri
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Mauricio Sousa
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - May Anny Fraga
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
- Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Sao Paulo, SP 13414-230, Brazil
| | - Rahul M. Visalakshan
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Aaron Doe
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Keith Beadle
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - McKenna Finley
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Emilios Dimitriadis
- Trans-NIH Shared Resource for Biomedical Engineering and Physical Science, NIBIB, NIH, Bethesda, MD 20892, USA
| | - Jennifer Bays
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Marina Uroz
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | | | - Christopher Chen
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Luiz E. Bertassoni
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
- Division of Oncological Sciences, School of Medicine, OHSU, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97201, USA
| |
Collapse
|
9
|
Kamio H, Okabe K, Honda M, Kuroda K, Tsuchiya S. Knockdown of decorin in human bone marrow mesenchymal stem cells suppresses proteoglycan layer formation and establishes a pro-inflammatory environment on titanium oxide surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:5. [PMID: 39775189 PMCID: PMC11706895 DOI: 10.1007/s10856-024-06849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Osseointegration is essential for successful implant treatment. However, the underlying molecular mechanisms remain unclear. In this study, we focused on decorin (DCN), which was hypothesized to be present in the proteoglycan (PG) layer at the interface between bone and the titanium oxide (TiOx) surface. We utilized DCN RNA interference in human bone marrow mesenchymal stem cells (hBMSCs) to investigate its effects on PG layer formation, proliferation, initial adhesion, cell extension, osteogenic capacity, fibrotic markers, and immunotolerance to TiOx in vitro. After 14 days of cultivation, we observed no PG layer was detected, and the osteogenic capacity was suppressed in DCN-depleted hBMSCs. Furthermore, the conditioned medium upregulated the expression of M1 macrophage markers in human macrophages. These results suggest that endogenous DCN plays a crucial role in PG layer formation and that the PG layer alters inflammation around Ti materials.
Collapse
Affiliation(s)
- Hisanobu Kamio
- Department of Dental Anesthesiology, Division of Oral and Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima city, Hiroshima, Japan
| | - Kazuto Okabe
- Department of Oral and Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Kensuke Kuroda
- Institutes of Innovation for Future Society, Nagoya University, Nagoya, Aichi, Japan
| | - Shuhei Tsuchiya
- Department of Oral and Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.
| |
Collapse
|
10
|
Hua R, Han Y, Ni Q, Fajardo RJ, Iozzo RV, Ahmed R, Nyman JS, Wang X, Jiang JX. Pivotal roles of biglycan and decorin in regulating bone mass, water retention, and bone toughness. Bone Res 2025; 13:2. [PMID: 39743559 DOI: 10.1038/s41413-024-00380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/27/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025] Open
Abstract
Proteoglycans, key components of non-collagenous proteins in the bone matrix, attract water through their negatively charged glycosaminoglycan chains. Among these proteoglycans, biglycan (Bgn) and decorin (Dcn) are major subtypes, yet their distinct roles in bone remain largely elusive. In this study, we utilized single knockout (KO) mouse models and successfully generated double KO (dKO) models despite challenges with low yield. Bgn deficiency, but not Dcn deficiency, decreased trabecular bone mass, with more pronounced bone loss in dKO mice. Low-field nuclear magnetic resonance measurements showed a marked decrease in bound water among all KO groups, especially in Bgn KO and dKO mice. Moreover, both Bgn KO and dKO mice exhibited reduced fracture toughness compared to Dcn KO mice. Dcn was significantly upregulated in Bgn KO mice, while a modest upregulation of Bgn was observed in Dcn KO mice, indicating Bgn's predominant role in bone. High resolution atomic force microscopy showed decreased in situ permanent energy dissipation and increased elastic modulus in the extrafibrillar matrix of Bgn/Dcn deficient mice, which were diminished upon dehydration. Furthermore, we found that both Bgn and Dcn are indispensable for the activation of ERK and p38 MAPK signaling pathways. Collectively, our results highlight the distinct and indispensable roles of Bgn and Dcn in maintaining bone structure, water retention, and bulk/in situ tissue properties in the bone matrix, with Bgn exerting a predominant influence.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yan Han
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Qingwen Ni
- Department of Physics, Texas A&M International University, Laredo, TX, USA
| | - Roberto J Fajardo
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX, USA
| | - Renato V Iozzo
- Department of Pathology & Genomic Medicine, Sidney Kimmel Medical Collage, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
11
|
Buraschi S, Pascal G, Liberatore F, Iozzo RV. Comprehensive investigation of proteoglycan gene expression in breast cancer: Discovery of a unique proteoglycan gene signature linked to the malignant phenotype. PROTEOGLYCAN RESEARCH 2025; 3:e70014. [PMID: 40066261 PMCID: PMC11893098 DOI: 10.1002/pgr2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/06/2024] [Indexed: 03/14/2025]
Abstract
Solid tumors present a formidable challenge in oncology, necessitating innovative approaches to improve therapeutic outcomes. Proteoglycans, multifaceted molecules within the tumor microenvironment, have garnered attention due to their diverse roles in cancer progression. Their unique ability to interact with specific membrane receptors, growth factors, and cytokines provides a promising avenue for the development of recombinant proteoglycan-based therapies that could enhance the precision and efficacy of cancer treatment. In this study, we performed a comprehensive analysis of the proteoglycan gene landscape in human breast carcinomas. Leveraging the available wealth of genomic and clinical data regarding gene expression in breast carcinoma and using a machine learning model, we identified a unique gene expression signature composed of five proteoglycans differentially modulated in the tumor tissue: Syndecan-1 and asporin (upregulated) and decorin, PRELP and podocan (downregulated). Additional query of the breast carcinoma data revealed that serglycin, previously shown to be increased in breast carcinoma patients and mouse models and to correlate with a poor prognosis, was indeed decreased in the vast majority of breast cancer patients and its levels inversely correlated with tumor progression and invasion. This proteoglycan gene signature could provide novel diagnostic capabilities in breast cancer biology and highlights the need for further utilization of publicly available datasets for the clinical validation of preclinical experimental results.
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Federico Liberatore
- School of Computer Science and Informatics, Cardiff University, Cardiff CF24 4AG, UK
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
12
|
Huang Y, Wang N, Xing H, Tian J, Zhang D, Gao D, Hsia HC, Lu J, Raredon MSB, Kyriakides TR. Alteration of skin fibroblast steady state contributes to healing outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627278. [PMID: 39713414 PMCID: PMC11661132 DOI: 10.1101/2024.12.06.627278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Fibroblasts display complex functions associated with distinct gene expression profiles that influence matrix production and cell communications and the autonomy of tissue development and repair. Thrombospondin-2 (TSP-2), produced by fibroblasts, is a potent angiogenesis inhibitor and negatively associated with tissue repair. Single-cell (sc) sequencing analysis on WT and TSP2KO skin fibroblasts demonstrate distinct cell heterogeneity. Specifically, we found an enrichment of Sox10+ multipotent progenitor cells, identified as Schwann precursor cells, in TSP2KO fibroblasts, while fibrosis-related subpopulations decreased. Immunostaining of tissue and cells validated the increase of this Sox10+ population in KO fibroblasts. Furthermore, in silico analysis suggested enhanced pro-survival signaling, including WNT, TGF-β, and PDGF-β, alongside a reduced BMP4 response. Additionally, the creation of two TSP2KO NIH3T3 cell lines using the CRISPR/Cas9 technique allowed functional and signaling validation in a less complex system. Moreover, KO 3T3 cells exhibited enhanced migration and proliferation, with elevated levels of pro-regenerative molecules including TGF-β3 and Wnt4, and enrichment of nuclear β-catenin. These functional and molecular alterations likely contribute to improved healing and increased neurogenesis in TSP2-deficient wounds. Overall, our findings describe the heterogeneity of dermal fibroblasts and identify pro-regenerative features of TSP2KO fibroblasts.
Collapse
Affiliation(s)
- Yaqing Huang
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| | - Nuoya Wang
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
| | - Hao Xing
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| | - Jingru Tian
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Dingyao Zhang
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Daqian Gao
- Plastic & Reconstructive Surgery, Yale University, New Haven, CT 06520, USA
| | - Henry C. Hsia
- Plastic & Reconstructive Surgery, Yale University, New Haven, CT 06520, USA
| | - Jun Lu
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Micha Sam Brickman Raredon
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
| | - Themis R. Kyriakides
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Friedman RM, Breuninger AS, Aronson MR, Brown EA, Patel N, Han L, Zur KB, Gottardi R. Age-related remodeling of the vocal fold extracellular matrix composition, structure, and biomechanics during tissue maturation. Connect Tissue Res 2024; 65:472-485. [PMID: 39665313 DOI: 10.1080/03008207.2024.2435364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/31/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE The vocal folds (VFs) are among the most mechanically active connective tissues, vibrating between 80 and 250 hz during speech. Overall VF function is determined by the composition and structure of their extracellular matrix (ECM). During tissue maturation, the VFs remodel from a monolayer of collagen fibers to a tri-layered structure, affecting tissue biomechanics. However, age-related VF ECM remodeling remains poorly understood since few studies have explored the proteins governing collagen fibrillogenesis or the non-collagenous ECM components critical for VF elasticity. MATERIALS AND METHODS VFs from immature, sexually mature, and skeletally mature rats were evaluated by endoscopy, histology, and electron microscopy for cellular and biochemical composition, ECM organization, and proteoglycan distribution. Nanoindentation modulus was determined by atomic force microscopy. RESULTS Collagen fiber abundance, maturity, and alignment are low in immature rats but show an age-dependent increase during tissue maturation. Lumican and fibromodulin, which regulate early-stage collagen fibril formation, are distributed throughout the VFs, and their abundance decreases with age. Decorin, involved in collagen organization, is concentrated just beneath the epithelium and increases with age. Elastin levels increase during tissue maturation, but hyaluronic acid abundance and distribution remain consistent with age. VF nanoindentation modulus trends toward a decrease with age. CONCLUSION This work identifies changes in VF ECM composition and organization during tissue maturation, focusing on proteins that regulate collagen fibrillogenesis, fiber assembly, and VF biomechanics. These findings may inform the development of pro-reparative therapies designed to influence collagen network structure and overall ECM dysregulation in a number of laryngeal pathologies.
Collapse
Affiliation(s)
- Ryan M Friedman
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arielle S Breuninger
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew R Aronson
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth A Brown
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Karen B Zur
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Riccardo Gottardi
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Division of Pulmonary Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Ri.MED Foundation, Palermo, Italy
| |
Collapse
|
14
|
Maiti G, Frikeche J, Loomis C, Chakravarti S. Paracrine regulations of IFN-γ secreting CD4 + T cells by lumican and biglycan are protective in allergic contact dermatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.20.619307. [PMID: 39484444 PMCID: PMC11526879 DOI: 10.1101/2024.10.20.619307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The extracellular matrix (ECM) is known to regulate innate immune cells but its role in T cell functions is poorly understood. Here, we show a protective role for ECM proteoglycans, lumican and biglycan in hapten-induced contact dermatitis that is achieved through limiting proinflammatory CD4 + T cells. Lumican and biglycan-null mice develop significant inflammation with greater numbers of CD4 + T cells in hapten-challenged ear pinnae, while their draining lymph nodes show increased T-bet-STAT1 signaling, Th1 commitment, and IFN-γ secreting CD4 + T cell proliferation. Wild type mouse lymph node fibroblastic reticular cells secrete lumican, biglycan and decorin, a related proteoglycan, while none are expressed by naive or activated T cells. In vitro , lumican and biglycan co-localize with LFA-1 on T cell surfaces, and all three proteoglycans suppress LFA-1 mediated T cell activation. Overall, this study elucidates a novel paracrine regulation of Th1 cells by ECM proteoglycans to limit inflammation and tissue damage.
Collapse
|
15
|
Liu Q, Zhang Y, Yu S, Zhao C, Yang Y, Yan J, Wang Y, Liu D, Liu Y, Zhang X. Proanthocyanidins modification of the mineralized collagen scaffold based on synchronous self-assembly/mineralization for bone regeneration. Colloids Surf B Biointerfaces 2024; 245:114290. [PMID: 39383582 DOI: 10.1016/j.colsurfb.2024.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Proteoglycans (PG) is crucial for regulating collagen formation and mineralization during bone tissue development. A wide variety of PG-modified collagen scaffolds have been proposed for bone engineering application to promote biological responses and work as artificial matrices that guide tissue regeneration. However, poor performance of theses biomaterials against infections has led to an unmet need for clinical prevention. Therefore, we utilized proanthocyanidins (PA) to simulate the functions of PG, including mediating the collagen assembly and intrafibrillar mineralization, to optimize scaffolds performance. The excellent antibacterial properties of PA can endow the scaffolds with anti-infection effects in the process of tissue regeneration. When PA was added during fibrillogenesis, the collagen fibrils appeared irregular aggregation and the mineralization degree was reduced. In contrast, the addition of PA after collagen self-assembly improved the latter's ability to act as a deposition template and remarkably promoted mineral ions infiltration, thus enhancing intrafibrillar mineralization. The PA-modified scaffold displayed a highly hydrophilicity behaviour and long-term resistance to degradation. The sustained release of PA effectively inhibited the activity of Staphylococcus aureus. The scaffold also showed excellent biocompatibility and improved bone regeneration in calvarial critical-size defect models. The application of PA enables a dual-function scaffold with favourable intrafibrillar mineralization and anti-bacterial properties for bone regeneration.
Collapse
Affiliation(s)
- Qing Liu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ye Zhang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China; Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Shuxian Yu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Chuanze Zhao
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yuqing Yang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jianyu Yan
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yuge Wang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Dayong Liu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ying Liu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Xu Zhang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China.
| |
Collapse
|
16
|
Assal RA, Abd El-Bary RBED, Youness RA, Abdelrahman MM, Zahran H, Hosny KA, Esmat G, Breuhahn K, El-Ekiaby N, Fawzy IO, Abdelaziz AI. OncomiR-181a promotes carcinogenesis by repressing the extracellular matrix proteoglycan decorin in hepatocellular carcinoma. BMC Gastroenterol 2024; 24:337. [PMID: 39350070 PMCID: PMC11443891 DOI: 10.1186/s12876-024-03413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Proteoglycans are important tumor microenvironment extracellular matrix components. The regulation of key proteoglycans, such as decorin (DCN), by miRNAs has drawn attention since they have surfaced as novel therapeutic targets in cancer. Accordingly, this study aimed at identifying the impact of miR-181a in liver cancer and its regulatory role on the extracellular matrix proteoglycan, DCN, and hence on downstream oncogenes and tumor suppressor genes. RESULTS DCN was under-expressed in 22 cirrhotic and HCC liver tissues compared to that in 11 healthy tissues of liver transplantation donors. Conversely, miR-181a was over-expressed in HCC liver tissues compared to that in healthy liver tissues. In silico analysis predicted that DCN 3'UTR harbors two high-score oncomiR-181a binding regions. This was validated by pmiRGLO luciferase reporter assay. Ectopic miR-181a expression into HuH-7 cells repressed the transcript and protein levels of DCN as assessed fluorometrically and by western blotting. DCN siRNAs showed similar results to miR-181a, where they both enhanced the cellular viability, proliferation, and clonogenicity. They also increased Myc and E2F and decreased p53 and Rb signaling as assessed using reporter vectors harboring p53, Rb, Myc, and E2F response elements. Our findings demonstrated that miR-181a directly downregulated the expression of its direct downstream target DCN, which in turn affected downstream targets related to cellular proliferation and apoptosis. CONCLUSION To our knowledge, this is the first study to unveil the direct targeting of DCN by oncomiR-181a. We also highlighted that miR-181a affects targets related to cellular proliferation in HCC which may be partly mediated through inhibition of DCN transcription. Thus, miR-181a could be a promising biomarker for the early detection and monitoring of liver cancer progression. This would pave the way for the future targeting of the oncomiR-181a as a therapeutic approach in liver cancer, where miR-181a-based therapy approach could be potentially combined with chemotherapy and immunotherapy for the management of liver cancer.
Collapse
Affiliation(s)
- Reem Amr Assal
- Department of Pharmacology and Toxicology, Heliopolis University for Sustainable Development (HU), Cairo, Egypt
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), Cairo, Egypt
| | | | - Rana A Youness
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, Egypt
| | | | - Hala Zahran
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karim Adel Hosny
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gamal Esmat
- Department of Endemic Medicine and Hepatology, Cairo University, Cairo, Egypt
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nada El-Ekiaby
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | | | | |
Collapse
|
17
|
Hjorth M, Egan CL, Telles GD, Pal M, Gallego-Ortega D, Fuller OK, McLennan ED, Gillis RD, Oh TG, Muscat GEO, Tegegne S, Mah MSM, Skhinas J, Estevez E, Adams TE, McKay MJ, Molloy M, Watt KI, Qian H, Gregorevic P, Cox TR, Hojman P, Midtgaard J, Christensen JF, Friedrichsen M, Iozzo RV, Sloan EK, Drew BG, Wojtaszewski JFP, Whitham M, Febbraio MA. Decorin, an exercise-induced secretory protein, is associated with improved prognosis in breast cancer patients but does not mediate anti-tumorigenic tissue crosstalk in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:100991. [PMID: 39341495 PMCID: PMC11809198 DOI: 10.1016/j.jshs.2024.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Regular exercise can reduce incidence and progression of breast cancer, but the mechanisms for such effects are not fully understood. The purpose of this study was to examine the mechanisms behind the protective effects of exercise. METHODS We used a variety of rodent and human experimental model systems to determine whether exercise training can reduce tumor burden in breast cancer and to identify mechanism associated with any exercise training effects on tumor burden. RESULTS We show that voluntary wheel running slows tumor development in the mammary specific polyomavirus middle T antigen overexpression (MMTV-PyMT) mouse model of breast cancer but only when mice are not housed alone. We identify the proteoglycan decorin as a contraction-induced secretory factor that systemically increases in patients with breast cancer immediately following exercise. Moreover, high expression of decorin in tumors is associated with improved prognosis in patients, while treatment of breast cancer cells in vitro with decorin reduces cell proliferation. Notwithstanding, when we overexpressed decorin in murine muscle or injected recombinant decorin systemically into mouse models of breast cancer, elevated plasma decorin concentrations did not result in higher tumor decorin levels and tumor burden was not improved. CONCLUSION Exercise training is anti-tumorigenic in a mouse model of luminal breast cancer, but the effect is abrogated by social isolation. The proteoglycan decorin is an exercise-induced secretory protein, and tumor decorin levels are positively associated with improved prognosis in patients. The hypothesis that elevated plasma decorin is a mechanism by which exercise training improves breast cancer progression in humans is not, however, supported by our pre-clinical data since elevated circulating decorin did not increase tumor decorin levels in these models.
Collapse
Affiliation(s)
- Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0317, Norway; Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Casey L Egan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Guilherme D Telles
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo 05508-030, Brazil; Center of Study in Exercise and Oncology (CEEO), Campinas 13083-888, Brazil
| | - Martin Pal
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Dentistry & Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, University of Technology, Sydney, NSW 2678, Australia
| | - Oliver K Fuller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Emma D McLennan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Ryan D Gillis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Tae Gyu Oh
- College of Medicine, University of Oklahoma, Oklahoma City, OK 73117, USA; Institute of Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - George E O Muscat
- Institute of Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Surafel Tegegne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Michael S M Mah
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Joanna Skhinas
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Emma Estevez
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | - Matthew J McKay
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Kevin I Watt
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3053, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Hongwei Qian
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Paul Gregorevic
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | | | | | - Martin Friedrichsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Renato V Iozzo
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Prahran, VIC 3004, Australia
| | - Jørgen F P Wojtaszewski
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| |
Collapse
|
18
|
Yasuno K, Ito A, Yoshida M, Fukunaga T, Honda T, Tsumaki H, Yamaguchi K, Mizoguchi I. Influence of feeding a soft diet on proteoglycan expression in rat temporomandibular joint discs. J Oral Biosci 2024; 66:539-545. [PMID: 38830403 DOI: 10.1016/j.job.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVES Extracellular matrix components play a significant role in maintaining tissue integrity and pathological processes of the temporomandibular joint (TMJ). This study aimed to evaluate the influence of a soft diet on the mRNA expression of proteoglycans and glycosaminoglycans (GAGs) linked to proteoglycan core proteins in rat TMJ discs. METHODS Thirty 4-week-old male Wistar rats were assigned to one of two groups: a control group fed a regular pellet diet and a soft diet group fed a powdered diet for 4 weeks. The mRNA expression levels of 12 proteoglycans in TMJ discs were evaluated using real-time polymerase chain reaction (PCR). In addition, histomorphometric and biochemical analyses were performed to evaluate the thickness and deoxyribonucleic acid (DNA), GAG, and water content of the TMJ discs. RESULTS The TMJ disc thickness in the anterior, intermediate, and posterior bands decreased significantly in the soft diet group. The GAG content decreased significantly in the soft-diet group, whereas no significant differences in DNA content or water content ratio were observed between the groups. Real-time PCR indicated that the expression levels of aggrecan, versican, biglycan, decorin, fibromodulin, lumican, and chondroadherin decreased in the soft diet group. The expression levels of all versican isoforms decreased in the soft diet group. CONCLUSIONS These results indicate that the biomechanical environment of the TMJ caused by a soft diet is closely related to the expression of proteoglycans in TMJ discs, which may eventually increase the fragility of the TMJ discs.
Collapse
Affiliation(s)
- Kozue Yasuno
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Arata Ito
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Michiko Yoshida
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.
| | - Tomohiro Fukunaga
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Takahiro Honda
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Hiroka Tsumaki
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Kaya Yamaguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
19
|
Khan SA, Nidhi F, Leal AF, Celik B, Herreño-Pachón AM, Saikia S, Benincore-Flórez E, Ago Y, Tomatsu S. Glycosaminoglycans in mucopolysaccharidoses and other disorders. Adv Clin Chem 2024; 122:1-52. [PMID: 39111960 DOI: 10.1016/bs.acc.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Glycosaminoglycans (GAGs) are sulfated polysaccharides comprising repeating disaccharides, uronic acid (or galactose) and hexosamines, including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate. Hyaluronan is an exception in the GAG family because it is a non-sulfated polysaccharide. Lysosomal enzymes are crucial for the stepwise degradation of GAGs to provide a normal function of tissues and extracellular matrix (ECM). The deficiency of one or more lysosomal enzyme(s) results in the accumulation of undegraded GAGs, causing cell, tissue, and organ dysfunction. Accumulation of GAGs in various tissues and ECM results in secretion into the circulation and then excretion in urine. GAGs are biomarkers of certain metabolic disorders, such as mucopolysaccharidoses (MPS) and mucolipidoses. GAGs are also elevated in patients with various conditions such as respiratory and renal disorders, fatty acid metabolism disorders, viral infections, vomiting disorders, liver disorders, epilepsy, hypoglycemia, myopathy, developmental disorders, hyperCKemia, heart disease, acidosis, and encephalopathy. MPS are a group of inherited metabolic diseases caused by the deficiency of enzymes required to degrade GAGs in the lysosome. Eight types of MPS are categorized based on lack or defect in one of twelve specific lysosomal enzymes and are described as MPS I through MPS X (excluding MPS V and VIII). Clinical features vary with the type of MPS and clinical severity of the disease. This chapter addresses the historical overview, synthesis, degradation, distribution, biological role, and method for measurement of GAGs.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours Children's Health, Wilmington, DE, United States
| | - Fnu Nidhi
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | - Andrés Felipe Leal
- Nemours Children's Health, Wilmington, DE, United States; Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Betul Celik
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Sampurna Saikia
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Yasuhiko Ago
- Nemours Children's Health, Wilmington, DE, United States
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
20
|
Blandon IR, DiBona E, Battenhouse A, Vargas S, Mace C, Seemann F. Analysis of the Skin and Brain Transcriptome of Normally Pigmented and Pseudo-Albino Southern Flounder ( Paralichthys lethostigma) Juveniles to Study the Molecular Mechanisms of Hypopigmentation and Its Implications for Species Survival in the Natural Environment. Int J Mol Sci 2024; 25:7775. [PMID: 39063015 PMCID: PMC11277284 DOI: 10.3390/ijms25147775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Southern flounder skin pigmentation is a critical phenotypic characteristic for this species' survival in the natural environment. Normal pigmentation allows rapid changes of color for concealment to capture prey and UV light protection. In contrast, highly visible hypopigmented pseudo-albinos exhibit a compromised immune system and are vulnerable to predation, sensitive to UV exposure, and likely have poor survival in the wild. Skin and brain tissue samples from normally pigmented and hypopigmented individuals were analyzed with next-generation RNA sequencing. A total of 1,589,613 transcripts were used to identify 952,825 genes to assemble a de novo transcriptome, with 99.43% of genes mapped to the assembly. Differential gene expression and gene enrichment analysis of contrasting tissues and phenotypes revealed that pseudo-albino individuals appeared more susceptible to environmental stress, UV light exposure, hypoxia, and osmotic stress. The pseudo-albinos' restricted immune response showed upregulated genes linked to cancer development, signaling and response, skin tissue formation, regeneration, and healing. The data indicate that a modified skin collagen structure likely affects melanocyte differentiation and distribution, generating the pseudo-albino phenotype. In addition, the comparison of the brain transcriptome revealed changes in myelination and melanocyte stem cell activity, which may indicate modified brain function, reduced melanocyte migration, and impaired vision.
Collapse
Affiliation(s)
- Ivonne R. Blandon
- Coastal Fisheries Division CCA Marine Development Center, Texas Parks and Wildlife Department, 4300 Waldron Rd., Corpus Christi, TX 78418, USA
| | - Elizabeth DiBona
- Department of Life Sciences, College of Science, Texas A and M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Anna Battenhouse
- Center for Biochemical Research Computing Facility, University of Texas at Austin, 100 East 24th, Austin, TX 78712, USA
| | - Sean Vargas
- Genomic Core Facility, University of Texas at San Antonio, UTSA Circle, San Antonio, TX 78249, USA;
| | - Christopher Mace
- Coastal Fisheries Division CCA Marine Development Center, Texas Parks and Wildlife Department, 4300 Waldron Rd., Corpus Christi, TX 78418, USA
| | - Frauke Seemann
- Department of Life Sciences, College of Science, Texas A and M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
21
|
Herrera-Quintana L, Vázquez-Lorente H, Plaza-Diaz J. Breast Cancer: Extracellular Matrix and Microbiome Interactions. Int J Mol Sci 2024; 25:7226. [PMID: 39000333 PMCID: PMC11242809 DOI: 10.3390/ijms25137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer represents the most prevalent form of cancer and the leading cause of cancer-related mortality among females worldwide. It has been reported that several risk factors contribute to the appearance and progression of this disease. Despite the advancements in breast cancer treatment, a significant portion of patients with distant metastases still experiences no cure. The extracellular matrix represents a potential target for enhanced serum biomarkers in breast cancer. Furthermore, extracellular matrix degradation and epithelial-mesenchymal transition constitute the primary stages of local invasion during tumorigenesis. Additionally, the microbiome has a potential influence on diverse physiological processes. It is emerging that microbial dysbiosis is a significant element in the development and progression of various cancers, including breast cancer. Thus, a better understanding of extracellular matrix and microbiome interactions could provide novel alternatives to breast cancer treatment and management. In this review, we summarize the current evidence regarding the intricate relationship between breast cancer with the extracellular matrix and the microbiome. We discuss the arising associations and future perspectives in this field.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
22
|
Zens B, Fäßler F, Hansen JM, Hauschild R, Datler J, Hodirnau VV, Zheden V, Alanko J, Sixt M, Schur FK. Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix. J Cell Biol 2024; 223:e202309125. [PMID: 38506714 PMCID: PMC10955043 DOI: 10.1083/jcb.202309125] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.
Collapse
Affiliation(s)
- Bettina Zens
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian Fäßler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jesse M. Hansen
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Julia Datler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Vanessa Zheden
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jonna Alanko
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian K.M. Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
23
|
Ma Y, Luo Y, Li W, Wang D, Ning Z. White Isthmus Transcriptome Analysis Reveals the Mechanism of Translucent Eggshell Formation. Animals (Basel) 2024; 14:1477. [PMID: 38791694 PMCID: PMC11117225 DOI: 10.3390/ani14101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The presence of translucent eggshells is a type of egg quality issue that impacts egg sales. While many researchers have studied them, the exact mechanisms behind their formation remain unclear. In this study, we conducted a transcriptomic differential expression analysis of the isthmus region of the oviduct in both normal egg- and translucent egg-laying hens. The analysis revealed that differentially expressed gene pathways were predominantly concentrated in the synthesis, modification, and transport of eggshell membrane proteins, particularly collagen proteins, which provide structural support. These findings suggest that variations in the physical structure of the eggshell membrane, resulting from changes in its chemical composition, are the fundamental cause of translucent eggshell formation. This research provides a theoretical reference for reducing the occurrence of translucent eggs.
Collapse
Affiliation(s)
- Ying Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Yuxing Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Wen Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| | - Dehe Wang
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (Y.L.); (W.L.)
| |
Collapse
|
24
|
Yeung CYC, Svensson RB, Mogensen NMB, Merkel MFR, Schjerling P, Jokipii-Utzon A, Zhang C, Carstensen H, Buhl R, Kjaer M. Mechanical properties, collagen and glycosaminoglycan content of equine superficial digital flexor tendons are not affected by training. J Anat 2024. [PMID: 38712668 DOI: 10.1111/joa.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
Physical activity can activate extracellular matrix (ECM) protein synthesis and influence the size and mechanical properties of tendon. In this study, we aimed to investigate whether different training histories of horses would influence the synthesis of collagen and other matrix proteins and alter the mechanical properties of tendon. Samples from superficial digital flexor tendon (SDFT) from horses that were either (a) currently race trained (n = 5), (b) previously race trained (n = 5) or (c) untrained (n = 4) were analysed for matrix protein abundance (mass spectrometry), collagen and glycosaminoglycan (GAG) content, ECM gene expression and mechanical properties. It was found that ECM synthesis by tendon fibroblasts in vitro varied depending upon the previous training history. In contrast, fascicle morphology, collagen and GAG content, mechanical properties and ECM gene expression of the tendon did not reveal any significant differences between groups. In conclusion, although we could not identify any direct impact of the physical training history on the mechanical properties or major ECM components of the tendon, it is evident that horse tendon cells are responsive to loading in vivo, and the training background may lead to a modification in the composition of newly synthesised matrix.
Collapse
Affiliation(s)
- Ching-Yan Chloé Yeung
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - René B Svensson
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Nikoline M B Mogensen
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Max F R Merkel
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Anja Jokipii-Utzon
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Cheng Zhang
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Helena Carstensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
25
|
Frenz-Wiessner S, Fairley SD, Buser M, Goek I, Salewskij K, Jonsson G, Illig D, Zu Putlitz B, Petersheim D, Li Y, Chen PH, Kalauz M, Conca R, Sterr M, Geuder J, Mizoguchi Y, Megens RTA, Linder MI, Kotlarz D, Rudelius M, Penninger JM, Marr C, Klein C. Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat Methods 2024; 21:868-881. [PMID: 38374263 PMCID: PMC11093744 DOI: 10.1038/s41592-024-02172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
The human bone marrow (BM) niche sustains hematopoiesis throughout life. We present a method for generating complex BM-like organoids (BMOs) from human induced pluripotent stem cells (iPSCs). BMOs consist of key cell types that self-organize into spatially defined three-dimensional structures mimicking cellular, structural and molecular characteristics of the hematopoietic microenvironment. Functional properties of BMOs include the presence of an in vivo-like vascular network, the presence of multipotent mesenchymal stem/progenitor cells, the support of neutrophil differentiation and responsiveness to inflammatory stimuli. Single-cell RNA sequencing revealed a heterocellular composition including the presence of a hematopoietic stem/progenitor (HSPC) cluster expressing genes of fetal HSCs. BMO-derived HSPCs also exhibited lymphoid potential and a subset demonstrated transient engraftment potential upon xenotransplantation in mice. We show that the BMOs could enable the modeling of hematopoietic developmental aspects and inborn errors of hematopoiesis, as shown for human VPS45 deficiency. Thus, iPSC-derived BMOs serve as a physiologically relevant in vitro model of the human BM microenvironment to study hematopoietic development and BM diseases.
Collapse
Affiliation(s)
- Stephanie Frenz-Wiessner
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Savannah D Fairley
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maximilian Buser
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Isabel Goek
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kirill Salewskij
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - David Illig
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedicta Zu Putlitz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Petersheim
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yue Li
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Pin-Hsuan Chen
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Kalauz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Raffaele Conca
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Technical University of Munich, Munich, Germany
| | - Johanna Geuder
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Yoko Mizoguchi
- Department of Pediatrics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Remco T A Megens
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Biomedical Engineering (BME), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Monika I Linder
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.
- Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
26
|
Zhong Y, Zhou L, Guo Y, Wang F, He F, Cheng Y, Meng X, Xie H, Zhang Y, Li J. Downregulated SPESP1-driven fibroblast senescence decreases wound healing in aged mice. Clin Transl Med 2024; 14:e1660. [PMID: 38764260 PMCID: PMC11103130 DOI: 10.1002/ctm2.1660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Human dermal fibroblasts (HDFs) are essential in the processes of skin ageing and wound healing. However, the underlying mechanism of HDFs in skin healing of the elderly has not been well defined. This study aims to elucidate the mechanisms of HDFs senescence and how senescent HDFs affect wound healing in aged skin. METHODS The expression and function of sperm equatorial segment protein 1 (SPESP1) in skin ageing were evaluated via in vivo and in vitro experiments. To delve into the potential molecular mechanisms by which SPESP1 influences skin ageing, a combination of techniques was employed, including proteomics, RNA sequencing, immunoprecipitation, chromatin immunoprecipitation and liquid chromatography-mass spectrometry analyses. Clearance of senescent cells by dasatinib plus quercetin (D+Q) was investigated to explore the role of SPESP1-induced senescent HDFs in wound healing. RESULTS Here, we define the critical role of SPESP1 in ameliorating HDFs senescence and retarding the skin ageing process. Mechanistic studies demonstrate that SPESP1 directly binds to methyl-binding protein, leading to Decorin demethylation and subsequently upregulation of its expression. Moreover, SPESP1 knockdown delays wound healing in young mice and SPESP1 overexpression induces wound healing in old mice. Notably, pharmacogenetic clearance of senescent cells by D+Q improved wound healing in SPESP1 knockdown skin. CONCLUSIONS Taken together, these findings reveal the critical role of SPESP1 in skin ageing and wound healing, expecting to facilitate the development of anti-ageing strategies and improve wound healing in the elderly.
Collapse
Affiliation(s)
- Yun Zhong
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Lei Zhou
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Department of DermatologyThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeoples Republic of China
| | - Yi Guo
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Fan Wang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Fanping He
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Yufan Cheng
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Xin Meng
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Hongfu Xie
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Yiya Zhang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanPeoples Republic of China
| | - Ji Li
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanPeoples Republic of China
| |
Collapse
|
27
|
Platt CI, Stewart-McGuinness C, Eckersley A, Wilkins L, Sherratt MJ. Acute exposure to ultraviolet radiation targets proteins involved in collagen fibrillogenesis. Front Physiol 2024; 15:1352161. [PMID: 38559576 PMCID: PMC10978599 DOI: 10.3389/fphys.2024.1352161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Exposure to chronic, low-dose UV irradiation (UVR) can lead to premature ageing of the skin. Understanding which proteins are affected by acute UVR and photo-dynamically produced reactive oxygen species (ROS) could help to inform strategies to delay photoageing. Conventional biochemical analyses can be used to characterize UVR/ROS-induced damage on a protein-by-protein basis and we have previously shown using SDS-PAGE that collagen I and plasma fibronectin are respectively resistant and susceptible to physiological doses of UVR. The aim of this study was to screen a complex proteome for UVR-affected proteins. Methods: This study employed a sensitive mass spectrometry technique (peptide location fingerprinting: PLF) which can identify structure associated differences following trypsin digestion to characterize the impact of UVR exposure on purified collagen I and tissue fibronectin and to identify UVR-susceptible proteins in an ECM-enriched proteome. Results: Using LC/MS-MS and PLF we show that purified mature type-I collagen is resistant to UVR, whereas purified tissue fibronectin is susceptible. UV irradiation of a human dermal fibroblast-deposited ECM-enriched proteome in vitro, followed by LC/MS-MS and PLF analysis revealed two protein cluster groups of UV susceptible proteins involved in i) matrix collagen fibril assembly and ii) protein translation and motor activity. Furthermore, PLF highlighted UV susceptible domains within targeted matrix proteins, suggesting that UV damage of matrix proteins is localized. Discussion: Here we show that PLF can be used to identify protein targets of UVR and that collagen accessory proteins may be key targets in UVR exposed tissues.
Collapse
Affiliation(s)
- Christopher I. Platt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Callum Stewart-McGuinness
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Alexander Eckersley
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Loren Wilkins
- School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
28
|
Sao K, Risbud MV. Proteoglycan Dysfunction: A Common Link Between Intervertebral Disc Degeneration and Skeletal Dysplasia. Neurospine 2024; 21:162-178. [PMID: 38569642 PMCID: PMC10992626 DOI: 10.14245/ns.2347342.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 04/05/2024] Open
Abstract
Proteoglycans through their sulfated glycosaminoglycans regulate cell-matrix signaling during tissue development, regeneration, and degeneration processes. Large extracellular proteoglycans such as aggrecan, versican, and perlecan are especially important for the structural integrity of the intervertebral disc and cartilage during development. In these tissues, proteoglycans are responsible for hydration, joint flexibility, and the absorption of mechanical loads. Loss or reduction of these molecules can lead to disc degeneration and skeletal dysplasia, evident from loss of disc height or defects in skeletal development respectively. In this review, we discuss the common proteoglycans found in the disc and cartilage and elaborate on various murine models and skeletal dysplasias in humans to highlight how their absence and/or aberrant expression causes accelerated disc degeneration and developmental defects.
Collapse
Affiliation(s)
- Kimheak Sao
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V. Risbud
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
29
|
Bian T, Xing T, Zhao X, Xu X. Effects of Wooden Breast Myopathy on Meat Quality Characteristics of Broiler Pectoralis Major Muscle and Its Changes with Intramuscular Connective Tissue. Foods 2024; 13:507. [PMID: 38397484 PMCID: PMC10888062 DOI: 10.3390/foods13040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to investigate the effect of wooden breast (WB) myopathy on chemical composition, meat quality attributes and physiochemical characteristics of intramuscular connective tissue (IMCT) of broiler pectoralis major (PM) muscle. Thirty-six fillets were classified into varying degrees of WB condition, including normal, moderate and severe. Results show that WB myopathy altered the collagen profile in PM muscle by increasing total collagen content and decreasing collagen solubility. The composition of macromolecules in IMCT, including hydroxylysyl pyridoxine cross-linking, decorin and glycosaminoglycans, were increased with the severity of WB myopathy. Differential scanning calorimetry analysis indicated higher denaturation temperatures and lower denaturation enthalpy of IMCT for WB. Secondary structures of α-helix and β-sheet in the IMCT of WB were changed to β-turn and random coil. In addition, chemical composition and meat quality attributes showed a correlation with collagen profile and IMCT characteristics. Overall, this study emphasizes the effect of WB myopathy on IMCT and their contributions to meat quality variation.
Collapse
Affiliation(s)
- Tianjiao Bian
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Xing
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Tanino Y. Roles of extracellular matrix in lung diseases. Fukushima J Med Sci 2024; 70:1-9. [PMID: 38267030 PMCID: PMC10867433 DOI: 10.5387/fms.2023-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024] Open
Abstract
Extracellular matrix (ECM) is a non-cellular constituent found in all tissues and organs. Although ECM was previously recognized as a mere "molecular glue" that supports the tissue structure of organs such as the lungs, it has recently been reported that ECM has important biological activities for tissue morphogenesis, inflammation, wound healing, and tumor progression. Proteoglycans are the main constituent of ECM, with growing evidence that proteoglycans and their associated glycosaminoglycans play important roles in the pathogenesis of several diseases. However, their roles in the lungs are incompletely understood. Leukocyte migration into the lung is one of the main aspects involved in the pathogenesis of several lung diseases. Glycosaminoglycans bind to chemokines and their interaction fine-tunes leukocyte migration into the affected organs. This review focuses on the role chemokine and glycosaminoglycan interactions in neutrophil migration into the lung. Furthermore, this review presents the role of proteoglycans such as syndecan, versican, and hyaluronan in inflammatory and fibrotic lung diseases.
Collapse
Affiliation(s)
- Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine
| |
Collapse
|
31
|
Oshima K, Siddiqui N, Orfila JE, Carter D, Laing J, Han X, Zakharevich I, Iozzo RV, Ghasabyan A, Moore H, Zhang F, Linhardt RJ, Moore EE, Quillinan N, Schmidt EP, Herson PS, Hippensteel JA. A role for decorin in improving motor deficits after traumatic brain injury. Matrix Biol 2024; 125:88-99. [PMID: 38135163 PMCID: PMC10922985 DOI: 10.1016/j.matbio.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability due to injury worldwide. Extracellular matrix (ECM) remodeling is known to significantly contribute to TBI pathophysiology. Glycosaminoglycans, which are long-chain, variably sulfated polysaccharides abundant within the ECM, have previously been shown to be substantially altered after TBI. In this study, we sought to delineate the dynamics of glycosaminoglycan alterations after TBI and discover the precise biologic processes responsible for observed glycosaminoglycan changes after injury. We performed state-of-the art mass spectrometry on brain tissues isolated from mice after TBI or craniotomy-alone. We observed dynamic changes in glycosaminoglycans at Day 1 and 7 post-TBI, with heparan sulfate, chondroitin sulfate, and hyaluronan remaining significantly increased after a week vis-à-vis craniotomy-alone tissues. We did not observe appreciable changes in circulating glycosaminoglycans in mice after experimental TBI compared to craniotomy-alone nor in patients with TBI and severe polytrauma compared to control patients with mild injuries, suggesting increases in injury site glycosaminoglycans are driven by local synthesis. We subsequently performed an unbiased whole genome transcriptomics analysis on mouse brain tissues 7 days post-TBI and discovered a significant induction of hyaluronan synthase 2, glypican-3, and decorin. The functional role of decorin after injury was further examined through multimodal behavioral testing comparing wild-type and Dcn-/- mice. We discovered that genetic ablation of Dcn led to an overall negative effect of TBI on function, exacerbating motor impairments after TBI. Collectively, our results provide a spatiotemporal characterization of post-TBI glycosaminoglycan alterations in the brain ECM and support an important adaptive role for decorin upregulation after TBI.
Collapse
Affiliation(s)
- Kaori Oshima
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Noah Siddiqui
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James E Orfila
- Department of Neurosurgery, The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Danelle Carter
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Justin Laing
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaorui Han
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA; Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Igor Zakharevich
- Department of Biochemistry, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Arsen Ghasabyan
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Hunter Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Linhardt
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paco S Herson
- Department of Neurosurgery, The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Joseph A Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
32
|
Blair HC, Larrouture QC, Tourkova IL, Nelson DJ, Dobrowolski SF, Schlesinger PH. Epithelial-like transport of mineral distinguishes bone formation from other connective tissues. J Cell Biochem 2023; 124:1889-1899. [PMID: 37991446 PMCID: PMC10880123 DOI: 10.1002/jcb.30494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
We review unique properties of bone formation including current understanding of mechanisms of bone mineral transport. We focus on formation only; mechanism of bone degradation is a separate topic not considered. Bone matrix is compared to other connective tissues composed mainly of the same proteins, but without the specialized mechanism for continuous transport and deposition of mineral. Indeed other connective tissues add mechanisms to prevent mineral formation. We start with the epithelial-like surfaces that mediate transport of phosphate to be incorporated into hydroxyapatite in bone, or in its ancestral tissue, the tooth. These include several phosphate producing or phosphate transport-related proteins with special expression in large quantities in bone, particularly in the bone-surface osteoblasts. In all connective tissues including bone, the proteins that constitute the protein matrix are mainly type I collagen and γ-carboxylate-containing small proteins in similar molar quantities to collagen. Specialized proteins that regulate connective tissue structure and formation are surprisingly similar in mineralized and non-mineralized tissues. While serum calcium and phosphate are adequate to precipitate mineral, specialized mechanisms normally prevent mineral formation except in bone, where continuous transport and deposition of mineral occurs.
Collapse
Affiliation(s)
- Harry C Blair
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Irina L. Tourkova
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Deborah J Nelson
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago IL
| | | | | |
Collapse
|
33
|
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
34
|
Maiti G, Ashworth S, Choi T, Chakravarti S. Molecular cues for immune cells from small leucine-rich repeat proteoglycans in their extracellular matrix-associated and free forms. Matrix Biol 2023; 123:48-58. [PMID: 37793508 PMCID: PMC10841460 DOI: 10.1016/j.matbio.2023.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
In this review we highlight emerging immune regulatory functions of lumican, keratocan, fibromodulin, biglycan and decorin, which are members of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). These SLRPs have been studied extensively as collagen-fibril regulatory structural components of the skin, cornea, bone and cartilage in homeostasis. However, SLRPs released from a remodeling ECM, or synthesized by activated fibroblasts and immune cells contribute to an ECM-free pool in tissues and circulation, that may have a significant, but poorly understood foot print in inflammation and disease. Their molecular interactions and the signaling networks they influence also require investigations. Here we present studies on the leucine-rich repeat (LRR) motifs of SLRP core proteins, their evolutionary and functional relationships with other LRR pathogen recognition receptors, such as the toll-like receptors (TLRs) to bring some molecular clarity in the immune regulatory functions of SLRPs. We discuss molecular interactions of fragments and intact SLRPs, and how some of these interactions are likely modulated by glycosaminoglycan side chains. We integrate findings on molecular interactions of these SLRPs together with what is known about their presence in circulation and lymph nodes (LN), which are important sites of immune cell regulation. Recent bulk and single cell RNA sequencing studies have identified subsets of stromal reticular cells that express these SLRPs within LNs. An understanding of the cellular source, molecular interactions and signaling consequences will lead to a fundamental understanding of how SLRPs modulate immune responses, and to therapeutic tools based on these SLRPs in the future.
Collapse
Affiliation(s)
- George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean Ashworth
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Tansol Choi
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States; Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States.
| |
Collapse
|
35
|
Yang Y, McCullough CG, Seninge L, Guo L, Kwon WJ, Zhang Y, Li NY, Gaddam S, Pan C, Zhen H, Torkelson J, Glass IA, Charville G, Que J, Stuart J, Ding H, Oro A. A Spatiotemporal and Machine-Learning Platform Accelerates the Manufacturing of hPSC-derived Esophageal Mucosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563664. [PMID: 37961271 PMCID: PMC10634774 DOI: 10.1101/2023.10.24.563664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Human pluripotent stem cell-derived tissue engineering offers great promise in designer cell-based personalized therapeutics. To harness such potential, a broader approach requires a deeper understanding of tissue-level interactions. We previously developed a manufacturing system for the ectoderm-derived skin epithelium for cell replacement therapy. However, it remains challenging to manufacture the endoderm-derived esophageal epithelium, despite both possessing similar stratified structure. Here we employ single cell and spatial technologies to generate a spatiotemporal multi-omics cell atlas for human esophageal development. We illuminate the cellular diversity, dynamics and signal communications for the developing esophageal epithelium and stroma. Using the machine-learning based Manatee, we prioritize the combinations of candidate human developmental signals for in vitro derivation of esophageal basal cells. Functional validation of the Manatee predictions leads to a clinically-compatible system for manufacturing human esophageal mucosa. Our approach creates a versatile platform to accelerate human tissue manufacturing for future cell replacement therapies to treat human genetic defects and wounds.
Collapse
|
36
|
Choi T, Maiti G, Chakravarti S. Three-Dimensional Modeling of CpG DNA Binding with Matrix Lumican Shows Leucine-Rich Repeat Motif Involvement as in TLR9-CpG DNA Interactions. Int J Mol Sci 2023; 24:14990. [PMID: 37834438 PMCID: PMC10573802 DOI: 10.3390/ijms241914990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Lumican is an extracellular matrix proteoglycan known to regulate toll-like receptor (TLR) signaling in innate immune cells. In experimental settings, lumican suppresses TLR9 signaling by binding to and sequestering its synthetic ligand, CpG-DNA, in non-signal permissive endosomes. However, the molecular details of lumican interactions with CpG-DNA are obscure. Here, the 3-D structure of the 22 base-long CpG-DNA (CpG ODN_2395) bound to lumican or TLR9 were modeled using homology modeling and docking methods. Some of the TLR9-CpG ODN_2395 features predicted by our model are consistent with the previously reported TLR9-CpG DNA crystal structure, substantiating our current analysis. Our modeling indicated a smaller buried surface area for lumican-CpG ODN_2395 (1803 Å2) compared to that of TLR9-CpG ODN_2395 (2094 Å2), implying a potentially lower binding strength for lumican and CpG-DNA than TLR9 and CpG-DNA. The docking analysis identified 32 amino acids in lumican LRR1-11 interacting with CpG ODN_2395, primarily through hydrogen bonding, salt-bridges, and hydrophobic interactions. Our study provides molecular insights into lumican and CpG-DNA interactions that may lead to molecular targets for modulating TLR9-mediated inflammation and autoimmunity.
Collapse
Affiliation(s)
- Tansol Choi
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA;
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
37
|
Orang A, Dredge BK, Liu CY, Bracken JM, Chen CH, Sourdin L, Whitfield HJ, Lumb R, Boyle ST, Davis MJ, Samuel MS, Gregory PA, Khew-Goodall Y, Goodall GJ, Pillman KA, Bracken CP. Basonuclin-2 regulates extracellular matrix production and degradation. Life Sci Alliance 2023; 6:e202301984. [PMID: 37536977 PMCID: PMC10400885 DOI: 10.26508/lsa.202301984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Epithelial-mesenchymal transition is essential for tissue patterning and organization. It involves both regulation of cell motility and alterations in the composition and organization of the ECM-a complex environment of proteoglycans and fibrous proteins essential for tissue homeostasis, signaling in response to chemical and biomechanical stimuli, and is often dysregulated under conditions such as cancer, fibrosis, and chronic wounds. Here, we demonstrate that basonuclin-2 (BNC2), a mesenchymal-expressed gene, that is, strongly associated with cancer and developmental defects across genome-wide association studies, is a novel regulator of ECM composition and degradation. We find that at endogenous levels, BNC2 controls the expression of specific collagens, matrix metalloproteases, and other matrisomal components in breast cancer cells, and in fibroblasts that are primarily responsible for the production and processing of the ECM within the tumour microenvironment. In so doing, BNC2 modulates the motile and invasive properties of cancers, which likely explains the association of high BNC2 expression with increasing cancer grade and poor patient prognosis.
Collapse
Affiliation(s)
- Ayla Orang
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Chi Yau Liu
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Julie M Bracken
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Chun-Hsien Chen
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Laura Sourdin
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Holly J Whitfield
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Rachael Lumb
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Sarah T Boyle
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Melissa J Davis
- South Australian ImmunogGENomics Cancer Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Fraser Institute, University of Queensland, Wooloongabba, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
38
|
Mondal DK, Xie C, Buraschi S, Iozzo RV. Decorin suppresses tumor lymphangiogenesis: A mechanism to curtail cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555187. [PMID: 37693608 PMCID: PMC10491239 DOI: 10.1101/2023.08.28.555187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a pro-survival program and to sustain a pro-angiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we discovered that decorin downregulated a cluster of tumor-associated genes involved in lymphatic vessel development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of lymphatic vessels, were markedly suppressed at both the mRNA and protein levels and this suppression correlated with a significant reduction in tumor lymphatic vessels. We further discovered that soluble decorin, but not its homologous proteoglycan biglycan, inhibited lymphatic vessel sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with VEGFR3, the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we discovered that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a new biological factor with anti-lymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.
Collapse
|
39
|
Choi T, Maiti G, Chakravarti S. 3D modeling of CpG DNA binding with matrix lumican shows leucine-rich repeat motif involvement as in TLR9-CpG DNA interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554201. [PMID: 37662233 PMCID: PMC10473624 DOI: 10.1101/2023.08.21.554201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Lumican is an extracellular matrix proteoglycan, known to regulate toll-like receptor (TLR) signaling in innate immune cells. In experimental settings, lumican suppresses TLR9 signaling by binding to, and sequestering its synthetic ligand, CpG-DNA, in non-signal permissive endosomes. However, the molecular details of lumican interactions with CpG-DNA are obscure. Here, the 3-D structure of the 22 base-long CpG-DNA (CpG ODN_2395) bound to lumican or TLR9 were modeled using homology modeling and docking methods. Some of the TLR9-CpG ODN_2395 features predicted by our model are consistent with the previously reported TLR9-CpG DNA crystal structure, substantiating our current analysis. Our modeling indicated a smaller buried surface area for lumican-CpG ODN_2395 (1803 Å2) compared to that of TLR9-CpG ODN_2395 (2094 Å2), implying a potentially lower binding strength for lumican and CpG-DNA than TLR9 and CpG-DNA. The docking analysis identified 32 amino acids in lumican LRR1-11 interacting with CpG ODN_2395, primarily through hydrogen bonding, salt-bridges and hydrophobic interactions. Our study provides molecular insights into lumican and CpG-DNA interactions that may lead to molecular targets for modulating TLR9 mediated inflammation and autoimmunity.
Collapse
Affiliation(s)
- Tansol Choi
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
40
|
Li H, Korcari A, Ciufo D, Mendias CL, Rodeo SA, Buckley MR, Loiselle AE, Pitt GS, Cao C. Increased Ca 2+ signaling through Ca V 1.2 induces tendon hypertrophy with increased collagen fibrillogenesis and biomechanical properties. FASEB J 2023; 37:e23007. [PMID: 37261735 PMCID: PMC10254118 DOI: 10.1096/fj.202300607r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Tendons are tension-bearing tissues transmitting force from muscle to bone for body movement. This mechanical loading is essential for tendon development, homeostasis, and healing after injury. While Ca2+ signaling has been studied extensively for its roles in mechanotransduction, regulating muscle, bone, and cartilage development and homeostasis, knowledge about Ca2+ signaling and the source of Ca2+ signals in tendon fibroblast biology are largely unknown. Here, we investigated the function of Ca2+ signaling through CaV 1.2 voltage-gated Ca2+ channel in tendon formation. Using a reporter mouse, we found that CaV 1.2 is highly expressed in tendon during development and downregulated in adult homeostasis. To assess its function, we generated ScxCre;CaV 1.2TS mice that express a gain-of-function mutant CaV 1.2 in tendon. We found that mutant tendons were hypertrophic, with more tendon fibroblasts but decreased cell density. TEM analyses demonstrated increased collagen fibrillogenesis in the hypertrophic tendons. Biomechanical testing revealed that the hypertrophic tendons display higher peak load and stiffness, with no changes in peak stress and elastic modulus. Proteomic analysis showed no significant difference in the abundance of type I and III collagens, but mutant tendons had about two-fold increase in other ECM proteins such as tenascin C, tenomodulin, periostin, type XIV and type VIII collagens, around 11-fold increase in the growth factor myostatin, and significant elevation of matrix remodeling proteins including Mmp14, Mmp2, and cathepsin K. Taken together, these data highlight roles for increased Ca2+ signaling through CaV 1.2 on regulating expression of myostatin growth factor and ECM proteins for tendon collagen fibrillogenesis during tendon formation.
Collapse
Affiliation(s)
- Haiyin Li
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopeadics, University of Rochester Medical Center, Rochester, NY, USA
| | - Antonion Korcari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - David Ciufo
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopeadics, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Scott A. Rodeo
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, NY, USA
| | - Mark R. Buckley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopeadics, University of Rochester Medical Center, Rochester, NY, USA
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Chike Cao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopeadics, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
41
|
Sumioka T, Matsumoto KI, Reinach PS, Saika S. Tenascins and osteopontin in biological response in cornea. Ocul Surf 2023; 29:131-149. [PMID: 37209968 DOI: 10.1016/j.jtos.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The structural composition, integrity and regular curvature of the cornea contribute to the maintenance of its transparency and vision. Disruption of its integrity caused by injury results in scarring, inflammation and neovascularization followed by losses in transparency. These sight compromising effects is caused by dysfunctional corneal resident cell responses induced by the wound healing process. Upregulation of growth factors/cytokines and neuropeptides affect development of aberrant behavior. These factors trigger keratocytes to first transform into activated fibroblasts and then to myofibroblasts. Myofibroblasts express extracellular matrix components for tissue repair and contract the tissue to facilitate wound closure. Proper remodeling following primary repair is critical for restoration of transparency and visual function. Extracellular matrix components contributing to the healing process are divided into two groups; a group of classical tissue structural components and matrix macromolecules that modulate cell behaviors/activities besides being integrated into the matrix structure. The latter components are designated as matricellular proteins. Their functionality is elicited through mechanisms which modulate the scaffold integrity, cell behaviors, activation/inactivation of either growth factors or cytoplasmic signaling regulation. We discuss here the functional roles of matricellular proteins in mediating injury-induced corneal tissue repair. The roles are described of major matricellular proteins, which include tenascin C, tenascin X and osteopontin. Focus is directed towards dealing with their roles in modulating individual activities of wound healing-related growth factors, e. g., transforming growth factor β (TGF β). Modulation of matricellular protein functions could encompass a potential novel strategy to improve the outcome of injury-induced corneal wound healing.
Collapse
Affiliation(s)
- Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan.
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, 693-8501, Japan
| | - Peter Sol Reinach
- Department of Biological. Sciences SUNY Optometry, New York, NY, 10036, USA
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan
| |
Collapse
|
42
|
Gesteira TF, Verma S, Coulson-Thomas VJ. Small leucine rich proteoglycans: Biology, function and their therapeutic potential in the ocular surface. Ocul Surf 2023; 29:521-536. [PMID: 37355022 PMCID: PMC11092928 DOI: 10.1016/j.jtos.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | |
Collapse
|
43
|
Park JYC, King A, Björk V, English BW, Fedintsev A, Ewald CY. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am J Physiol Cell Physiol 2023; 325:C90-C128. [PMID: 37154490 DOI: 10.1152/ajpcell.00060.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Collapse
Affiliation(s)
- Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Aaron King
- Foresight Institute, San Francisco, California, United States
| | | | - Bradley W English
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
44
|
Courseault J, Kingry C, Morrison V, Edstrom C, Morrell K, Jaubert L, Elia V, Bix G. Folate-dependent hypermobility syndrome: A proposed mechanism and diagnosis. Heliyon 2023; 9:e15387. [PMID: 37095957 PMCID: PMC10122021 DOI: 10.1016/j.heliyon.2023.e15387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Hypermobility involves excessive flexibility and systemic manifestations of connective tissue fragility. We propose a folate-dependent hypermobility syndrome model based on clinical observations, and through a review of existing literature, we raise the possibility that hypermobility presentation may be dependent on folate status. In our model, decreased methylenetetrahydrofolate reductase (MTHFR) activity disrupts the regulation of the ECM-specific proteinase matrix metalloproteinase 2 (MMP-2), leading to high levels of MMP-2 and elevated MMP-2-mediated cleavage of the proteoglycan decorin. Cleavage of decorin leads ultimately to extracellular matrix (ECM) disorganization and increased fibrosis. This review aims to describe relationships between folate metabolism and key proteins in the ECM that can further explain the signs and symptoms associated with hypermobility, along with possible treatment with 5-methyltetrahydrofolate supplementation.
Collapse
Affiliation(s)
- Jacques Courseault
- Tulane University School of Medicine, Department of Orthopedics, The Fascia Institute and Treatment Center 7030 Canal Blvd, New Orleans, LA 70124, USA
- Corresponding
| | - Catherine Kingry
- Tulane University School of Medicine, Department of Orthopedics, The Fascia Institute and Treatment Center 7030 Canal Blvd, New Orleans, LA 70124, USA
| | - Vivianne Morrison
- Tulane University School of Medicine, Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Christiania Edstrom
- Tulane University School of Medicine, Department of Orthopedics, The Fascia Institute and Treatment Center 7030 Canal Blvd, New Orleans, LA 70124, USA
| | - Kelli Morrell
- Tulane University School of Medicine, Department of Orthopedics, The Fascia Institute and Treatment Center 7030 Canal Blvd, New Orleans, LA 70124, USA
| | - Lisa Jaubert
- Tulane University School of Medicine, Department of Orthopedics, The Fascia Institute and Treatment Center 7030 Canal Blvd, New Orleans, LA 70124, USA
| | - Victoria Elia
- Tulane University School of Medicine, Department of Orthopedics, The Fascia Institute and Treatment Center 7030 Canal Blvd, New Orleans, LA 70124, USA
| | - Gregory Bix
- Tulane University School of Medicine, Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Corresponding
| |
Collapse
|
45
|
Wu T, Liu L, Gao Z, Cui C, Fan C, Liu Y, Di M, Yang Q, Xu Z, Liu W. Extracellular matrix (ECM)-inspired high-strength gelatin-alginate based hydrogels for bone repair. Biomater Sci 2023; 11:2877-2885. [PMID: 36876524 DOI: 10.1039/d3bm00213f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
It has always been a huge challenge to construct high-strength hydrogels that are composed entirely of natural polymers. In this study, inspired by the structural characteristics of the extracellular matrix (ECM), gelatin and hydrazide alginate were employed to mimic the composition of collagen and glycosaminoglycans (GAGs) in the ECM, respectively, to develop natural polymer (NP) high-strength hydrogels crosslinked by physical and covalent interactions (Gelatin-HAlg-DN). First, HAlg and gelatin can form physically crosslinked hydrogels (Gelatin-HAlg) due to electrostatic and hydrogen bond interactions. Then, the Gelatin-HAlg hydrogels can be further covalently crosslinked in the presence of 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to obtain Gelatin-HAlg-DN hydrogels. The obtained Gelatin-HAlg-DN hydrogels exhibit considerably enhanced mechanical properties (tensile strength: 0.9 MPa; elongation at break: 177%) with a maximum 16- and 3.2-fold increase in tensile strength and elongation at break, respectively, compared with gelatin methacrylate (GelMA) hydrogels. Importantly, the Gelatin-HAlg-DN hydrogels exhibit excellent biodegradability and swelling stability under physiological conditions, and the capability to support cell adhesion and proliferation. In a rat critical size bone defect model, Gelatin-HAlg-DN hydrogels loaded with psoralen could effectively promote bone regeneration, showing appealing potential as tissue engineering scaffolds.
Collapse
Affiliation(s)
- Tengling Wu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Luxing Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Ziwei Gao
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Chuanchuan Fan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Mingyuan Di
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Ziyang Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
46
|
Ringström N, Edling C, Nalesso G, Jeevaratnam K. Framing Heartaches: The Cardiac ECM and the Effects of Age. Int J Mol Sci 2023; 24:4713. [PMID: 36902143 PMCID: PMC10003270 DOI: 10.3390/ijms24054713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
The cardiac extracellular matrix (ECM) is involved in several pathological conditions, and age itself is also associated with certain changes in the heart: it gets larger and stiffer, and it develops an increased risk of abnormal intrinsic rhythm. This, therefore, makes conditions such as atrial arrythmia more common. Many of these changes are directly related to the ECM, yet the proteomic composition of the ECM and how it changes with age is not fully resolved. The limited research progress in this field is mainly due to the intrinsic challenges in unravelling tightly bound cardiac proteomic components and also the time-consuming and costly dependency on animal models. This review aims to give an overview of the composition of the cardiac ECM, how different components aid the function of the healthy heart, how the ECM is remodelled and how it is affected by ageing.
Collapse
Affiliation(s)
| | | | | | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK
| |
Collapse
|
47
|
Hashimoto A, Hirose T, Hashimoto K, Mizumoto S, Nitahara-Kasahara Y, Saka S, Yoshizawa T, Okada T, Yamada S, Kosho T, Watanabe T, Miyata S, Nomura Y. Collagen Network Formation in In Vitro Models of Musculocontractural Ehlers-Danlos Syndrome. Genes (Basel) 2023; 14:genes14020308. [PMID: 36833235 PMCID: PMC9957042 DOI: 10.3390/genes14020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Loss-of-function mutations in carbohydrate sulfotransferase 14 (CHST14) cause musculocontractural Ehlers-Danlos syndrome-CHST14 (mcEDS-CHST14), characterized by multiple congenital malformations and progressive connective tissue fragility-related manifestations in the cutaneous, skeletal, cardiovascular, visceral and ocular system. The replacement of dermatan sulfate chains on decorin proteoglycan with chondroitin sulfate chains is proposed to lead to the disorganization of collagen networks in the skin. However, the pathogenic mechanisms of mcEDS-CHST14 are not fully understood, partly due to the lack of in vitro models of this disease. In the present study, we established in vitro models of fibroblast-mediated collagen network formation that recapacitate mcEDS-CHST14 pathology. Electron microscopy analysis of mcEDS-CHST14-mimicking collagen gels revealed an impaired fibrillar organization that resulted in weaker mechanical strength of the gels. The addition of decorin isolated from patients with mcEDS-CHST14 and Chst14-/- mice disturbed the assembly of collagen fibrils in vitro compared to control decorin. Our study may provide useful in vitro models of mcEDS-CHST14 to elucidate the pathomechanism of this disease.
Collapse
Affiliation(s)
- Ayana Hashimoto
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Takuya Hirose
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Hokkaido, Japan
| | - Kohei Hashimoto
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Aichi, Japan
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Shota Saka
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto 390-8621, Nagano, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Aichi, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto 390-8621, Nagano, Japan
- Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
- Research Center for Supports to Advanced Science, Matsumoto 390-8621, Nagano, Japan
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Hokkaido, Japan
| | - Shinji Miyata
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
- Correspondence:
| | - Yoshihiro Nomura
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
48
|
Li H, Korcari A, Ciufo D, Mendias CL, Rodeo SA, Buckley MR, Loiselle AE, Pitt GS, Cao C. Increased Ca 2+ signaling through Ca V 1.2 induces tendon hypertrophy with increased collagen fibrillogenesis and biomechanical properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525119. [PMID: 36747837 PMCID: PMC9900778 DOI: 10.1101/2023.01.24.525119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tendons are tension-bearing tissues transmitting force from muscle to bone for body movement. This mechanical loading is essential for tendon development, homeostasis, and healing after injury. While Ca 2+ signaling has been studied extensively for its roles in mechanotransduction, regulating muscle, bone and cartilage development and homeostasis, knowledge about Ca 2+ signaling and the source of Ca 2+ signals in tendon fibroblast biology are largely unknown. Here, we investigated the function of Ca 2+ signaling through Ca V 1.2 voltage-gated Ca 2+ channel in tendon formation. Using a reporter mouse, we found that Ca V 1.2 is highly expressed in tendon during development and downregulated in adult homeostasis. To assess its function, we generated ScxCre;Ca V 1.2 TS mice that express a gain-of-function mutant Ca V 1.2 channel (Ca V 1.2 TS ) in tendon. We found that tendons in the mutant mice were approximately 2/3 larger and had more tendon fibroblasts, but the cell density of the mutant mice decreased by around 22%. TEM analyses demonstrated increased collagen fibrillogenesis in the hypertrophic tendon. Biomechanical testing revealed that the hypertrophic Achilles tendons display higher peak load and stiffness, with no changes in peak stress and elastic modulus. Proteomics analysis reveals no significant difference in the abundance of major extracellular matrix (ECM) type I and III collagens, but mutant mice had about 2-fold increase in other ECM proteins such as tenascin C, tenomodulin, periostin, type XIV and type VIII collagens, around 11-fold increase in the growth factor of TGF-β family myostatin, and significant elevation of matrix remodeling proteins including Mmp14, Mmp2 and cathepsin K. Taken together, these data highlight roles for increased Ca 2+ signaling through Ca V 1.2 on regulating expression of myostatin growth factor and ECM proteins for tendon collagen fibrillogenesis during tendon formation.
Collapse
|
49
|
Korcari A, Przybelski SJ, Gingery A, Loiselle AE. Impact of aging on tendon homeostasis, tendinopathy development, and impaired healing. Connect Tissue Res 2023; 64:1-13. [PMID: 35903886 PMCID: PMC9851966 DOI: 10.1080/03008207.2022.2102004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Aging is a complex and progressive process where the tissues of the body demonstrate a decreased ability to maintain homeostasis. During aging, there are substantial cellular and molecular changes, with a subsequent increase in susceptibility to pathological degeneration of normal tissue function. In tendon, aging results in well characterized alterations in extracellular matrix (ECM) structure and composition. In addition, the cellular environment of aged tendons is altered, including a marked decrease in cell density and metabolic activity, as well as an increase in cellular senescence. Collectively, these degenerative changes make aging a key risk factor for the development of tendinopathies and can increase the frequency of tendon injuries. However, inconsistencies in the extent of age-related degenerative impairments in tendons have been reported, likely due to differences in how "old" and "young" age-groups have been defined, differences between anatomically distinct tendons, and differences between animal models that have been utilized to study the impact of aging on tendon homeostasis. In this review, we address these issues by summarizing data by well-defined age categories (young adults, middle-aged, and aged) and from anatomically distinct tendon types. We then summarize in detail how aging affects tendon mechanics, structure, composition, and the cellular environment based on current data and underscore what is currently not known. Finally, we discuss gaps in the current understanding of tendon aging and propose key avenues for future research that can shed light on the specific mechanisms of tendon pathogenesis due to aging.
Collapse
Affiliation(s)
- Antonion Korcari
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | | - Anne Gingery
- Division of Orthopedic Surgery Research, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Alayna E Loiselle
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
50
|
Burns JS, Kassem M. Identifying Biomarkers for Osteogenic Potency Assay Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:39-58. [PMID: 37258783 DOI: 10.1007/978-3-031-30040-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There has been extensive exploration of how cells may serve as advanced therapy medicinal products to treat skeletal pathologies. Osteoblast progenitors responsible for production of extracellular matrix that is subsequently mineralized during bone formation have been characterised as a rare bone marrow subpopulation of cell culture plastic adherent cells. Conveniently, they proliferate to form single-cell derived colonies of fibroblastoid cells, termed colony forming unit fibroblasts that can subsequently differentiate to aggregates resembling small areas of cartilage or bone. However, donor heterogeneity and loss of osteogenic differentiation capacity during extended cell culture have made the discovery of reliable potency assay biomarkers difficult. Nonetheless, functional osteoblast models derived from telomerised human bone marrow stromal cells have allowed extensive comparative analysis of gene expression, microRNA, morphological phenotypes and secreted proteins. This chapter highlights numerous insights into the molecular mechanisms underpinning osteogenic differentiation of multipotent stromal cells and bone formation, discussing aspects involved in the choice of useful biomarkers for functional attributes that can be quantitively measured in osteogenic potency assays.
Collapse
Affiliation(s)
- Jorge S Burns
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| | - Moustapha Kassem
- University Hospital of Odense, University of Southern Denmark, Odense, Denmark
- Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|