1
|
Bruzzone F, Barigazzi C, Di Muzio A, Tallarico I, Dipasquale A, Losurdo A, Persico P, Navarria P, Pessina F, Santoro A, Simonelli M. Exploring the Role of ADCs in Brain Metastases and Primary Brain Tumors: Insight and Future Directions. Cancers (Basel) 2025; 17:1591. [PMID: 40361515 PMCID: PMC12072133 DOI: 10.3390/cancers17091591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Primary and secondary brain tumors have always been a challenge due to their high morbidity and poor prognosis. The incidence of brain metastasis is also increasing with the advent of effective new treatments. Traditional systemic treatments have historically had limited success, partly due to poor central nervous system (CNS) penetration. However, the advent in recent decades of new therapies that have shown high encephalic response rates are challenging this paradigm. ADCs represent a new class of compounds revolutionizing cancer treatment with high systemic response rates and lower toxicities. The continuing evolution of ADCs has shown that certain structural features such as payload, linker, and drug-to-antibody ratio (DAR) are essential in determining their efficacy at the encephalic level, and some ADCs have started to exhibit promising efficacy in treating primary and secondary brain tumors. Unfortunately, most patients with untreated encephalic metastases are excluded from clinical trials, with data primarily from retrospective studies or post hoc analyses. This review describes the early signs of ADC efficacy in brain tumors, the role of complementary treatments like radiation therapy, and critical points to improve ADC efficacy in brain malignancies.
Collapse
Affiliation(s)
- Francesco Bruzzone
- Department of Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.B.); (C.B.); (A.D.M.); (I.T.); (A.D.); (A.L.); (P.P.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Chiara Barigazzi
- Department of Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.B.); (C.B.); (A.D.M.); (I.T.); (A.D.); (A.L.); (P.P.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Antonio Di Muzio
- Department of Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.B.); (C.B.); (A.D.M.); (I.T.); (A.D.); (A.L.); (P.P.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Isabel Tallarico
- Department of Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.B.); (C.B.); (A.D.M.); (I.T.); (A.D.); (A.L.); (P.P.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Angelo Dipasquale
- Department of Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.B.); (C.B.); (A.D.M.); (I.T.); (A.D.); (A.L.); (P.P.); (A.S.)
| | - Agnese Losurdo
- Department of Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.B.); (C.B.); (A.D.M.); (I.T.); (A.D.); (A.L.); (P.P.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Pasquale Persico
- Department of Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.B.); (C.B.); (A.D.M.); (I.T.); (A.D.); (A.L.); (P.P.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Pierina Navarria
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Armando Santoro
- Department of Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.B.); (C.B.); (A.D.M.); (I.T.); (A.D.); (A.L.); (P.P.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Matteo Simonelli
- Department of Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.B.); (C.B.); (A.D.M.); (I.T.); (A.D.); (A.L.); (P.P.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| |
Collapse
|
2
|
Turner-Ivey B, Jenkins DP, Carroll SL. Multiple Roles for Neuregulins and Their ERBB Receptors in Neurodegenerative Disease Pathogenesis and Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00119-1. [PMID: 40254133 DOI: 10.1016/j.ajpath.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025]
Abstract
The role that neurotrophins, such as nerve growth factor, play in the pathogenesis of neurodegenerative diseases has long been appreciated. However, the neuregulin (NRG) family of growth factors and/or their v-erb-B2 avian erythroblastic leukemia viral oncogene homolog (ERBB) receptors have also been implicated in the pathogenesis of conditions, such as Alzheimer disease (AD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). In this review, we consider i) the structural variability of NRG isoforms generated by alternative RNA splicing, the use of multiple promoters and proteolysis, and the impact that this structural variability has on neuronal and glial physiology during development and adulthood. We discuss ii) the NRG receptors ERBB2, ERBB3, and ERBB4, how activation of each of these receptors further diversifies NRG actions in the central nervous system, and how dementia-related proteins, such as γ-secretase modulate the action of NRGs and their ERBB receptors. We then iii) turn to the abnormalities in NRG and ERBB expression and function evident in human AD and mouse AD models, how these abnormalities affect brain function, and attempts to use NRGs to treat AD. Finally, iv) we discuss NRG effects on the survival and function of neurons relevant to FTLD and ALS, alterations in NRG/ERBB signaling identified in these conditions, and the recent discovery of multiple human pedigrees in which autosomal dominant FTLD/ALS potentially results from point mutations in ERBB4.
Collapse
Affiliation(s)
- Brittany Turner-Ivey
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Dorea P Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
3
|
Hunt AL, Khan I, Wu AML, Makohon-Moore SC, Hood BL, Conrads KA, Abulez T, Ogata J, Mitchell D, Gist G, Oliver J, Wei D, Chung MA, Rahman S, Bateman NW, Zhang W, Conrads TP, Steeg PS. The murine metastatic microenvironment of experimental brain metastases of breast cancer differs by host age in vivo: a proteomic study. Clin Exp Metastasis 2024; 41:229-249. [PMID: 37917186 DOI: 10.1007/s10585-023-10233-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023]
Abstract
Breast cancer in young patients is known to exhibit more aggressive biological behavior and is associated with a less favorable prognosis than the same disease in older patients, owing in part to an increased incidence of brain metastases. The mechanistic explanations behind these findings remain poorly understood. We recently reported that young mice, in comparison to older mice, developed significantly greater brain metastases in four mouse models of triple-negative and luminal B breast cancer. Here we have performed a quantitative mass spectrometry-based proteomic analysis to identify proteins potentially contributing to age-related disparities in the development of breast cancer brain metastases. Using a mouse hematogenous model of brain-tropic triple-negative breast cancer (MDA-MB-231BR), we harvested subpopulations of tumor metastases, the tumor-adjacent metastatic microenvironment, and uninvolved brain tissues via laser microdissection followed by quantitative proteomic analysis using high resolution mass spectrometry to characterize differentially abundant proteins potentially contributing to age-dependent rates of brain metastasis. Pathway analysis revealed significant alterations in signaling pathways, particularly in the metastatic microenvironment, modulating tumorigenesis, metabolic processes, inflammation, and neuronal signaling. Tenascin C (TNC) was significantly elevated in all laser microdissection (LMD) enriched compartments harvested from young mice relative to older hosts, which was validated and confirmed by immunoblot analysis of whole brain lysates. Additional in vitro studies including migration and wound-healing assays demonstrated TNC as a positive regulator of tumor cell migration. These results provide important new insights regarding microenvironmental factors, including TNC, as mechanisms contributing to the increased brain cancer metastatic phenotype observed in young breast cancer patients.
Collapse
Affiliation(s)
- Allison L Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Alex M L Wu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
- Zymeworks Inc, Vancouver, BC, V5T 1G4, Canada
| | - Sasha C Makohon-Moore
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Jonathan Ogata
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Debbie Wei
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Monika A Chung
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Samiur Rahman
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Wei Zhang
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22042, USA.
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Natangelo S, Trapani D, Koukoutzeli C, Boscolo Bielo L, Marvaso G, Jereczek-Fossa BA, Curigliano G. Radiation therapy, tissue radiosensitization, and potential synergism in the era of novel antibody-drug conjugates. Crit Rev Oncol Hematol 2024; 195:104270. [PMID: 38272150 DOI: 10.1016/j.critrevonc.2024.104270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Antibody-drug conjugates (ADCs) represent a therapeutic class of agents designed to selectively deliver cytotoxic payloads to cancer cells. With the increasingly positioning of ADCs in the clinical practice, combinations with other treatment modalities, including radiation therapy (RT), will open new opportunities but also challenges. This review evaluates ADC-RT interactions, examining therapeutic synergies and potential caveats. ADC payloads can be radiosensitizing, enhancing cytotoxicity when used in combination with RT. Antigens targeted by ADCs can have various tissue expressions, resulting in possible off-target toxicities by tissue radiosensitization. Notably, the HER-2-directed ADC trastuzumab emtansine has appeared to increase the risk of radionecrosis when used concomitantly with brain RT, as glial cells can express HER2, too. Other possible organ-specific effects are discussed, such as pulmonary and cardiac toxicities. The lack of robust clinical data on the ADC-RT combination raises concerns regarding specific side effects and the ultimate trade-off of toxicity and safety of some combined approaches. Clinical studies are needed to assess ADC-RT combination safety and efficacy.
Collapse
Affiliation(s)
- Stefano Natangelo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Chrysanthi Koukoutzeli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Radiation Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
5
|
Baldenius M, Kautzmann S, Nanda S, Klämbt C. Signaling Pathways Controlling Axonal Wrapping in Drosophila. Cells 2023; 12:2553. [PMID: 37947631 PMCID: PMC10647682 DOI: 10.3390/cells12212553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The rapid transmission of action potentials is an important ability that enables efficient communication within the nervous system. Glial cells influence conduction velocity along axons by regulating the radial axonal diameter, providing electrical insulation as well as affecting the distribution of voltage-gated ion channels. Differentiation of these wrapping glial cells requires a complex set of neuron-glia interactions involving three basic mechanistic features. The glia must recognize the axon, grow around it, and eventually arrest its growth to form single or multiple axon wraps. This likely depends on the integration of numerous evolutionary conserved signaling and adhesion systems. Here, we summarize the mechanisms and underlying signaling pathways that control glial wrapping in Drosophila and compare those to the mechanisms that control glial differentiation in mammals. This analysis shows that Drosophila is a beneficial model to study the development of even complex structures like myelin.
Collapse
Affiliation(s)
| | | | | | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, Faculty of Biology, University of Münster, Röntgenstraße 16, D-48149 Münster, Germany; (M.B.)
| |
Collapse
|
6
|
Neuregulin-1/PI3K signaling effects on oligodendrocyte proliferation, remyelination and behaviors deficit in a male mouse model of ischemic stroke. Exp Neurol 2023; 362:114323. [PMID: 36690057 DOI: 10.1016/j.expneurol.2023.114323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
In this study, we investigated the effect of neuregulin-1 (NRG1) on demyelination and neurological function in an ischemic stroke model, and further explored its neuroprotective mechanisms. Adult male ICR mice underwent photothrombotic ischemia surgery and were injected with NRG1 beginning 30 min after ischemia. Cylinder and grid walking tests were performed to evaluate the forepaw function. In addition, the effect of NRG1 on neuronal damage/death (Cresyl violet, CV), neuronal nuclei (NeuN), nestin, doublecortin (DCX), myelin basic protein (MBP), non-phosphorylated neurofilaments (SMI-32), adenomatous polyposis coli (APC), erythroblastic leukemia viral oncogene homolog (ErbB) 2, 4 and serine-threonine protein kinase (Akt) in cortex were evaluated using immunohistochemistry, immunofluorescence and western blot. The cylinder and grid walking tests exposed that treatment of NRG1 observably regained the forepaw function. NRG1 treatment reduced cerebral infarction, restored forepaw function, promoted proliferation and differentiation of neuron and increased oligodendrogliogenesis. The neuroprotective effect of NRG1 is involved in its activation of PI3K/Akt signaling pathway via ErbB2, as shown by the suppression of the effect of NRG1 by the PI3K inhibitor LY294002. Our results demonstrate that NRG1 is effective in ameliorating the both acute phase neuroprotection and long-term neurological functions via resumption of neuronal proliferation and differentiation and oligodendrogliogenesis in a male mouse model of ischemic stroke.
Collapse
|
7
|
Keady J, Fisher M, Anderson E, LeMalenfant R, Turner J. Age-specific impacts of nicotine and withdrawal on hippocampal neuregulin signalling. Eur J Neurosci 2022; 56:4705-4719. [PMID: 35899607 PMCID: PMC9710301 DOI: 10.1111/ejn.15780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Smoking remains the leading cause of preventable death in the United States, with 87% of smokers starting before the age of 18. Age of initiation is a major predictive factor for smoking frequency and successful smoking cessation. People who initiate smoking during adolescences are 2.33 times more likely to become heavy smokers and half as likely to quit compared with smokers who started during adulthood. Additionally, schizophrenia, a disease state linked to altered neurodevelopment during adolescence, is a major predictive factor for smoking status. Smoking rates among people suffering from schizophrenia are between 60% and 90%. Interestingly, the Neuregulin Signalling Pathway (NSP), which plays an important role in neurodevelopment, is implicated in both schizophrenia and nicotine use disorder. Specifically, SNPS in neuregulin 3 (Nrg3) and Erb-B2 Receptor Tyrosine Kinase 4 (ErbB4) have been associated with smoking cessation outcomes and schizophrenia. Here, we examine the effects of chronic nicotine (18 mg/kg/day) and 24-h withdrawal on NSP gene expression in the hippocampus of adult (20-week-old) and adolescent (4-week-old) mice. We show that withdrawal from chronic nicotine decreased the expression of Erbb4 mRNA in the hippocampus of the adult mice but increased the expression of cytosolic Erbb4 protein in adolescent mice. Nrg3 mRNA and protein expression was not altered by chronic nicotine or withdrawal in the adult or adolescent cohorts, but Nrg3 mRNA and synaptosomal protein expression was lower in the adult withdrawal group when compared with their adolescent counterparts. These results highlight the age-specific effects of nicotine withdrawal on the NSP and may contribute to the lower quit rate and higher cigarette consumption of smokers who initiation during adolescences.
Collapse
Affiliation(s)
- Jack Keady
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536–0596, USA
| | - Miranda Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536–0596, USA
| | - Erin Anderson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Rachel LeMalenfant
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Jill Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536–0596, USA
| |
Collapse
|
8
|
Guidolin D, Tortorella C, Marcoli M, Cervetto C, Maura G, Agnati LF. Receptor-Receptor Interactions and Glial Cell Functions with a Special Focus on G Protein-Coupled Receptors. Int J Mol Sci 2021; 22:8656. [PMID: 34445362 PMCID: PMC8395429 DOI: 10.3390/ijms22168656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery that receptors from all families can establish allosteric receptor-receptor interactions and variably associate to form receptor complexes operating as integrative input units endowed with a high functional and structural plasticity has expanded our understanding of intercellular communication. Regarding the nervous system, most research in the field has focused on neuronal populations and has led to the identification of many receptor complexes representing an important mechanism to fine-tune synaptic efficiency. Receptor-receptor interactions, however, also modulate glia-neuron and glia-glia intercellular communication, with significant consequences on synaptic activity and brain network plasticity. The research on this topic is probably still at the beginning and, here, available evidence will be reviewed and discussed. It may also be of potential interest from a pharmacological standpoint, opening the possibility to explore, inter alia, glia-based neuroprotective therapeutic strategies.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Chiara Cervetto
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
9
|
Extreme Glycemic Fluctuations Debilitate NRG1, ErbB Receptors and Olig1 Function: Association with Regeneration, Cognition and Mood Alterations During Diabetes. Mol Neurobiol 2021; 58:4727-4744. [PMID: 34165684 DOI: 10.1007/s12035-021-02455-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022]
Abstract
Neuronal regeneration is crucial for maintaining intact neural interactions for perpetuation of cognitive and emotional functioning. The NRG1-ErbB receptor signaling is a key pathway for regeneration in adult brain and also associated with learning and mood stabilization by modulating synaptic transmission. Extreme glycemic stress is known to affect NRG1-ErbB-mediated regeneration in brain; yet, it remains unclear how the ErbB receptor subtypes are differentially affected due to such metabolic variations. Here, we assessed the alterations in NRG1, ErbB receptor subtypes to study the regenerative potential, both in rodents as well as in neuronal and glial cell models of hyperglycemia and hypoglycemic insults during hyperglycemia. The pro-oxidant and anti-oxidant status leading to degenerative changes in brain regions were determined. The spatial memory and anxiogenic behaviour of experimental rodents were tested using 'T' maze and Elevated Plus Maze. Our data revealed that the extreme glycemic discrepancies during diabetes and recurrent hypoglycemia lead to altered expression of NRG1, ErbB receptor subtypes, Syntaxin1 and Olig1 that shows association with impaired regeneration, synaptic dysfunction, demyelination, cognitive deficits and anxiety.
Collapse
|
10
|
Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 2019; 180:101643. [PMID: 31229498 DOI: 10.1016/j.pneurobio.2019.101643] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
Neuregulin-1 (Nrg-1) is a member of the Neuregulin family of growth factors with essential roles in the developing and adult nervous system. Six different types of Nrg-1 (Nrg-1 type I-VI) and over 30 isoforms have been discovered; however, their specific roles are not fully determined. Nrg-1 signals through a complex network of protein-tyrosine kinase receptors, ErbB2, ErbB3, ErbB4 and multiple intracellular pathways. Genetic and pharmacological studies of Nrg-1 and ErbB receptors have identified a critical role for Nrg-1/ErbB network in neurodevelopment including neuronal migration, neural differentiation, myelination as well as formation of synapses and neuromuscular junctions. Nrg-1 signaling is best known for its characterized role in development and repair of the peripheral nervous system (PNS) due to its essential role in Schwann cell development, survival and myelination. However, our knowledge of the impact of Nrg-1/ErbB on the central nervous system (CNS) has emerged in recent years. Ongoing efforts have uncovered a multi-faceted role for Nrg-1 in regulating CNS injury and repair processes. In this review, we provide a timely overview of the most recent updates on Nrg-1 signaling and its role in nervous system injury and diseases. We will specifically highlight the emerging role of Nrg-1 in modulating the glial and immune responses and its capacity to foster neuroprotection and remyelination in CNS injury. Nrg-1/ErbB network is a key regulatory pathway in the developing nervous system; therefore, unraveling its role in neuropathology and repair can aid in development of new therapeutic approaches for nervous system injuries and associated disorders.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
11
|
Stumpf PK, Cittelly DM, Robin TP, Carlson JA, Stuhr KA, Contreras-Zarate MJ, Lai S, Ormond DR, Rusthoven CG, Gaspar LE, Rabinovitch R, Kavanagh BD, Liu A, Diamond JR, Kabos P, Fisher CM. Combination of Trastuzumab Emtansine and Stereotactic Radiosurgery Results in High Rates of Clinically Significant Radionecrosis and Dysregulation of Aquaporin-4. Clin Cancer Res 2019; 25:3946-3953. [PMID: 30940654 DOI: 10.1158/1078-0432.ccr-18-2851] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/09/2019] [Accepted: 03/27/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE Patients with human EGFR2-positive (HER2+) breast cancer have a high incidence of brain metastases, and trastuzumab emtansine (T-DM1) is often employed. Stereotactic radiosurgery (SRS) is frequently utilized, and case series report increased toxicity with combination SRS and T-DM1. We provide an update of our experience of T-DM1 and SRS evaluating risk of clinically significant radionecrosis (CSRN) and propose a mechanism for this toxicity. EXPERIMENTAL DESIGN Patients with breast cancer who were ≤45 years regardless of HER2 status or had HER2+ disease regardless of age and underwent SRS for brain metastases were included. Rates of CSRN, SRS data, and details of T-DM1 administration were recorded. Proliferation and astrocytic swelling studies were performed to elucidate mechanisms of toxicity. RESULTS A total of 45 patients were identified; 66.7% were HER2+, and 60.0% were ≤ 45 years old. Of the entire cohort, 10 patients (22.2%) developed CSRN, 9 of whom received T-DM1. CSRN was observed in 39.1% of patients who received T-DM1 versus 4.5% of patients who did not. Receipt of T-DM1 was associated with a 13.5-fold (P = 0.02) increase in CSRN. Mechanistically, T-DM1 targeted reactive astrocytes and increased radiation-induced cytotoxicity and astrocytic swelling via upregulation of Aquaporin-4 (Aqp4). CONCLUSIONS The strong correlation between development of CSRN after SRS and T-DM1 warrants prospective studies controlling for variations in timing of T-DM1 and radiation dosing to further stratify risk of CSRN and mitigate toxicity. Until such studies are completed, we advise caution in the combination of SRS and T-DM1.
Collapse
Affiliation(s)
- Priscilla K Stumpf
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Diana M Cittelly
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Tyler P Robin
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Julie A Carlson
- Department of Radiation Oncology, St. Mary's Oncology Group, Grand Junction, Colorado
| | - Kelly A Stuhr
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Steven Lai
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Laurie E Gaspar
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Rachel Rabinovitch
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Brian D Kavanagh
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Arthur Liu
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jennifer R Diamond
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Christine M Fisher
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
12
|
Katiyar A, Sharma S, Singh TP, Kaur P. Identification of Shared Molecular Signatures Indicate the Susceptibility of Endometriosis to Multiple Sclerosis. Front Genet 2018; 9:42. [PMID: 29503661 PMCID: PMC5820528 DOI: 10.3389/fgene.2018.00042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/30/2018] [Indexed: 01/21/2023] Open
Abstract
Women with endometriosis (EMS) appear to be at a higher risk of developing other autoimmune diseases predominantly multiple sclerosis (MS). Though EMS and MS are evidently diverse in their phenotype, they are linked by a common autoimmune condition or immunodeficiency which could play a role in the expansion of endometriosis and possibly increase the risk of developing MS in women with EMS. However, the common molecular links connecting EMS with MS are still unclear. We conducted a meta-analysis of microarray experiments focused on EMS and MS with their respective controls. The GEO2R web application discovered a total of 711 and 1516 genes that are differentially expressed across the experimental conditions in EMS and MS, respectively with 129 shared DEGs between them. The functional enrichment analysis of DEGs predicts the shared gene expression signatures as well as the overlapping biological processes likely to infer the co-occurrence of EMS with MS. Network based meta-analysis unveiled six interaction networks/crosstalks through overlapping edges between commonly dysregulated pathways of EMS and MS. The PTPN1, ERBB3, and CDH1 were observed to be the highly ranked hub genes connected with disease-related genes of both EMS and MS. Androgen receptor (AR) and nuclear factor-kB p65 (RelA) were observed to be the most enriched transcription factor in the upstream of shared down-regulated and up-regulated genes, respectively. The two disease sample sets compared through crosstalk interactions between shared pathways revealed commonly up- and down-regulated expressions of 10 immunomodulatory proteins as probable linkers between EMS and MS. This study pinpoints the number of shared genes, pathways, protein kinases, and upstream regulators that may help in the development of biomarkers for diagnosis of MS and endometriosis at the same time through improved understanding of shared molecular signatures and crosstalk.
Collapse
Affiliation(s)
- Amit Katiyar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Matsuoka H, Tanaka H, Sayanagi J, Iwahashi T, Suzuki K, Nishimoto S, Okada K, Murase T, Yoshikawa H. Neurotropin ® Accelerates the Differentiation of Schwann Cells and Remyelination in a Rat Lysophosphatidylcholine-Induced Demyelination Model. Int J Mol Sci 2018; 19:ijms19020516. [PMID: 29419802 PMCID: PMC5855738 DOI: 10.3390/ijms19020516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/21/2018] [Accepted: 02/03/2018] [Indexed: 12/23/2022] Open
Abstract
Neurotropin® (NTP), a non-protein extract of inflamed rabbit skin inoculated with vaccinia virus, is clinically used for the treatment of neuropathic pain in Japan and China, although its effect on peripheral nerve regeneration remains to be elucidated. The purpose of this study was to investigate the effects of NTP on Schwann cells (SCs) in vitro and in vivo, which play an important role in peripheral nerve regeneration. In SCs, NTP upregulated protein kinase B (AKT) activity and Krox20 and downregulated extracellular signal-regulated kinase1/2 activity under both growth and differentiation conditions, enhanced the expression of myelin basic protein and protein zero under the differentiation condition. In a co-culture of dorsal root ganglion neurons and SCs, NTP accelerated myelination of SCs. To further investigate the influence of NTP on SCs in vivo, lysophosphatidylcholine was injected into the rat sciatic nerve, leading to the focal demyelination. After demyelination, NTP was administered systemically with an osmotic pump for one week. NTP improved the ratio of myelinated axons and motor, sensory, and electrophysiological function. These findings reveal novel effects of NTP on SCs differentiation in vitro and in vivo, and indicate NTP as a promising treatment option for peripheral nerve injuries and demyelinating diseases.
Collapse
Affiliation(s)
- Hozo Matsuoka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Junichi Sayanagi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toru Iwahashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Koji Suzuki
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-0064, Japan.
| | - Shunsuke Nishimoto
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-0064, Japan.
| | - Kiyoshi Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Medical Center for Translational and Clinical Research, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Santhosh KT, Alizadeh A, Karimi-Abdolrezaee S. Design and optimization of PLGA microparticles for controlled and local delivery of Neuregulin-1 in traumatic spinal cord injury. J Control Release 2017; 261:147-162. [PMID: 28668379 DOI: 10.1016/j.jconrel.2017.06.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) results in significant tissue damage that underlies functional impairments. Pharmacological interventions to confer neuroprotection and promote cell replacement are essential for SCI repair. We previously reported that Neuregulin-1 (Nrg-1) is acutely and permanently downregulated after SCI. Nrg-1 is a critical growth factor for differentiation of neural precursor cells (NPCs) into myelinating oligodendrocytes. We showed that intrathecal delivery of Nrg-1 enhances oligodendrocyte replacement following SCI. While an effective delivery system, intrathecal and systemic administration of growth factors with diverse biological targets may pose adverse off-target effects. Here, we have developed and optimized an injectable biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles system for sustained and prolonged intraspinal delivery of Nrg-1 in SCI. Recombinant human Nrg-1β1 peptide was encapsulated into PLGA microparticles. Optimal Nrg-1 release rate and duration were achieved by manipulating the porosity and size of PLGA particles. Our in vitro analysis showed a direct correlation between particle size and porosity with Nrg-1 release rate, while Nrg-1 loading efficiency in PLGA microparticles was inversely correlated with particle porosity. In SCI, local intraspinal injection of PLGA-Nrg-1 microparticles maintained significantly higher tissue levels of Nrg-1 for a long-term duration compared to Nrg-1 delivered intrathecally by osmotic pumps. Bioactivity of Nrg-1 in PLGA microparticles was verified by promoting oligodendrocyte differentiation of NPCs in vitro, and preservation of oligodendrocytes and axons in SCI. PLGA-Nrg-1 also attenuated neuroinflammation and glial scarring following SCI. We show, for the first time, the feasibility, efficacy and safety of PLGA microparticle system for local and controlled administration of Nrg-1 in SCI.
Collapse
Affiliation(s)
- Kallivalappil T Santhosh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
15
|
Vallières N, Barrette B, Wang LX, Bélanger E, Thiry L, Schneider MR, Filali M, Côté D, Bretzner F, Lacroix S. Betacellulin regulates schwann cell proliferation and myelin formation in the injured mouse peripheral nerve. Glia 2017; 65:657-669. [DOI: 10.1002/glia.23119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 12/05/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolas Vallières
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| | - Benoit Barrette
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| | - Linda Xiang Wang
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| | - Erik Bélanger
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ) et Département de physique, génie physique et optique, Faculté des sciences et de génie, Université Laval; Québec Canada
- Centre d'optique, photonique et laser (COPL), Université Laval; Québec Canada
| | - Louise Thiry
- Centre de recherche du CHU de Québec-CHUL et Département de psychiatrie et de neurosciences de l'Université Laval; Faculté de Médecine, Université Laval; Québec Canada
| | - Marlon R. Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich; Munich Germany
| | - Mohammed Filali
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| | - Daniel Côté
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ) et Département de physique, génie physique et optique, Faculté des sciences et de génie, Université Laval; Québec Canada
- Centre d'optique, photonique et laser (COPL), Université Laval; Québec Canada
| | - Frédéric Bretzner
- Centre de recherche du CHU de Québec-CHUL et Département de psychiatrie et de neurosciences de l'Université Laval; Faculté de Médecine, Université Laval; Québec Canada
| | - Steve Lacroix
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| |
Collapse
|
16
|
Saitoh F, Wakatsuki S, Tokunaga S, Fujieda H, Araki T. Glutamate signals through mGluR2 to control Schwann cell differentiation and proliferation. Sci Rep 2016; 6:29856. [PMID: 27432639 PMCID: PMC4949416 DOI: 10.1038/srep29856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/27/2016] [Indexed: 12/31/2022] Open
Abstract
Rapid saltatory nerve conduction is facilitated by myelin structure, which is produced by Schwann cells (SC) in the peripheral nervous system (PNS). Proper development and degeneration/regeneration after injury requires regulated phenotypic changes of SC. We have previously shown that glutamate can induce SC proliferation in culture. Here we show that glutamate signals through metabotropic glutamate receptor 2 (mGluR2) to induce Erk phosphorylation in SC. mGluR2-elicited Erk phosphorylation requires ErbB2/3 receptor tyrosine kinase phosphorylation to limit the signaling cascade that promotes phosphorylation of Erk, but not Akt. We found that Gβγ and Src are involved in subcellular signaling downstream of mGluR2. We also found that glutamate can transform myelinating SC to proliferating SC, while inhibition of mGluR2 signaling can inhibit demyelination of injured nerves in vivo. These data suggest pathophysiological significance of mGluR2 signaling in PNS and its possible therapeutic importance to combat demyelinating disorders including Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Fuminori Saitoh
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan.,Department of Anatomy, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Shinji Tokunaga
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Hiroki Fujieda
- Department of Anatomy, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
17
|
Delaney CL, Feldman EL. Review ■ : Insulin-like Growth Factor-I and Apoptosis in Glial Cell Biology. Neuroscientist 2016. [DOI: 10.1177/107385840000600112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Insulin-like growth factor-I (IGF-I) is a potent trophic factor capable of promoting both survival and differentiation of neurons and glia. This review examines the role of IGF-I and apoptosis in oligodendrocyte and Schwann cell biology in vitro and in vivo. Apoptosis is an essential element of development, homeostasis, and disease. IGF-I protects oligodendrocytes and Schwann cells from apoptosis during development and after apoptotic stimuli. Transgenic mouse models, which ablate or increase expression of IGF-I, have abnormal oligodendrocytes and myelin formation. A more thorough understanding of the protective mechanism of IGF-I in oligodendrocytes and Schwann cells will aid in its precise application in treating a variety of neurologic disorders. NEUROSCIENTIST 6:39-47, 2000
Collapse
Affiliation(s)
| | - Eva L. Feldman
- Department of Neurology University of Michigan Ann Arbor, Michigan
| |
Collapse
|
18
|
Abstract
Apoptosis is the morphological counterpart of active, genetically programmed cell death and is important in development, immune function, and carcinogenesis. Recent data suggest that apoptosis may be important in neurodegenerative disorders, ischemic brain injury, and neurotrauma as well. Here we review very recent data from our laboratory and others that show that at least some of the pronounced secondary injury that follows spinal cord injury (SCI) may be caused by apoptosis and associated intracellular death pathways. Both neurons and glia seem to die by apoptosis; the response of oligodendrocytes in long tracts undergoing Wallerian degeneration is particularly long lived and may be responsible for chronic demyelination and some of the dysfunction in chronic SCI. These findings suggest that the therapeutic window for treatment of acute SCI may extend into the chronic phase. In addition, proliferation of ependymal cells occurs in concert with cell death, suggesting that both degeneration and repair may occur at the same time. Therapies aimed at altering the balance between these cellular events may be useful for future treatments of SCI. NEURO SCIENTIST 4:163-171, 1998
Collapse
Affiliation(s)
- Michael S. Beattie
- Department of Cell Biology, Neurobiology, and Anatomy (MSB, SLS, JCB) and Division of Neurosurgery (MSB) The Ohio State University College of Medicine and Public Health Columbus, Ohio
| | - Sheri L. Shuman
- Department of Cell Biology, Neurobiology, and Anatomy (MSB, SLS, JCB) and Division of Neurosurgery (MSB) The Ohio State University College of Medicine and Public Health Columbus, Ohio
| | - Jacqueline C. Bresnahan
- Department of Cell Biology, Neurobiology, and Anatomy (MSB, SLS, JCB) and Division of Neurosurgery (MSB) The Ohio State University College of Medicine and Public Health Columbus, Ohio
| |
Collapse
|
19
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
20
|
Hu X, Fan Q, Hou H, Yan R. Neurological dysfunctions associated with altered BACE1-dependent Neuregulin-1 signaling. J Neurochem 2016; 136:234-49. [PMID: 26465092 PMCID: PMC4833723 DOI: 10.1111/jnc.13395] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Inhibition of BACE1 is being pursued as a therapeutic target to treat patients suffering from Alzheimer's disease because BACE1 is the sole β-secretase that generates β-amyloid peptide. Knowledge regarding other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. Neuregulin-1 (Nrg1) is a BACE1 substrate and BACE1 cleavage of Nrg1 is critical for signaling functions in myelination, remyelination, synaptic plasticity, normal psychiatric behaviors, and maintenance of muscle spindles. This review summarizes the most recent discoveries associated with BACE1-dependent Nrg1 signaling in these areas. This body of knowledge will help to provide guidance for preventing unwanted Nrg1-based side effects following BACE1 inhibition in humans. To initiate its signaling cascade, membrane anchored Neuregulin (Nrg), mainly type I and III β1 Nrg1 isoforms and Nrg3, requires ectodomain shedding. BACE1 is one of such indispensable sheddases to release the functional Nrg signaling fragment. The dependence of Nrg on the cleavage by BACE1 is best manifested by disrupting the critical role of Nrg in the control of axonal myelination, schizophrenic behaviors as well as the formation and maintenance of muscle spindles.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
21
|
Bailey TA, Luan H, Tom E, Bielecki TA, Mohapatra B, Ahmad G, George M, Kelly DL, Natarajan A, Raja SM, Band V, Band H. A kinase inhibitor screen reveals protein kinase C-dependent endocytic recycling of ErbB2 in breast cancer cells. J Biol Chem 2014; 289:30443-30458. [PMID: 25225290 DOI: 10.1074/jbc.m114.608992] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ErbB2 overexpression drives oncogenesis in 20-30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca(2+)-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling.
Collapse
Affiliation(s)
- Tameka A Bailey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Eric Tom
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Timothy Alan Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Gulzar Ahmad
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Manju George
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - David L Kelly
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Srikumar M Raja
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950.
| |
Collapse
|
22
|
Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 2014; 83:27-49. [PMID: 24991953 DOI: 10.1016/j.neuron.2014.06.007] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuregulins (NRGs) comprise a large family of growth factors that stimulate ERBB receptor tyrosine kinases. NRGs and their receptors, ERBBs, have been identified as susceptibility genes for diseases such as schizophrenia (SZ) and bipolar disorder. Recent studies have revealed complex Nrg/Erbb signaling networks that regulate the assembly of neural circuitry, myelination, neurotransmission, and synaptic plasticity. Evidence indicates there is an optimal level of NRG/ERBB signaling in the brain and deviation from it impairs brain functions. NRGs/ERBBs and downstream signaling pathways may provide therapeutic targets for specific neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany.
| |
Collapse
|
23
|
Blank T, Prinz M. NF-κB signaling regulates myelination in the CNS. Front Mol Neurosci 2014; 7:47. [PMID: 24904273 PMCID: PMC4033361 DOI: 10.3389/fnmol.2014.00047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/05/2014] [Indexed: 01/12/2023] Open
Abstract
Besides myelination of neuronal axons by oligodendrocytes to facilitate propagation of action potentials, oligodendrocytes also support axon survival and function. A key transcription factor involved in these processes is nuclear factor-κB (NF-κB), a hetero or homodimer of the Rel family of proteins, including p65, c-Rel, RelB, p50, and p52. Under unstimulated, NF-κB remains inactive in the cytoplasm through interaction with NF-κB inhibitors (IκBs). Upon activation of NF-κB the cytoplasmic IκBs gets degradated, allowing the translocation of NF-κB into the nucleus where the dimer binds to the κB consensus DNA sequence and regulates gene transcription. In this review we describe how oligodendrocytes are, directly or indirectly via neighboring cells, regulated by NF-κB signaling with consequences for innate and adaptive immunity and for regulation of cell apoptosis and survival.
Collapse
Affiliation(s)
- Thomas Blank
- Institute of Neuropathology, University of Freiburg Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg Freiburg, Germany ; BIOSS Centre for Biological Signalling Studies, University of Freiburg Freiburg, Germany
| |
Collapse
|
24
|
Heller BA, Ghidinelli M, Voelkl J, Einheber S, Smith R, Grund E, Morahan G, Chandler D, Kalaydjieva L, Giancotti F, King RH, Fejes-Toth AN, Fejes-Toth G, Feltri ML, Lang F, Salzer JL. Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system. J Cell Biol 2014; 204:1219-36. [PMID: 24687281 PMCID: PMC3971744 DOI: 10.1083/jcb.201307057] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 02/18/2014] [Indexed: 02/02/2023] Open
Abstract
The PI 3-kinase (PI 3-K) signaling pathway is essential for Schwann cell myelination. Here we have characterized PI 3-K effectors activated during myelination by probing myelinating cultures and developing nerves with an antibody that recognizes phosphorylated substrates for this pathway. We identified a discrete number of phospho-proteins including the S6 ribosomal protein (S6rp), which is down-regulated at the onset of myelination, and N-myc downstream-regulated gene-1 (NDRG1), which is up-regulated strikingly with myelination. We show that type III Neuregulin1 on the axon is the primary activator of S6rp, an effector of mTORC1. In contrast, laminin-2 in the extracellular matrix (ECM), signaling through the α6β4 integrin and Sgk1 (serum and glucocorticoid-induced kinase 1), drives phosphorylation of NDRG1 in the Cajal bands of the abaxonal compartment. Unexpectedly, mice deficient in α6β4 integrin signaling or Sgk1 exhibit hypermyelination during development. These results identify functionally and spatially distinct PI 3-K pathways: an early, pro-myelinating pathway driven by axonal Neuregulin1 and a later-acting, laminin-integrin-dependent pathway that negatively regulates myelination.
Collapse
Affiliation(s)
- Bradley A. Heller
- Neuroscience Institute and Departments of Neuroscience and Physiology and Neurology, NYU Langone Medical Center, New York, NY 10016
| | - Monica Ghidinelli
- University of Buffalo School of Medicine, Hunter James Kelly Research Institute, Buffalo, NY 14214
| | - Jakob Voelkl
- Department of Physiology, University of Tübingen, 72076 Tübingen, Germany
| | - Steven Einheber
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY 10010
| | - Ryan Smith
- Neuroscience Institute and Departments of Neuroscience and Physiology and Neurology, NYU Langone Medical Center, New York, NY 10016
| | - Ethan Grund
- Neuroscience Institute and Departments of Neuroscience and Physiology and Neurology, NYU Langone Medical Center, New York, NY 10016
| | - Grant Morahan
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, Perth 6009, Australia
| | - David Chandler
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, Perth 6009, Australia
| | - Luba Kalaydjieva
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, Perth 6009, Australia
| | - Filippo Giancotti
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Rosalind H. King
- UCL Institute of Neurology, University College London, London NW3 2PF, England, UK
| | - Aniko Naray Fejes-Toth
- Department of Physiology and Neurobiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756
| | - Gerard Fejes-Toth
- Department of Physiology and Neurobiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756
| | - Maria Laura Feltri
- University of Buffalo School of Medicine, Hunter James Kelly Research Institute, Buffalo, NY 14214
| | - Florian Lang
- Department of Physiology, University of Tübingen, 72076 Tübingen, Germany
| | - James L. Salzer
- Neuroscience Institute and Departments of Neuroscience and Physiology and Neurology, NYU Langone Medical Center, New York, NY 10016
| |
Collapse
|
25
|
LINGO-1 regulates oligodendrocyte differentiation by inhibiting ErbB2 translocation and activation in lipid rafts. Mol Cell Neurosci 2014; 60:36-42. [PMID: 24583087 DOI: 10.1016/j.mcn.2014.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/06/2014] [Accepted: 02/19/2014] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocyte differentiation is negatively regulated by LINGO-1 and positively regulated by the ErbB2 receptor tyrosine kinase. In wild-type oligodendrocytes, inhibition of ErbB2 blocks differentiation, whereas activation of ErbB2 promotes differentiation. In LINGO-1(-/-) oligodendrocytes, inhibition of ErbB2 blocks oligodendrocyte differentiation; whereas activation of ErbB2 does not enhance differentiation. Biological and biochemical evidence showing that LINGO-1 can directly bind to ErbB2, block ErbB2 translocation into lipid rafts, and inhibit its phosphorylation for activation. The study demonstrates a novel regulatory mechanism of ErbB2 function whereby LINGO-1 suppresses oligodendrocyte differentiation by inhibiting ErbB2 translocation and activation in lipid rafts.
Collapse
|
26
|
Lundgaard I, Luzhynskaya A, Stockley JH, Wang Z, Evans KA, Swire M, Volbracht K, Gautier HOB, Franklin RJM, ffrench-Constant C, Attwell D, Káradóttir RT. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol 2013; 11:e1001743. [PMID: 24391468 PMCID: PMC3876980 DOI: 10.1371/journal.pbio.1001743] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/13/2013] [Indexed: 11/20/2022] Open
Abstract
Neuregulin switches oligodendrocytes between two modes of myelination: from a neuronal activity–independent mode to a myelin-increasing, neuronal activity–dependent, mechanism that involves glutamate release and NMDA receptor activation. Myelination is essential for rapid impulse conduction in the CNS, but what determines whether an individual axon becomes myelinated remains unknown. Here we show, using a myelinating coculture system, that there are two distinct modes of myelination, one that is independent of neuronal activity and glutamate release and another that depends on neuronal action potentials releasing glutamate to activate NMDA receptors on oligodendrocyte lineage cells. Neuregulin switches oligodendrocytes from the activity-independent to the activity-dependent mode of myelination by increasing NMDA receptor currents in oligodendrocyte lineage cells 6-fold. With neuregulin present myelination is accelerated and increased, and NMDA receptor block reduces myelination to far below its level without neuregulin. Thus, a neuregulin-controlled switch enhances the myelination of active axons. In vivo, we demonstrate that remyelination after white matter damage is NMDA receptor-dependent. These data resolve controversies over the signalling regulating myelination and suggest novel roles for neuregulin in schizophrenia and in remyelination after white matter damage. Myelination acts as an insulator for neurons and as such is essential for normal brain function, ensuring fast neuronal communication. Oligodendrocytes are the cells that wrap their membrane around nerve cell axons to form the myelin sheath that enables fast action potential propagation. However, what determines whether an individual axon becomes myelinated remains unknown. We show that there are two distinct modes of myelination: one that is independent of neuronal activity and the release of the neurotransmitter glutamate and another that depends on nerve cell action potentials releasing glutamate, which then activates a class of glutamate receptor (NMDA receptors) on oligodendrocyte lineage cells. We find that the protein neuregulin switches oligodendrocytes between these two modes of myelination; neuregulin increases oligodendrocyte lineage cells' sensitivity to glutamate by increasing the current flowing through their glutamate receptors. With neuregulin present, myelination is accelerated and increased. Blocking NMDA receptors reduces the amount of myelination to far below its level without neuregulin. Thus, a neuregulin-controlled switch enhances the myelination of active axons. We also demonstrate that remyelination after white matter damage (as occurs in diseases, such as spinal cord injury and multiple sclerosis) is NMDA receptor-dependent. These data help us understand the signalling that regulates myelination and suggest the possible involvement of neuregulin in schizophrenia and in remyelination after white matter damage.
Collapse
Affiliation(s)
- Iben Lundgaard
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Aryna Luzhynskaya
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John H. Stockley
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Zhen Wang
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley A. Evans
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Swire
- MRC Centre for Regenerative Medicine, Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Katrin Volbracht
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hélène O. B. Gautier
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Robin J. M. Franklin
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Charles ffrench-Constant
- MRC Centre for Regenerative Medicine, Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Ragnhildur T. Káradóttir
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Schulz A, Kyselyova A, Baader SL, Jung MJ, Zoch A, Mautner VF, Hagel C, Morrison H. Neuronal merlin influences ERBB2 receptor expression on Schwann cells through neuregulin 1 type III signalling. ACTA ACUST UNITED AC 2013; 137:420-32. [PMID: 24309211 PMCID: PMC3914471 DOI: 10.1093/brain/awt327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Merlin mutations in Neurofibromatosis type 2 cause tumorigenic transformation of Schwann cells, leading to schwannoma development. Schulz et al. show that loss of neuronally expressed merlin alone increases the susceptibility of adjacent Schwann cells to mitogenic signals through the Neuregulin1-ErbB2/3 pathway. Axonal surface proteins encompass a group of heterogeneous molecules, which exert a variety of different functions in the highly interdependent relationship between axons and Schwann cells. We recently revealed that the tumour suppressor protein merlin, mutated in the hereditary tumour syndrome neurofibromatosis type 2, impacts significantly on axon structure maintenance in the peripheral nervous system. We now report on a role of neuronal merlin in the regulation of the axonal surface protein neuregulin 1 important for modulating Schwann cell differentiation and myelination. Specifically, neuregulin 1 type III expression is reduced in sciatic nerve tissue of neuron-specific knockout animals as well as in biopsies from seven patients with neurofibromatosis type 2. In vitro experiments performed on both the P19 neuronal cell line and primary dorsal root ganglion cells demonstrate the influence of merlin on neuregulin 1 type III expression. Moreover, expression of ERBB2, a Schwann cell receptor for neuregulin 1 ligands is increased in nerve tissue of both neuron-specific merlin knockout animals and patients with neurofibromatosis type 2, demonstrating for the first time that axonal merlin indirectly regulates Schwann cell behaviour. Collectively, we have identified that neuronally expressed merlin can influence Schwann cell activity in a cell-extrinsic manner.
Collapse
Affiliation(s)
- Alexander Schulz
- 1 Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
De Paula ML, Cui QL, Hossain S, Antel J, Almazan G. The PTEN inhibitor bisperoxovanadium enhances myelination by amplifying IGF-1 signaling in rat and human oligodendrocyte progenitors. Glia 2013; 62:64-77. [DOI: 10.1002/glia.22584] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Marcio L. De Paula
- Department of Pharmacology and Therapeutics; McGill University, Montreal; Quebec Canada
- Integrated Program in Neuroscience; McGill University, Montreal; Quebec Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute; McGill University, Montreal; Quebec Canada
| | - Shireen Hossain
- Department of Pharmacology and Therapeutics; McGill University, Montreal; Quebec Canada
| | - Jack Antel
- Integrated Program in Neuroscience; McGill University, Montreal; Quebec Canada
- Neuroimmunology Unit, Montreal Neurological Institute; McGill University, Montreal; Quebec Canada
| | - Guillermina Almazan
- Department of Pharmacology and Therapeutics; McGill University, Montreal; Quebec Canada
- Integrated Program in Neuroscience; McGill University, Montreal; Quebec Canada
| |
Collapse
|
29
|
García L, Castillo C, Carballo J, Rodríguez Y, Forsyth P, Medina R, Martínez JC, Longart M. ErbB receptors and PKC regulate PC12 neuronal-like differentiation and sodium current elicitation. Neuroscience 2013; 236:88-98. [PMID: 23380500 DOI: 10.1016/j.neuroscience.2013.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Excitability, neurite outgrowth and their specification are very important features in the establishment of neuronal differentiation. We have studied a conditioned medium (CM) from sciatic nerve which is able to induce a neuronal-like differentiation of PC12 cells. Previously, we have demonstrated that supplementing this CM with a generic inhibitor (k252a), which mainly inhibits tropomyosin-related kinase receptors (Trk receptors) and protein kinase C (PKC), caused neurite elongation, sodium current induction and axon development. In the present work, we are showing that the enhancement of neurite length and induction of sodium currents induced by CM+k252a were prevented by ErbB receptor inhibition. Additionally, we demonstrated that specific inhibition of PKC produced a similar effect to that exerted by k252a in CM-treated cells, specifically by increasing the percentage of differentiated cells with long neurites and inducing sodium currents. Moreover, CM changed the mRNA levels for ErbB2 and ErbB3 increasing them 6- and 36-folds respectively compared to their control. The inclusion of k252a with CM changed the ErbB1, ErbB2 and ErbB3 mRNA proportions increasing those eight-, seven- and fivefolds respectively. From this point, it is clear that appropriate ErbB receptor levels and PKC inhibition are necessary to enhance the effect of the CM in inducing the neuronal-like differentiation of PC12 cells. In summary, we demonstrated the involvement of ErbB receptors in the regulation of neurite elongation and sodium current induction in PC12 cells and propose that these processes could be initiated by ErbB receptors followed by a fine regulation of PKC signaling. These findings might implicate a novel interplay between ErbB receptors and PKC in the regulation of these molecular mechanisms.
Collapse
Affiliation(s)
- L García
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas 1015A, Venezuela
| | | | | | | | | | | | | | | |
Collapse
|
30
|
mTOR: a link from the extracellular milieu to transcriptional regulation of oligodendrocyte development. ASN Neuro 2013; 5:e00108. [PMID: 23421405 PMCID: PMC3601842 DOI: 10.1042/an20120092] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oligodendrocyte development is controlled by numerous extracellular signals that regulate a series of transcription factors that promote the differentiation of oligodendrocyte progenitor cells to myelinating cells in the central nervous system. A major element of this regulatory system that has only recently been studied is the intracellular signalling from surface receptors to transcription factors to down-regulate inhibitors and up-regulate inducers of oligodendrocyte differentiation and myelination. The current review focuses on one such pathway: the mTOR (mammalian target of rapamycin) pathway, which integrates signals in many cell systems and induces cell responses including cell proliferation and cell differentiation. This review describes the known functions of mTOR as they relate to oligodendrocyte development, and its recently discovered impact on oligodendrocyte differentiation and myelination. A potential model for its role in oligodendrocyte development is proposed.
Collapse
|
31
|
Abstract
The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate.
Collapse
Affiliation(s)
- Grahame J Kidd
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
32
|
Xu C, Lv L, Zheng G, Li B, Gao L, Sun Y. Neuregulin1β1 protects oligodendrocyte progenitor cells from oxygen glucose deprivation injury induced apoptosis via ErbB4-dependent activation of PI3-kinase/Akt. Brain Res 2012; 1467:104-12. [PMID: 22659027 DOI: 10.1016/j.brainres.2012.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 02/07/2023]
Abstract
Mounting evidence suggests that the injury of oligodendrocyte progenitor cells (OPCs) caused by hypoxia plays a pivotal role in periventricular white matter injury (PWMI) causation. We investigated the potential role of active extracellular domain of Neuregulin1 isotypeβ1 (NRG1β1)/ErbB signaling in protecting OPCs from oxygen glucose deprivation (OGD) induced apoptosis. At different time points, endogenous NRG1β1 protein was analyzed after OGD. Escalating dosages of NRG1β1 were used to treat OPCs with OGD, and the apoptosis was measured, as well as the expression of ErbB receptors, Akt and Erk phosphorylation and caspase3 activation. OGD damage resulted in decreased expression of endogenous NRG1β1. In parallel, NRG1β1 treatment promoted the expression of p-ErbB4 receptor, phosphorylated Akt and inhibited caspase3 activation. Furthermore, the activation of PI3-kinase/Akt by NRG1β1 was ErbB4 dependent. Our data demonstrated that NRG1β1 protected OPCs from OGD induced apoptosis and the possible protective mechanism is linking with ErbB4-dependent activation of PI3-kinase/Akt pathway.
Collapse
Affiliation(s)
- Chongchong Xu
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Ortega MC, Bribián A, Peregrín S, Gil MT, Marín O, de Castro F. Neuregulin-1/ErbB4 signaling controls the migration of oligodendrocyte precursor cells during development. Exp Neurol 2012; 235:610-20. [PMID: 22504067 DOI: 10.1016/j.expneurol.2012.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 03/20/2012] [Accepted: 03/25/2012] [Indexed: 02/07/2023]
Abstract
During embryonic development, the oligodendrocyte precursors (OPCs) are generated in specific oligodendrogliogenic sites within the neural tube and migrate to colonize the entire CNS. Different factors have been shown to influence the OPC migration and differentiation, including morphogens, growth factors, chemotropic molecules, and extracellular matrix proteins. Neuregulins have been shown to influence the migration of neuronal precursors as well as the movement and differentiation of Schwann cells for peripheral myelination, but their role in the motility of OPCs has not been explored. In the present study, we have used the optic nerve as an experimental model to examine the function of Nrg1 and its ErbB4 receptor in the migration of OPCs in the developing embryo. In vitro experiments revealed that Nrg1 is a potent chemoattractant for the first wave of OPCs, and that this effect is mediated via ErbB4 receptor. In contrast, OPCs colonizing the optic nerve at postnatal stages (PDGFRα(+)-OPCs) does not respond to Nrg1-chemoattraction. We also found that mouse embryos lacking ErbB4 display deficits in early OPC migration away from different oligodendrogliogenic regions in vivo. The present findings reveal a new role for Nrg1/ErbB4 signaling in regulating OPC migration selectively during early stages of CNS development.
Collapse
Affiliation(s)
- M Cristina Ortega
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | | | | | | | | |
Collapse
|
34
|
He J, Wang XM, Spector M, Cui FZ. Scaffolds for central nervous system tissue engineering. FRONTIERS OF MATERIALS SCIENCE 2012; 6:1-25. [DOI: 10.1007/s11706-012-0157-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
35
|
Whittaker MT, Zai LJ, Lee HJ, Pajoohesh-Ganji A, Wu J, Sharp A, Wyse R, Wrathall JR. GGF2 (Nrg1-β3) treatment enhances NG2+ cell response and improves functional recovery after spinal cord injury. Glia 2011; 60:281-94. [PMID: 22042562 DOI: 10.1002/glia.21262] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/06/2011] [Indexed: 12/13/2022]
Abstract
The adult spinal cord contains a pool of endogenous glial precursor cells, which spontaneously respond to spinal cord injury (SCI) with increased proliferation. These include oligodendrocyte precursor cells that express the NG2 proteoglycan and can differentiate into mature oligodendrocytes. Thus, a potential approach for SCI treatment is to enhance the proliferation and differentiation of these cells to yield more functional mature glia and improve remyelination of surviving axons. We previously reported that soluble glial growth factor 2 (GGF2)- and basic fibroblast growth factor 2 (FGF2)-stimulated growth of NG2(+) cells purified from injured spinal cord in primary culture. This study examines the effects of systemic administration of GGF2 and/or FGF2 after standardized contusive SCI in vivo in both rat and mouse models. In Sprague-Dawley rats, 1 week of GGF2 administration, beginning 24 h after injury, enhanced NG2(+) cell proliferation, oligodendrogenesis, chronic white matter at the injury epicenter, and recovery of hind limb function. In 2',3'-cyclic-nucleotide 3'-phosphodiesterase-enhanced green fluorescent protein mice, GGF2 treatment resulted in increased oligodendrogenesis and improved functional recovery, as well as elevated expression of the stem cell transcription factor Sox2 by oligodendrocyte lineage cells. Although oligodendrocyte number was increased chronically after SCI in GGF2-treated mice, no evidence of increased white matter was detected. However, GGF2 treatment significantly increased levels of P0 protein-containing peripheral myelin, produced by Schwann cells that infiltrate the injured spinal cord. Our results suggest that GGF2 may have therapeutic potential for SCI by enhancing endogenous recovery processes in a clinically relevant time frame.
Collapse
Affiliation(s)
- Matthew T Whittaker
- Department of Neuroscience, Georgetown University, Washington, District of Columbia 20057, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang J, Kramer EG, Asp L, Dutta DJ, Navrazhina K, Pham T, Mariani JN, Argaw AT, Melendez-Vasquez CV, John GR. Promoting myelin repair and return of function in multiple sclerosis. FEBS Lett 2011; 585:3813-20. [PMID: 21864535 DOI: 10.1016/j.febslet.2011.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. Conduction block in demyelinated axons underlies early neurological symptoms, but axonal transection and neuronal loss are believed to be responsible for more permanent chronic deficits. Several therapies are approved for treatment of relapsing-remitting MS, all of which are immunoregulatory and clinically proven to reduce the rate of lesion formation and exacerbation. However, existing approaches are only partially effective in preventing the onset of disability in MS patients, and novel treatments to protect myelin-producing oligodendrocytes and enhance myelin repair may improve long-term outcomes. Studies in vivo in genetically modified mice have assisted in the characterization of mechanisms underlying the generation of neuropathology in MS patients, and have identified potential avenues for oligodendrocyte protection and myelin repair. However, no treatments are yet approved that target these areas directly, and in addition, the relationship between demyelination and axonal transection in the lesions of the disease remains unclear. Here, we review translational research targeting oligodendrocyte protection and myelin repair in models of autoimmune demyelination, and their potential relevance as therapies in MS.
Collapse
Affiliation(s)
- Jingya Zhang
- Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fong B, Barkhoudarian G, Pezeshkian P, Parsa AT, Gopen Q, Yang I. The molecular biology and novel treatments of vestibular schwannomas. J Neurosurg 2011; 115:906-14. [PMID: 21800959 DOI: 10.3171/2011.6.jns11131] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vestibular schwannomas are histopathologically benign tumors arising from the Schwann cell sheath surrounding the vestibular branch of cranial nerve VIII and are related to the NF2 gene and its product merlin. Merlin acts as a tumor suppressor and as a mediator of contact inhibition. Thus, deficiencies in both NF2 genes lead to vestibular schwannoma development. Recently, there have been major advances in our knowledge of the molecular biology of vestibular schwannomas as well as the development of novel therapies for its treatment. In this article the authors comprehensively review the recent advances in the molecular biology and characterization of vestibular schwannomas as well as the development of modern treatments for vestibular schwannoma. For instance, merlin is involved with a number of receptors including the CD44 receptor, EGFR, and signaling pathways, such as the Ras/raf pathway and the canonical Wnt pathway. Recently, merlin was also shown to interact in the nucleus with E3 ubiquitin ligase CRL4(DCAF1). A greater understanding of the molecular mechanisms behind vestibular schwannoma tumorigenesis has begun to yield novel therapies. Some authors have shown that Avastin induces regression of progressive schwannomas by over 40% and improves hearing. An inhibitor of VEGF synthesis, PTC299, is currently in Phase II trials as a potential agent to treat vestibular schwannoma. Furthermore, in vitro studies have shown that trastuzumab (an ERBB2 inhibitor) reduces vestibular schwannoma cell proliferation. With further research it may be possible to significantly reduce morbidity and mortality rates by decreasing tumor burden, tumor volume, hearing loss, and cranial nerve deficits seen in vestibular schwannomas.
Collapse
Affiliation(s)
- Brendan Fong
- Department of Neurological Surgery, University of California, Los Angeles, CA 90095-1761, USA
| | | | | | | | | | | |
Collapse
|
38
|
Zhang J, Kramer EG, Mahase S, Dutta DJ, Bonnamain V, Argaw AT, John GR. Targeting oligodendrocyte protection and remyelination in multiple sclerosis. ACTA ACUST UNITED AC 2011; 78:244-57. [PMID: 21425268 DOI: 10.1002/msj.20244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the brain and spinal cord with a presumed autoimmune etiology. Conduction block in demyelinated axons underlies early neurological symptoms, whereas axonal transection is believed responsible for more permanent later deficits. Approved treatments for the disease are immunoregulatory and reduce the rate of lesion formation and clinical exacerbation, but are only partially effective in preventing the onset of disability in multiple sclerosis patients. Approaches that directly protect myelin-producing oligodendrocytes and enhance remyelination may improve long-term outcomes and reduce the rate of axonal transection. Studies in genetically modified animals have improved our understanding of mechanisms underlying central nervous system pathology in multiple sclerosis models, and have identified pathways that regulate oligodendrocyte viability and myelin repair. However, although clinical trials are ongoing, many have been unsuccessful, and no treatments are yet approved that target these areas in multiple sclerosis. In this review, we examine avenues for oligodendrocyte protection and endogenous myelin repair in animal models of demyelination and remyelination, and their relevance as therapeutics in human patients.
Collapse
Affiliation(s)
- Jingya Zhang
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Joubert L, Foucault I, Sagot Y, Bernasconi L, Duval F, Alliod C, Frossard MJ, Pescini Gobert R, Curchod ML, Salvat C, Nichols A, Pouly S, Rommel C, Roach A, Hooft van Huijsduijnen R. Chemical inducers and transcriptional markers of oligodendrocyte differentiation. J Neurosci Res 2011; 88:2546-57. [PMID: 20544820 DOI: 10.1002/jnr.22434] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Oligodendrocytes generate and maintain myelin, which is essential for axonal function and protection of the mammalian central nervous system. To advance our molecular understanding of differentiation by these cells, we screened libraries of pharmacologically active compounds and identified inducers of differentiation of Oli-neu, a stable cell line of mouse oligodendrocyte precursors (OPCs). We identified four broad classes of inducers, namely, forskolin/cAMP (protein kinase A activators), steroids (glucocorticoids and retinoic acid), ErbB2 inhibitors, and nucleoside analogs, and confirmed the activity of these compounds on rat primary oligodendrocyte precursors and mixed cortical cultures. We also analyzed transcriptional responses in the chemically induced mouse and rat OPC differentiation processes and compared these with earlier studies. We confirm the view that ErbB2 is a natural signaling component that is required for OPC proliferation, whereas ErbB2 inhibition or genetic knockdown results in OPC differentiation.
Collapse
|
40
|
Sulaiman OAR, Gordon T. Role of chronic Schwann cell denervation in poor functional recovery after nerve injuries and experimental strategies to combat it. Neurosurgery 2010; 65:A105-14. [PMID: 19927054 DOI: 10.1227/01.neu.0000358537.30354.63] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To present our data about the role of chronic denervation (CD) of the distal nerve stumps as compared with muscle denervation atrophy and experimental strategies to promote better functional recovery. METHODS A rat model of nerve injury and repair was used. The common peroneal branch of the sciatic nerve was subjected to 0 to 24 weeks of CD before cross-suture with the tibial motoneurons. Our outcome measures included the numbers of motoneurons that regenerated their axons and the numbers that reinnervated muscle targets (motor units). To overcome the effects of CD, we used subcutaneous injection of FK506 and in vitro reactivation of Schwann cells that had been subjected to 24 weeks of CD with transforming growth factor beta. RESULTS Numbers of regenerated motoneurons and reinnervated motor units decreased as a function of duration of CD. However, axons that regenerated through the distal nerve stumps reinnervated the muscle targets and even formed enlarged motor unit size regardless of the duration of CD. FK506 doubled the numbers of tibial motoneurons that regenerated their axons into the common peroneal nerve even after delayed repair. Reactivation of chronically denervated Schwann cells with transforming growth factor beta significantly increased their capacity to support axonal regeneration. CONCLUSION CD of the distal nerve stumps is the primary factor that results in poor axonal regeneration and subsequently poor functional recovery. Acceleration of the rate of axonal regeneration and/or reactivation of Schwann cells of the distal nerve stumps are effective experimental strategies to promote axonal regeneration and functional recovery.
Collapse
Affiliation(s)
- Olawale A R Sulaiman
- Department of Neurosurgery, Spine Center, Ochsner Clinic Foundation, New Orleans, Louisiana 70121, USA.
| | | |
Collapse
|
41
|
Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol 2010; 119:37-53. [PMID: 19847447 PMCID: PMC2799635 DOI: 10.1007/s00401-009-0601-5] [Citation(s) in RCA: 610] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/09/2009] [Accepted: 10/10/2009] [Indexed: 11/29/2022]
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so.
Collapse
Affiliation(s)
- Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria.
| | | |
Collapse
|
42
|
Marenco S, Radulescu E. Imaging genetics of structural brain connectivity and neural integrity markers. Neuroimage 2009; 53:848-56. [PMID: 19932755 DOI: 10.1016/j.neuroimage.2009.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 01/15/2023] Open
Abstract
We review studies that have used diffusion imaging (DI) and magnetic resonance spectroscopy (MRS) to investigate genetic associations. A brief description of the measures obtainable with these methods and of some methodological and interpretability limitations is given. The usefulness of DI and MRS in defining intermediate phenotypes and in demonstrating the effects of common genetic variants known to increase risk for psychiatric manifestations on anatomical and metabolic phenotypes is reviewed. The main focus is on schizophrenia where the greatest amount of data has been collected. Moreover, we present an example coming from a different approach, where the genetic alteration is known (the deletion that causes Williams syndrome) and the DI phenotype can shed new light on the function of genes affected by the mutation. We conclude that, although these are still early days of this type of research and many findings remain controversial, both techniques can significantly contribute to the understanding of genetic effects in the brain and the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Stefano Marenco
- Unit for Multimodal Imaging Genetics, Clinical Brain Disorders Branch, GCAP, IRP, NIMH, 10 Center Drive, Building 10, Room 3C103, Bethesda, MD 20892, USA.
| | | |
Collapse
|
43
|
The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat Neurosci 2009; 12:1398-406. [PMID: 19838178 PMCID: PMC2783566 DOI: 10.1038/nn.2410] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/04/2009] [Indexed: 01/06/2023]
Abstract
The bHLH transcription factor Olig1 promotes oligodendrocyte maturation and is required for myelin repair. In this report, we characterize an Olig1-regulated G-protein coupled receptor GPR17 whose function is to oppose the action of Olig1. GPR17 is restricted to oligodendrocyte lineage cells but downregulated during the peak period of myelination and in adulthood. Transgenic mice with sustained GPR17 expression in oligodendrocytes exhibit stereotypic features of myelinating disorders in the CNS. GPR17 overexpression inhibits oligodendrocyte differentiation and maturation both in vivo and in vitro. Conversely, GPR17 knockout mice display early onset of oligodendrocyte myelination. The opposing action of GPR17 on oligodendrocyte maturation reflects, at least partially, upregulation and nuclear translocation of the potent oligodendrocyte differentiation inhibitors ID2/4. Collectively, these findings suggest that GPR17 orchestrates the transition between immature and myelinating oligodendrocytes via an ID protein-mediated negative regulation, and may serve as a potential therapeutic target for CNS myelin repair.
Collapse
|
44
|
Doncel-Pérez E, Caballero-Chacón S, Nieto-Sampedro M. Neurosphere cell differentiation to aldynoglia promoted by olfactory ensheathing cell conditioned medium. Glia 2009; 57:1393-409. [DOI: 10.1002/glia.20858] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Monje PV, Athauda G, Wood PM. Protein kinase A-mediated gating of neuregulin-dependent ErbB2-ErbB3 activation underlies the synergistic action of cAMP on Schwann cell proliferation. J Biol Chem 2008; 283:34087-100. [PMID: 18799465 PMCID: PMC2590688 DOI: 10.1074/jbc.m802318200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 09/11/2008] [Indexed: 12/29/2022] Open
Abstract
In Schwann cells (SCs), cyclic adenosine monophosphate (cAMP) enhances the action of neuregulin, the most potent known mitogen for SCs, by synergistically increasing the activation of two crucial signaling pathways: ERK and Akt. However, the underlying mechanism of cross-talk between neuregulin and cAMP signaling remains mostly undefined. Here, we report that the activation of protein kinase A (PKA), but not that of exchange protein activated by cAMP (EPAC), enhances S-phase entry of SCs by synergistically enhancing the ligand-dependent tyrosine phosphorylation/activation of the neuregulin co-receptor, ErbB2-ErbB3. The role of PKA in neuregulin-ErbB signaling was confirmed using PKA inhibitors, pathway-selective cAMP analogs, and natural ligands stimulating PKA activity in SCs, such as adenosine and epinephrine. Two basic observations defined the synergistic action of PKA as "gating" for neuregulin-ErbB signaling: 1) the activation of PKA was not sufficient to induce S-phase entry or the activation of either ErbB2 or ErbB3; and 2) the presence of neuregulin was strictly required to ignite ErbB activation and thereby ERK and Akt signaling. However, PKA directly phosphorylated ErbB2 on Thr-686, a highly conserved intracellular regulatory site that was required for the PKA-mediated synergistic enhancement of neuregulin-induced ErbB2-ErbB3 activation and proliferation in SCs. The gating action of PKA on neuregulin-induced ErbB2-ErbB3 activation has important biological significance, because it insures signal amplification into the ERK and Akt pathways without compromising either the neuregulin dependence or the high specificity of ErbB signaling pathways.
Collapse
Affiliation(s)
- Paula V Monje
- Miami Project to Cure Paralysis, Miami, FL 33136, USA.
| | | | | |
Collapse
|
46
|
Hoshikawa S, Ogata T, Fujiwara S, Nakamura K, Tanaka S. A novel function of RING finger protein 10 in transcriptional regulation of the myelin-associated glycoprotein gene and myelin formation in Schwann cells. PLoS One 2008; 3:e3464. [PMID: 18941509 PMCID: PMC2565066 DOI: 10.1371/journal.pone.0003464] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 09/22/2008] [Indexed: 11/23/2022] Open
Abstract
Myelin-associated glycoprotein (MAG) has been detected in Schwann cells prior to the onset of myelination, suggesting its functions in the initiation of myelination. However, transcriptional regulatory mechanisms of MAG remain to be elucidated. Here, we analyzed the promoter of the MAG gene by using luciferase reporter systems in the primary rat Schwann cells. We identified a novel cis-acting element located 160 bp upstream from the MAG transcription initiation site. Using the identified cis-element as a bait, we performed yeast one-hybrid screening and isolated a cDNA encoding a RNF10 as a putative trans-acting protein. When overexpressed in Schwann cells, RNF10 enhanced the activity of the MAG promoter. When RNF10 expression in Schwann cells was knocked down by siRNA, endogenous MAG mRNA and protein expression decreased. Furthermore, we evaluated myelin synthesis using Schwann cell-DRG neuron cocultures. When Schwann cells were infected with retrovirus expressing RNF10 siRNA, myelin formation was inhibited. These data suggest that RNF10 regulates MAG expression and is required for myelin formation.
Collapse
Affiliation(s)
- Shinya Hoshikawa
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
47
|
Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Müller T, Wende H, Stassart RM, Nawaz S, Humml C, Velanac V, Radyushkin K, Goebbels S, Fischer TM, Franklin RJ, Lai C, Ehrenreich H, Birchmeier C, Schwab MH, Nave KA. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 2008; 59:581-95. [PMID: 18760695 DOI: 10.1016/j.neuron.2008.06.028] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 04/18/2008] [Accepted: 06/27/2008] [Indexed: 10/21/2022]
Abstract
Understanding the control of myelin formation by oligodendrocytes is essential for treating demyelinating diseases. Neuregulin-1 (NRG1) type III, an EGF-like growth factor, is essential for myelination in the PNS. It is thus thought that NRG1/ErbB signaling also regulates CNS myelination, a view suggested by in vitro studies and the overexpression of dominant-negative ErbB receptors. To directly test this hypothesis, we generated a series of conditional null mutants that completely lack NRG1 beginning at different stages of neural development. Unexpectedly, these mice assemble normal amounts of myelin. In addition, double mutants lacking oligodendroglial ErbB3 and ErbB4 become myelinated in the absence of any stimulation by neuregulins. In contrast, a significant hypermyelination is achieved by transgenic overexpression of NRG1 type I or NRG1 type III. Thus, NRG1/ErbB signaling is markedly different between Schwann cells and oligodendrocytes that have evolved an NRG/ErbB-independent mechanism of myelination control.
Collapse
Affiliation(s)
- Bastian G Brinkmann
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen 37075, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Oligodendrocytes and Schwann cells are highly specialized glial cells that wrap axons with a multilayered myelin membrane for rapid impulse conduction. Investigators have recently identified axonal signals that recruit myelin-forming Schwann cells from an alternate fate of simple axonal engulfment. This is the evolutionary oldest form of axon-glia interaction, and its function is unknown. Recent observations suggest that oligodendrocytes and Schwann cells not only myelinate axons but also maintain their long-term functional integrity. Mutations in the mouse reveal that axonal support by oligodendrocytes is independent of myelin assembly. The underlying mechanisms are still poorly understood; we do know that to maintain axonal integrity, mammalian myelin-forming cells require the expression of some glia-specific proteins, including CNP, PLP, and MAG, as well as intact peroxisomes, none of which is necessary for myelin assembly. Loss of glial support causes progressive axon degeneration and possibly local inflammation, both of which are likely to contribute to a variety of neuronal diseases in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany.
| | | |
Collapse
|
49
|
Iacovelli J, Lopera J, Bott M, Baldwin E, Khaled A, Uddin N, Fernandez-Valle C. Serum and forskolin cooperate to promote G1 progression in Schwann cells by differentially regulating cyclin D1, cyclin E1, and p27Kip expression. Glia 2007; 55:1638-47. [PMID: 17849471 DOI: 10.1002/glia.20578] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proliferation of Schwann cells in vitro, unlike most mammalian cells, is not induced by serum alone but additionally requires cAMP elevation and mitogenic stimulation. How these agents cooperate to promote progression through the G1 phase of the cell cycle is unclear. We studied the integrative effects of these compounds on receptor-mediated signaling pathways and regulators of G1 progression. We show that serum alone induces strong cyclical expression of cyclin D1 and E1, 6 and 12 h after addition, respectively. Serum also promotes strong but transient erbB2, ERK, and Akt phosphorylation, but Schwann cells remain arrested in G1 due to high levels of the inhibitor, p27(Kip). Forskolin with serum promotes G1 progression in 22% of Schwann cells between 18 and 24 h by inducing a steady decline in p27(Kip) levels that reaches a nadir at 12 h coinciding with peak cyclin E1 expression. Forskolin also delays neuregulin-induced loss of erbB2 receptors allowing strong acute activation of PI3K, sustained erbB2 phosphorylation and G1 progression in 31% of Schwann cells. We find that the ability of forskolin to decrease p27(Kip) is associated with its ability to decrease Krox-20 expression that is induced by serum and further increased by neuregulin. Our results explain why serum is required but insufficient to stimulate proliferation and identify two routes by which forskolin promotes proliferation in the presence of serum and neuregulin. These findings provide insights into how G1 progression and, cell cycle arrest leading to myelination are regulated in Schwann cells.
Collapse
Affiliation(s)
- Jared Iacovelli
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Rabert D, Xiao Y, Yiangou Y, Kreder D, Sangameswaran L, Segal MR, Hunt CA, Birch R, Anand P. Plasticity of gene expression in injured human dorsal root ganglia revealed by GeneChip oligonucleotide microarrays. J Clin Neurosci 2007; 11:289-99. [PMID: 14975420 DOI: 10.1016/j.jocn.2003.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 05/09/2003] [Indexed: 11/29/2022]
Abstract
Root avulsion from the spinal cord occurs in brachial plexus lesions. It is the practice to repair such injuries by transferring an intact neighbouring nerve to the distal stump of the damaged nerve; avulsed dorsal root ganglia (DRG) are removed to enable nerve transfer. Such avulsed adult human cervical DRG ( [Formula: see text] ) obtained at surgery were compared to controls, for the first time, using GeneChip oligonucleotide arrays. We report 91 genes whose expression levels are clearly altered by the injury. This first study provides a global assessment of the molecular events or "gene switches" as a consequence of DRG injuries, as the tissues represent a wide range of surgical delay, from 1 to 100 days. A number of these genes are novel with respect to sensory ganglia, while others are known to be involved in neurotransmission, trophism, cytokine functions, signal transduction, myelination, transcription regulation, and apoptosis. Cluster analysis showed that genes involved in the same functional groups are largely positioned close to each other. This study represents an important step in identifying new genes and molecular mechanisms in human DRG, with potential therapeutic relevance for nerve repair and relief of chronic neuropathic pain.
Collapse
|