1
|
Shank2 Binds to aPKC and Controls Tight Junction Formation with Rap1 Signaling during Establishment of Epithelial Cell Polarity. Cell Rep 2020; 31:107407. [DOI: 10.1016/j.celrep.2020.02.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/22/2020] [Accepted: 02/25/2020] [Indexed: 11/19/2022] Open
|
2
|
Yano T, Torisawa T, Oiwa K, Tsukita S. AMPK-dependent phosphorylation of cingulin reversibly regulates its binding to actin filaments and microtubules. Sci Rep 2018; 8:15550. [PMID: 30341325 PMCID: PMC6195624 DOI: 10.1038/s41598-018-33418-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Cytoskeletal organization is essential for the precise morphogenesis of cells, tissues, and organs. Cytoskeletons, bound to scaffolding proteins, regulate the apical junction complex (AJC), which is composed of tight and adherens junctions, and located at the apical side of epithelial cell sheets. Cingulin is a tight junction-associated protein that binds to both actin filaments and microtubules. However, how cingulin binds to microtubules and whether cingulin can bind to actin and microtubules simultaneously are unclear. Here we examined the mechanisms behind cingulin’s cytoskeleton-binding properties. First, using total internal reflection fluorescence microscopy, we detected cingulin at microtubule cross points. We then found the interdomain interactions in cingulin molecules. Notably, we found that this interaction was regulated by AMPK-dependent phosphorylation and changed cingulin’s conformation and binding properties to actin filaments and microtubules. Finally, we found that the AMPK-regulated cingulin properties regulated the barrier functions of epithelial cell sheets. We propose that the cellular metabolic state, which involves AMPK, can contribute to the organization and maintenance of epithelial tissues through cingulin’s tight junction/cytoskeleton regulation.
Collapse
Affiliation(s)
- Tomoki Yano
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Takayuki Torisawa
- National Institute of Information and Communications Technology, Advanced ICT Research Institute, Kobe, Hyogo, 651-2492, Japan.,Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Kazuhiro Oiwa
- National Institute of Information and Communications Technology, Advanced ICT Research Institute, Kobe, Hyogo, 651-2492, Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Yano T, Kanoh H, Tamura A, Tsukita S. Apical cytoskeletons and junctional complexes as a combined system in epithelial cell sheets. Ann N Y Acad Sci 2017; 1405:32-43. [DOI: 10.1111/nyas.13432] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Tomoki Yano
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
| | - Hatsuho Kanoh
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
- Graduate School of Biostudies; Kyoto University; Kyoto Japan
| | - Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
| |
Collapse
|
4
|
Three-dimensional Organization of Layered Apical Cytoskeletal Networks Associated with Mouse Airway Tissue Development. Sci Rep 2017; 7:43783. [PMID: 28272499 PMCID: PMC5363704 DOI: 10.1038/srep43783] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/30/2017] [Indexed: 01/11/2023] Open
Abstract
The cytoskeleton is an essential cellular component that enables various sophisticated functions of epithelial cells by forming specialized subcellular compartments. However, the functional and structural roles of cytoskeletons in subcellular compartmentalization are still not fully understood. Here we identified a novel network structure consisting of actin filaments, intermediate filaments, and microtubules directly beneath the apical membrane in mouse airway multiciliated cells and in cultured epithelial cells. Three-dimensional imaging by ultra-high voltage electron microscopy and immunofluorescence revealed that the morphological features of each network depended on the cell type and were spatiotemporally integrated in association with tissue development. Detailed analyses using Odf2 mutant mice, which lack ciliary basal feet and apical microtubules, suggested a novel contribution of the intermediate filaments to coordinated ciliary beating. These findings provide a new perspective for viewing epithelial cell differentiation and tissue morphogenesis through the structure and function of apical cytoskeletal networks.
Collapse
|
5
|
Caceres PS, Benedicto I, Lehmann GL, Rodriguez-Boulan EJ. Directional Fluid Transport across Organ-Blood Barriers: Physiology and Cell Biology. Cold Spring Harb Perspect Biol 2017; 9:a027847. [PMID: 28003183 PMCID: PMC5334253 DOI: 10.1101/cshperspect.a027847] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Directional fluid flow is an essential process for embryo development as well as for organ and organism homeostasis. Here, we review the diverse structure of various organ-blood barriers, the driving forces, transporters, and polarity mechanisms that regulate fluid transport across them, focusing on kidney-, eye-, and brain-blood barriers. We end by discussing how cross talk between barrier epithelial and endothelial cells, perivascular cells, and basement membrane signaling contribute to generate and maintain organ-blood barriers.
Collapse
Affiliation(s)
- Paulo S Caceres
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Ignacio Benedicto
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Guillermo L Lehmann
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Enrique J Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
6
|
Coch RA, Leube RE. Intermediate Filaments and Polarization in the Intestinal Epithelium. Cells 2016; 5:E32. [PMID: 27429003 PMCID: PMC5040974 DOI: 10.3390/cells5030032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
The cytoplasmic intermediate filament cytoskeleton provides a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. This is particularly apparent in the intestinal epithelium, in which the intermediate filament network is localized below the apical terminal web region and is anchored to the apical junction complex. This arrangement is conserved from the nematode Caenorhabditis elegans to humans. The review summarizes compositional, morphological and functional features of the polarized intermediate filament cytoskeleton in intestinal cells of nematodes and mammals. We emphasize the cross talk of intermediate filaments with the actin- and tubulin-based cytoskeleton. Possible links of the intermediate filament system to the distribution of apical membrane proteins and the cell polarity complex are highlighted. Finally, we discuss how these properties relate to the establishment and maintenance of polarity in the intestine.
Collapse
Affiliation(s)
- Richard A Coch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany.
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany.
| |
Collapse
|
7
|
Geisler F, Leube RE. Epithelial Intermediate Filaments: Guardians against Microbial Infection? Cells 2016; 5:cells5030029. [PMID: 27355965 PMCID: PMC5040971 DOI: 10.3390/cells5030029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|
8
|
Role of Intermediate Filaments in Vesicular Traffic. Cells 2016; 5:cells5020020. [PMID: 27120621 PMCID: PMC4931669 DOI: 10.3390/cells5020020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 12/28/2022] Open
Abstract
Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.
Collapse
|
9
|
Abstract
The brush border on the apical surface of enterocytes is a highly specialized structure well-adapted for efficient digestion and nutrient transport, whilst at the same time providing a protective barrier for the intestinal mucosa. The brush border is constituted of a densely ordered array of microvilli, protrusions of the plasma membrane, which are supported by actin-based microfilaments and interacting proteins and anchored in an apical network of actomyosin and intermediate filaments, the so-called terminal web. The highly dynamic, specialized apical domain is both an essential partner for the gut microbiota and an efficient signalling platform that enables adaptation to physiological stimuli from the external and internal milieu. Nevertheless, genetic alterations or various pathological stresses, such as infection, inflammation, and mechanical or nutritional alterations, can jeopardize this equilibrium and compromise intestinal functions. Long-time neglected, the intestinal brush-border shall be enlightening again as the central actor of the complex but essential intestinal homeostasis. Here, we review the processes and components involved in brush border organization and discuss pathological mechanisms that can induce brush border defects and their physiological consequences.
Collapse
|
10
|
Kravtsov D, Mashukova A, Forteza R, Rodriguez MM, Ameen NA, Salas PJ. Myosin 5b loss of function leads to defects in polarized signaling: implication for microvillus inclusion disease pathogenesis and treatment. Am J Physiol Gastrointest Liver Physiol 2014; 307:G992-G1001. [PMID: 25258405 PMCID: PMC4233287 DOI: 10.1152/ajpgi.00180.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microvillus inclusion disease (MVID) is an autosomal recessive condition resulting in intractable secretory diarrhea in newborns due to loss-of-function mutations in myosin Vb (Myo5b). Previous work suggested that the apical recycling endosomal (ARE) compartment is the primary location for phosphoinositide-dependent protein kinase 1 (PDK1) signaling. Because the ARE is disrupted in MVID, we tested the hypothesis that polarized signaling is affected by Myo5b dysfunction. Subcellular distribution of PDK1 was analyzed in human enterocytes from MVID/control patients by immunocytochemistry. Using Myo5b knockdown (kd) in Caco-2BBe cells, we studied phosphorylated kinases downstream of PDK1, electrophysiological parameters, and net water flux. PDK1 was aberrantly localized in human MVID enterocytes and Myo5b-deficient Caco-2BBe cells. Two PDK1 target kinases were differentially affected: phosphorylated atypical protein kinase C (aPKC) increased fivefold and phosohoprotein kinase B slightly decreased compared with control. PDK1 redistributed to a soluble (cytosolic) fraction and copurified with basolateral endosomes in Myo5b kd. Myo5b kd cells showed a decrease in net water absorption that could be reverted with PDK1 inhibitors. We conclude that, in addition to altered apical expression of ion transporters, depolarization of PDK1 in MVID enterocytes may lead to aberrant activation of downstream kinases such as aPKC. The findings in this work suggest that PDK1-dependent signaling may provide a therapeutic target for treating MVID.
Collapse
Affiliation(s)
- Dmitri Kravtsov
- 1Department of Pediatrics, Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut;
| | - Anastasia Mashukova
- 2Department of Physiology, Nova Southeastern University, Ft. Lauderdale, Florida; ,3Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Radia Forteza
- 3Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Maria M. Rodriguez
- 4Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadia A. Ameen
- 1Department of Pediatrics, Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut;
| | - Pedro J. Salas
- 3Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| |
Collapse
|
11
|
Mashukova A, Kozhekbaeva Z, Forteza R, Dulam V, Figueroa Y, Warren R, Salas PJ. The BAG-1 isoform BAG-1M regulates keratin-associated Hsp70 chaperoning of aPKC in intestinal cells during activation of inflammatory signaling. J Cell Sci 2014; 127:3568-77. [PMID: 24876225 DOI: 10.1242/jcs.151084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Atypical PKC (ι/λ and ζ; hereafter referred to as aPKC) is a key player in the acquisition of epithelial polarity and participates in other signaling cascades including the control of NF-κB signaling. This kinase is post-translationally regulated through Hsp70-mediated refolding. Previous work has shown that such a chaperoning activity is specifically localized to keratin intermediate filaments. Our work was performed with the goal of identifying the molecule(s) that block Hsp70 activity on keratin filaments during inflammation. A transcriptional screen allowed us to focus on BAG-1, a multi-functional protein that assists Hsp70 in nucleotide exchange but also blocks its activity at higher concentrations. We found the BAG-1 isoform BAG-1M upregulated threefold in human Caco-2 cells following stimulation with tumor necrosis factor receptor α (TNFα) to induce a pro-inflammatory response, and up to sixfold in mouse enterocytes following treatment with dextran sodium sulfate (DSS) to induce colitis. BAG-1M, but no other isoform, was found to co-purify with intermediate filaments and block Hsp70 activity in the keratin fraction but not in the soluble fraction within the range of concentrations found in epithelial cells cultured under control and inflammation conditions. Constitutive expression of BAG-1M decreased levels of phosphorylated aPKC. By contrast, knockdown of BAG-1, blocked the TNFα-induced decrease of phosphorylated aPKC. We conclude that BAG-1M mediates Hsp70 inhibition downstream of NF-κB.
Collapse
Affiliation(s)
- Anastasia Mashukova
- Nova Southeastern University, Department of Physiology, Fort Lauderdale, FL 33314, USA University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Zhanna Kozhekbaeva
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Radia Forteza
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Vipin Dulam
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Yolanda Figueroa
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Robert Warren
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Pedro J Salas
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| |
Collapse
|
12
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
13
|
Muñoz-Antoli C, Cortés A, Sotillo J, Fried B, Esteban JG, Toledo R. Differential expression and glycosylation of proteins in the rat ileal epithelium in response to Echinostoma caproni infection. J Proteomics 2014; 101:169-78. [DOI: 10.1016/j.jprot.2014.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 12/29/2022]
|
14
|
Lengerer B, Pjeta R, Wunderer J, Rodrigues M, Arbore R, Schärer L, Berezikov E, Hess MW, Pfaller K, Egger B, Obwegeser S, Salvenmoser W, Ladurner P. Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein. Front Zool 2014; 11:12. [PMID: 24520881 PMCID: PMC4016567 DOI: 10.1186/1742-9994-11-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Free-living flatworms, in both marine and freshwater environments, are able to adhere to and release from a substrate several times within a second. This reversible adhesion relies on adhesive organs comprised of three cell types: an adhesive gland cell, a releasing gland cell, and an anchor cell, which is a modified epidermal cell responsible for structural support. However, nothing is currently known about the molecules that are involved in this adhesion process. RESULTS In this study we present the detailed morphology of the adhesive organs of the free-living marine flatworm Macrostomum lignano. About 130 adhesive organs are located in a horse-shoe-shaped arc along the ventral side of the tail plate. Each organ consists of exactly three cells, an adhesive gland cell, a releasing gland cell, and an anchor cell. The necks of the two gland cells penetrate the anchor cell through a common pore. Modified microvilli of the anchor cell form a collar surrounding the necks of the adhesive- and releasing glands, jointly forming the papilla, the outer visible part of the adhesive organs. Next, we identified an intermediate filament (IF) gene, macif1, which is expressed in the anchor cells. RNA interference mediated knock-down resulted in the first experimentally induced non-adhesion phenotype in any marine animal. Specifically, the absence of intermediate filaments in the anchor cells led to papillae with open tips, a reduction of the cytoskeleton network, a decline in hemidesmosomal connections, and to shortened microvilli containing less actin. CONCLUSION Our findings reveal an elaborate biological adhesion system in a free-living flatworm, which permits impressively rapid temporary adhesion-release performance in the marine environment. We demonstrate that the structural integrity of the supportive cell, the anchor cell, is essential for this adhesion process: the knock-down of the anchor cell-specific intermediate filament gene resulted in the inability of the animals to adhere. The RNAi mediated changes of the anchor cell morphology are comparable to situations observed in human gut epithelia. Therefore, our current findings and future investigations using this powerful flatworm model system might contribute to a better understanding of the function of intermediate filaments and their associated human diseases.
Collapse
Affiliation(s)
- Birgit Lengerer
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| | - Marcelo Rodrigues
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| | - Roberto Arbore
- Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, Basel CH-4051, Switzerland
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, Basel CH-4051, Switzerland
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen NL-9713 AV, The Netherlands
| | - Michael W Hess
- Division of Histology and Embryology, Medical University Innsbruck, Müllerstrasse 59, Innsbruck A-6020, Austria
| | - Kristian Pfaller
- Division of Histology and Embryology, Medical University Innsbruck, Müllerstrasse 59, Innsbruck A-6020, Austria
| | - Bernhard Egger
- Department of Genetics, Evolution and Environment, University College London, Gower St, London WC1E 6BT, UK
| | - Sabrina Obwegeser
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| | - Willi Salvenmoser
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| |
Collapse
|
15
|
Kuga T, Kume H, Kawasaki N, Sato M, Adachi J, Shiromizu T, Hoshino I, Nishimori T, Matsubara H, Tomonaga T. A novel mechanism of keratin cytoskeleton organization through casein kinase Iα and FAM83H in colorectal cancer. J Cell Sci 2013; 126:4721-31. [DOI: 10.1242/jcs.129684] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Keratin filaments form cytoskeletal networks in epithelial cells. Dynamic rearrangement of keratin filament networks is required for epithelial cells to perform cellular processes such as cell migration and polarization; however, the mechanism governing keratin filament rearrangement remains unclear. Here, we found a novel mechanism of keratin cytoskeleton organization mediated by casein kinase Iα (CK-1α) and a newly identified keratin-associated protein, FAM83H. FAM83H knockdown induces keratin filament bundling, whereas FAM83H overexpression disassembles keratin filaments, suggesting that FAM83H regulates the filamentous state of keratins. Intriguingly, keratin filament bundling is concomitant with the dissociation of CK-1α from keratin filaments, while aberrant speckle-like localization of CK-1α is observed concomitantly with keratin filament disassembly. Furthermore, CK-1α inhibition, like FAM83H knockdown, causes keratin filament bundling and reverses keratin filament disassembly induced by FAM83H overexpression, suggesting that CK-1α mediates FAM83H-dependent reorganization of keratin filaments. Since the N-terminal region of FAM83H interacts with CK-1α, whereas the C-terminal region interacts with keratins, FAM83H might tether CK-1α to keratins. Colorectal cancer tissue also shows keratin filament disassembly accompanied with FAM83H overexpression and aberrant CK-1α localization, and FAM83H-overexpressing cancer cells exhibit loss or alteration of epithelial cell polarity. Importantly, FAM83H knockdown inhibits cell migration accompanied by keratin cytoskeleton rearrangement in colorectal cancer cells. These results suggest that keratin cytoskeleton organization is regulated by FAM83H-mediated recruitment of CK-1α to keratins, and that keratin filament disassembly caused by FAM83H overexpression and aberrant localization of CK-1α may contribute to the progression of colorectal cancer.
Collapse
|
16
|
Brouillard F, Fritsch J, Edelman A, Ollero M. Contribution of proteomics to the study of the role of cytokeratins in disease and physiopathology. Proteomics Clin Appl 2012; 2:264-85. [PMID: 21136830 DOI: 10.1002/prca.200780018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytokeratins (CKs), the most abundant group of cytoskeletal intermediate filaments, and proteomics are strongly connected. On the one hand, proteomics has been extremely useful to uncover new features and functions of CKs, on the other, the highly abundant CKs serve as an exceptional tool to test new technological developments in proteomics. As a result, proteomics has contributed to finding valuable associations of CKs with diseases as diverse as cancer, cystic fibrosis, steatohepatitis, viral and bacterial infection, keratoconus, vitreoretinopathy, preeclampsia or the chronic fatigue syndrome, as well as to characterizing their participation in a number of physiopathological processes, including drug resistance, response to toxicants, inflammation, stem cell differentiation, embryo development, and tissue repair. In some cases, like in cystic fibrosis, CKs have been described as potential therapeutic targets. The development of a specific field of proteomics where CKs become the main subject of research aims and hypotheses is suggested.
Collapse
Affiliation(s)
- Franck Brouillard
- INSERM, Unité 845, Paris, France; Faculté de Médecine René Descartes, Université Paris-Descartes, Plateau Protéomes IFR94, Paris, France
| | | | | | | |
Collapse
|
17
|
Torres AG, Threlfall RN, Gait MJ. Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2'-O-methyl (OMe) mixmer anti-miRs in the absence of transfection agents. ARTIFICIAL DNA, PNA & XNA 2012; 2:71-8. [PMID: 22567190 DOI: 10.4161/adna.17731] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Efficient cell delivery of antisense oligonucleotides (ONs) is a key issue for their potential therapeutic use. It has been shown recently that some ONs can be delivered into cells without the use of transfection agents (gymnosis), but this generally requires cell incubation over several days and high amounts of ONs (micromolar concentrations). Here we have targeted microRNA 122 (miR-122), a small non-coding RNA involved in regulation of lipid metabolism and in the replication of hepatitis C virus, with ONs of different chemistries (anti-miRs) by gymnotic delivery in cell culture. Using a sensitive dual-luciferase reporter assay, anti-miRs were screened for their ability to enter liver cells gymnotically and inhibit miR-122 activity. Efficient miR-122 inhibition was obtained with cationic PNAs and 2'-O-methyl (OMe) and Locked Nucleic Acids (LNA)/OMe mixmers containing either phosphodiester (PO) or phosphorothioate (PS) linkages at sub-micromolar concentrations when incubated with cells for just 4 hours. Furthermore, PNA and PS-containing anti-miRs were able to sustain miR-122 inhibitory effects for at least 4 days. LNA/OMe PS anti-miRs were the most potent anti-miR chemistry tested in this study, an ON chemistry that has been little exploited so far as anti-miR agents towards therapeutics.
Collapse
Affiliation(s)
- Adrian G Torres
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
18
|
Identification of SNPs in the cystic fibrosis interactome influencing pulmonary progression in cystic fibrosis. Eur J Hum Genet 2012; 21:397-403. [PMID: 22892532 DOI: 10.1038/ejhg.2012.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There is growing evidence that the great phenotypic variability in patients with cystic fibrosis (CF) not only depends on the genotype, but apart from a combination of environmental and stochastic factors predominantly also on modifier gene effects. It has been proposed that genes interacting with CF transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC) are potential modifiers. Therefore, we assessed the impact of single-nucleotide polymorphisms (SNPs) of several of these interacters on CF disease outcome. SNPs that potentially alter gene function were genotyped in 95 well-characterized p.Phe508del homozygous CF patients. Linear mixed-effect model analysis was used to assess the relationship between sequence variants and the repeated measurements of lung function parameters. In total, we genotyped 72 SNPs in 10 genes. Twenty-five SNPs were used for statistical analysis, where we found strong associations for one SNP in PPP2R4 with the lung clearance index (P ≤ 0.01), the specific effective airway resistance (P ≤ 0.005) and the forced expiratory volume in 1 s (P ≤ 0.005). In addition, we identified one SNP in SNAP23 to be significantly associated with three lung function parameters as well as one SNP in PPP2R1A and three in KRT19 to show a significant influence on one lung function parameter each. Our findings indicate that direct interacters with CFTR, such as SNAP23, PPP2R4 and PPP2R1A, may modify the residual function of p.Phe508del-CFTR while variants in KRT19 may modulate the amount of p.Phe508del-CFTR at the apical membrane and consequently modify CF disease.
Collapse
|
19
|
Sumigray KD, Lechler T. Desmoplakin controls microvilli length but not cell adhesion or keratin organization in the intestinal epithelium. Mol Biol Cell 2012; 23:792-9. [PMID: 22238362 PMCID: PMC3290639 DOI: 10.1091/mbc.e11-11-0923] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Desmosomes are cell–cell adhesion structures whose canonical functions are control of intermediate filament organization and tissue strength. In the intestinal epithelium, desmosomes do not mediate these functions but instead control the brush border architecture of the enterocytes. Maintaining proper cell–cell adhesion in the intestine is essential for tissue homeostasis and barrier function. This adhesion is thought to be mediated by cell adhesion structures, including tight junctions, adherens junctions, and desmosomes, which concentrate in the apical junctional region. While clear roles for adherens and tight junctions have been established in simple epithelia, the function of desmosomes has not been addressed. In stratified epithelia, desmosomes impart mechanical strength to tissues by organizing and anchoring the keratin filament network. In this paper, we report that the desmosomal protein desmoplakin (DP) is not essential for cell adhesion in the intestinal epithelium. Surprisingly, when DP is lacking, keratin filament localization is also unperturbed, although keratin filaments no longer anchor at desmosomes. Unexpectedly, DP is important for proper microvillus structure. Our study highlights the tissue-specific functions of desmosomes and reveals that the canonical functions for these structures are not conserved in simple epithelium.
Collapse
Affiliation(s)
- Kaelyn D Sumigray
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
20
|
Watson ED, Hughes M, Simmons DG, Natale DR, Sutherland AE, Cross JC. Cell-cell adhesion defects in Mrj mutant trophoblast cells are associated with failure to pattern the chorion during early placental development. Dev Dyn 2011; 240:2505-19. [DOI: 10.1002/dvdy.22755] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2011] [Indexed: 11/12/2022] Open
|
21
|
Foglieni C, Cavarelli M, Piscopiello M, Fulgenzi A, Ferrero ME. Mn bioavailability by polarized Caco-2 cells: comparison between Mn gluconate and Mn oxyprolinate. Nutr J 2011; 10:77. [PMID: 21781350 PMCID: PMC3171306 DOI: 10.1186/1475-2891-10-77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 07/25/2011] [Indexed: 12/20/2022] Open
Abstract
Background Micronutrient inadequate intake is responsible of pathological deficiencies and there is a need of assessing the effectiveness of metal supplementation, frequently proposed to rebalance poor diets. Manganese (Mn) is present in many enzymatic intracellular systems crucial for the regulation of cell metabolism, and is contained in commercially available metal supplements. Methods We compared the effects of two different commercial Mn forms, gluconate (MnGluc) and oxyprolinate (MnOxP). For this purpose we used the polarized Caco-2 cells cultured on transwell filters, an established in vitro model of intestinal epithelium. Since micronutrient deficiency may accelerate mitochondrial efficiency, the mitochondrial response of these cells, in the presence of MnGluc and MnOxP, by microscopy methods and by ATP luminescence assay was used. Results In the presence of both MnOxP and MnGluc a sustained mitochondrial activity was shown by mitoTraker labeling (indicative of mitochondrial respiration), but ATP intracellular content remained comparable to untreated cells only in the presence of MnOxP. In addition MnOxP transiently up-regulated the antioxidant enzyme Mn superoxide dismutase more efficiently than MnGluc. Both metal treatments preserved NADH and βNADPH diaphorase oxidative activity, avoided mitochondrial dysfunction, as assessed by the absence of a sustained phosphoERK activation, and were able to maintain cell viability. Conclusions Collectively, our data indicate that MnOxP and MnGluc, and primarily the former, produce a moderate and safe modification of Caco-2 cell metabolism, by activating positive enzymatic mechanisms, thus could contribute to long-term maintenance of cell homeostasis.
Collapse
Affiliation(s)
- Chiara Foglieni
- Department of Human Morphology Città Studi, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
22
|
The dual role of annexin II in targeting of brush border proteins and in intestinal cell polarity. Differentiation 2011; 81:243-52. [PMID: 21330046 DOI: 10.1016/j.diff.2011.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 01/20/2011] [Accepted: 01/22/2011] [Indexed: 01/23/2023]
Abstract
Functional intestinal epithelium relies on complete polarization of enterocytes marked by the formation of microvilli and the accurate trafficking of glycoproteins to relevant membrane domains. Numerous transport pathways warrant the unique structural identity and protein/lipid composition of the brush border membrane. Annexin II (Ca(2+)-dependent lipid-binding protein) is an important component of one of the apical protein transport machineries, which involves detergent-resistant membranes and the actin cytoskeleton. Here, we investigate in intestinal Caco-2 cells the contribution of annexin II to the sorting and transport of brush border hydrolases and role in intestinal cell polarity. Downregulation of annexin II in Caco-2-A4 cell line results in a severe reduction of the levels of the brush border membrane resident enzyme sucrase isomaltase (SI) as well as structural components such as ezrin. This reduction is accompanied by a redistribution of these proteins to intracellular compartments and a striking morphological transition of Caco-2 cells to rudimentary epithelial cells that are characterized by an almost flat apical membrane with sparse and short microvilli. Concomitant with this alteration is the redistribution of the intermediate filament protein keratin 19 to the intracellular membranes in Caco-2-A4 cells. Interestingly, keratin 19 interacts with annexin II in wild type Caco-2 cells and this interaction occurs exclusively in lipid rafts. Our findings suggest a role for annexin II and K19 in differentiation and polarization of intestinal cells.
Collapse
|
23
|
Al-Ghoul KJ, Lindquist TP, Kirk SS, Donohue ST. A novel terminal web-like structure in cortical lens fibers: architecture and functional assessment. Anat Rec (Hoboken) 2011; 293:1805-15. [PMID: 20730867 DOI: 10.1002/ar.21216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study describes a novel cytoskeletal array in fiber cells of the ocular lens of the rat and shows its relationship to the classical terminal web of other epithelial tissues. Naive adult Sprague-Dawley rats (n = 28) were utilized. F-actin, fodrin, myosin IIA, and CP49 distribution was assessed in anterior and posterior polar sections. For functional analysis, lenses were cultured with or without cytochalasin-D for 3 hr, then processed for confocal microscopy or assessed by laser scan analysis along sutures. Phalloidin labeling demonstrated a dense mesh of F-actin adjacent to posterior sutural domains to a subcapsular depth of 400 μm. Anterior polar sections revealed a comparable actin structure adjacent to anterior suture branches however, it was not developed in superficial fibers. Fodrin and myosin were localized within the web-like actin apparatus. The data was used to construct a model showing that the cytoskeletal array is located within the blunt, variable-width fiber ends that abut at sutures such that the "terminal web" flanks the suture on either side. Treatment with cytochalasin-D resulted in partial disassembly of the "terminal web" and perturbed cellular organization. Laser scan analysis revealed that cytochalasin-D treated lenses had significantly greater focal variability than control lenses (P = 0.020). We conclude that cortical fibers of rat lenses contain a bipolar structure that is structurally and compositionally analogous to classical terminal webs. The results indicate that the lens "terminal web" functions to stabilize lens fiber ends at sutures thus minimizing structural disorder, which in turn, promotes the establishment and maintenance of lens transparency.
Collapse
Affiliation(s)
- Kristin J Al-Ghoul
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA.
| | | | | | | |
Collapse
|
24
|
Zhang Y, Qu Z, Kim S, Shi V, Liao B, Kraft P, Bandaru R, Wu Y, Greenberger LM, Horak ID. Down-modulation of cancer targets using locked nucleic acid (LNA)-based antisense oligonucleotides without transfection. Gene Ther 2010; 18:326-33. [PMID: 21179173 PMCID: PMC3154478 DOI: 10.1038/gt.2010.133] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Usually, small interfering RNAs and most antisense molecules need mechanical or chemical delivery methods to down-modulate the targeted mRNA. However, these delivery approaches complicate the interpretations of biological consequences. We show that locked nucleic acid (LNA)-based antisense oligonucleotides (LNA-ONs) readily down-modulate genes of interest in multiple cell lines without any delivery means. The down-modulation of genes was quick, robust, long-lasting and specific followed by potent down-modulation of protein. The efficiency of the effect varied among the 30 tumor cell lines investigated. The most robust effects were found in those cells where nuclear localization of the LNA-ON was clearly observed. Importantly, without using any delivery agent, we demonstrated that HER3 mRNA and protein could be efficiently down-modulated in cells and a tumor xenograft model. These data provide a simple and efficient approach to identify potential drug targets and animal models. Further elucidation of the mechanism of cellular uptake and trafficking of LNA-ONs may enhance not only the therapeutic values of this platform but also antisense molecules in general.
Collapse
Affiliation(s)
- Y Zhang
- Department of Pharmacology, Enzon Pharmaceuticals, Piscataway, NJ 08854,USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pfister AB, Wood RC, Salas PJ, Zea DL, Ramsauer VP. Early response to ErbB2 over-expression in polarized Caco-2 cells involves partial segregation from ErbB3 by relocalization to the apical surface and initiation of survival signaling. J Cell Biochem 2010; 111:643-52. [PMID: 20589763 PMCID: PMC3075438 DOI: 10.1002/jcb.22754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In several human cancers, ErbB2 over-expression facilitates the formation of constitutively active homodimers resistant to internalization which results in progressive signal amplification from the receptor, conducive to cell survival, proliferation, or metastasis. Here we report on studies of the influence of ErbB2 over-expression on localization and signaling in polarized Caco-2 and MDCK cells, two established models to study molecular trafficking. In these cells, ErbB2 is not over-expressed and shares basolateral localization with ErbB3. Over-expression of ErbB2 by transient transfection resulted in partial separation of the receptors by relocalization of ErbB2, but not ErbB3, to the apical surface, as shown by biotinylation of the apical or basolateral surfaces. These results were confirmed by immunofluorescence and confocal microscopy. Polarity controls indicated that the relocalization of ErbB2 is not the result of depolarization of the cells. Biotinylation and confocal microscopy also showed that apical, but not basolateral ErbB2 is activated at tyrosine 1139. This phosphotyrosine binds adaptor protein Grb2, as confirmed by immunoprecipitation. However, we found that it does not initiate the canonical Grb2-Ras-Raf-Erk pathway. Instead, our data supports the activation of a survival pathway via Bcl-2. The effects of ErbB2 over-expression were abrogated by the humanized anti-ErbB2 monoclonal antibody Herceptin added only from the apical side. The ability of apical ErbB2 to initiate an altered downstream cascade suggests that subcellular localization of the receptor plays an important role in regulating ErbB2 signaling in polarized epithelia.
Collapse
Affiliation(s)
- Amber B. Pfister
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614
| | - Robert C. Wood
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614
| | - Pedro J.I. Salas
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, Florida 33101
| | - Delma L. Zea
- Department of Radiation Oncology, Javeriana University, Bogota, Colombia
| | - Victoria P. Ramsauer
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614
- James H. Quillen College of Medicine, Department of Internal Medicine, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
26
|
Langbein L, Eckhart L, Rogers MA, Praetzel-Wunder S, Schweizer J. Against the rules: human keratin K80: two functional alternative splice variants, K80 and K80.1, with special cellular localization in a wide range of epithelia. J Biol Chem 2010; 285:36909-21. [PMID: 20843789 DOI: 10.1074/jbc.m110.161745] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Of the 54 human keratins, five members have, at present, only been characterized at the gene level. In this study we have investigated the expression patterns of keratin K80, whose gene is located at the centromeric end of the type II keratin gene domain. K80 possesses a number of highly unusual properties. Structurally, it is distinctly closer to type II hair keratins than to type II epithelial keratins. Nonetheless, it is found in virtually all types of epithelia (stratified keratinizing/non-keratinizing, hard-keratinizing, as well as non-stratified tissues, and cell cultures thereof). This conspicuously broad expression range implies an unprecedented in vivo promiscuity of K80, which involves more than 20 different type I partners for intermediate filament (IF) formation. Throughout, K80 expression is related to advanced tissue or cell differentiation. However, instead of being part of the cytoplasmic IF network, K80 containing IFs are located at the cell margins close to the desmosomal plaques, where they are tightly interlaced with the cytoplasmic IF bundles abutting there. In contrast, in cells entering terminal differentiation, K80 adopts the "conventional" cytoplasmic distribution. In evolutionary terms, K80 is one of the oldest keratins, demonstrable down to fish. In addition, KRT80 mRNA is subject to alternative splicing. Besides K80, we describe a smaller but fully functional splice variant K80.1, which arose only during mammalian evolution. Remarkably, unlike the widely expressed K80, the expression of K80.1 is restricted to soft and hard keratinizing epithelial structures of the hair follicle and the filiform tongue papilla.
Collapse
Affiliation(s)
- Lutz Langbein
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
27
|
Iwatsuki H, Suda M. Seven kinds of intermediate filament networks in the cytoplasm of polarized cells: structure and function. Acta Histochem Cytochem 2010; 43:19-31. [PMID: 20514289 PMCID: PMC2875862 DOI: 10.1267/ahc.10009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/15/2010] [Indexed: 02/01/2023] Open
Abstract
Intermediate filaments (IFs) are involved in many important physiological functions, such as the distribution of organelles, signal transduction, cell polarity and gene regulation. However, little information exists on the structure of the IF networks performing these functions. We have clarified the existence of seven kinds of IF networks in the cytoplasm of diverse polarized cells: an apex network just under the terminal web, a peripheral network lying just beneath the cell membrane, a granule-associated network surrounding a mass of secretory granules, a Golgi-associated network surrounding the Golgi apparatus, a radial network locating from the perinuclear region to the specific area of the cell membrane, a juxtanuclear network surrounding the nucleus, and an entire cytoplasmic network. In this review, we describe these seven kinds of IF networks and discuss their biological roles.
Collapse
Affiliation(s)
| | - Masumi Suda
- Department of Anatomy, Kawasaki Medical School
| |
Collapse
|
28
|
Abstract
Localized mRNAs found in specific regions of somatic cells, germ cells, and embryos function through their protein translation products in cell polarization and development. Recent studies on Xenopus and Drosophila eggs and various somatic cells showed that some of the localized noncoding and coding RNAs play a structural (translation independent) role in maintaining the integrity of microtubule and microfilament cytoskeleton and/or may function in protein folding or as a scaffold for the assembly of cytoplasmic complexes essential for egg or embryo development. In addition, structural noncoding RNAs within the cell nucleus have been shown to be involved in the organization of chromatin, nuclear bodies, and DNA replication. The fact that some of the RNAs may have previously unforeseen structural functions, will change our view on traditional functions of RNAs and will open new frontiers in the field of RNA studies and therapeutic development.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Methodist Hospital, The Methodist Hospital Research Institute, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
29
|
Mashukova A, Oriolo AS, Wald FA, Casanova ML, Kröger C, Magin TM, Omary MB, Salas PJI. Rescue of atypical protein kinase C in epithelia by the cytoskeleton and Hsp70 family chaperones. J Cell Sci 2009; 122:2491-503. [PMID: 19549684 DOI: 10.1242/jcs.046979] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atypical PKC (PKC iota) is a key organizer of cellular asymmetry. Sequential extractions of intestinal cells showed a pool of enzymatically active PKC iota and the chaperone Hsp70.1 attached to the apical cytoskeleton. Pull-down experiments using purified and recombinant proteins showed a complex of Hsp70 and atypical PKC on filamentous keratins. Transgenic animals overexpressing keratin 8 displayed delocalization of Hsp70 and atypical PKC. Two different keratin-null mouse models, as well as keratin-8 knockdown cells in tissue culture, also showed redistribution of Hsp70 and a sharp decrease in the active form of atypical PKC, which was also reduced by Hsp70 knockdown. An in-vitro turn motif rephosphorylation assay indicated that PKC iota is dephosphorylated by prolonged activity. The Triton-soluble fraction could rephosphorylate PKC iota only when supplemented with the cytoskeletal pellet or filamentous highly purified keratins, a function abolished by immunodepletion of Hsp70 but rescued by recombinant Hsp70. We conclude that both filamentous keratins and Hsp70 are required for the rescue rephosphorylation of mature atypical PKC, regulating the subcellular distribution and steady-state levels of active PKC iota.
Collapse
Affiliation(s)
- Anastasia Mashukova
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Grimm-Günter EMS, Revenu C, Ramos S, Hurbain I, Smyth N, Ferrary E, Louvard D, Robine S, Rivero F. Plastin 1 binds to keratin and is required for terminal web assembly in the intestinal epithelium. Mol Biol Cell 2009; 20:2549-62. [PMID: 19321664 PMCID: PMC2682596 DOI: 10.1091/mbc.e08-10-1030] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 02/17/2009] [Accepted: 03/12/2009] [Indexed: 01/12/2023] Open
Abstract
Plastin 1 (I-plastin, fimbrin) along with villin and espin is a prominent actin-bundling protein of the intestinal brush border microvilli. We demonstrate here that plastin 1 accumulates in the terminal web and interacts with keratin 19, possibly contributing to anchoring the rootlets to the keratin network. This prompted us to investigate the importance of plastin 1 in brush border assembly. Although in vivo neither villin nor espin is required for brush border structure, plastin 1-deficient mice have conspicuous ultrastructural alterations: microvilli are shorter and constricted at their base, and, strikingly, their core actin bundles lack true rootlets. The composition of the microvilli themselves is apparently normal, whereas that of the terminal web is profoundly altered. Although the plastin 1 knockout mice do not show any overt gross phenotype and present a normal intestinal microanatomy, the alterations result in increased fragility of the epithelium. This is seen as an increased sensitivity of the brush border to biochemical manipulations, decreased transepithelial resistance, and increased sensitivity to dextran sodium sulfate-induced colitis. Plastin 1 thus emerges as an important regulator of brush border morphology and stability through a novel role in the organization of the terminal web, possibly by connecting actin filaments to the underlying intermediate filament network.
Collapse
Affiliation(s)
- Eva-Maria S. Grimm-Günter
- *Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Centre for Biomedical Research, The Hull York Medical School and Department of Biological Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Céline Revenu
- Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, F-75248 Paris, France
| | - Sonia Ramos
- *Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Ilse Hurbain
- Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, F-75248 Paris, France
| | - Neil Smyth
- School of Biological Sciences, University of Southampton, Southampton SO1 6PX, United Kingdom; and
| | - Evelyne Ferrary
- Unité 867 Institut National de la Santé et de la Recherche Médicale/Université Paris Diderot-Paris 7, Faculté Xavier Bichat, F-75870 Paris, France
| | - Daniel Louvard
- Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, F-75248 Paris, France
| | - Sylvie Robine
- Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, F-75248 Paris, France
| | - Francisco Rivero
- *Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Centre for Biomedical Research, The Hull York Medical School and Department of Biological Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
31
|
Wald FA, Oriolo AS, Mashukova A, Fregien NL, Langshaw AH, Salas PJ. Atypical protein kinase C (iota) activates ezrin in the apical domain of intestinal epithelial cells. J Cell Sci 2008; 121:644-54. [PMID: 18270268 PMCID: PMC2293289 DOI: 10.1242/jcs.016246] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Atypical protein kinase iota (PKCiota) is a key organizer of the apical domain in epithelial cells. Ezrin is a cytosolic protein that, upon activation by phosphorylation of T567, is localized under the apical membrane where it connects actin filaments to membrane proteins and recruits protein kinase A (PKA). To identify the kinase that phosphorylates ezrin T567 in simple epithelia, we analyzed the expression of active PKC and the appearance of T567-P during enterocyte differentiation in vivo. PKCiota phosphorylated ezrin on T567 in vitro, and in Sf9 cells that do not activate human ezrin. In CACO-2 human intestinal cells in culture, PKCiota co-immunoprecipitated with ezrin and was knocked down by shRNA expression. The resulting phenotype showed a modest decrease in total ezrin, but a steep decrease in T567 phosphorylation. The PKCiota-depleted cells showed fewer and shorter microvilli and redistribution of the PKA regulatory subunit. Expression of a dominant-negative form of PKCiota also decreased T567-P signal, and expression of a constitutively active PKCiota mutant showed depolarized distribution of T567-P. We conclude that, although other molecular mechanisms contribute to ezrin activation, apically localized phosphorylation by PKCiota is essential for the activation and normal distribution of ezrin at the early stages of intestinal epithelial cell differentiation.
Collapse
Affiliation(s)
- Flavia A. Wald
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, RMSB 4090 - R124, 1600 NW 10th Avenue, Miami, FL 33135
| | - Andrea S. Oriolo
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, RMSB 4090 - R124, 1600 NW 10th Avenue, Miami, FL 33135
| | - Anastasia Mashukova
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, RMSB 4090 - R124, 1600 NW 10th Avenue, Miami, FL 33135
| | - Nevis L. Fregien
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, RMSB 4090 - R124, 1600 NW 10th Avenue, Miami, FL 33135
| | - Amber H. Langshaw
- Department of Pediatrics, University of Miami Miller School of Medicine, RMSB 4090 - R124, 1600 NW 10th Avenue, Miami, FL 33135
| | - Pedro J.I. Salas
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, RMSB 4090 - R124, 1600 NW 10th Avenue, Miami, FL 33135
| |
Collapse
|
32
|
Manning JA, Colussi PA, Koblar SA, Kumar S. Nedd1 expression as a marker of dynamic centrosomal localization during mouse embryonic development. Histochem Cell Biol 2008; 129:751-64. [DOI: 10.1007/s00418-008-0392-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2008] [Indexed: 12/21/2022]
|
33
|
Kim S, Coulombe PA. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev 2007; 21:1581-97. [PMID: 17606637 DOI: 10.1101/gad.1552107] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intermediate filaments (IFs) are cytoskeletal polymers whose protein constituents are encoded by a large family of differentially expressed genes. Owing in part to their properties and intracellular organization, IFs provide crucial structural support in the cytoplasm and nucleus, the perturbation of which causes cell and tissue fragility and accounts for a large number of genetic diseases in humans. A number of additional roles, nonmechanical in nature, have been recently uncovered for IF proteins. These include the regulation of key signaling pathways that control cell survival, cell growth, and vectorial processes including protein targeting in polarized cellular settings. As this discovery process continues to unfold, a rationale for the large size of this family and the context-dependent regulation of its members is finally emerging.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
34
|
Oriolo AS, Wald FA, Ramsauer VP, Salas PJI. Intermediate filaments: a role in epithelial polarity. Exp Cell Res 2007; 313:2255-64. [PMID: 17425955 PMCID: PMC1986643 DOI: 10.1016/j.yexcr.2007.02.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/19/2007] [Accepted: 02/22/2007] [Indexed: 11/24/2022]
Abstract
Intermediate filaments have long been considered mechanical components of the cell that provide resistance to deformation stress. Practical experimental problems, including insolubility, lack of good pharmacological antagonists, and the paucity of powerful genetic models have handicapped the research of other functions. In single-layered epithelial cells, keratin intermediate filaments are cortical, either apically polarized or apico-lateral. This review analyzes phenotypes of genetic manipulations of simple epithelial cell keratins in mice and Caenorhabditis elegans that strongly suggest a role of keratins in apico-basal polarization and membrane traffic. Published evidence that intermediate filaments can act as scaffolds for proteins involved in membrane traffic and signaling is also discussed. Such a scaffolding function would generate a highly polarized compartment within the cytoplasm of simple epithelial cells. While in most cases mechanistic explanations for the keratin-null or overexpression phenotypes are still missing, it is hoped that investigators will be encouraged to study these as yet poorly understood functions of intermediate filaments.
Collapse
Affiliation(s)
- Andrea S Oriolo
- Department of Cell Biology and Anatomy, University of Miami, Miller School of Medicine, 1600 NW 10th Ave.-RMSB, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
35
|
Wang L, Srinivasan S, Theiss AL, Merlin D, Sitaraman SV. Interleukin-6 induces keratin expression in intestinal epithelial cells: potential role of keratin-8 in interleukin-6-induced barrier function alterations. J Biol Chem 2007; 282:8219-27. [PMID: 17213200 DOI: 10.1074/jbc.m604068200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Keratin 8 (K8) and keratin-18 (K18) are the major intermediate filament proteins in the intestinal epithelia. The regulation and function of keratin in the intestinal epithelia is largely unknown. In this study we addressed the role and regulation of K8 and K18 expression by interleukin 6 (IL-6). Caco2-BBE cell line and IL-6 null mice were used to study the effect of IL-6 on keratin expression. Keratin expression was studied by Northern blot, Western blot, and confocal microscopy. Paracellular permeability was assessed by apical-to-basal transport of a fluorescein isothiocyanate dextran probe (FD-4). K8 was silenced using the small interfering RNA approach. IL-6 significantly up-regulated mRNA and protein levels of K8 and K18. Confocal microscopy showed a reticular pattern of intracellular keratin localized to the subapical region after IL-6 treatment. IL-6 also induced serine phosphorylation of K8. IL-6 decreased paracellular flux of FD-4 compared with vehicle-treated monolayers. K8 silencing abolished the decrease in paracellular permeability induced by IL-6. Administration of dextran sodium sulfate (DSS) significantly increased intestinal permeability in IL-6-/- mice compared with wild type mice given DSS. Collectively, our data demonstrate that IL-6 regulates the colonic expression of K8 and K18, and K8/K18 mediates barrier protection by IL-6 under conditions where intestinal barrier is compromised. Thus, our data uncover a novel function of these abundant cytoskeletal proteins, which may have implications in intestinal disorders such as inflammatory bowel disease wherein barrier dysfunction underlies the inflammatory response.
Collapse
Affiliation(s)
- Lixin Wang
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
36
|
Long HA, Boczonadi V, McInroy L, Goldberg M, Määttä A. Periplakin-dependent re-organisation of keratin cytoskeleton and loss of collective migration in keratin-8-downregulated epithelial sheets. J Cell Sci 2006; 119:5147-59. [PMID: 17158917 DOI: 10.1242/jcs.03304] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Collective migration of epithelial sheets requires maintenance of cell-cell junctions and co-ordination of the movement of the migrating front. We have investigated the role of keratin intermediate filaments and periplakin, a cytoskeletal linker protein, in the migration of simple epithelial cells. Scratch wounding induces bundling of keratins into a cable of tightly packed filaments adjacent to the free wound edge. Keratin re-organisation is preceded by a re-distribution of periplakin away from the free wound edge. Periplakin participates with dynamic changes in the keratin cytoskeleton via its C-terminal linker domain that co-localises with okadaic-acid-treated keratin granules. Stable expression of the periplakin C-terminal domain increases keratin bundling and Ser431 keratin phosphorylation at wound edge resulting in a delay in wound closure. Ablation of periplakin by siRNA inhibits keratin cable formation and impairs wound closure. Knockdown of keratin 8 with siRNA results in (1) a loss of desmoplakin localisation at cell borders, (2) a failure of MCF-7 epithelial sheets to migrate as a collective unit and (3) accelerated wound closure in vimentin-positive HeLa and Panc-1 cell lines. Thus, keratin 8 is required for the maintenance of epithelial integrity during migration and periplakin participates in the re-organisation of keratins in migrating cells.
Collapse
Affiliation(s)
- Heather A Long
- Centre for Stem Cell Research and Regenerative Medicine, School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE, UK
| | | | | | | | | |
Collapse
|
37
|
Lipecka J, Norez C, Bensalem N, Baudouin-Legros M, Planelles G, Becq F, Edelman A, Davezac N. Rescue of DeltaF508-CFTR (cystic fibrosis transmembrane conductance regulator) by curcumin: involvement of the keratin 18 network. J Pharmacol Exp Ther 2006; 317:500-5. [PMID: 16424149 DOI: 10.1124/jpet.105.097667] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, DeltaF508, causes retention of DeltaF508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl(-) channels in the plasma membrane. DeltaF508-CFTR retains some Cl(-) channel activity so increased expression of DeltaF508-CFTR in the plasma membrane can restore Cl(-) secretion deficiency. Recently, curcumin was shown to rescue DeltaF508-CFTR localization and function. In our previous work, the keratin 18 (K18) network was implicated in DeltaF508-CFTR trafficking. Here, we hypothesized that curcumin could restore a functional DeltaF508-CFTR to the plasma membrane acting via the K18 network. First, we analyzed the effects of curcumin on the localization of DeltaF508-CFTR in different cell lines (HeLa cells stably transfected with wild-type CFTR or DeltaF508-CFTR, CALU-3 cells, or cystic fibrosis pancreatic epithelial cells CFPAC-1) and found that it was significantly delocalized toward the plasma membrane in DeltaF508-CFTR-expressing cells. We also performed a functional assay for the CFTR chloride channel in CFPAC-1 cells treated or not with curcumin and detected an increase in a cAMP-dependent chloride efflux in treated DeltaF508-CFTR-expressing cells. The K18 network then was analyzed by immunocytochemistry and immunoblot exclusively in curcumin-treated or untreated CFPAC-1 cells because of their endogenic DeltaF508-CFTR expression. After curcumin treatment, we observed a remodeling of the K18 network and a significant increase in K18 Ser52 phosphorylation, a site directly implicated in the reorganization of intermediate filaments. With these results, we propose that K18 as a new therapeutic target and curcumin, and/or its analogs, might be considered as potential therapeutic agents for cystic fibrosis.
Collapse
Affiliation(s)
- Joanna Lipecka
- Institut National de la Sante et de la Recherche Medicale U467, Université René Descartes Paris 5, Faculté de Médecine Paris 5, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ramsauer VP, Pino V, Farooq A, Carothers Carraway CA, Salas PJ, Carraway KL. Muc4-ErbB2 complex formation and signaling in polarized CACO-2 epithelial cells indicate that Muc4 acts as an unorthodox ligand for ErbB2. Mol Biol Cell 2006; 17:2931-41. [PMID: 16624867 PMCID: PMC1483030 DOI: 10.1091/mbc.e05-09-0895] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Muc4 serves as an intramembrane ligand for the receptor tyrosine kinase ErbB2. The time to complex formation and the stoichiometry of the complex were determined to be <15 min and 1:1 by analyses of Muc4 and ErbB2 coexpressed in insect cells and A375 tumor cells. In polarized CACO-2 cells, Muc4 expression causes relocalization of ErbB2, but not its heterodimerization partner ErbB3, to the apical cell surface, effectively segregating the two receptors. The apically located ErbB2 is phosphorylated on tyrosines 1139 and 1248. The phosphorylated ErbB2 in CACO-2 cells recruits the cytoplasmic adaptor protein Grb2, consistent with previous studies showing phosphotyrosine 1139 to be a Grb2 binding site. To address the issue of downstream signaling from apical ErbB2, we analyzed the three MAPK pathways of mammalian cells, Erk, p38, and JNK. Consistent with the more differentiated phenotype of the CACO-2 cells, p38 phosphorylation was robustly increased by Muc4 expression, with a consequent activation of Akt. In contrast, Erk and JNK phosphorylation was not changed. The ability of Muc4 to segregate ErbB2 and other ErbB receptors and to alter downstream signaling cascades in polarized epithelial cells suggests that it has a role in regulating ErbB2 in differentiated epithelia.
Collapse
Affiliation(s)
| | - Vanessa Pino
- Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101
| | - Amjad Farooq
- Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101
| | | | | | | |
Collapse
|
39
|
Toivola DM, Tao GZ, Habtezion A, Liao J, Omary MB. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol 2005; 15:608-17. [PMID: 16202602 DOI: 10.1016/j.tcb.2005.09.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 08/12/2005] [Accepted: 09/20/2005] [Indexed: 02/06/2023]
Abstract
Intermediate filament proteins (IFs) maintain cell and tissue integrity, based on evidence of their polymerization and mechanical properties, abundance and disease-associated phenotypes. This 'traditional' function is now augmented by organelle-related and protein-targeting roles. Mitochondrial location and function depend on intact IFs, as demonstrated for desmin, keratins and neurofilaments. Golgi positioning is regulated by several IFs, and endosomal/lysosomal protein distribution by vimentin. IFs dramatically affect nuclear function and shape and play a role in subcellular and membrane targeting of proteins. These functions have been noted in tissues but in some cases only in cell culture. The IF-related organelle-specific and protein-targeting roles, which are likely interrelated, provide functions beyond cell scaffolding and integrity and contribute to the cytoprotective and tissue-specific functions of IF proteins.
Collapse
Affiliation(s)
- Diana M Toivola
- Palo Alto VA Medical Center, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|
40
|
Nishizawa M, Izawa I, Inoko A, Hayashi Y, Nagata KI, Yokoyama T, Usukura J, Inagaki M. Identification of trichoplein, a novel keratin filament-binding protein. J Cell Sci 2005; 118:1081-90. [PMID: 15731013 DOI: 10.1242/jcs.01667] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Keratins 8 and 18 (K8/18) are major components of the intermediate filaments (IFs) of simple epithelia. We report here the identification of a novel protein termed trichoplein. This protein shows a low degree of sequence similarity to trichohyalin, plectin and myosin heavy chain, and is a K8/18-binding protein. Among interactions between trichoplein and various IF proteins that we tested using two-hybrid methods, trichoplein interacted significantly with K16 and K18, and to some extent with K5, K6a, K8 and K14. In in vitro co-sedimentation assays, trichoplein directly binds to K8/18, but not with vimentin, desmin, actin filaments or microtubules. An antibody raised against trichoplein specifically recognized a polypeptide with a relative molecular mass of 61 kDa in cell lysates. Trichoplein was immunoprecipitated using this antibody in a complex with K8/18 and immunostaining revealed that trichoplein colocalized with K8/18 filaments in HeLa cells. In polarized Caco-2 cells, trichoplein colocalized not only with K8/18 filaments in the apical region but also with desmoplakin, a constituent of desmosomes. In the absorptive cells of the small intestine, trichoplein colocalized with K8/18 filaments at the apical cortical region, and was also concentrated at desmosomes. Taken together, these results suggest that trichoplein is a keratin-binding protein that may be involved in the organization of the apical network of keratin filaments and desmosomes in simple epithelial cells.
Collapse
Affiliation(s)
- Miwako Nishizawa
- Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wald FA, Oriolo AS, Casanova ML, Salas PJI. Intermediate filaments interact with dormant ezrin in intestinal epithelial cells. Mol Biol Cell 2005; 16:4096-107. [PMID: 15987737 PMCID: PMC1196322 DOI: 10.1091/mbc.e05-03-0242] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ezrin connects the apical F-actin scaffold to membrane proteins in the apical brush border of intestinal epithelial cells. Yet, the mechanisms that recruit ezrin to the apical domain remain obscure. Using stable CACO-2 transfectants expressing keratin 8 (K8) antisense RNA under a tetracycline-responsive element, we showed that the actin-ezrin scaffold cannot assemble in the absence of intermediate filaments (IFs). Overexpression of ezrin partially rescued this phenotype. Overexpression of K8 in mice also disrupted the assembly of the brush border, but ezrin distributed away from the apical membrane in spots along supernumerary IFs. In cytochalasin D-treated cells ezrin localized to a subapical compartment and coimmunoprecipitated with IFs. Overexpression of ezrin in undifferentiated cells showed a Triton-insoluble ezrin compartment negative for phospho-T567 (dormant) ezrin visualized as spots along IFs. Pulse-chase analysis showed that Triton-insoluble, newly synthesized ezrin transiently coimmunoprecipitates with IFs during the first 30 min of the chase. Dormant, but not active (p-T567), ezrin bound in vitro to isolated denatured keratins in Far-Western analysis and to native IFs in pull-down assays. We conclude that a transient association to IFs is an early step in the polarized assembly of apical ezrin in intestinal epithelial cells.
Collapse
Affiliation(s)
- Flavia A Wald
- Department of Cell Biology and Anatomy R-124, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
42
|
Styers ML, Kowalczyk AP, Faundez V. Intermediate Filaments and Vesicular Membrane Traffic: The Odd Couple's First Dance? Traffic 2005; 6:359-65. [PMID: 15813746 DOI: 10.1111/j.1600-0854.2005.00286.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During the last two decades, much attention has been focused on the regulation of membrane traffic by the actin and microtubule cytoskeletal networks. Their dynamic and polarized behavior and associated motors provide a logical framework from which architectural and movement cues can be communicated to organelles. The study of these cytoskeletal systems has been greatly aided by pharmacological agents. In contrast, intermediate filaments (IFs) have largely been neglected as a potential player in membrane traffic, both because a comprehensive pharmacology to perturb them does not exist and because they lack the intrinsic polarity and specific motors that make the other cytoskeletal systems attractive. In this review, we will discuss evidence suggesting that IFs may play roles in controlling organelle positioning and in membrane protein targeting. Furthermore, we will discuss potential mechanisms by which IFs may regulate the localization and function of organelles.
Collapse
|
43
|
Abstract
Whilst the importance of mutations in a wide range of keratins in skin fragility disorders is now well established, there is much less evidence for simple epithelial keratin involvement in disease. Some simple epithelial keratin mutations have been reported in liver cirrhosis and pancreatitis patients, and recently mutations in the simple epithelial keratin K8 were identified in a group of patients with inflammatory bowel disease (Crohn disease or ulcerative colitis). In comparison with the mutations seen in epidermal keratins, these simple epithelial mutations would be predicted to have mild consequences, although analysis shows that they do have a distinct effect. This review article discusses the evidence that these mutations are a predisposing factor for inflammatory bowel disease.
Collapse
Affiliation(s)
- D W Owens
- Cancer Research UK Cell Structure Research Group, Division of Cell and Developmental Biology, University of Dundee School of Life Sciences, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK.
| | | |
Collapse
|
44
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2269-2275. [DOI: 10.11569/wcjd.v12.i10.2269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
45
|
Styers ML, Salazar G, Love R, Peden AA, Kowalczyk AP, Faundez V. The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton. Mol Biol Cell 2004; 15:5369-82. [PMID: 15456899 PMCID: PMC532017 DOI: 10.1091/mbc.e04-03-0272] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cytoskeletal networks control organelle subcellular distribution and function. Herein, we describe a previously unsuspected association between intermediate filament proteins and the adaptor complex AP-3. AP-3 and intermediate filament proteins cosedimented and coimmunoprecipitated as a complex free of microtubule and actin binding proteins. Genetic perturbation of the intermediate filament cytoskeleton triggered changes in the subcellular distribution of the adaptor AP-3 and late endocytic/lysosome compartments. Concomitant with these architectural changes, and similarly to AP-3-null mocha cells, fibroblasts lacking vimentin were compromised in their vesicular zinc uptake, their organellar pH, and their total and surface content of AP-3 cargoes. However, the total content and surface levels, as well as the distribution of the transferrin receptor, a membrane protein whose sorting is AP-3 independent, remained unaltered in both AP-3- and vimentin-null cells. Based on the phenotypic convergence between AP-3 and vimentin deficiencies, we predicted and documented a reduced autophagosome content in mocha cells, a phenotype previously reported in cells with disrupted intermediate filament cytoskeletons. Our results reveal a novel role of the intermediate filament cytoskeleton in organelle/adaptor positioning and in regulation of the adaptor complex AP-3.
Collapse
Affiliation(s)
- Melanie L Styers
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
46
|
Martin-Latil S, Cotte-Laffitte J, Beau I, Quéro AM, Géniteau-Legendre M, Servin AL. A cyclic AMP protein kinase A-dependent mechanism by which rotavirus impairs the expression and enzyme activity of brush border-associated sucrase-isomaltase in differentiated intestinal Caco-2 cells. Cell Microbiol 2004; 6:719-31. [PMID: 15236639 DOI: 10.1111/j.1462-5822.2004.00396.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We undertook a study of the mechanism by which rhesus monkey rotavirus (RRV) impairs the expression and enzyme activity of brush border-associated sucrase isomaltase (SI) in cultured, human, fully differentiated, intestinal Caco-2 cells. We provide evidence that the RRV-induced defects in the expression and enzyme activity of SI are not related to the previously observed, RRV-induced, Ca2+ -dependent, disassembly of the F-actin cytoskeleton. This conclusion is based on the facts that: (i) the intracellular Ca2+ blocker, BAPTA/AM, which antagonizes the RRV-induced increase in [Ca2+](i), fails to inhibit the RRV-induced decrease in SI expression and enzyme activity; and (ii) Jasplakinolide (JAS) treatment, known to stabilize actin filaments, had no effect on the RRV-induced decrease in SI expression. Results reported here demonstrate that the RRV-induced impairment in the expression and enzyme activity of brush border-associated SI results from a hitherto unknown mechanism involving PKA signalling. This conclusion is based on the observations that (i) intracellular cAMP was increased in RRV-infected cells and (ii) treatment of RRV-infected cells with PKA blockers resulted in the reappearance of apical SI expression, accompanied by the restoration of the enzyme activity at the brush border. In addition, in RRV-infected cells a twofold increase of phosphorylated form of cytokeratin 18 was observed after immunopurification and Western Blot analysis, which was antagonized by exposing the RRV-infected cells to the PKA blockers.
Collapse
Affiliation(s)
- Sandra Martin-Latil
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Pathogènes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie, Université Paris XI, 92296 Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
47
|
Parnis S, Nicoletti C, Ollendorff V, Massey-Harroche D. Enterocytin: A new specific enterocyte marker bearing a B30.2-like domain. J Cell Physiol 2004; 198:441-51. [PMID: 14755549 DOI: 10.1002/jcp.10418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enterocyte differentiation is correlated to the expression of specific proteins which only a few of them are identified. In this study, we characterize a new marker of enterocyte differentiation using monoclonal antibodies. We showed that small intestinal enterocytes specifically express a new 47 kDa protein named Enterocytin. Expression of this protein increase along the crypt-villus axis and it is concentrated in the terminal web, lateral plasma membrane domain, and nucleus membrane of mature enterocytes. A 1.8-kb cDNA of Enterocytin was isolated by expression cloning from a cDNA library of rabbit small intestine. The amino acid sequence obtained shows an N-terminal region with a coiled-coil structure and a B30.2-like domain in the C-terminus region. By co-transfection and immunoprecipitation procedures on Cos cells, it was observed that the coiled-coil domain is involved in the homodimerization of Enterocytin. In the human intestine, a similar 47 kDa protein was detected, exclusively in the small intestinal enterocytes. In addition, expression of this protein in Caco2 cells is correlated with the state of differentiation of these cells. The restricted expression of Enterocytin in the intestine and its localization in mature cells suggest that it may contribute to the differentiation processes and maintenance of the enterocytic polarity.
Collapse
Affiliation(s)
- Stéphane Parnis
- Institut Méditerranéen de Recherche en Nutrition, Faculté des Sciences de Saint Jérôme, Avenue Escadrille Normandie-Niemen, Marseille cedex, France
| | | | | | | |
Collapse
|
48
|
Cohen D, Brennwald PJ, Rodriguez-Boulan E, Müsch A. Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton. ACTA ACUST UNITED AC 2004; 164:717-27. [PMID: 14981097 PMCID: PMC2172160 DOI: 10.1083/jcb.200308104] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelial differentiation involves the generation of luminal surfaces and of a noncentrosomal microtubule (MT) network aligned along the polarity axis. Columnar epithelia (e.g., kidney, intestine, and Madin-Darby canine kidney [MDCK] cells) generate apical lumina and orient MT vertically, whereas liver epithelial cells (hepatocytes and WIFB9 cells) generate lumina at cell–cell contact sites (bile canaliculi) and orient MTs horizontally. We report that knockdown or inhibition of the mammalian orthologue of Caenorhabditis elegans Par-1 (EMK1 and MARK2) during polarization of cultured MDCK and WIFB9 cells prevented development of their characteristic lumen and nonradial MT networks. Conversely, EMK1 overexpression induced the appearance of intercellular lumina and horizontal MT arrays in MDCK cells, making EMK1 the first known candidate to regulate the developmental branching decision between hepatic and columnar epithelial cells. Our experiments suggest that EMK1 primarily promotes reorganization of the MT network, consistent with the MT-regulating role of this gene product in other systems, which in turn controls lumen formation and position.
Collapse
Affiliation(s)
- David Cohen
- Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Ave., Box 233, New York, NY 10021, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Simple epithelial keratins K8 and K18 are components of the intracellular cytoskeleton in the cells of the single-layered sheet tissues inside the body. As members of the intermediate filament family of proteins, their function has been a matter for debate since they were first discovered. Whilst there is an indisputable case for a structural cell-reinforcing function for keratins in the mutilayered squamous epithelia of external barrier tissues, some very different stress-protective features now seem to be emerging for the simple epithelial keratins. Even the emerging evidence of pathological mutations in K8/K18 looks very different from mutations in stratified epithelial keratins. K8/K18-like keratins were probably the first to evolve and, whilst stratified epithelial (keratinocyte) keratins have diversified into a large group of keratins highly specialised for providing mechanical stability, the simple epithelial keratins have retained early features that may protect the internal epithelia from a broader range of stresses, including osmotic stress and chemical toxicity.
Collapse
Affiliation(s)
- Dewi W Owens
- Cancer Research UK Cell Structure Research Group, School of Life Sciences, University of Dundee, Scotland.
| | | |
Collapse
|
50
|
Figueroa Y, Wald FA, Salas PJI. p34cdc2-mediated phosphorylation mobilizes microtubule-organizing centers from the apical intermediate filament scaffold in CACO-2 epithelial cells. J Biol Chem 2002; 277:37848-54. [PMID: 12151413 DOI: 10.1074/jbc.m207037200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that centrosomes and other microtubule-organizing centers (MTOCs) attach to the apical intermediate filament (IF) network in CACO-2 cells. In this cell line, intermediate filaments do not disorganize during mitosis. Therefore, we speculated that the trigger of the G(2)-M boundary may also detach MTOCs from their IF anchor. If that was the case, at least one of the proteins involved in the attachment must be phosphorylated by p34(cdc2) (cdk1). Using confocal microscopy and standard biochemical analysis, we found that p34(cdc2)-mediated phosphorylation indeed released MTOCs from IFs in permeabilized cells. In isolated, immunoprecipitated multiprotein complexes containing both gamma-tubulin and cytokeratin 19, p34(cdc2) phosphorylated only one protein, and phosphorylation released cytokeratin 19 from the complexes. We conclude that this as yet unidentified protein is a part of the molecular mechanism that attaches MTOCs to IFs in interphase.
Collapse
Affiliation(s)
- Yolanda Figueroa
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | |
Collapse
|