1
|
Lange TE, Naji A, van der Hoeven R, Liang H, Zhou Y, Hammond GR, Hancock JF, Cho KJ. MTMR regulates KRAS function by controlling plasma membrane levels of phospholipids. J Cell Biol 2025; 224:e202403126. [PMID: 40314454 PMCID: PMC12047185 DOI: 10.1083/jcb.202403126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/08/2024] [Accepted: 10/18/2024] [Indexed: 05/03/2025] Open
Abstract
KRAS, a small GTPase involved in cell proliferation and differentiation, frequently gains activating mutations in human cancers. For KRAS to function, it must bind the plasma membrane (PM) via interactions between its membrane anchor and phosphatidylserine (PtdSer). Therefore, depleting PM PtdSer abrogates KRAS PM binding and activity. From a genome-wide siRNA screen to identify genes regulating KRAS PM localization, we identified a set of phosphatidylinositol (PI) 3-phosphatases: myotubularin-related proteins (MTMR) 2, 3, 4, and 7. Here, we show that silencing MTMR 2/3/4/7 disrupts KRAS PM interactions by reducing PM PI 4-phosphate (PI4P) levels, thereby disrupting the localization and operation of ORP5, a lipid transfer protein maintaining PM PtdSer enrichment. Concomitantly, silencing MTMR 2/3/4/7 elevates PM PI3P levels while reducing PM and total PtdSer levels. We also observed MTMR 2/3/4/7 expression is interdependent. We propose that the PI 3-phosphatase activity of MTMR is required for generating PM PI, necessary for PM PI4P synthesis, promoting the PM localization of PtdSer and KRAS.
Collapse
Affiliation(s)
- Taylor E. Lange
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Ali Naji
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ransome van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Gerald R.V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Kwang-jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
2
|
Abdelnaser RA, Hiyoshi M, Takahashi N, Eltalkhawy YM, Mizuno H, Kimura S, Hase K, Ohno H, Monde K, Ono A, Suzu S. Identification of TNFAIP2 as a unique cellular regulator of CSF-1 receptor activation. Life Sci Alliance 2025; 8:e202403032. [PMID: 39939179 PMCID: PMC11821806 DOI: 10.26508/lsa.202403032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
The receptor of CSF-1 (CSF1R) encoding tyrosine kinase is essential for tissue macrophage development, and the therapeutic target for many tumors. However, it is not completely understood how CSF1R activation is regulated. Here, we identify the cellular protein TNF-α-induced protein 2 (TNFAIP2) as a unique regulator of CSF1R. CSF1R forms large aggregates in macrophages via unknown mechanisms. The inhibition or knockdown of TNFAIP2 reduced CSF1R aggregate formation and functional response of macrophages to CSF-1, which was consistent with reduced CSF1R activation after CSF-1 stimulation. When expressed in 293 cells, TNFAIP2 augmented CSF1R aggregate formation and CSF-1-induced CSF1R activation. CSF1R and TNFAIP2 bind the cellular phosphatidylinositol 4,5-bisphosphate (PIP2). The removal of the PIP2-binding motif of CSF1R or TNFAIP2, or the depletion of cellular PIP2 reduced CSF1R aggregate formation. Moreover, TNFAIP2 altered the cellular distribution of PIP2. Because CSF-1-induced dimerization of CSF1R is critical for its activation, our findings suggest that TNFAIP2 augments CSF1R aggregate formation via PIP2, which brings CSF1R monomers close to each other and enables the efficient dimerization and activation of CSF1R in response to CSF-1.
Collapse
Affiliation(s)
- Randa A Abdelnaser
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masateru Hiyoshi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Youssef M Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hidenobu Mizuno
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Schmitt MT, Kroll J, Ruiz-Fernandez MJA, Hauschild R, Ghosh S, Kameritsch P, Merrin J, Schmid J, Stefanowski K, Thomae AW, Cheng J, Öztan GN, Konopka P, Ortega GC, Penz T, Bach L, Baumjohann D, Bock C, Straub T, Meissner F, Kiermaier E, Renkawitz J. Protecting centrosomes from fracturing enables efficient cell navigation. SCIENCE ADVANCES 2025; 11:eadx4047. [PMID: 40279414 PMCID: PMC12024656 DOI: 10.1126/sciadv.adx4047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/27/2025]
Abstract
The centrosome is a microtubule orchestrator, nucleating and anchoring microtubules that grow radially and exert forces on cargos. At the same time, mechanical stresses from the microenvironment and cellular shape changes compress and bend microtubules. Yet, centrosomes are membraneless organelles, raising the question of how centrosomes withstand mechanical forces. Here, we discover that centrosomes can deform and even fracture. We reveal that centrosomes experience deformations during navigational pathfinding within motile cells. Coherence of the centrosome is maintained by Dyrk3 and cNAP1, preventing fracturing by forces. While cells can compensate for the depletion of centriolar-based centrosomes, the fracturing of centrosomes impedes cellular function by generating coexisting microtubule organizing centers that compete during path navigation and thereby cause cellular entanglement in the microenvironment. Our findings show that cells actively maintain the integrity of the centrosome to withstand mechanical forces. These results suggest that centrosome stability preservation is fundamental, given that almost all cells in multicellular organisms experience forces.
Collapse
Affiliation(s)
- Madeleine T. Schmitt
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Mauricio J. A. Ruiz-Fernandez
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shaunak Ghosh
- Life and Medical Sciences (LIMES) Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Petra Kameritsch
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jack Merrin
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Johanna Schmid
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Kasia Stefanowski
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Andreas W. Thomae
- Bioimaging Facility, Biomedical Center, Faculty of Medicine, Ludwig Maximilians Universität München, Munich, Germany
| | - Jingyuan Cheng
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gamze Naz Öztan
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Peter Konopka
- Life and Medical Sciences (LIMES) Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Germán Camargo Ortega
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, Munich, Germany
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Luisa Bach
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Faculty of Medicine, Ludwig Maximilians Universität München, Munich, Germany
| | - Felix Meissner
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eva Kiermaier
- Life and Medical Sciences (LIMES) Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| |
Collapse
|
4
|
Senarath K, Fisher IJ, Jang W, Lu S, Inoue A, Kostenis E, Lyon AM, Lambert NA. An integrated mechanism of G q regulation of PLCβ enzymes. Proc Natl Acad Sci U S A 2025; 122:e2500318122. [PMID: 40249783 PMCID: PMC12037048 DOI: 10.1073/pnas.2500318122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/20/2025] [Indexed: 04/20/2025] Open
Abstract
Phospholipase Cβ (PLCβ) enzymes are the principal effectors activated by Gq heterotrimers. Both Gαq and Gβγ subunits can activate PLCβ, which requires precise positioning of PLCβ at the plasma membrane to relieve structural autoinhibition and give the active site access to the phosphatidylinositol 4,5-bisphosphate (PIP2) substrate. PLCβ enzymes possess a unique distal C-terminal domain (dCTD) that is critical for activation by Gαq, but the reason for this is unclear. It is also not known how G protein activation affects the subcellular localization of PLCβ enzymes, some of which are found primarily in the cytosol despite needing to act at the plasma membrane. Here, we use bioluminescence spectroscopy, imaging, and gene editing to study the membrane disposition of PLCβ enzymes in living cells and to define the functional roles of the dCTD. We find that PLCβ translocates to the plasma membrane upon Gq activation, primarily by binding to Gαq subunits. This is rapidly counteracted by PIP2 hydrolysis, which promotes PLCβ translocation back into the cytosol. PLCβ translocation and activation require binding of Gαq to the catalytic domain and the dCTD at two distinct interfaces. Gαq binding to the dCTD is required for activation even when PLCβ is artificially tethered to the plasma membrane, suggesting that this domain has functions beyond simply recruiting the enzyme to the PIP2 substrate. We propose that in addition to associating PLCβ with the plasma membrane, the dCTD reorders the αN helix of active Gαq and thus participates directly in the precise positioning of the catalytic domain.
Collapse
Affiliation(s)
- Kanishka Senarath
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA30912
| | - Isaac J. Fisher
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Wonjo Jang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA30912
| | - Sumin Lu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA30912
| | - Asuka Inoue
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
| | - Angeline M. Lyon
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA30912
| |
Collapse
|
5
|
Liang J, Jiang P, Yan S, Cheng T, Chen S, Xian K, Xu P, Xiong JW, He A, Li J, Han P. Genetically encoded tension heterogeneity sculpts cardiac trabeculation. SCIENCE ADVANCES 2025; 11:eads2998. [PMID: 40053597 PMCID: PMC11887796 DOI: 10.1126/sciadv.ads2998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
The myocardial wall arises from a single layer of cardiomyocytes, some delaminate to create trabeculae while others remain in the compact layer. However, the mechanisms governing cardiomyocyte fate decisions remain unclear. Using single-cell RNA sequencing, genetically encoded biosensors, and in toto live imaging, we observe intrinsic variations in erbb2 expression and its association with trabecular fate. Specifically, erbb2 promotes PI3K activity and recruits the Arp2/3 complex, inducing a polarized accumulation of the actomyosin network to drive cell delamination. Subsequently, the lineage-committed nascent trabeculae trigger Notch activity in neighboring cardiomyocytes to suppress erbb2 expression and reduce cell tension, thereby confining them to the compact layer. Overall, this genetic and cellular interplay governs compact and trabecular cell fate determination to orchestrate myocardial pattern formation.
Collapse
Affiliation(s)
- Jinxiu Liang
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peijun Jiang
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuaifang Yan
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Tao Cheng
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuo Chen
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kexin Xian
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Pengfei Xu
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Aibin He
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jia Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peidong Han
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Lu Q, Ushijima K, Sasaki S, Sera T, Takeishi N, Kudo S. Spatiotemporal distribution of PKCα, PIP3, Moesin, Cdc42, MARCKS, Scriblle, and Arf6 before directed cell migration in monolayers. Biochem Biophys Res Commun 2025; 750:151371. [PMID: 39892054 DOI: 10.1016/j.bbrc.2025.151371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Protein kinase Cα (PKCα) has an important role in directed cell migration. After a mechanical wounding, PKCα rapidly accumulates at cell edges adjacent to the wounded cell and regulates cell migration. However, the proteins downstream of PKCα that mediate directed signaling remain unknown. In this study, we examined the spatiotemporal dynamics of PKCα, PIP3, Moesin, Cdc42, MARCKS, Scribble, and Arf6 before directed migration. After wounding, PIP3, Moesin, and Cdc42 accumulated at the cell edge near the wounded cells later than PKCα. In contrast, MARCKS moved away from the plasma membrane without polarization, and Scribble and Arf6 exhibited no significant translocation. The inhibition of PIP3 suppressed the accumulation of Moesin and Cdc42, suggesting that PIP3 regulates Moesin and Cdc42. In particular, the inhibition of PKCα completely inhibited the translocation of all factors, indicating that PKCα is a central regulator in early signaling after wounding and before directional migration.
Collapse
Affiliation(s)
- Quanzhi Lu
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Katsuyuki Ushijima
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Saori Sasaki
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Toshihiro Sera
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushik-ku, Tokyo, 125-8585 Japan
| | - Naoki Takeishi
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Susumu Kudo
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan.
| |
Collapse
|
7
|
Lange TE, Naji A, van der Hoeven R, Liang H, Zhou Y, Hammond GRV, Hancock JF, Cho KJ. MTMR regulates KRAS function by controlling plasma membrane levels of phospholipids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.22.576612. [PMID: 38328115 PMCID: PMC10849561 DOI: 10.1101/2024.01.22.576612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
KRAS, a small GTPase involved in cell proliferation and differentiation, frequently gains activating mutations in human cancers. For KRAS to function, it must bind the plasma membrane (PM) via interactions between its membrane anchor and phosphatidylserine (PtdSer). Therefore, depleting PM PtdSer abrogates KRAS PM binding and activity. From a genome-wide siRNA screen to identify genes regulating KRAS PM localization, we identified a set of phosphatidylinositol (PI) 3-phosphatases: myotubularin-related proteins (MTMR) 2, 3, 4, and 7. Here, we show that silencing MTMR 2/3/4/7 disrupts KRAS PM interactions by reducing PM PI 4-phosphate (PI4P) levels, thereby disrupting the localization and operation of ORP5, a lipid transfer protein maintaining PM PtdSer enrichment. Concomitantly, silencing MTMR 2/3/4/7 elevates PM PI3P levels while reducing PM and total PtdSer levels. We also observed MTMR 2/3/4/7 expression is interdependent. We propose that the PI 3-phosphatase activity of MTMR is required for generating PM PI, necessary for PM PI4P synthesis, promoting the PM localization of PtdSer and KRAS. eTOC summary We discovered that silencing the phosphatidylinositol (PI) 3-phosphatase, MTMR , disrupts the PM localization of PtdSer and KRAS. We propose a model, where MTMR loss depletes PM PI needed for PM PI4P synthesis, an essential phospholipid for PM PtdSer enrichment, thereby impairing KRAS PM localization.
Collapse
|
8
|
Dai A, Xu P, Amos C, Fujise K, Wu Y, Yang H, Eisen JN, Guillén-Samander A, De Camilli P. Multiple interactions mediate the localization of BLTP2 at ER-PM contacts to control plasma membrane dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637094. [PMID: 39974967 PMCID: PMC11839039 DOI: 10.1101/2025.02.07.637094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BLTP2/KIAA0100, a bridge-like lipid transfer protein, was reported to localize at contacts of the endoplasmic reticulum (ER) with either the plasma membrane (PM) or recycling tubular endosomes depending on the cell type. Our findings suggest that mediating bulk lipid transport between the ER and the PM is a key function of this protein as BLTP2 tethers the ER to tubular endosomes only after they become continuous with the PM and that it also tethers the ER to macropinosomes in the process of fusing with the PM. We further identify interactions underlying binding of BLTP2 to the PM, including phosphoinositides, the adaptor proteins FAM102A and FAM102B, and also N-BAR domain proteins at membrane-connected tubules. The absence of BLTP2 results in the accumulation of intracellular vacuoles, many of which are connected to the plasma membrane, pointing to a role of the lipid transport function of BLTP2 in the control of PM dynamics.
Collapse
Affiliation(s)
- Anbang Dai
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Peng Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Chase Amos
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kenshiro Fujise
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Han Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Julia N. Eisen
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrés Guillén-Samander
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Present address: Pathogen Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Lead contact
| |
Collapse
|
9
|
Tsuji T, Hasegawa J, Sasaki T, Fujimoto T. Definition of phosphatidylinositol 4,5-bisphosphate distribution by freeze-fracture replica labeling. J Cell Biol 2025; 224:e202311067. [PMID: 39495319 PMCID: PMC11535894 DOI: 10.1083/jcb.202311067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is a phospholipid essential for plasma membrane functions, but its two-dimensional distribution is not clear. Here, we compared the result of sodium dodecyl sulfate-treated freeze-fracture replica labeling (SDS-FRL) of quick-frozen cells with the actual PtdIns(4,5)P2 content and the results obtained by fluorescence biosensor and by labeling of chemically-fixed membranes. In yeast, enrichment of PtdIns(4,5)P2 in the membrane compartment of Can1 (MCC)/eisosome, especially in the curved MCC/eisosome, was evident by SDS-FRL, but not by fluorescence biosensor, GFP-PLC1δ-PH. PtdIns(4,5)P2 remaining after acute ATP depletion and in the stationary phase, 30.0% and 56.6% of the control level, respectively, was not detectable by fluorescence biosensor, whereas the label intensity by SDS-FRL reflected the PtdIns(4,5)P2 amount. In PC12 cells, PtdIns(4,5)P2 was observed in a punctate pattern in the formaldehyde-fixed plasma membrane, whereas it was distributed randomly by SDS-FRL and showed clustering after formaldehyde fixation. The results indicate that the distribution of PtdIns(4,5)P2 can be defined most reliably by SDS-FRL of quick-frozen cells.
Collapse
Affiliation(s)
- Takuma Tsuji
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junya Hasegawa
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takehiko Sasaki
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toyoshi Fujimoto
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Junqueira Alves C, Hannah T, Sadia S, Kolsteeg C, Dixon A, Wiener RJ, Nguyen H, Tipping MJ, Silva Ladeira J, Fernandes da Costa Franklin P, de Paula Dutra de Nigro N, Alves Dias R, Zabala Capriles PV, Rodrigues Furtado de Mendonça JP, Slesinger PA, Costa KD, Zou H, Friedel RH. Invasion of glioma cells through confined space requires membrane tension regulation and mechano-electrical coupling via Plexin-B2. Nat Commun 2025; 16:272. [PMID: 39747004 PMCID: PMC11697315 DOI: 10.1038/s41467-024-55056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor with diffuse infiltration. Here, we demonstrate how GBM cells usurp guidance receptor Plexin-B2 for confined migration through restricted space. Using live-cell imaging to track GBM cells negotiating microchannels, we reveal endocytic vesicle accumulation at cell front and filamentous actin assembly at cell rear in a polarized manner. These processes are interconnected and require Plexin-B2 signaling. We further show that Plexin-B2 governs membrane tension and other membrane features such as endocytosis, phospholipid composition, and inner leaflet surface charge, thus providing biophysical mechanisms by which Plexin-B2 promotes GBM invasion. Together, our studies unveil how GBM cells regulate membrane tension and mechano-electrical coupling to adapt to physical constraints and achieve polarized confined migration.
Collapse
Affiliation(s)
- Chrystian Junqueira Alves
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Theodore Hannah
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sita Sadia
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christy Kolsteeg
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angela Dixon
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert J Wiener
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ha Nguyen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Murray J Tipping
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Júlia Silva Ladeira
- Department of Computer Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Rodrigo Alves Dias
- Department of Physics, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Paul A Slesinger
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin D Costa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
11
|
Jha A, Chandra A, Farahani P, Toettcher J, Haugh JM, Waterman CM. CD44 and Ezrin restrict EGF receptor mobility to generate a novel spatial arrangement of cytoskeletal signaling modules driving bleb-based migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630838. [PMID: 39803565 PMCID: PMC11722407 DOI: 10.1101/2024.12.31.630838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb. Protein activity biosensors revealed a unique EGFR/PI3K activity gradient decreasing from rear-to-front, promoting PIP3 and Rac1-GTP accumulation at the bleb rear, with its antagonists PIP2 and RhoA-GTP concentrated at the bleb tip, opposite to the front-to-rear organization of these signaling modules in integrin-mediated mesenchymal migration. Optogenetic experiments showed that disrupting this gradient caused bleb retraction, underscoring the role of this signaling gradient in bleb stability. Mathematical modeling and experiments identified a mechanism where, as the bleb initiates, CD44 and ERM proteins restrict EGFR mobility in a membrane-apposed cortical actin meshwork in the bleb rear, establishing a rear-to-front EGFR-PI3K-Rac activity gradient. Thus, our study reveals the biophysical and molecular underpinnings of cell polarity in bleb-based migration of metastatic cells in non-adhesive confinement, and underscores how alternative spatial arrangements of migration signaling modules can mediate different migration modes according to the local microenvironment.
Collapse
Affiliation(s)
- Ankita Jha
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ankit Chandra
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, United States
| | - Payam Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Jared Toettcher
- Department of Molecular Biology, Princeton University, Princeton, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, United States
| | - Jason M. Haugh
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, United States
| | - Clare M. Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
12
|
Chang CL, Lee WR, Li WT, Liou J. Analysis of Phosphatidylinositol Transfer at ER-PM Contact Sites in Receptor-Stimulated Live Cells. Methods Mol Biol 2025; 2888:23-34. [PMID: 39699722 DOI: 10.1007/978-1-0716-4318-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Phosphatidylinositol (PI) is an inositol-containing phospholipid synthesized in the endoplasmic reticulum (ER). PI is a precursor lipid for PI 4,5-bisphosphate (PI(4,5)P2) in the plasma membrane (PM) important for Ca2+ signaling in response to extracellular stimuli. Thus, ER-to-PM PI transfer becomes essential for cells to maintain PI(4,5)P2 homeostasis during receptor stimulation. In this chapter, we discuss two live-cell imaging protocols to analyze ER-to-PM PI transfer at ER-PM contact sites, where the two membrane compartments make close appositions accommodating PI transfer. First, we describe how to monitor PI(4,5)P2 replenishment following receptor stimulation as a readout of PI transfer using a PI(4,5)P2 biosensor and total internal reflection microscopy. The second protocol directly visualizes PI transfer proteins that accumulate at ER-PM contact sites and mediate PI(4,5)P2 replenishment with PI in the ER in stimulated cells. These methods provide spatial and temporal analysis of ER-to-PM PI transfer during receptor stimulation and can be adapted to other research questions related to this topic.
Collapse
Affiliation(s)
- Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children's Hospital, Memphis, TN, USA
| | - Wan-Ru Lee
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Ting Li
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jen Liou
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Hiyoshi M, Eltalkhawy YM, Abdelnaser RA, Ono A, Monde K, Maeda Y, Mahmoud RM, Takahashi N, Hatayama Y, Ryo A, Nozuma S, Takashima H, Kubota R, Suzu S. M-Sec promotes the accumulation of intracellular HTLV-1 Gag puncta and the incorporation of Env into viral particles. PLoS Pathog 2025; 21:e1012919. [PMID: 39869648 PMCID: PMC11801699 DOI: 10.1371/journal.ppat.1012919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/06/2025] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
We have demonstrated that the cellular protein M-Sec promotes the transmission of human T-cell leukemia virus type 1 (HTLV-1) in vitro and in vivo. Here, we show how HTLV-1 utilizes M-Sec for its efficient transmission. HTLV-1-infected CD4+ T cells expressed M-Sec at a higher level than uninfected CD4+ T cells. The ex vivo culture of the infected cells upregulated the expression of M-Sec, the level of which was sustained for a long time. The viral structural protein Gag is distributed in a punctate pattern in cells. M-Sec promoted the accumulation of large intracellular Gag puncta. This accumulation was dependent on phosphatidylinositol 4,5-bisphosphate (PIP2), since it was lost upon the removal of PIP2 binding motifs in M-Sec or the depletion of cellular PIP2. The viral envelope protein Env co-localized with the large Gag puncta induced by M-Sec. Furthermore, viral particles produced by M-Sec-expressing cells contained a higher amount of Env. Given that M-Sec alters the cellular distribution of PIP2, these results suggest that M-Sec promotes the formation of infectious viral particles through PIP2. Since the expression of M-Sec is mediated by HTLV-1 Tax protein, M-Sec appears to function in a positive feedback loop that ensures efficient HTLV-1 transmission.
Collapse
Affiliation(s)
- Masateru Hiyoshi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Youssef M. Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Randa A. Abdelnaser
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yosuke Maeda
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Reem M. Mahmoud
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yasuyoshi Hatayama
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryuji Kubota
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
14
|
Torres C, Mancinelli G, Chen JWE, Cordoba-Chacon J, Pins D, Saeed S, McKinney R, Castellanos K, Orsi G, Singhal M, Patel A, Acebedo J, Coleman A, Heneche J, Yalagala PCR, Subbaiah PV, Leal C, Grimaldo S, Ortuno FM, Bishehsari F, Grippo PJ. Cell Membrane Fatty Acids and PIPs Modulate the Etiology of Pancreatic Cancer by Regulating AKT. Nutrients 2024; 17:150. [PMID: 39796583 PMCID: PMC11722924 DOI: 10.3390/nu17010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the worst solid malignancies in regard to outcomes and metabolic dysfunction leading to cachexia. It is alarming that PDAC incidence rates continue to increase and warrant the need for innovative approaches to combat this disease. Due to its relatively slow progression (10-20 years), prevention strategies represent an effective means to improve outcomes. One of the risk factors for many cancers and for pancreatic cancer in particular is diet. Hence, our objective is to understand how a diet rich in ω3 and ω6 polyunsaturated fatty acids affects the progression of this disease. Methods: We investigated polyunsaturated fatty acid (PUFA) effects on disease progression employing both in vitro (PDAC cell lines) and in vivo (EL-Kras and KC mice) approaches. Also, we gathered data from the National Health and Nutrition Examination Survey (NHANES) and the National Cancer Institute (NCI) from 1999 to 2017 for a retrospective observational study. Results: The consumption of PUFAs in a patient population correlates with increased PDAC incidence, particularly when the ω3 intake increases to a lesser extent than ω6. Our data demonstrate dietary PUFAs can be incorporated into plasma membrane lipids affecting PI3K/AKT signaling and support the emergence of membrane-targeted therapies. Moreover, we show that the phospholipid composition of a lipid nanoparticle (LNP) can impact the cell membrane integrity and, ultimately, cell viability after administration of these LNPs. Conclusions: Cancer prevention is impactful particularly for those with very poor prognosis, including pancreatic cancer. Our results point to the importance of dietary intervention in this disease when detected early and the potential to improve the antiproliferative effect of drug efficacy when combined with these regimens in later stages of pancreatic cancer.
Collapse
Affiliation(s)
- Carolina Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigacion Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Georgina Mancinelli
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Jee-Wei Emily Chen
- Department of Materials Science & Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.-W.E.C.)
| | - Jose Cordoba-Chacon
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Danielle Pins
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Sara Saeed
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Ronald McKinney
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Karla Castellanos
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | | | - Megha Singhal
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Akshar Patel
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Jose Acebedo
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Adonis Coleman
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Jorge Heneche
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Poorna Chandra Rao Yalagala
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Papasani V. Subbaiah
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Cecilia Leal
- Department of Materials Science & Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.-W.E.C.)
| | - Sam Grimaldo
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Francisco M. Ortuno
- Department of Computer Architecture and Computer Technology, University of Granada, 18071 Granada, Spain
| | - Faraz Bishehsari
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Paul J. Grippo
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois Chicago, 840 S. Wood Street, CSB 708, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Singh PK, Rybak JA, Schuck RJ, Sahoo AR, Buck M, Barrera FN, Smith AW. Phosphatidylinositol 4,5-bisphosphate drives the formation of EGFR and EphA2 complexes. SCIENCE ADVANCES 2024; 10:eadl0649. [PMID: 39630914 PMCID: PMC11616708 DOI: 10.1126/sciadv.adl0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved. Here, we use a time-resolved fluorescence spectroscopy called PIE-FCCS to resolve EGFR and EphA2 interactions in live cells. We tested the role of ligands and found that EGF, but not ephrin A1 (EA1), stimulated heteromultimerization between the receptors. To determine the effect of anionic lipids, we targeted phospholipase C (PLC) activity to alter the abundance of phosphatidylinositol 4,5-bisphosphate (PIP2). We found that higher PIP2 levels increased homomultimerization of both EGFR and EphA2, as well as heteromultimerization. This study provides a direct characterization of EGFR and EphA2 interactions in live cells and shows that PIP2 can have a substantial effect on the spatial organization of RTKs.
Collapse
Affiliation(s)
- Pradeep Kumar Singh
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79410, USA
| | - Jennifer A. Rybak
- Genome Sciences and Technology Graduate Program, University of Tennessee, Knoxville, TN 37996, USA
| | - Ryan J. Schuck
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amita R. Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Francisco N. Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Adam W. Smith
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79410, USA
| |
Collapse
|
16
|
Raj N, Weiß MS, Vos BE, Weischer S, Brinkmann F, Betz T, Trappmann B, Gerke V. Membrane Tension Regulation is Required for Wound Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402317. [PMID: 39360573 DOI: 10.1002/advs.202402317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Disruptions of the eukaryotic plasma membrane due to chemical and mechanical challenges are frequent and detrimental and thus need to be repaired to maintain proper cell function and avoid cell death. However, the cellular mechanisms involved in wound resealing and restoration of homeostasis are diverse and contended. Here, it is shown that clathrin-mediated endocytosis is induced at later stages of plasma membrane wound repair following the actual resealing of the wound. This compensatory endocytosis occurs near the wound, predominantly at sites of previous early endosome exocytosis which is required in the initial stage of membrane resealing, suggesting a spatio-temporal co-ordination of exo- and endocytosis during wound repair. Using cytoskeletal alterations and modulations of membrane tension and membrane area, membrane tension is identified as a major regulator of the wounding-associated exo- and endocytic events that mediate efficient wound repair. Thus, membrane tension changes are a universal trigger for plasma membrane wound repair modulating the exocytosis of early endosomes required for resealing and subsequent clathrin-mediated endocytosis acting at later stages to restore cell homeostasis and function.
Collapse
Affiliation(s)
- Nikita Raj
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), Multiscale Imaging Centre, Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Martin S Weiß
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Bart E Vos
- Third Institute of Physics, University of Göttingen, 37077, Göttingen, Germany
| | - Sarah Weischer
- Multiscale Imaging Centre, Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Frauke Brinkmann
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149, Münster, Germany
| | - Timo Betz
- Third Institute of Physics, University of Göttingen, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Göttingen, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227, Dortmund, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), Multiscale Imaging Centre, Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| |
Collapse
|
17
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
18
|
Wang M, Guan Q, Wang C, Hu L, Hu X, Xu M, Cai Y, Zhang H, Cao Q, Sheng H, Wei X, Koehler JE, Dou H, Gu RX, Yuan C. Anchorage of bacterial effector at plasma membrane via selective phosphatidic acid binding to modulate host cell signaling. PLoS Pathog 2024; 20:e1012694. [PMID: 39531410 PMCID: PMC11556746 DOI: 10.1371/journal.ppat.1012694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Binding phospholipid is a simple, yet flexible, strategy for anchorage of bacterial effectors at cell membrane to manipulate host signaling responses. Phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-biphosphate are the only two phospholipid species known to direct bacterial effectors to establish inner leaflet localization at the plasma membrane. Here, selectivity of phosphatidic acid (PA) by bacterial effectors for the plasma membrane anchorage and its molecular entity was identified. C-terminal BID domain of Bartonella T4SS effectors (Beps) directed the plasma membrane localization of Beps in host cells through binding with PA. A hydrophobic segment of the 'HOOK' subdomain from BID is inserted into the bilayer to enhance the interaction of positively charged residues with the lipid headgroups. Mutations of a conserved arginine facilitating the electrostatic interaction, a conserved glycine maintaining the stability of the PA binding groove, and hydrophobic residues determining membrane insertion, prevented the anchorage of Beps at the plasma membrane. Disassociation from plasma membrane to cytosol attenuated the BepC capacity to induce stress fiber formation and cell fragmentation in host cells. The substitution of alanine with aspartic acid at the -1 position preceding the conserved arginine residue hindered BepD anchoring at the plasma membrane, a vital prerequisite for its ability to elicit IL-10 secretion in host macrophages. In conclusion, our findings reveal the PA-binding properties of bacterial effectors to establish plasma membrane localization and will shed light on the intricate mechanisms employed by bacterial effectors within host cells.
Collapse
Affiliation(s)
- Meng Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qixiao Guan
- School of materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lyubin Hu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyan Hu
- School of materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Menglin Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Cai
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Haoran Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Cao
- Shanghai Children’s Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Huiming Sheng
- Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Wei
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Jane E. Koehler
- Department of Medicine, Division of Infectious Diseases, and the Microbial Pathogenesis and Host Defense Program, University of California, San Francisco, California, United States of America
| | - Hongjing Dou
- School of materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo-xu Gu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Congli Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Ivanova A, Atakpa-Adaji P, Rao S, Marti-Solano M, Taylor CW. Dual regulation of IP 3 receptors by IP 3 and PIP 2 controls the transition from local to global Ca 2+ signals. Mol Cell 2024; 84:3997-4015.e7. [PMID: 39366376 DOI: 10.1016/j.molcel.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 09/08/2024] [Indexed: 10/06/2024]
Abstract
The spatial organization of inositol 1,4,5-trisphosphate (IP3)-evoked Ca2+ signals underlies their versatility. Low stimulus intensities evoke Ca2+ puffs, localized Ca2+ signals arising from a few IP3 receptors (IP3Rs) within a cluster tethered beneath the plasma membrane. More intense stimulation evokes global Ca2+ signals. Ca2+ signals propagate regeneratively as the Ca2+ released stimulates more IP3Rs. How is this potentially explosive mechanism constrained to allow local Ca2+ signaling? We developed methods that allow IP3 produced after G-protein coupled receptor (GPCR) activation to be intercepted and replaced by flash photolysis of a caged analog of IP3. We find that phosphatidylinositol 4,5-bisphosphate (PIP2) primes IP3Rs to respond by partially occupying their IP3-binding sites. As GPCRs stimulate IP3 formation, they also deplete PIP2, relieving the priming stimulus. Loss of PIP2 resets IP3R sensitivity and delays the transition from local to global Ca2+ signals. Dual regulation of IP3Rs by PIP2 and IP3 through GPCRs controls the transition from local to global Ca2+ signals.
Collapse
Affiliation(s)
- Adelina Ivanova
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | - Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Shanlin Rao
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Maria Marti-Solano
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
20
|
Brands J, Bravo S, Jürgenliemke L, Grätz L, Schihada H, Frechen F, Alenfelder J, Pfeil C, Ohse PG, Hiratsuka S, Kawakami K, Schmacke LC, Heycke N, Inoue A, König G, Pfeifer A, Wachten D, Schulte G, Steinmetzer T, Watts VJ, Gomeza J, Simon K, Kostenis E. A molecular mechanism to diversify Ca 2+ signaling downstream of Gs protein-coupled receptors. Nat Commun 2024; 15:7684. [PMID: 39227390 PMCID: PMC11372221 DOI: 10.1038/s41467-024-51991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
A long-held tenet in inositol-lipid signaling is that cleavage of membrane phosphoinositides by phospholipase Cβ (PLCβ) isozymes to increase cytosolic Ca2+ in living cells is exclusive to Gq- and Gi-sensitive G protein-coupled receptors (GPCRs). Here we extend this central tenet and show that Gs-GPCRs also partake in inositol-lipid signaling and thereby increase cytosolic Ca2+. By combining CRISPR/Cas9 genome editing to delete Gαs, the adenylyl cyclase isoforms 3 and 6, or the PLCβ1-4 isozymes, with pharmacological and genetic inhibition of Gq and G11, we pin down Gs-derived Gβγ as driver of a PLCβ2/3-mediated cytosolic Ca2+ release module. This module does not require but crosstalks with Gαs-dependent cAMP, demands Gαq to release PLCβ3 autoinhibition, but becomes Gq-independent with mutational disruption of the PLCβ3 autoinhibited state. Our findings uncover the key steps of a previously unappreciated mechanism utilized by mammalian cells to finetune their calcium signaling regulation through Gs-GPCRs.
Collapse
Affiliation(s)
- Julian Brands
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Sergi Bravo
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Lars Jürgenliemke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Research Training Group 2873, University of Bonn, Bonn, Germany
| | - Lukas Grätz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Fabian Frechen
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Cy Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Research Training Group 1873, University of Bonn, Bonn, Germany
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Paul Georg Ohse
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Suzune Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
| | - Luna C Schmacke
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nina Heycke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Gabriele König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Torsten Steinmetzer
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Jesús Gomeza
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
21
|
Chan V, Camardi C, Zhang K, Orofiamma LA, Anderson KE, Hoque J, Bone LN, Awadeh Y, Lee DKC, Fu NJ, Chow JTS, Salmena L, Stephens LR, Hawkins PT, Antonescu CN, Botelho RJ. The LCLAT1/LYCAT acyltransferase is required for EGF-mediated phosphatidylinositol-3,4,5-trisphosphate generation and Akt signaling. Mol Biol Cell 2024; 35:ar118. [PMID: 39024272 PMCID: PMC11449395 DOI: 10.1091/mbc.e23-09-0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Receptor tyrosine kinases such as EGF receptor (EGFR) stimulate phosphoinositide 3 kinases to convert phosphatidylinositol-4,5-bisphosophate [PtdIns(4,5)P2] into phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3]. PtdIns(3,4,5)P3 then remodels actin and gene expression, and boosts cell survival and proliferation. PtdIns(3,4,5)P3 partly achieves these functions by triggering activation of the kinase Akt, which phosphorylates targets like Tsc2 and GSK3β. Consequently, unchecked upregulation of PtdIns(3,4,5)P3-Akt signaling promotes tumor progression. Interestingly, 50-70% of PtdIns and PtdInsPs have stearate and arachidonate at sn-1 and sn-2 positions of glycerol, respectively, forming a species known as 38:4-PtdIns/PtdInsPs. LCLAT1 and MBOAT7 acyltransferases partly enrich PtdIns in this acyl format. We previously showed that disruption of LCLAT1 lowered PtdIns(4,5)P2 levels and perturbed endocytosis and endocytic trafficking. However, the role of LCLAT1 in receptor tyrosine kinase and PtdIns(3,4,5)P3 signaling was not explored. Here, we show that LCLAT1 silencing in MDA-MB-231 and ARPE-19 cells abated the levels of PtdIns(3,4,5)P3 in response to EGF signaling. Importantly, LCLAT1-silenced cells were also impaired for EGF-driven and insulin-driven Akt activation and downstream signaling. Thus, our work provides first evidence that the LCLAT1 acyltransferase is required for receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Victoria Chan
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Cristina Camardi
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Kai Zhang
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Laura A. Orofiamma
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Karen E. Anderson
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Jafarul Hoque
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Leslie N. Bone
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Yasmin Awadeh
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Daniel K. C. Lee
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Norman J. Fu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Jonathan T. S. Chow
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Leonardo Salmena
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Len R. Stephens
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Phillip T. Hawkins
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Costin N. Antonescu
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Roberto J. Botelho
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| |
Collapse
|
22
|
Tavasoli M, McMaster CR. Defects in integrin complex formation promote CHKB-mediated muscular dystrophy. Life Sci Alliance 2024; 7:e202301956. [PMID: 38749543 PMCID: PMC11096732 DOI: 10.26508/lsa.202301956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Phosphatidylcholine (PC) is the major membrane phospholipid in most eukaryotic cells. Bi-allelic loss of function variants in CHKB, encoding the first step in the synthesis of PC, is the cause of a rostrocaudal muscular dystrophy in both humans and mice. Loss of sarcolemma integrity is a hallmark of muscular dystrophies; however, how this occurs in the absence of choline kinase function is not known. We determine that in Chkb -/- mice there is a failure of the α7β1 integrin complex that is specific to affected muscle. We observed that in Chkb -/- hindlimb muscles there is a decrease in sarcolemma association/abundance of the PI(4,5)P2 binding integrin complex proteins vinculin, and α-actinin, and a decrease in actin association with the sarcolemma. In cells, pharmacological inhibition of choline kinase activity results in internalization of a fluorescent PI(4,5)P2 reporter from discrete plasma membrane clusters at the cell surface membrane to cytosol, this corresponds with a decreased vinculin localization at plasma membrane focal adhesions that was rescued by overexpression of CHKB.
Collapse
Affiliation(s)
- Mahtab Tavasoli
- Department of Pharmacology, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
23
|
Wu Z, Du Y, Kirchhausen T, He K. Probing and imaging phospholipid dynamics in live cells. LIFE METABOLISM 2024; 3:loae014. [PMID: 39872507 PMCID: PMC11749120 DOI: 10.1093/lifemeta/loae014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 01/30/2025]
Abstract
Distinct phospholipid species display specific distribution patterns across cellular membranes, which are important for their structural and signaling roles and for preserving the integrity and functionality of the plasma membrane and organelles. Recent advancements in lipid biosensor technology and imaging modalities now allow for direct observation of phospholipid distribution, trafficking, and dynamics in living cells. These innovations have markedly advanced our understanding of phospholipid function and regulation at both cellular and subcellular levels. Herein, we summarize the latest developments in phospholipid biosensor design and application, emphasizing the contribution of cutting-edge imaging techniques to elucidating phospholipid dynamics and distribution with unparalleled spatiotemporal precision.
Collapse
Affiliation(s)
- Zhongsheng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Sahtoe DD, Andrzejewska EA, Han HL, Rennella E, Schneider MM, Meisl G, Ahlrichs M, Decarreau J, Nguyen H, Kang A, Levine P, Lamb M, Li X, Bera AK, Kay LE, Knowles TPJ, Baker D. Design of amyloidogenic peptide traps. Nat Chem Biol 2024; 20:981-990. [PMID: 38503834 PMCID: PMC11288891 DOI: 10.1038/s41589-024-01578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024]
Abstract
Segments of proteins with high β-strand propensity can self-associate to form amyloid fibrils implicated in many diseases. We describe a general approach to bind such segments in β-strand and β-hairpin conformations using de novo designed scaffolds that contain deep peptide-binding clefts. The designs bind their cognate peptides in vitro with nanomolar affinities. The crystal structure of a designed protein-peptide complex is close to the design model, and NMR characterization reveals how the peptide-binding cleft is protected in the apo state. We use the approach to design binders to the amyloid-forming proteins transthyretin, tau, serum amyloid A1 and amyloid β1-42 (Aβ42). The Aβ binders block the assembly of Aβ fibrils as effectively as the most potent of the clinically tested antibodies to date and protect cells from toxic Aβ42 species.
Collapse
Affiliation(s)
- Danny D Sahtoe
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- HHMI, University of Washington, Seattle, WA, USA.
- Hubrecht Institute, Utrecht, the Netherlands.
| | - Ewa A Andrzejewska
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Hannah L Han
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Enrico Rennella
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Maggie Ahlrichs
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannah Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Paul Levine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mila Lamb
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- HHMI, University of Washington, Seattle, WA, USA.
| |
Collapse
|
25
|
Kim YJ, Tohyama S, Nagashima T, Nagase M, Hida Y, Hamada S, Watabe AM, Ohtsuka T. A light-controlled phospholipase C for imaging of lipid dynamics and controlling neural plasticity. Cell Chem Biol 2024; 31:1336-1348.e7. [PMID: 38582083 DOI: 10.1016/j.chembiol.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Phospholipase C (PLC) is a key enzyme that regulates physiological processes via lipid and calcium signaling. Despite advances in protein engineering, no tools are available for direct PLC control. Here, we developed a novel optogenetic tool, light-controlled PLCβ (opto-PLCβ). Opto-PLCβ uses a light-induced dimer module, which directs an engineered PLC to the plasma membrane in a light-dependent manner. Our design includes an autoinhibitory capacity, ensuring stringent control over PLC activity. Opto-PLCβ triggers reversible calcium responses and lipid dynamics in a restricted region, allowing precise spatiotemporal control of PLC signaling. Using our system, we discovered that phospholipase D-mediated phosphatidic acid contributes to diacylglycerol clearance on the plasma membrane. Moreover, we extended its applicability in vivo, demonstrating that opto-PLCβ can enhance amygdala synaptic plasticity and associative fear learning in mice. Thus, opto-PLCβ offers precise spatiotemporal control, enabling comprehensive investigation of PLC-mediated signaling pathways, lipid dynamics, and their physiological consequences in vivo.
Collapse
Affiliation(s)
- Yeon-Jeong Kim
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Suguru Tohyama
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Takashi Nagashima
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Masashi Nagase
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Yamato Hida
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Shun Hamada
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Ayako M Watabe
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan.
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
26
|
Song JZ, Feng YH, Sergevnina V, Zhu J, Li H, Xie Z. Assessing the Presence of Phosphoinositides on Autophagosomal Membrane in Yeast by Live Cell Imaging. Microorganisms 2024; 12:1458. [PMID: 39065227 PMCID: PMC11279164 DOI: 10.3390/microorganisms12071458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The formation of autophagosomes mediating the sequestration of cytoplasmic materials is the central step of autophagy. Several phosphoinositides, which are signaling molecules on the membrane, are involved in autophagy. However, it is not always clear whether these phosphoinositides act directly at the site of autophagosome formation, or indirectly via the regulation of other steps or pathways. To address this question, we used a set of phosphoinositide probes to systematically examine their potential presence on autophagosomal membranes in yeast (Saccharomyces cerevisiae). We verified the specificity of these probes using mutant cells deficient in the production of the corresponding phosphoinositides. We then examined starved yeast cells co-expressing a phosphoinositide probe together with an autophagosomal membrane marker, 2Katushka2S-Atg8. Our data revealed that PtdIns(4,5)P2 and PtdIns(3,5)P2 were mainly present on the plasma membrane and vacuolar membrane, respectively. We observed only occasional co-localization between the PtdIns(4)P probe and Atg8, some of which may represent the transient passage of a PtdIns(4)P-containing structure near the autophagosomal membrane. In contrast, substantial colocalization of the PtdIns(3)P probe with Atg8 was observed. Taken together, our data indicate that only PtdIns(3)P is present in a substantial amount on the autophagosomal membrane. For other phosphoinositides involved in autophagy, either their presence on the autophagosomal membrane is very transient, or they act on other cellular membranes to regulate autophagy.
Collapse
Affiliation(s)
| | | | | | | | - Hui Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Malchow J, Eberlein J, Li W, Hogan BM, Okuda KS, Helker CSM. Neural progenitor-derived Apelin controls tip cell behavior and vascular patterning. SCIENCE ADVANCES 2024; 10:eadk1174. [PMID: 38968355 PMCID: PMC11225789 DOI: 10.1126/sciadv.adk1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
During angiogenesis, vascular tip cells guide nascent vascular sprouts to form a vascular network. Apelin, an agonist of the G protein-coupled receptor Aplnr, is enriched in vascular tip cells, and it is hypothesized that vascular-derived Apelin regulates sprouting angiogenesis. We identify an apelin-expressing neural progenitor cell population in the dorsal neural tube. Vascular tip cells exhibit directed elongation and migration toward and along the apelin-expressing neural progenitor cells. Notably, restoration of neural but not vascular apelin expression in apelin mutants remedies the angiogenic defects of mutants. By functional analyses, we show the requirement of Apelin signaling for tip cell behaviors, like filopodia formation and cell elongation. Through genetic interaction studies and analysis of transgenic activity reporters, we identify Apelin signaling as a modulator of phosphoinositide 3-kinase and extracellular signal-regulated kinase signaling in tip cells in vivo. Our results suggest a previously unidentified neurovascular cross-talk mediated by Apelin signaling that is important for tip cell function during sprouting angiogenesis.
Collapse
Affiliation(s)
- Julian Malchow
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
| | - Jean Eberlein
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
| | - Wei Li
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
| | - Benjamin M. Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Kazuhide S. Okuda
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Christian S. M. Helker
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Marburg, Germany
| |
Collapse
|
28
|
Shinoda S, Sakai Y, Matsui T, Uematsu M, Koyama-Honda I, Sakamaki JI, Yamamoto H, Mizushima N. Syntaxin 17 recruitment to mature autophagosomes is temporally regulated by PI4P accumulation. eLife 2024; 12:RP92189. [PMID: 38831696 PMCID: PMC11152571 DOI: 10.7554/elife.92189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes. However, how STX17 recognizes autophagosome maturation is not known. Here, we show that this temporally regulated recruitment of STX17 depends on the positively charged C-terminal region of STX17. Consistent with this finding, mature autophagosomes are more negatively charged compared with unclosed intermediate structures. This electrostatic maturation of autophagosomes is likely driven by the accumulation of phosphatidylinositol 4-phosphate (PI4P) in the autophagosomal membrane. Accordingly, dephosphorylation of autophagosomal PI4P prevents the association of STX17 to autophagosomes. Furthermore, molecular dynamics simulations support PI4P-dependent membrane insertion of the transmembrane helices of STX17. Based on these findings, we propose a model in which STX17 recruitment to mature autophagosomes is temporally regulated by a PI4P-driven change in the surface charge of autophagosomes.
Collapse
Affiliation(s)
- Saori Shinoda
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Yuji Sakai
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto UniversityKyotoJapan
| | - Takahide Matsui
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Masaaki Uematsu
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Jun-ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| |
Collapse
|
29
|
Singh PK, Rybak JA, Schuck RJ, Barrera FN, Smith AW. Phosphatidylinositol (4,5)-bisphosphate drives the formation of EGFR and EphA2 complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592400. [PMID: 38746348 PMCID: PMC11092790 DOI: 10.1101/2024.05.03.592400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved. Here we utilize a time-resolved fluorescence spectroscopy called PIE-FCCS to resolve EGFR and EphA2 interactions in live cells. We tested the role of ligands and found that EGF, but not ephrin A1 (EA1), stimulated hetero-multimerization between the receptors. To determine the effect of anionic lipids, we targeted phospholipase C (PLC) activity to alter the abundance of phosphatidylinositol (4,5)-bisphosphate (PIP 2 ). We found that higher PIP 2 levels increased homo-multimerization of both EGFR and EphA2, as well as hetero-multimerization. This study provides a direct characterization of EGFR and EphA2 interactions in live cells and shows that PIP 2 can have a substantial effect on the spatial organization of RTKs.
Collapse
|
30
|
Luedke KP, Yoshino J, Yin C, Jiang N, Huang JM, Huynh K, Parrish JZ. Dendrite intercalation between epidermal cells tunes nociceptor sensitivity to mechanical stimuli in Drosophila larvae. PLoS Genet 2024; 20:e1011237. [PMID: 38662763 DOI: 10.1371/journal.pgen.1011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/07/2024] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
An animal's skin provides a first point of contact with the sensory environment, including noxious cues that elicit protective behavioral responses. Nociceptive somatosensory neurons densely innervate and intimately interact with epidermal cells to receive these cues, however the mechanisms by which epidermal interactions shape processing of noxious inputs is still poorly understood. Here, we identify a role for dendrite intercalation between epidermal cells in tuning sensitivity of Drosophila larvae to noxious mechanical stimuli. In wild-type larvae, dendrites of nociceptive class IV da neurons intercalate between epidermal cells at apodemes, which function as body wall muscle attachment sites, but not at other sites in the epidermis. From a genetic screen we identified miR-14 as a regulator of dendrite positioning in the epidermis: miR-14 is expressed broadly in the epidermis but not in apodemes, and miR-14 inactivation leads to excessive apical dendrite intercalation between epidermal cells. We found that miR-14 regulates expression and distribution of the epidermal Innexins ogre and Inx2 and that these epidermal gap junction proteins restrict epidermal dendrite intercalation. Finally, we found that altering the extent of epidermal dendrite intercalation had corresponding effects on nociception: increasing epidermal intercalation sensitized larvae to noxious mechanical inputs and increased mechanically evoked calcium responses in nociceptive neurons, whereas reducing epidermal dendrite intercalation had the opposite effects. Altogether, these studies identify epidermal dendrite intercalation as a mechanism for mechanical coupling of nociceptive neurons to the epidermis, with nociceptive sensitivity tuned by the extent of intercalation.
Collapse
Affiliation(s)
- Kory P Luedke
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jiro Yoshino
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Chang Yin
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Nan Jiang
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jessica M Huang
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Kevin Huynh
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| |
Collapse
|
31
|
Muramoto M, Mineoka N, Fukuda K, Kuriyama S, Masatani T, Fujita A. Coordinated regulation of phosphatidylinositol 4-phosphate and phosphatidylserine levels by Osh4p and Osh5p is an essential regulatory mechanism in autophagy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184308. [PMID: 38437942 DOI: 10.1016/j.bbamem.2024.184308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Macroautophagy (hereafter autophagy) is an intracellular degradative pathway in budding yeast cells. Certain lipid types play essential roles in autophagy; yet the precise mechanisms regulating lipid composition during autophagy remain unknown. Here, we explored the role of the Osh family proteins in the modulating lipid composition during autophagy in budding yeast. Our results showed that osh1-osh7∆ deletions lead to autophagic dysfunction, with impaired GFP-Atg8 processing and the absence of autophagosomes and autophagic bodies in the cytosol and vacuole, respectively. Freeze-fracture electron microscopy (EM) revealed elevated phosphatidylinositol 4-phosphate (PtdIns(4)P) levels in cytoplasmic and luminal leaflets of autophagic bodies and vacuolar membranes in all deletion mutants. Phosphatidylserine (PtdSer) levels were significantly decreased in the autophagic bodies and vacuolar membranes in osh4∆ and osh5∆ mutants, whereas no significant changes were observed in other osh deletion mutants. Furthermore, we identified defects in autophagic processes in the osh4∆ and osh5∆ mutants, including rare autophagosome formation in the osh5∆ mutant and accumulation of autophagic bodies in the vacuole in the osh4∆ mutant, even in the absence of the proteinase inhibitor PMSF. These findings suggest that Osh4p and Osh5p play crucial roles in the transport of PtdSer to autophagic bodies and autophagosome membranes, respectively. The precise control of lipid composition in the membranes of autophagosomes and autophagic bodies by Osh4p and Osh5p represents an important regulatory mechanism in autophagy.
Collapse
Affiliation(s)
- Moe Muramoto
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Nanaru Mineoka
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Kayoko Fukuda
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Sayuri Kuriyama
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Tatsunori Masatani
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akikazu Fujita
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| |
Collapse
|
32
|
Kundu R, Kumar S, Chandra A, Datta A. Cell-Permeable Fluorescent Sensors Enable Rapid Live Cell Visualization of Plasma Membrane and Nuclear PIP3 Pools. JACS AU 2024; 4:1004-1017. [PMID: 38559732 PMCID: PMC10976597 DOI: 10.1021/jacsau.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Phosphoinositides, phospholipids that are key cell-signal mediators, are present at very low levels in cellular membranes and within nuclei. Phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), a phosphoinositide barely present in resting cell membranes, is produced when cells receive either growth, proliferation, or movement signals. Aberrant PIP3 levels are associated with the formation of cancers. PIP3 pools are also present in the nucleus, specifically in the nucleolus. However, questions related to the organization and function of this lipid in such membraneless intranuclear structures remain unanswered. Therefore, chemical sensors for tracking cellular PIP3 are invaluable not only for timing signal initiation in membranes but also for identifying the organization and function of membraneless nuclear PIP3 pools. Because PIP3 is present in the inner leaflet of cell membranes and in the nucleus, cell-permeable, rapid-response fluorescent sensors would be ideal. We have designed two peptide-based, water-soluble, cell-permeable, ratiometric PIP3 sensors named as MFR-K17H and DAN-NG-H12G. MFR-K17H rapidly entered into the cell cytoplasm, distinctly reporting rapid (<1 min) time scales of growth factor-stimulated PIP3 generation and depletion within cell membranes in living cells. Importantly, MFR-K17H lighted up inherently high levels of PIP3 in triple-negative breast cancer cell membranes, implying future applications in the detection of enhanced PIP3 levels in cancerous cells. On the other hand, DAN-NG-H12G targeted intranuclear PIP3 pools, revealing that within membraneless structures, PIP3 resided in a hydrophobic environment. Together, both probes form a unique orthogonally targeted combination of cell-permeable, ratiometric probes that, unlike previous cell-impermeable protein-based sensors, are easy to apply and provide an unprecedented handle into PIP3-mediated cellular processes.
Collapse
Affiliation(s)
- Rajasree Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Sahil Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Amitava Chandra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|
33
|
Weckerly CC, Rahn TA, Ehrlich M, Wills RC, Pemberton JG, Airola MV, Hammond GRV. Nir1-LNS2 is a novel phosphatidic acid biosensor that reveals mechanisms of lipid production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582557. [PMID: 38464273 PMCID: PMC10925316 DOI: 10.1101/2024.02.28.582557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Despite various roles of phosphatidic acid (PA) in cellular functions such as lipid homeostasis and vesicular trafficking, there is a lack of high-affinity tools to study PA in live cells. After analysis of the predicted structure of the LNS2 domain in the lipid transfer protein Nir1, we suspected that this domain could serve as a novel PA biosensor. We created a fluorescently tagged Nir1-LNS2 construct and then performed liposome binding assays as well as pharmacological and genetic manipulations of HEK293A cells to determine how specific lipids affect the interaction of Nir1-LNS2 with membranes. We found that Nir1-LNS2 bound to both PA and PIP2 in vitro. Interestingly, only PA was necessary and sufficient to localize Nir1-LNS2 to membranes in cells. Nir1-LNS2 also showed a heightened responsiveness to PA when compared to biosensors using the Spo20 PA binding domain (PABD). Nir1-LNS2's high sensitivity revealed a modest but discernible contribution of PLD to PA production downstream of muscarinic receptors, which has not been visualized with previous Spo20-based probes. In summary, Nir1-LNS2 emerges as a versatile and sensitive biosensor, offering researchers a new powerful tool for real-time investigation of PA dynamics in live cells.
Collapse
Affiliation(s)
- Claire C Weckerly
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Taylor A Rahn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Max Ehrlich
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rachel C Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Calabrese B, Halpain S. MARCKS and PI(4,5)P 2 reciprocally regulate actin-based dendritic spine morphology. Mol Biol Cell 2024; 35:ar23. [PMID: 38088877 PMCID: PMC10881156 DOI: 10.1091/mbc.e23-09-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
Myristoylated, alanine-rich C-kinase substrate (MARCKS) is an F-actin and phospholipid binding protein implicated in numerous cellular activities, including the regulation of morphology in neuronal dendrites and dendritic spines. MARCKS contains a lysine-rich effector domain that mediates its binding to plasma membrane phosphatidylinositol-4,5-biphosphate (PI(4,5)P2) in a manner controlled by PKC and calcium/calmodulin. In neurons, manipulations of MARCKS concentration and membrane targeting strongly affect the numbers, shapes, and F-actin properties of dendritic spines, but the mechanisms remain unclear. Here, we tested the hypothesis that the effects of MARCKS on dendritic spine morphology are due to its capacity to regulate the availability of plasma membrane PI(4,5)P2. We observed that the concentration of free PI(4,5)P2 on the dendritic plasma membrane was inversely proportional to the concentration of MARCKS. Endogenous PI(4,5)P2 levels were increased or decreased, respectively, by acutely overexpressing either phosphatidylinositol-4-phosphate 5-kinase (PIP5K) or inositol polyphosphate 5-phosphatase (5ptase). PIP5K, like MARCKS depletion, induced severe spine shrinkage; 5ptase, like constitutively membrane-bound MARCKS, induced aberrant spine elongation. These phenotypes involved changes in actin properties driven by the F-actin severing protein cofilin. Collectively, these findings support a model in which neuronal activity regulates actin-dependent spine morphology through antagonistic interactions of MARCKS and PI(4,5)P2.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
35
|
Yu Y, Chen D, Farmer SM, Xu S, Rios B, Solbach A, Ye X, Ye L, Zhang S. Endolysosomal trafficking controls yolk granule biogenesis in vitellogenic Drosophila oocytes. PLoS Genet 2024; 20:e1011152. [PMID: 38315726 PMCID: PMC10898735 DOI: 10.1371/journal.pgen.1011152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/27/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Endocytosis and endolysosomal trafficking are essential for almost all aspects of physiological functions of eukaryotic cells. As our understanding on these membrane trafficking events are mostly from studies in yeast and cultured mammalian cells, one challenge is to systematically evaluate the findings from these cell-based studies in multicellular organisms under physiological settings. One potentially valuable in vivo system to address this challenge is the vitellogenic oocyte in Drosophila, which undergoes extensive endocytosis by Yolkless (Yl), a low-density lipoprotein receptor (LDLR), to uptake extracellular lipoproteins into oocytes and package them into a specialized lysosome, the yolk granule, for storage and usage during later development. However, by now there is still a lack of sufficient understanding on the molecular and cellular processes that control yolk granule biogenesis. Here, by creating genome-tagging lines for Yl receptor and analyzing its distribution in vitellogenic oocytes, we observed a close association of different endosomal structures with distinct phosphoinositides and actin cytoskeleton dynamics. We further showed that Rab5 and Rab11, but surprisingly not Rab4 and Rab7, are essential for yolk granules biogenesis. Instead, we uncovered evidence for a potential role of Rab7 in actin regulation and observed a notable overlap of Rab4 and Rab7, two Rab GTPases that have long been proposed to have distinct spatial distribution and functional roles during endolysosomal trafficking. Through a small-scale RNA interference (RNAi) screen on a set of reported Rab5 effectors, we showed that yolk granule biogenesis largely follows the canonical endolysosomal trafficking and maturation processes. Further, the data suggest that the RAVE/V-ATPase complexes function upstream of or in parallel with Rab7, and are involved in earlier stages of endosomal trafficking events. Together, our study provides s novel insights into endolysosomal pathways and establishes vitellogenic oocyte in Drosophila as an excellent in vivo model for dissecting the highly complex membrane trafficking events in metazoan.
Collapse
Affiliation(s)
- Yue Yu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Dongsheng Chen
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- The College of Life Sciences, Anhui Normal University, #1 Beijing East Road, Wuhu, Anhui, People’s Republic of China
| | - Stephen M. Farmer
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Program in Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Shiyu Xu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Beatriz Rios
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Amanda Solbach
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Xin Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Lili Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| |
Collapse
|
36
|
Saha S, Krishnan H, Raghu P. IMPA1 dependent regulation of phosphatidylinositol 4,5-bisphosphate and calcium signalling by lithium. Life Sci Alliance 2024; 7:e202302425. [PMID: 38056909 PMCID: PMC10700560 DOI: 10.26508/lsa.202302425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Lithium (Li) is widely used as a mood stabilizer to treat bipolar affective disorder. However, the molecular targets of Li that underpin its therapeutic effect remain unresolved. Inositol monophosphatase (IMPA1) is an enzyme involved in phosphatidylinositol 4,5-bisphosphate (PIP2) resynthesis after PLC signaling. In vitro, Li inhibits IMPA1, but the relevance of this inhibition within neural cells remains unknown. Here, we report that treatment with therapeutic concentrations of Li reduces receptor-activated calcium release from intracellular stores and delays PIP2 resynthesis. These effects of Li are abrogated in IMPA1 deleted cells. We also observed that in human forebrain cortical neurons, treatment with Li reduced neuronal excitability and calcium signals. After Li treatment of human cortical neurons, transcriptome analyses revealed down-regulation of signaling by glutamate, a key excitatory neurotransmitter in the human brain. Collectively, our findings suggest that inhibition of IMPA1 by Li reduces receptor-activated PLC signaling and neuronal excitability.
Collapse
Affiliation(s)
- Sankhanil Saha
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| | - Harini Krishnan
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| |
Collapse
|
37
|
Fujita N, Girada S, Vogler G, Bodmer R, Kiger AA. PI(4,5)P 2 role in Transverse-tubule membrane formation and muscle function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578124. [PMID: 38352484 PMCID: PMC10862868 DOI: 10.1101/2024.01.31.578124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Transverse (T)-tubules - vast, tubulated domains of the muscle plasma membrane - are critical to maintain healthy skeletal and heart contractions. How the intricate T-tubule membranes are formed is not well understood, with challenges to systematically interrogate in muscle. We established the use of intact Drosophila larval body wall muscles as an ideal system to discover mechanisms that sculpt and maintain the T-tubule membrane network. A muscle-targeted genetic screen identified specific phosphoinositide lipid regulators necessary for T-tubule organization and muscle function. We show that a PI4KIIIα - Skittles/PIP5K pathway is needed for T-tubule localized PI(4)P to PI(4,5)P 2 synthesis, T-tubule organization, calcium regulation, and muscle and heart rate functions. Muscles deficient for PI4KIIIα or Amphiphysin , the homolog of human BIN1 , similarly exhibited specific loss of transversal T-tubule membranes and dyad junctions, yet retained longitudinal membranes and the associated dyads. Our results highlight the power of live muscle studies, uncovering distinct mechanisms and functions for sub-compartments of the T-tubule network relevant to human myopathy. Summary T-tubules - vast, tubulated domains of the muscle plasma membrane - are critical to maintain skeletal and heart contractions. Fujita et al . establish genetic screens and assays in intact Drosophila muscles that uncover PI(4,5)P 2 regulation critical for T-tubule maintenance and function. Key Findings PI4KIIIα is required for muscle T-tubule formation and larval mobility. A PI4KIIIα-Sktl pathway promotes PI(4)P and PI(4,5)P 2 function at T-tubules. PI4KIIIα is necessary for calcium dynamics and transversal but not longitudinal dyads. Disruption of PI(4,5)P 2 function in fly heart leads to fragmented T-tubules and abnormal heart rate.
Collapse
|
38
|
Junqueira Alves C, Hannah T, Sadia S, Kolsteeg C, Dixon A, Wiener RJ, Nguyen H, Tipping MJ, Ladeira JS, Franklin PFDC, Dutra de Nigro NDP, Dias RA, Zabala Capriles PV, Rodrigues Furtado de Mendonça JP, Slesinger P, Costa K, Zou H, Friedel RH. Invasion of glioma cells through confined space requires membrane tension regulation and mechano-electrical coupling via Plexin-B2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573660. [PMID: 38313256 PMCID: PMC10836082 DOI: 10.1101/2024.01.02.573660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Glioblastoma (GBM) is a malignant brain tumor with uncontrolled invasive growth. Here, we demonstrate how GBM cells usurp guidance receptor Plexin-B2 to gain biomechanical plasticity for polarized migration through confined space. Using live-cell imaging to track GBM cells negotiating microchannels, we reveal active endocytosis at cell front and filamentous actin assembly at rear to propel GBM cells through constrictions. These two processes are interconnected and governed by Plexin-B2 that orchestrates cortical actin and membrane tension, shown by biomechanical assays. Molecular dynamics simulations predict that balanced membrane and actin tension are required for optimal migratory velocity and consistency. Furthermore, Plexin-B2 mechanosensitive function requires a bendable extracellular ring structure and affects membrane internalization, permeability, phospholipid composition, as well as inner membrane surface charge. Together, our studies unveil a key element of membrane tension and mechanoelectrical coupling via Plexin-B2 that enables GBM cells to adapt to physical constraints and achieve polarized confined migration.
Collapse
|
39
|
Tóth DJ, Tóth JT, Damouni A, Hunyady L, Várnai P. Effect of hormone-induced plasma membrane phosphatidylinositol 4,5-bisphosphate depletion on receptor endocytosis suggests the importance of local regulation in phosphoinositide signaling. Sci Rep 2024; 14:291. [PMID: 38168911 PMCID: PMC10761818 DOI: 10.1038/s41598-023-50732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) has been shown to be critical for the endocytosis of G protein-coupled receptors (GPCRs). We have previously demonstrated that depletion of PIP2 by chemically induced plasma membrane (PM) recruitment of a 5-phosphatase domain prevents the internalization of the β2 adrenergic receptor (β2AR) from the PM to early endosomes. In this study, we tested the effect of hormone-induced PM PIP2 depletion on β2AR internalization using type-1 angiotensin receptor (AT1R) or M3 muscarinic acetylcholine receptor (M3R). We followed the endocytic route of β2ARs in HEK 293T cells using bioluminescence resonance energy transfer between the receptor and endosome marker Rab5. To compare the effect of lipid depletion by different means, we created and tested an AT1R fusion protein that is capable of both recruitment-based and hormone-induced depletion methods. The rate of PM PIP2 depletion was measured using a biosensor based on the PH domain of phospholipase Cδ1. As expected, β2AR internalization was inhibited when PIP2 depletion was evoked by recruiting 5-phosphatase to PM-anchored AT1R. A similar inhibition occurred when wild-type AT1R was activated by adding angiotensin II. However, stimulation of the desensitization/internalization-impaired mutant AT1R (TSTS/4A) caused very little inhibition of β2AR internalization, despite the higher rate of measurable PIP2 depletion. Interestingly, inhibition of PIP2 resynthesis with the selective PI4KA inhibitor GSK-A1 had little effect on the change in PH-domain-measured PM PIP2 levels but did significantly decrease β2AR internalization upon either AT1R or M3R activation, indicating the importance of a locally synthetized phosphoinositide pool in the regulation of this process.
Collapse
Affiliation(s)
- Dániel J Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary
| | - József T Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, Semmelweis University, Budapest, Üllői út 78/B, 1082, Hungary
| | - Amir Damouni
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- Institute of Enzymology, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Magyar tudósok körútja 2, 1117, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary.
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
40
|
Tsuji T. Subcellular distribution of membrane lipids revealed by freeze-fracture electron microscopy. Anat Sci Int 2024; 99:1-6. [PMID: 37314684 DOI: 10.1007/s12565-023-00731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Cell membranes are composed of a large variety of lipids and proteins. While the localization and function of membrane proteins have been extensively investigated, the distribution of membrane lipids, especially in the non-cytoplasmic leaflet of organelle membranes, remains largely unknown. Fluorescent biosensors have been widely used to study membrane lipid distribution; however, they have some limitations. By utilizing the quick-freezing and freeze-fracture replica labeling electron microscopy technique, we can uncover the precise distribution of membrane lipids within cells and assess the function of lipid-transporting proteins. In this review, I summarize recent progress in analyzing intracellular lipid distribution by utilizing this method.
Collapse
Affiliation(s)
- Takuma Tsuji
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| |
Collapse
|
41
|
Wang S, Chi WY, Au G, Huang CC, Yang JM, Huang CH. Reconstructing Signaling Networks Using Biosensor Barcoding. Methods Mol Biol 2024; 2800:189-202. [PMID: 38709485 PMCID: PMC11177205 DOI: 10.1007/978-1-0716-3834-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Understanding how signaling networks are regulated offers valuable insights into how cells and organisms react to internal and external stimuli and is crucial for developing novel strategies to treat diseases. To achieve this, it is necessary to delineate the intricate interactions between the nodes in the network, which can be accomplished by measuring the activities of individual nodes under perturbation conditions. To facilitate this, we have recently developed a biosensor barcoding technique that enables massively multiplexed tracking of numerous signaling activities in live cells using genetically encoded fluorescent biosensors. In this chapter, we detail how we employed this method to reconstruct the EGFR signaling network by systematically monitoring the activities of individual nodes under perturbations.
Collapse
Affiliation(s)
- Suyang Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Wei-Yu Chi
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Gabriel Au
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Cheng-Chieh Huang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Jr-Ming Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | - Chuan-Hsiang Huang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
42
|
Neiman AM. Pharmacological interventions for lipid transport disorders. Front Neurosci 2023; 17:1321250. [PMID: 38156273 PMCID: PMC10752963 DOI: 10.3389/fnins.2023.1321250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
The recent discovery that defects in inter-organelle lipid transport are at the heart of several neurological and neurodegenerative disorders raises the challenge of identifying therapeutic strategies to correct lipid transport defects. This perspective highlights two potential strategies suggested by the study of lipid transport in budding yeast. In the first approach, small molecules are proposed that enhance the lipid transfer activity of VPS13 proteins and thereby compensate for reduced transport. In the second approach, molecules that act as inter-organelle tethers could be used to create artificial contact sites and bypass the loss of endogenous contacts.
Collapse
Affiliation(s)
- Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
43
|
Domma AJ, Henderson LA, Goodrum FD, Moorman NJ, Kamil JP. Human cytomegalovirus attenuates AKT activity by destabilizing insulin receptor substrate proteins. J Virol 2023; 97:e0056323. [PMID: 37754763 PMCID: PMC10617551 DOI: 10.1128/jvi.00563-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Human cytomegalovirus (HCMV) requires inactivation of AKT to efficiently replicate, yet how AKT is shut off during HCMV infection has remained unclear. We show that UL38, an HCMV protein that activates mTORC1, is necessary and sufficient to destabilize insulin receptor substrate 1 (IRS1), a model insulin receptor substrate (IRS) protein. Degradation of IRS proteins in settings of excessive mTORC1 activity is an important mechanism for insulin resistance. When IRS proteins are destabilized, PI3K cannot be recruited to growth factor receptor complexes, and hence, AKT membrane recruitment, a rate limiting step in its activation, fails to occur. Despite its penchant for remodeling host cell signaling pathways, our results reveal that HCMV relies upon a cell-intrinsic negative regulatory feedback loop to inactivate AKT. Given that pharmacological inhibition of PI3K/AKT potently induces HCMV reactivation from latency, our findings also imply that the expression of UL38 activity must be tightly regulated within latently infected cells to avoid spontaneous reactivation.
Collapse
Affiliation(s)
- Anthony J. Domma
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Lauren A. Henderson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- Bio5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
44
|
Llorente A, Loughran RM, Emerling BM. Targeting phosphoinositide signaling in cancer: relevant techniques to study lipids and novel avenues for therapeutic intervention. Front Cell Dev Biol 2023; 11:1297355. [PMID: 37954209 PMCID: PMC10634348 DOI: 10.3389/fcell.2023.1297355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Phosphoinositides serve as essential players in numerous biological activities and are critical for overall cellular function. Due to their complex chemical structures, localization, and low abundance, current challenges in the phosphoinositide field include the accurate measurement and identification of specific variants, particularly those with acyl chains. Researchers are intensively developing innovative techniques and approaches to address these challenges and advance our understanding of the impact of phosphoinositide signaling on cellular biology. This article provides an overview of recent advances in the study of phosphoinositides, including mass spectrometry, lipid biosensors, and real-time activity assays using fluorometric sensors. These methodologies have proven instrumental for a comprehensive exploration of the cellular distribution and dynamics of phosphoinositides and have shed light on the growing significance of these lipids in human health and various pathological processes, including cancer. To illustrate the importance of phosphoinositide signaling in disease, this perspective also highlights the role of a family of lipid kinases named phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks), which have recently emerged as exciting therapeutic targets for cancer treatment. The ongoing exploration of phosphoinositide signaling not only deepens our understanding of cellular biology but also holds promise for novel interventions in cancer therapy.
Collapse
Affiliation(s)
| | | | - Brooke M. Emerling
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States
| |
Collapse
|
45
|
Konishi R, Fukuda K, Kuriyama S, Masatani T, Xuan X, Fujita A. Unique asymmetric distribution of phosphatidylserine and phosphatidylethanolamine in Toxoplasma gondii revealed by nanoscale analysis. Histochem Cell Biol 2023; 160:279-291. [PMID: 37477836 DOI: 10.1007/s00418-023-02218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2023] [Indexed: 07/22/2023]
Abstract
Toxoplasma gondii is a highly prevalent obligate apicomplexan parasite that is important in clinical and veterinary medicine. It is known that glycerophospholipids phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn), especially their expression levels and flip-flops between cytoplasmic and exoplasmic leaflets, in the membrane of T. gondii play important roles in efficient growth in host mammalian cells, but their distributions have still not been determined because of technical difficulties in studying intracellular lipid distribution at the nanometer level. In this study, we developed an electron microscopy method that enabled us to determine the distributions of PtdSer and PtdEtn in individual leaflets of cellular membranes by using quick-freeze freeze-fracture replica labeling. Our findings show that PtdSer and PtdEtn are asymmetrically distributed, with substantial amounts localized at the luminal leaflet of the inner membrane complex (IMC), which comprises flattened vesicles located just underneath the plasma membrane (see Figs. 2B and 7). We also found that PtdSer was absent in the cytoplasmic leaflet of the inner IMC membrane, but was present in considerable amounts in the cytoplasmic leaflet of the middle IMC membrane, suggesting a barrier-like mechanism preventing the diffusion of PtdSer in the cytoplasmic leaflets of the two membranes. In addition, the expression levels of both PtdSer and PtdEtn in the luminal leaflet of the IMC membrane in the highly virulent RH strain were higher than those in the less virulent PLK strain. We also found that the amount of glycolipid GM3, a lipid raft component, was higher in the RH strain than in the PLK strain. These results suggest a correlation between lipid raft maintenance, virulence, and the expression levels of PtdSer and PtdEtn in T. gondii.
Collapse
Affiliation(s)
- Rikako Konishi
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Kayoko Fukuda
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Sayuri Kuriyama
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Tatsunori Masatani
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, 080-8555, Japan
| | - Akikazu Fujita
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan.
| |
Collapse
|
46
|
Luedke KP, Yoshino J, Yin C, Jiang N, Huang JM, Huynh K, Parrish JZ. Dendrite intercalation between epidermal cells tunes nociceptor sensitivity to mechanical stimuli in Drosophila larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557275. [PMID: 37745567 PMCID: PMC10515945 DOI: 10.1101/2023.09.14.557275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
An animal's skin provides a first point of contact with the sensory environment, including noxious cues that elicit protective behavioral responses. Nociceptive somatosensory neurons densely innervate and intimately interact with epidermal cells to receive these cues, however the mechanisms by which epidermal interactions shape processing of noxious inputs is still poorly understood. Here, we identify a role for dendrite intercalation between epidermal cells in tuning sensitivity of Drosophila larvae to noxious mechanical stimuli. In wild-type larvae, dendrites of nociceptive class IV da neurons intercalate between epidermal cells at apodemes, which function as body wall muscle attachment sites, but not at other sites in the epidermis. From a genetic screen we identified miR-14 as a regulator of dendrite positioning in the epidermis: miR-14 is expressed broadly in the epidermis but not in apodemes, and miR-14 inactivation leads to excessive apical dendrite intercalation between epidermal cells. We found that miR-14 regulates expression and distribution of the epidermal Innexins ogre and Inx2 and that these epidermal gap junction proteins restrict epidermal dendrite intercalation. Finally, we found that altering the extent of epidermal dendrite intercalation had corresponding effects on nociception: increasing epidermal intercalation sensitized larvae to noxious mechanical inputs and increased mechanically evoked calcium responses in nociceptive neurons, whereas reducing epidermal dendrite intercalation had the opposite effects. Altogether, these studies identify epidermal dendrite intercalation as a mechanism for mechanical coupling of nociceptive neurons to the epidermis, with nociceptive sensitivity tuned by the extent of intercalation.
Collapse
Affiliation(s)
- Kory P. Luedke
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jiro Yoshino
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Chang Yin
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Nan Jiang
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jessica M. Huang
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Kevin Huynh
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jay Z. Parrish
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
47
|
Thallmair V, Schultz L, Evers S, Jolie T, Goecke C, Leitner MG, Thallmair S, Oliver D. Localization of the tubby domain, a PI(4,5)P2 biosensor, to E-Syt3-rich endoplasmic reticulum-plasma membrane junctions. J Cell Sci 2023; 136:jcs260848. [PMID: 37401342 PMCID: PMC10445746 DOI: 10.1242/jcs.260848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
The phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] acts as a signaling lipid at the plasma membrane (PM) with pleiotropic regulatory actions on multiple cellular processes. Signaling specificity might result from spatiotemporal compartmentalization of the lipid and from combinatorial binding of PI(4,5)P2 effector proteins to additional membrane components. Here, we analyzed the spatial distribution of tubbyCT, a paradigmatic PI(4,5)P2-binding domain, in live mammalian cells by total internal reflection fluorescence (TIRF) microscopy and molecular dynamics simulations. We found that unlike other well-characterized PI(4,5)P2 recognition domains, tubbyCT segregates into distinct domains within the PM. TubbyCT enrichment occurred at contact sites between PM and endoplasmic reticulum (ER) (i.e. at ER-PM junctions) as shown by colocalization with ER-PM markers. Localization to these sites was mediated in a combinatorial manner by binding to PI(4,5)P2 and by interaction with a cytosolic domain of extended synaptotagmin 3 (E-Syt3), but not other E-Syt isoforms. Selective localization to these structures suggests that tubbyCT is a novel selective reporter for a ER-PM junctional pool of PI(4,5)P2. Finally, we found that association with ER-PM junctions is a conserved feature of tubby-like proteins (TULPs), suggesting an as-yet-unknown function of TULPs.
Collapse
Affiliation(s)
- Veronika Thallmair
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps UniversityMarburg, 35037 Marburg, Germany
| | - Lea Schultz
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Saskia Evers
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Theresa Jolie
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Christian Goecke
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Michael G. Leitner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH&Co.KG, Birkendorfer Str. 65, 88400 Biberach an der Riß, Germany
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Material, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps UniversityMarburg, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, 35032 Marburg, Germany
| |
Collapse
|
48
|
Buijze H, Brinkmann V, Hurwitz R, Dorhoi A, Kaufmann SHE, Pei G. Human GBP1 Is Involved in the Repair of Damaged Phagosomes/Endolysosomes. Int J Mol Sci 2023; 24:ijms24119701. [PMID: 37298652 DOI: 10.3390/ijms24119701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Mouse guanylate-binding proteins (mGBPs) are recruited to various invasive pathogens, thereby conferring cell-autonomous immunity against these pathogens. However, whether and how human GBPs (hGBPs) target M. tuberculosis (Mtb) and L. monocytogenes (Lm) remains unclear. Here, we describe hGBPs association with intracellular Mtb and Lm, which was dependent on the ability of bacteria to induce disruption of phagosomal membranes. hGBP1 formed puncta structures which were recruited to ruptured endolysosomes. Furthermore, both GTP-binding and isoprenylation of hGBP1 were required for its puncta formation. hGBP1 was required for the recovery of endolysosomal integrity. In vitro lipid-binding assays demonstrated direct binding of hGBP1 to PI4P. Upon endolysosomal damage, hGBP1 was targeted to PI4P and PI(3,4)P2-positive endolysosomes in cells. Finally, live-cell imaging demonstrated that hGBP1 was recruited to damaged endolysosomes, and consequently mediated endolysosomal repair. In summary, we uncover a novel interferon-inducible mechanism in which hGBP1 contributes to the repair of damaged phagosomes/endolysosomes.
Collapse
Affiliation(s)
- Hellen Buijze
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Robert Hurwitz
- Protein Purification Facility, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
- Emeritus Group of Systems Immunology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
| | - Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany
| |
Collapse
|
49
|
Chen H, Lu C, Tan Y, Weber-Boyvat M, Zheng J, Xu M, Xiao J, Liu S, Tang Z, Lai C, Li M, Olkkonen VM, Yan D, Zhong W. Oculocerebrorenal syndrome of Lowe (OCRL) controls leukemic T-cell survival by preventing excessive PI(4,5)P 2 hydrolysis in the plasma membrane. J Biol Chem 2023:104812. [PMID: 37172724 DOI: 10.1016/j.jbc.2023.104812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is one of the deadliest and most aggressive hematological malignancies, but its pathological mechanism in controlling cell survival is not fully understood. Oculocerebrorenal syndrome (also called Lowe syndrome) is a rare X-linked recessive disorder characterized by cataracts, intellectual disability, and proteinuria. This disease has been shown to be caused by mutation of Oculocerebrorenal syndrome of Lowe 1 (OCRL1; OCRL), encoding a phosphatidylinositol 4,5-diphosphate [PI(4,5)P2] 5-phosphatase involved in regulating membrane trafficking, however, its function in cancer cells is unclear. Here, we uncovered that OCRL1 is overexpressed in T-ALL cells and knockdown of OCRL1 results in cell death, indicating the essential role of OCRL in controlling T-ALL cell survival. We show OCRL is primarily localized in the Golgi, and can translocate to plasma membrane (PM) upon ligand stimulation. We found OCRL interacts with OSBP-related protein 4L (ORP4L), which facilitates OCRL translocation from the Golgi to the PM upon cluster of differentiation 3 (CD3) stimulation. Thus, OCRL represses the activity of ORP4L to prevent excessive PI(4,5)P2 hydrolysis by phosphoinositide phospholipase C β3 (PLCβ3) and uncontrolled Ca2+ release from the endoplasmic reticulum (ER). We propose OCRL1 deletion leads to accumulation of PI(4,5)P2 in the PM, disrupting the normal Ca2+ oscillation pattern in the cytosol and leading to mitochondrial Ca2+ overloading, ultimately causing T-ALL cell mitochondrial dysfunction and cell death. These results highlight a critical role for OCRL in maintaining moderate PI(4,5)P2 availability in T-ALL cells. Our findings also raise the possibility of targeting OCRL1 to treat T-ALL disease.
Collapse
Affiliation(s)
- Huanzhao Chen
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Chen Lu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Yuhui Tan
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland. Department of Anatomy, Faculty of Medicine, FI-00014 University of Helsinki, Finland; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jie Zheng
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Mengyang Xu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Jie Xiao
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Shuang Liu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Zhiquan Tang
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Chaofeng Lai
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Mingchuan Li
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland. Department of Anatomy, Faculty of Medicine, FI-00014 University of Helsinki, Finland
| | - Daoguang Yan
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Wenbin Zhong
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
50
|
Domma AJ, Goodrum FD, Moorman NJ, Kamil JP. Human cytomegalovirus attenuates AKT activity by destabilizing insulin receptor substrate proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537203. [PMID: 37131605 PMCID: PMC10153195 DOI: 10.1101/2023.04.17.537203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT pathway plays crucial roles in cell viability and protein synthesis and is frequently co-opted by viruses to support their replication. Although many viruses maintain high levels of AKT activity during infection, other viruses, such as vesicular stomatitis virus and human cytomegalovirus (HCMV), cause AKT to accumulate in an inactive state. To efficiently replicate, HCMV requires FoxO transcription factors to localize to the infected cell nucleus (Zhang et. al. mBio 2022), a process directly antagonized by AKT. Therefore, we sought to investigate how HCMV inactivates AKT to achieve this. Subcellular fractionation and live cell imaging studies indicated that AKT failed to recruit to membranes upon serum-stimulation of infected cells. However, UV-inactivated virions were unable to render AKT non-responsive to serum, indicating a requirement for de novo viral gene expression. Interestingly, we were able to identify that UL38 (pUL38), a viral activator of mTORC1, is required to diminish AKT responsiveness to serum. mTORC1 contributes to insulin resistance by causing proteasomal degradation of insulin receptor substrate (IRS) proteins, such as IRS1, which are necessary for the recruitment of PI3K to growth factor receptors. In cells infected with a recombinant HCMV disrupted for UL38 , AKT responsiveness to serum is retained and IRS1 is not degraded. Furthermore, ectopic expression of UL38 in uninfected cells induces IRS1 degradation, inactivating AKT. These effects of UL38 were reversed by the mTORC1 inhibitor, rapamycin. Collectively, our results demonstrate that HCMV relies upon a cell-intrinsic negative feedback loop to render AKT inactive during productive infection.
Collapse
Affiliation(s)
- Anthony J. Domma
- Department of Microbiology and Immunology, LSU Health Sciences Center Shreveport, Shreveport Louisiana, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- Bio5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, LSU Health Sciences Center Shreveport, Shreveport Louisiana, USA
| |
Collapse
|