1
|
Peltner LK, Gluthmann L, Börner F, Pace S, Hoffstetter RK, Kretzer C, Bilancia R, Pollastro F, Koeberle A, Appendino G, Rossi A, Newcomer ME, Gilbert NC, Werz O, Jordan PM. Cannabidiol acts as molecular switch in innate immune cells to promote the biosynthesis of inflammation-resolving lipid mediators. Cell Chem Biol 2023; 30:1508-1524.e7. [PMID: 37647900 DOI: 10.1016/j.chembiol.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Cannabinoids are phytochemicals from cannabis with anti-inflammatory actions in immune cells. Lipid mediators (LM), produced from polyunsaturated fatty acids (PUFA), are potent regulators of the immune response and impact all stages of inflammation. How cannabinoids influence LM biosynthetic networks is unknown. Here, we reveal cannabidiol (CBD) as a potent LM class-switching agent that stimulates the production of specialized pro-resolving mediators (SPMs) but suppresses pro-inflammatory eicosanoid biosynthesis. Detailed metabololipidomics analysis in human monocyte-derived macrophages showed that CBD (i) upregulates exotoxin-stimulated generation of SPMs, (ii) suppresses 5-lipoxygenase (LOX)-mediated leukotriene production, and (iii) strongly induces SPM and 12/15-LOX product formation in resting cells by stimulation of phospholipase A2-dependent PUFA release and through Ca2+-independent, allosteric 15-LOX-1 activation. Finally, in zymosan-induced murine peritonitis, CBD increased SPM and 12/15-LOX products and suppressed pro-inflammatory eicosanoid levels in vivo. Switching eicosanoid to SPM production is a plausible mode of action of CBD and a promising inflammation-resolving strategy.
Collapse
Affiliation(s)
- Lukas K Peltner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Lars Gluthmann
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Robert K Hoffstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Rosella Bilancia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Mitterweg 24, 6020 Innsbruck, Austria
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Nathaniel C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
2
|
Börner F, Pace S, Jordan PM, Gerstmeier J, Gomez M, Rossi A, Gilbert NC, Newcomer ME, Werz O. Allosteric Activation of 15-Lipoxygenase-1 by Boswellic Acid Induces the Lipid Mediator Class Switch to Promote Resolution of Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205604. [PMID: 36567268 PMCID: PMC9951388 DOI: 10.1002/advs.202205604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Specialized pro-resolving mediators (SPM), primarily produced in innate immune cells, exert crucial bioactions for resolving inflammation. Among various lipoxygenases (LOX), 15-LOX-1 is key for SPM biosynthesis, but cellular activation principles of 15-LOX-1 are unexplored. It was shown that 3-O-acetyl-11-keto-β-boswellic acid (AKBA) shifts 5-LOX regiospecificity from 5- to 12-lipoxygenation products. Here, it is demonstrated that AKBA additionally activates cellular 15-LOX-1 via an allosteric site accomplishing robust SPM formation in innate immune cells, particularly in M2 macrophages. Compared to ionophore, AKBA-induced LOX activation is Ca2+ - and phosphorylation-independent, with modest induction of 5-LOX products. AKBA docks into a groove between the catalytic and regulatory domains of 15-LOX-1 interacting with R98; replacement of R98 by alanine abolishes AKBA-induced 15-LOX product formation in HEK293 cells. In zymosan-induced murine peritonitis, AKBA strikingly elevates SPM levels and promotes inflammation resolution. Together, targeted allosteric modulation of LOX activities governs SPM formation and offers new concepts for inflammation resolution pharmacotherapy.
Collapse
Affiliation(s)
- Friedemann Börner
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaPhilosophenweg 1407743JenaGermany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaPhilosophenweg 1407743JenaGermany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaPhilosophenweg 1407743JenaGermany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaPhilosophenweg 1407743JenaGermany
| | - Mario Gomez
- Evonik Operations GmbHKirschenallee 4564293DarmstadtGermany
| | - Antonietta Rossi
- Department of PharmacySchool of Medicine and SurgeryUniversity of Naples Federico IIVia D. Montesano 49NaplesI‐80131Italy
| | - Nathaniel C. Gilbert
- Department of Biological SciencesLouisiana State University202 Life Science BuildingBaton RougeLA70803USA
| | - Marcia E. Newcomer
- Department of Biological SciencesLouisiana State University202 Life Science BuildingBaton RougeLA70803USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaPhilosophenweg 1407743JenaGermany
| |
Collapse
|
3
|
Manzi A, De-Carli BP, Roggero A, Ferreira De Moraes LL, Annunciato I, Novo Belchor M, Lima Neto DFD, Antonio De Oliveira M, Hikari Toyama M. Theoretical evaluation of the malathion and its chemical derivatives interaction with cytosolic phospholipase A2 from zebrafish. CHEMOSPHERE 2023; 311:136984. [PMID: 36306964 DOI: 10.1016/j.chemosphere.2022.136984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Cytosolic phospholipase A2 (cPLA2) belongs to a large family of proteins and plays a crucial role in the regulation of arachidonic acid metabolism and inflammation cascade in zebrafish (Danio rerio). This enzyme with a molecular weight of 85 kDa, has two distinct domains. One is the regulatory and calcium-dependent (Ca2+) domain called C2, the other is the catalytic α/β hydrolase Ca2+-independent domain, where serine and aspartic acid catalytic dyad residues are present. We investigated the interaction of malathion and their organophosphate metabolites in the cPLA2 using in silico tools. Molecular docking results showed hydrophobic interactions with the paraoxon and catalytic site residue (Ser 223). Malathion increases intracellular Ca2+ due to endoplasmic reticulum influx which in turn activities phospholipase A2 and arachidonic acid release. Molecular docking and homology modelling of proteins and ligands could be a complementary tool for ecotoxicology and environment pollution assessment.
Collapse
Affiliation(s)
- Agatha Manzi
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil; BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil.
| | - Bruno Paes De-Carli
- BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil; Universidade Paulista UNIP, Santos, SP, Brazil
| | - Airam Roggero
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil; BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil
| | - Laila Lucyane Ferreira De Moraes
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil; BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil
| | - Isabelly Annunciato
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil; BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil
| | - Mariana Novo Belchor
- BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil
| | | | | | - Marcos Hikari Toyama
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil; BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil
| |
Collapse
|
4
|
Gao N, Zheng Q, Wang Y, Li X, Li Z, Xiao H. Wun2-mediated integrin recycling promotes apoptotic cell clearance in Drosophila melanogaster. Cell Death Differ 2022; 29:2545-2561. [PMID: 35840760 PMCID: PMC9751302 DOI: 10.1038/s41418-022-01039-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 01/31/2023] Open
Abstract
Apoptotic cell (AC) clearance is a complex process in which phagocytes recognize, engulf, and digest ACs during organismal development and tissue homeostasis. Impaired efferocytosis results in developmental defects and autoimmune diseases. In the current study, we performed RNA-sequencing to systematically identify regulators involved in the phagocytosis of ACs by Drosophila melanogaster macrophage-like S2 cells, followed by targeted RNA interference screening. Wunen2 (Wun2), a homolog of mammalian lipid phosphate phosphatase (LPP), was deemed as required for efferocytosis both in vitro and in vivo. However, efferocytosis was independent of Wun2 phosphatase activity. Proteomic analysis further revealed that Rab11 and its effector Rip11 are interaction partners of Wun2. Therefore, Wun2 collaborates with Rip11 and Rab11 to mediate efficient recycling of the phagocytic receptor βν integrin subunit to the plasma membrane. The loss of Wun2 results in the routing of βv integrin subunit (Itgbn) into lysosomes, leading to its degradation. The deficiency of βv integrin subunit on the cell surface leads to aberrant and disorganized actin cytoskeleton, thereby influencing the formation of macrophage pseudopodia toward ACs and thus failure to engulf them. The findings of this study provide insights that clarify how phagocytes coordinate AC signals and adopt a precise mechanism for the maintenance of engulfment receptors at their cell membrane surface to regulate efferocytosis.
Collapse
Affiliation(s)
- Ning Gao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
- Medical College of Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Qian Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yanzhe Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xiaowen Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Zhi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Hui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
5
|
Cyclin-Dependent Kinase 5 Regulates cPLA2 Activity and Neuroinflammation in Parkinson's Disease. eNeuro 2022; 9:ENEURO.0180-22.2022. [PMID: 36351818 PMCID: PMC9698719 DOI: 10.1523/eneuro.0180-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/09/2022] [Accepted: 10/02/2022] [Indexed: 11/11/2022] Open
Abstract
Hyperactivation of cyclin-dependent kinase 5 (Cdk5) by p25, contributes to neuroinflammation causing neurodegeneration in Parkinson's disease (PD) and Alzheimer's disease. However, the mechanism by which Cdk5 induces neuroinflammation in the PD brain is largely unexplored. Here, we show that Cdk5 phosphorylates cytosolic phospholipase A2 (cPLA2) at Thr-268 and Ser-505 sites lead to its activation and generation of eicosanoid products. Mutational studies using site-directed mutagenesis and molecular simulations show that the architecture of the protein changes on each single-point mutation. Interestingly, double mutations also led to a severe decline in the activity of cPLA2 and to the disruption of its translocation to the plasma membrane. Further, the brain lysates of transgenic PD mouse models show hyperactivation of Cdk5, resulting in enhanced phosphorylation of Thr-268 and Ser-505 of cPLA2 and its heightened activity, confirming the findings observed in the cell culture model of PD. These phosphorylation sites of cPLA2 and Cdk5 could be explored as the future therapeutic targets against neuroinflammation in PD. Further, conjoint transcriptomic analysis of the publicly available human PD datasets strengthens the hypothesis that genes of the arachidonic acid, prostaglandin synthesis, and inflammatory pathways are significantly upregulated in the case of PD patients compared with that of healthy control subjects.
Collapse
|
6
|
Paskaš S, Murganić B, Kuhnert R, Hey-Hawkins E, Mijatović S, Maksimović-Ivanić D. Carborane-Based Analog of Rev-5901 Attenuates Growth of Colon Carcinoma In Vivo. Molecules 2022; 27:molecules27144503. [PMID: 35889376 PMCID: PMC9321230 DOI: 10.3390/molecules27144503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lipoxygenases convert polyunsaturated fatty acids into biologically active metabolites such as inflammatory mediators—prostaglandins and leukotrienes. The inhibition of lipoxygenases is increasingly employed in the treatment of cancer. We evaluated the anticancer potential of two novel 5-lipoxygenase inhibitors, named CarbZDNaph and CarbZDChin, which are analogues of the commercially available inhibitor Rev-5901. The in vitro segment of this study was conducted on a mouse colorectal carcinoma cell line—CT26CL25. For an in vivo model, we induced tumors in BALB/c mice by the implantation of CT26CL25 cells, and we treated the animals with potential inhibitors. A 48 h treatment resulted in diminished cell viability. Calculated IC50 values (half-maximal inhibitory concentrations) were 25 μM, 15 μM and 30 μM for CarbZDNaph, CarbZDChin and Rev-5901, respectively. The detailed analysis of mechanism revealed an induction of caspase-dependent apoptosis and autophagy. In the presence of chloroquine, an autophagy inhibitor, we observed an increased mortality of cells, implying a cytoprotective role of autophagy. Our in vivo experiment reports tumor growth attenuation in animals treated with CarbZDChin. Compounds CarbZDNaph and Rev-5901 lacked an in vivo efficacy. The results presented in this study display a strong effect of compound CarbZDChin on malignant cell growth. Having in mind the important role of inflammation in cancer development, these results have a significant impact and are worthy of further evaluation.
Collapse
Affiliation(s)
- Svetlana Paskaš
- Department of Immunology, Institute for Biological Research “SinišaStanković”, Belgrade University, 11060 Belgrade, Serbia; (S.P.); (B.M.); (S.M.)
| | - Blagoje Murganić
- Department of Immunology, Institute for Biological Research “SinišaStanković”, Belgrade University, 11060 Belgrade, Serbia; (S.P.); (B.M.); (S.M.)
| | - Robert Kuhnert
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany; (R.K.); (E.H.-H.)
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany; (R.K.); (E.H.-H.)
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “SinišaStanković”, Belgrade University, 11060 Belgrade, Serbia; (S.P.); (B.M.); (S.M.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “SinišaStanković”, Belgrade University, 11060 Belgrade, Serbia; (S.P.); (B.M.); (S.M.)
- Correspondence: ; Tel.: +381-11-2078452
| |
Collapse
|
7
|
Luchicchi A, Hart B, Frigerio I, van Dam AM, Perna L, Offerhaus HL, Stys PK, Schenk GJ, Geurts JJG. Axon-Myelin Unit Blistering as Early Event in MS Normal Appearing White Matter. Ann Neurol 2021; 89:711-725. [PMID: 33410190 PMCID: PMC8048993 DOI: 10.1002/ana.26014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 12/19/2020] [Accepted: 01/03/2021] [Indexed: 02/04/2023]
Abstract
Objective Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease of unknown etiology. Although the prevalent view regards a CD4+‐lymphocyte autoimmune reaction against myelin at the root of the disease, recent studies propose autoimmunity as a secondary reaction to idiopathic brain damage. To gain knowledge about this possibility we investigated the presence of axonal and myelinic morphological alterations, which could implicate imbalance of axon‐myelin units as primary event in MS pathogenesis. Methods Using high resolution imaging histological brain specimens from patients with MS and non‐neurological/non‐MS controls, we explored molecular changes underpinning imbalanced interaction between axon and myelin in normal appearing white matter (NAWM), a region characterized by normal myelination and absent inflammatory activity. Results In MS brains, we detected blister‐like swellings formed by myelin detachment from axons, which were substantially less frequently retrieved in non‐neurological/non‐MS controls. Swellings in MS NAWM presented altered glutamate receptor expression, myelin associated glycoprotein (MAG) distribution, and lipid biochemical composition of myelin sheaths. Changes in tethering protein expression, widening of nodes of Ranvier and altered distribution of sodium channels in nodal regions of otherwise normally myelinated axons were also present in MS NAWM. Finally, we demonstrate a significant increase, compared with controls, in citrullinated proteins in myelin of MS cases, pointing toward biochemical modifications that may amplify the immunogenicity of MS myelin. Interpretation Collectively, the impaired interaction of myelin and axons potentially leads to myelin disintegration. Conceptually, the ensuing release of (post‐translationally modified) myelin antigens may elicit a subsequent immune attack in MS. ANN NEUROL 2021;89:711–725
Collapse
Affiliation(s)
- Antonio Luchicchi
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Bert't Hart
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands.,Department Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene Frigerio
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Laura Perna
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Herman L Offerhaus
- Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Peter K Stys
- Cummings School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Geert J Schenk
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Patel P, Shaik NF, Zhou Y, Golla K, McKenzie SE, Naik UP. Apoptosis signal-regulating kinase 1 regulates immune-mediated thrombocytopenia, thrombosis, and systemic shock. J Thromb Haemost 2020; 18:3013-3028. [PMID: 32767736 PMCID: PMC7831975 DOI: 10.1111/jth.15049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Immune complexes (ICs) bind to and activate platelets via FcγRIIA, causing patients to experience thrombocytopenia, as well as an increased risk of forming occlusive thrombi. Although platelets have been shown to mediate IC-induced pathologies, the mechanisms involved have yet to be fully elucidated. We identified that apoptosis signal-regulating kinase 1 (ASK1) is present in both human and mouse platelets and potentiates many platelet functions. OBJECTIVES Here we set out to study ASK1's role in regulating IC-mediated platelet functions in vitro and IC-induced pathologies using an in vivo mouse model. METHODS Using human platelets treated with an ASK1-specific inhibitor and platelets from FCGR2A/Ask1-/- transgenic mice, we examined various platelet functions induced by model ICs in vitro and in vivo. RESULTS We found that ASK1 was activated in human platelets following cross-linking of FcγRIIA using either anti-hCD9 or IV.3 + goat-anti-mouse. Although genetic deletion or inhibition of ASK1 significantly attenuated anti-CD9-induced platelet aggregation, activation of the canonical FcγRIIA signaling targets Syk and PLCγ2 was unaffected. We further found that anti-mCD9-induced cPla2 phosphorylation and TxA2 generation is delayed in Ask1 null transgenic mouse platelets leading to diminished δ-granule secretion. In vivo, absence of Ask1 protected FCGR2A transgenic mice from thrombocytopenia, thrombosis, and systemic shock following injection of anti-mCD9. In whole blood microfluidics, platelet adhesion and thrombus formation on fibrinogen was enhanced by Ask1. CONCLUSIONS These findings suggest that ASK1 inhibition may be a potential target for the treatment of IC-induced shock and other immune-mediated thrombotic disorders.
Collapse
Affiliation(s)
- Pravin Patel
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Noor F. Shaik
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Yuhang Zhou
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
- Dell Children’s Hospital, University of Texas, Austin, TX
| | - Kalyan Golla
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
- Center for Blood Research, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Steven E. McKenzie
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Ulhas P. Naik
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
9
|
Ara T, Koide M, Kitamura H, Sogawa N. Effects of shokyo ( Zingiberis Rhizoma) and kankyo ( Zingiberis Processum Rhizoma) on prostaglandin E 2 production in lipopolysaccharide-treated mouse macrophage RAW264.7 cells. PeerJ 2019; 7:e7725. [PMID: 31576251 PMCID: PMC6753926 DOI: 10.7717/peerj.7725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/22/2019] [Indexed: 11/27/2022] Open
Abstract
We previously reported that shokyo and kankyo, which are water-extracted fractions of ginger, reduced LPS-induced PGE2 production in human gingival fibroblasts. In this study, we examined the effects of these herbs on LPS-treated mouse macrophage RAW264.7 cells. Both shokyo and kankyo reduced LPS-induced PGE2 production in a concentration-dependent manner. Shokyo and kankyo did not inhibit cyclooxygenase (COX) activity, nor did they alter the expression of molecules in the arachidonic acid cascade. In addition, these herbs did not alter NF-κB p65 translocation into nucleus, or phosphorylation of p65 or ERK. These results suggest that shokyo and kankyo inhibit cPLA2 activity. Although 6-shogaol produced similar results to those of shokyo and kankyo, the concentration of 6-shogaol required for the reduction of PGE2 production were higher than those of 6-shogaol in shokyo and kankyo. Therefore, several gingerols and shogaols other than 6-shogaol may play a role in the reduction of LPS-induced PGE2 production. Thus, 6-shogaol, and other gingerols and shogaols inhibit cPLA2 activity and reduce LPS-induced PGE2 production via a different mechanism from traditional anti-inflammatory drugs. Moreover, kampo medicines that contain shokyo or kankyo are considered to be effective for inflammatory diseases.
Collapse
Affiliation(s)
- Toshiaki Ara
- Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | | | - Norio Sogawa
- Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
10
|
Schmider AB, Vaught M, Bauer NC, Elliott HL, Godin MD, Ellis GE, Nigrovic PA, Soberman RJ. The organization of leukotriene biosynthesis on the nuclear envelope revealed by single molecule localization microscopy and computational analyses. PLoS One 2019; 14:e0211943. [PMID: 30735559 PMCID: PMC6368329 DOI: 10.1371/journal.pone.0211943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
The initial steps in the synthesis of leukotrienes are the translocation of 5-lipoxygenase (5-LO) to the nuclear envelope and its subsequent association with its scaffold protein 5-lipoxygenase-activating protein (FLAP). A major gap in our understanding of this process is the knowledge of how the organization of 5-LO and FLAP on the nuclear envelope regulates leukotriene synthesis. We combined single molecule localization microscopy with Clus-DoC cluster analysis, and also a novel unbiased cluster analysis to analyze changes in the relationships between 5-LO and FLAP in response to activation of RBL-2H3 cells to generate leukotriene C4. We identified the time-dependent reorganization of both 5-LO and FLAP into higher-order assemblies or clusters in response to cell activation via the IgE receptor. Clus-DoC analysis identified a subset of these clusters with a high degree of interaction between 5-LO and FLAP that specifically correlates with the time course of LTC4 synthesis, strongly suggesting their role in the initiation of leukotriene biosynthesis.
Collapse
Affiliation(s)
- Angela B. Schmider
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Melissa Vaught
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Nicholas C. Bauer
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Hunter L. Elliott
- Image and Data Analysis Core, Department of Cell Biology, Harvard Medical School, Boston, MA, United States of America
| | - Matthew D. Godin
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Giorgianna E. Ellis
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Peter A. Nigrovic
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Roy J. Soberman
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
11
|
Ara T, Nakatani S, Kobata K, Sogawa N, Sogawa C. The Biological Efficacy of Natural Products against Acute and Chronic Inflammatory Diseases in the Oral Region. MEDICINES 2018; 5:medicines5040122. [PMID: 30428613 PMCID: PMC6313758 DOI: 10.3390/medicines5040122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/31/2023]
Abstract
The oral inflammatory diseases are divided into two types: acute and chronic inflammatory diseases. In this review, we summarize the biological efficacy of herbal medicine, natural products, and their active ingredients against acute and chronic inflammatory diseases in the oral region, especially stomatitis and periodontitis. We review the effects of herbal medicines and a biscoclaurin alkaloid preparation, cepharamthin, as a therapy against stomatitis, an acute inflammatory disease. We also summarize the effects of herbal medicines and natural products against periodontitis, a chronic inflammatory disease, and one of its clinical conditions, alveolar bone resorption. Recent studies show that several herbal medicines such as kakkonto and ninjinto reduce LPS-induced PGE2 production by human gingival fibroblasts. Among herbs constituting these herbal medicines, shokyo (Zingiberis Rhizoma) and kankyo (Zingiberis Processum Rhizoma) strongly reduce PGE2 production. Moreover, anti-osteoclast activity has been observed in some natural products with anti-inflammatory effects used against rheumatoid arthritis such as carotenoids, flavonoids, limonoids, and polyphenols. These herbal medicines and natural products could be useful for treating oral inflammatory diseases.
Collapse
Affiliation(s)
- Toshiaki Ara
- Department of Dental Pharmacology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri 399-0781, Japan.
| | - Sachie Nakatani
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Kenji Kobata
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Norio Sogawa
- Department of Dental Pharmacology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri 399-0781, Japan.
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan.
| |
Collapse
|
12
|
Araújo AC, Wheelock CE, Haeggström JZ. The Eicosanoids, Redox-Regulated Lipid Mediators in Immunometabolic Disorders. Antioxid Redox Signal 2018; 29:275-296. [PMID: 28978222 DOI: 10.1089/ars.2017.7332] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The oxidation of arachidonic acid via cyclooxygenase (COX) and lipoxygenase (LOX) activity to produce eicosanoids during inflammation is a well-known biosynthetic pathway. These lipid mediators are involved in fever, pain, and thrombosis and are produced from multiple cells as well as cell/cell interactions, for example, immune cells and epithelial/endothelial cells. Metabolic disorders, including hyperlipidemia, hypertension, and diabetes, are linked with chronic low-grade inflammation, impacting the immune system and promoting a variety of chronic diseases. Recent Advances: Multiple studies have corroborated the important function of eicosanoids and their receptors in (non)-inflammatory cells in immunometabolic disorders (e.g., insulin resistance, obesity, and cardiovascular and nonalcoholic fatty liver diseases). In this context, LOX and COX products are involved in both pro- and anti-inflammatory responses. In addition, recent work has elucidated the potent function of specialized proresolving mediators (i.e., lipoxins and resolvins) in resolving inflammation, protecting organs, and stimulating tissue repair and remodeling. CRITICAL ISSUES Inhibiting/stimulating selected eicosanoid pathways may result in anti-inflammatory and proresolution responses leading to multiple beneficial effects, including the abrogation of reactive oxygen species production, increased speed of resolution, and overall improvement of diseases related to immunometabolic perturbations. FUTURE DIRECTIONS Despite many achievements, it is crucial to understand the molecular and cellular mechanisms underlying immunological/metabolic cross talk to offer substantial therapeutic promise. Antioxid. Redox Signal. 29, 275-296.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
13
|
Subramanian BC, Majumdar R, Parent CA. The role of the LTB 4-BLT1 axis in chemotactic gradient sensing and directed leukocyte migration. Semin Immunol 2018; 33:16-29. [PMID: 29042024 DOI: 10.1016/j.smim.2017.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/07/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022]
Abstract
Directed leukocyte migration is a hallmark of inflammatory immune responses. Leukotrienes are derived from arachidonic acid and represent a class of potent lipid mediators of leukocyte migration. In this review, we summarize the essential steps leading to the production of LTB4 in leukocytes. We discuss the recent findings on the exosomal packaging and transport of LTB4 in the context of chemotactic gradients formation and regulation of leukocyte recruitment. We also discuss the dynamic roles of the LTB4 receptors, BLT1 and BLT2, in mediating chemotactic signaling in leukocytes and contrast them to other structurally related leukotrienes that bind to distinct GPCRs. Finally, we highlight the specific roles of the LTB4-BLT1 axis in mediating signal-relay between chemotaxing neutrophils and its potential contribution to a wide variety of inflammatory conditions including tumor progression and metastasis, where LTB4 is emerging as a key signaling component.
Collapse
Affiliation(s)
- Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States.
| | - Ritankar Majumdar
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States; Department of Pharmacology, University of Michigan School of Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States; Department of Pharmacology, University of Michigan School of Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
14
|
Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: A review. J Adv Res 2018; 11:23-32. [PMID: 30034873 PMCID: PMC6052663 DOI: 10.1016/j.jare.2018.03.005] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022] Open
Abstract
Arachidonic acid (AA), a 20 carbon chain polyunsaturated fatty acid with 4 double bonds, is an integral constituent of biological cell membrane, conferring it with fluidity and flexibility. The four double bonds of AA predispose it to oxygenation that leads to a plethora of metabolites of considerable importance for the proper function of the immune system, promotion of allergies and inflammation, resolving of inflammation, mood, and appetite. The present review presents an illustrated synopsis of AA metabolism, corroborating the instrumental importance of AA derivatives for health and well-being. It provides a comprehensive outline on AA metabolic pathways, enzymes and signaling cascades, in order to develop new perspectives in disease treatment and diagnosis.
Collapse
Affiliation(s)
- Violette Said Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | |
Collapse
|
15
|
Ara T, Sogawa N. Effects of shinbuto and ninjinto on prostaglandin E 2 production in lipopolysaccharide-treated human gingival fibroblasts. PeerJ 2017; 5:e4120. [PMID: 29209578 PMCID: PMC5713626 DOI: 10.7717/peerj.4120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/13/2017] [Indexed: 01/16/2023] Open
Abstract
Previously, we revealed that several kampo medicines used for patients with excess and/or medium patterns (kakkonto (TJ-1), shosaikoto (TJ-9), hangeshashinto (TJ-14), and orento (TJ-120)) reduced prostaglandin (PG)E2 levels using LPS-treated human gingival fibroblasts (HGFs). Recently, we examined other kampo medicines used for patients with the deficiency pattern [bakumondoto (TJ-29), shinbuto (TJ-30), ninjinto (TJ-32), and hochuekkito (TJ-41)] and the herbs comprising shinbuto and ninjinto using the same experimental model. Shinbuto and ninjinto concentration-dependently reduced LPS-induced PGE2 production by HGFs, whereas hochuekkito weakly reduced and bakumondoto did not reduce PGE2 production. Shinbuto and ninjinto did not alter cyclooxygenase (COX) activity or the expression of molecules involved in the arachidonic acid cascade. Therefore, we next examined which herbs compromising shinbuto and ninjinto reduce LPS-induced PGE2 production. Among these herbs, shokyo (Zingiberis Rhizoma) and kankyo (Zingiberis Processum Rhizoma) strongly and concentration-dependently decreased LPS-induced PGE2 production. However, both shokyo and kankyo increased the expression of cytosolic phospholipase (cPL)A2 but did not affect annexin1 or COX-2 expression. These results suggest that shokyo and kankyo suppress cPLA2 activity. We demonstrated that kampo medicines suppress inflammatory responses in patients with the deficiency pattern, and in those with excess or medium patterns. Moreover, kampo medicines that contain shokyo or kankyo are considered to be effective for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Toshiaki Ara
- Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Norio Sogawa
- Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
16
|
Ng CY, Kwok TXW, Tan FCK, Low CM, Lam Y. Fluorogenic probes to monitor cytosolic phospholipase A2 activity. Chem Commun (Camb) 2017; 53:1813-1816. [DOI: 10.1039/c6cc09305a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functionalization on the alkyl tail of arachidonyl trifluoromethylketone leads to the development of fluorogenic inhibitor and substrate probes of cPLA2.
Collapse
Affiliation(s)
- Cheng Yang Ng
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | | | - Francis Chee Kuan Tan
- Department of Anaesthesia
- Yong Loo Lin School of Medicine
- National University of Singapore
- Singapore 119074
- Singapore
| | - Chian-Ming Low
- Department of Anaesthesia
- Yong Loo Lin School of Medicine
- National University of Singapore
- Singapore 119074
- Singapore
| | - Yulin Lam
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| |
Collapse
|
17
|
Studies on Shokyo, Kanzo, and Keihi in Kakkonto Medicine on Prostaglandin E 2 Production in Lipopolysaccharide-Treated Human Gingival Fibroblasts. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2016; 2016:9351787. [PMID: 27819025 PMCID: PMC5081445 DOI: 10.1155/2016/9351787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/22/2016] [Accepted: 09/26/2016] [Indexed: 11/17/2022]
Abstract
We previously demonstrated that a kampo medicine, kakkonto, decreases lipopolysaccharide- (LPS-) induced prostaglandin E2 (PGE2) production by human gingival fibroblasts. In this study, we examined the herbs constituting kakkonto that exhibit this effect. Shokyo strongly and concentration dependently and kanzo and keihi moderately decreased LPS-induced PGE2 production. Shokyo did not alter cyclooxygenase-2 (COX-2) activity, cytosolic phospholipase A2 (cPLA2), annexin 1 and COX-2 expression, and LPS-induced extracellular signal-regulated kinase (ERK) phosphorylation. Kanzo inhibited COX-2 activity but increased annexin 1 and COX-2 expression and did not alter LPS-induced ERK phosphorylation. Keihi inhibited COX-2 activity and LPS-induced ERK phosphorylation but slightly increased COX-2 expression and did not alter cPLA2 and annexin 1 expression. These results suggest that the mechanism of shokyo is through the inhibition of cPLA2 activity, and that of kanzo and keihi is through the inhibition of COX-2 activity and indirect inhibition of cPLA2 activity. Therefore, it is possible that shokyo and kakkonto are clinically useful for the improvement of inflammatory responses.
Collapse
|
18
|
Batchu KC, Hänninen S, Jha SK, Jeltsch M, Somerharju P. Factors regulating the substrate specificity of cytosolic phospholipase A 2 -alpha in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1597-1604. [DOI: 10.1016/j.bbalip.2016.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
|
19
|
Yun B, Leslie CC. Cellular Assays for Evaluating Calcium-Dependent Translocation of cPLA 2α to Membrane. Methods Enzymol 2016; 583:71-99. [PMID: 28063500 DOI: 10.1016/bs.mie.2016.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The group IVA phospholipase A2, commonly called cytosolic phospholipase A2α (cPLA2α), is a widely expressed enzyme that hydrolyzes membrane phospholipid to produce arachidonic acid and lysophospholipids, which are precursors for a number of bioactive lipid mediators. Arachidonic acid is metabolized through the cyclooxygenase and lipoxygenase pathways for production of prostaglandins and leukotrienes that regulate normal physiological processes and contribute to disease pathogenesis. cPLA2α is composed of an N-terminal C2 domain and a C-terminal catalytic domain that contains the Ser-Asp catalytic dyad. The catalytic domain contains phosphorylation sites and basic residues that regulate the catalytic activity of cPLA2α. In response to cell stimulation, cPLA2α is rapidly activated by posttranslational mechanisms including increases in intracellular calcium and phosphorylation by mitogen-activated protein kinases. In resting cells, cPLA2α is localized in the cytosol but translocates to membrane including the Golgi, endoplasmic reticulum, and the peri-nuclear membrane in response to increases in intracellular calcium. Calcium binds to the C2 domain, which promotes the interaction of cPLA2α with membrane through hydrophobic interactions. In this chapter, we describe assays used to study the calcium-dependent translocation of cPLA2α to membrane, a regulatory step necessary for access to phospholipid and release of arachidonic acid.
Collapse
Affiliation(s)
- B Yun
- National Jewish Health, Denver, CO, United States
| | - C C Leslie
- National Jewish Health, Denver, CO, United States; University of Colorado Denver, Aurora, CO, United States.
| |
Collapse
|
20
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2016; 68:631-700. [PMID: 27343248 PMCID: PMC4931872 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
21
|
Ahmad S, Ytterberg AJ, Thulasingam M, Tholander F, Bergman T, Zubarev R, Wetterholm A, Rinaldo-Matthis A, Haeggström JZ. Phosphorylation of Leukotriene C4 Synthase at Serine 36 Impairs Catalytic Activity. J Biol Chem 2016; 291:18410-8. [PMID: 27365393 DOI: 10.1074/jbc.m116.735647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 01/07/2023] Open
Abstract
Leukotriene C4 synthase (LTC4S) catalyzes the formation of the proinflammatory lipid mediator leukotriene C4 (LTC4). LTC4 is the parent molecule of the cysteinyl leukotrienes, which are recognized for their pathogenic role in asthma and allergic diseases. Cellular LTC4S activity is suppressed by PKC-mediated phosphorylation, and recently a downstream p70S6k was shown to play an important role in this process. Here, we identified Ser(36) as the major p70S6k phosphorylation site, along with a low frequency site at Thr(40), using an in vitro phosphorylation assay combined with mass spectrometry. The functional consequences of p70S6k phosphorylation were tested with the phosphomimetic mutant S36E, which displayed only about 20% (20 μmol/min/mg) of the activity of WT enzyme (95 μmol/min/mg), whereas the enzyme activity of T40E was not significantly affected. The enzyme activity of S36E increased linearly with increasing LTA4 concentrations during the steady-state kinetics analysis, indicating poor lipid substrate binding. The Ser(36) is located in a loop region close to the entrance of the proposed substrate binding pocket. Comparative molecular dynamics indicated that Ser(36) upon phosphorylation will pull the first luminal loop of LTC4S toward the neighboring subunit of the functional homotrimer, thereby forming hydrogen bonds with Arg(104) in the adjacent subunit. Because Arg(104) is a key catalytic residue responsible for stabilization of the glutathione thiolate anion, this phosphorylation-induced interaction leads to a reduction of the catalytic activity. In addition, the positional shift of the loop and its interaction with the neighboring subunit affect active site access. Thus, our mutational and kinetic data, together with molecular simulations, suggest that phosphorylation of Ser(36) inhibits the catalytic function of LTC4S by interference with the catalytic machinery.
Collapse
Affiliation(s)
| | - A Jimmy Ytterberg
- Chemistry I, and Department of Medicine, Solna, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | | | - Fredrik Tholander
- Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden and
| | | | | | | | | | | |
Collapse
|
22
|
Lu Y, Cai S, Tan H, Fu W, Zhang H, Xu H. Inhibitory effect of oblongifolin C on allergic inflammation through the suppression of mast cell activation. Mol Cell Biochem 2015; 406:263-271. [PMID: 25968068 DOI: 10.1007/s11010-015-2444-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022]
Abstract
Oblongifolin C (OC), a natural small molecule compound extracted from Garcinia yunnanensis Hu, has been previously shown to have anti-cancer effect, but the anti-allergic effect of OC has not yet been investigated. The aim of the present study is to determine the anti-allergic effect of OC on IgE/Ag-induced mouse bone marrow-derived mast cells (BMMCs) and on the passive systemic anaphylaxis (PSA) reaction in mice. OC clearly suppressed cyclooxygenase-2 (COX-2)-dependent prostaglandin D2 (PGD2) generation as well as leukotriene C4 (LTC4) generation and the degranulation reaction in IgE/Ag-stimulated BMMCs. Biochemical analyses of the IgE/Ag-mediated signaling pathways showed that OC suppressed the phosphorylation of phospholipase Cγ1 (PLCγ1)-mediated intracellular Ca(2+) influx and the nuclear factor-κB (NF-κB) pathway, as well as the phosphorylation of mitogen-activated protein (MAP) kinases. Although OC did not inhibit the phosphorylation of Fyn, Lyn, and Syk, it directly inhibited the tyrosine kinase activity in vitro. Moreover, oral administration of OC inhibited the IgE-induced PSA reaction in a dose-dependent manner. Taken together, the present study provides new insights into the anti-allergic activity of OC, which could be a promising candidate for allergic therapy.
Collapse
Affiliation(s)
- Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Leslie CC. Cytosolic phospholipase A₂: physiological function and role in disease. J Lipid Res 2015; 56:1386-402. [PMID: 25838312 DOI: 10.1194/jlr.r057588] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Indexed: 02/06/2023] Open
Abstract
The group IV phospholipase A2 (PLA2) family is comprised of six intracellular enzymes (GIVA, -B, -C, -D, -E, and -F) commonly referred to as cytosolic PLA2 (cPLA2)α, -β, -γ, -δ, -ε, and -ζ. They contain a Ser-Asp catalytic dyad and all except cPLA2γ have a C2 domain, but differences in their catalytic activities and subcellular localization suggest unique regulation and function. With the exception of cPLA2α, the focus of this review, little is known about the in vivo function of group IV enzymes. cPLA2α catalyzes the hydrolysis of phospholipids to arachidonic acid and lysophospholipids that are precursors of numerous bioactive lipids. The regulation of cPLA2α is complex, involving transcriptional and posttranslational processes, particularly increases in calcium and phosphorylation. cPLA2α is a highly conserved widely expressed enzyme that promotes lipid mediator production in human and rodent cells from a variety of tissues. The diverse bioactive lipids produced as a result of cPLA2α activation regulate normal physiological processes and disease pathogenesis in many organ systems, as shown using cPLA2α KO mice. However, humans recently identified with cPLA2α deficiency exhibit more pronounced effects on health than observed in mice lacking cPLA2α, indicating that much remains to be learned about this interesting enzyme.
Collapse
Affiliation(s)
- Christina C Leslie
- Department of Pediatrics, National Jewish Health, Denver, CO 80206; and Departments of Pathology and Pharmacology, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
24
|
Macdonald DJ, Boyle RM, Glen ACA, Leslie CC, Glen AIM, Horrobin DF. The development of an ELISA for group IVA phospholipase A2 in human red blood cells. Prostaglandins Leukot Essent Fatty Acids 2015; 94:43-8. [PMID: 25547672 DOI: 10.1016/j.plefa.2014.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/31/2014] [Accepted: 11/10/2014] [Indexed: 11/21/2022]
Abstract
An immunoassay for IVA phospholipase A2 in human red blood cells is described. The assay is a non-competitive sandwich assay in which increasing amounts of the measured protein produce increased luminescence. The antibodies used in the assay are directed against two unique epitopes of the molecule, which sequentially trap and detect the protein. The standard curve covers the range 0.7ng to 23ng/mL (0.07 to 2.3ng/well). The intra-assay and inter-assay coefficients of variation were 9% and 12%, respectively. Evidence is presented that the assay is specific for the alpha paralog of IV PLA2. The assay allows simple and rapid quantification of IVAPLA2 in red blood cell lysates and other biological fluids.
Collapse
Affiliation(s)
| | - Rose M Boyle
- Department of Biochemistry, Victoria Infirmary, Glasgow G42 9TY, UK
| | | | | | | | | |
Collapse
|
25
|
Grandits M, Oostenbrink C. Selectivity of cytosolic phospholipase A2 type IV toward arachidonyl phospholipids. J Mol Recognit 2015; 28:447-57. [PMID: 25703463 DOI: 10.1002/jmr.2462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 11/06/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2 ) is an interesting protein involved in inflammatory processes and various diseases. Its catalytic mechanism as well as its substrate specificity for arachidonyl phospholipids is not typical for other phospolipases. Furthermore, a lid structure, which ensures a hydrophilic surface of the protein without any substrate bound and the movement of this flexible loop to make the hydrophobic active site accessible, is of high interest. Therefore, the focus of this work was to determine the binding mode of cPLA2 with various substrates, such as arachidonic acid, a synthetic inhibitor, a saturated phospholipid, and most importantly an arachidonyl phospholipid. To understand the selectivity of the protein toward the arachidonyl phospholipid and the interaction in a protein-ligand complex, molecular dynamics simulations were performed using the GROMOS suite of simulation programs. The simulations provide insight into the protein and showed that selective binding of arachidonyl phospholipids is because of the shape of the sn-2 tail. The amino acids Asn555 and Ala578 are involved in the strongest interactions observed in the protein-ligand complexes.
Collapse
Affiliation(s)
- Melanie Grandits
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
26
|
Allard-Chamard H, Dufort P, Haroun S, de Brum-Fernandes AJ. Cytosolic phospholipase A2 and eicosanoids modulate life, death and function of human osteoclasts in vitro. Prostaglandins Leukot Essent Fatty Acids 2014; 90:117-23. [PMID: 24508380 DOI: 10.1016/j.plefa.2013.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Eicosanoids are important in bone physiology but the specific function of phopholipase enzymes has not been determined in osteoclasts. The objective of this is study was to determine the presence of cPLA2 in human in vitro-differentiated osteoclasts as well as osteoclasts in situ from bone biopsies. MATERIALS AND METHODS Osteoclastogenesis, apoptosis, bone resorption and the modulation of actin cytoskeleton assays were performed on osteoclasts differentiated in vitro. Immunohistochemistry was done in differentiated osteoclasts as well as on bone biopsies. RESULTS Human osteoclasts from normal, fetal, osteoarthritic, osteoporotic and Pagetic bone biopsies express cPLA2 and stimulation with RANKL increases cPLA2 phosphorylation in vitro. Inhibition of cPLA2 increased osteoclastogenesis and decreased apoptosis but decreased the capacity of osteoclasts to generate actin rings and to resorb bone. DISCUSSION AND CONCLUSIONS These results suggest that cPLA2 modulates osteoclast functions and could be a useful target in bone diseases with hyperactivated osteoclasts.
Collapse
Affiliation(s)
- Hugues Allard-Chamard
- Division of Rheumatology, Faculté de médecine et des sciences de la santé de l' Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada.
| | - Philippe Dufort
- Division of Rheumatology, Faculté de médecine et des sciences de la santé de l' Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada.
| | - Sonia Haroun
- Division of Rheumatology, Faculté de médecine et des sciences de la santé de l' Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada.
| | - Artur J de Brum-Fernandes
- Division of Rheumatology, Faculté de médecine et des sciences de la santé de l' Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada.
| |
Collapse
|
27
|
Preventive Effects of a Kampo Medicine, Kakkonto, on Inflammatory Responses via the Suppression of Extracellular Signal-Regulated Kinase Phosphorylation in Lipopolysaccharide-Treated Human Gingival Fibroblasts. ISRN PHARMACOLOGY 2014; 2014:784019. [PMID: 24693448 PMCID: PMC3945151 DOI: 10.1155/2014/784019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/08/2014] [Indexed: 12/04/2022]
Abstract
Periodontal disease is accompanied by inflammation of the gingiva and destruction of periodontal tissues, leading to alveolar bone loss in severe clinical cases. The chemical mediator prostaglandin E2 (PGE2) and cytokines such as interleukin- (IL-)6 and IL-8 have been known to play important roles in inflammatory responses and tissue degradation. In the present study, we investigated the effects of a kampo medicine, kakkonto (TJ-1), on the production of prostaglandin E2 (PGE2), IL-6, and IL-8 by human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) from Porphyromonas gingivalis. Kakkonto concentration dependently suppressed LPS-induced PGE2 production but did not alter basal PGE2 levels. In contrast, kakkonto significantly increased LPS-induced IL-6 and IL-8 production. Kakkonto decreased cyclooxygenase- (COX-)1 activity to approximately 70% at 1 mg/mL but did not affect COX-2 activity. Kakkonto did not affect cytoplasmic phospholipase A2 (cPLA2), annexin1, or LPS-induced COX-2 expression. Kakkonto suppressed LPS-induced extracellular signal-regulated kinase (ERK) phosphorylation, which is known to lead to ERK activation and cPLA2 phosphorylation. These results suggest that kakkonto decreased PGE2 production by inhibition of ERK phosphorylation which leads to inhibition of cPLA2 phosphorylation and its activation. Therefore, kakkonto may be useful to improve gingival inflammation in periodontal disease.
Collapse
|
28
|
Bucher D, Hsu YH, Mouchlis VD, Dennis EA, McCammon JA. Insertion of the Ca²⁺-independent phospholipase A₂ into a phospholipid bilayer via coarse-grained and atomistic molecular dynamics simulations. PLoS Comput Biol 2013; 9:e1003156. [PMID: 23935474 PMCID: PMC3723492 DOI: 10.1371/journal.pcbi.1003156] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/11/2013] [Indexed: 01/19/2023] Open
Abstract
Group VI Ca²⁺-independent phospholipase A₂ (iPLA₂) is a water-soluble enzyme that is active when associated with phospholipid membranes. Despite its clear pharmaceutical relevance, no X-ray or NMR structural information is currently available for the iPLA₂ or its membrane complex. In this paper, we combine homology modeling with coarse-grained (CG) and all-atom (AA) molecular dynamics (MD) simulations to build structural models of iPLA₂ in association with a phospholipid bilayer. CG-MD simulations of the membrane insertion process were employed to provide a starting point for an atomistic description. Six AA-MD simulations were then conducted for 60 ns, starting from different initial CG structures, to refine the membrane complex. The resulting structures are shown to be consistent with each other and with deuterium exchange mass spectrometry (DXMS) experiments, suggesting that our approach is suitable for the modeling of iPLA₂ at the membrane surface. The models show that an anchoring region (residues 710-724) forms an amphipathic helix that is stabilized by the membrane. In future studies, the proposed iPLA₂ models should provide a structural basis for understanding the mechanisms of lipid extraction and drug-inhibition. In addition, the dual-resolution approach discussed here should provide the means for the future exploration of the impact of lipid diversity and sequence mutations on the activity of iPLA₂ and related enzymes.
Collapse
Affiliation(s)
- Denis Bucher
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America.
| | | | | | | | | |
Collapse
|
29
|
Nakamura H, Moriyama Y, Makiyama T, Emori S, Yamashita H, Yamazaki R, Murayama T. Lactosylceramide interacts with and activates cytosolic phospholipase A2α. J Biol Chem 2013; 288:23264-72. [PMID: 23801329 DOI: 10.1074/jbc.m113.491431] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lactosylceramide (LacCer) is a member of the glycosphingolipid family and is known to be a bioactive lipid in various cell physiological processes. However, the direct targets of LacCer and cellular events mediated by LacCer are largely unknown. In this study, we examined the effect of LacCer on the release of arachidonic acid (AA) and the activity of cytosolic phospholipase A2α (cPLA2α). In CHO-W11A cells, treatment with 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP), an inhibitor of glucosylceramide synthase, reduced the glycosphingolipid level, and the release of AA induced by A23187 or platelet-activating factor was inhibited. The addition of LacCer reversed the PPMP effect on the stimulus-induced AA release. Exogenous LacCer stimulated the release of AA, which was decreased by treatment with an inhibitor of cPLA2α or silencing of the enzyme. Treatment of CHO-W11A cells with LacCer induced the translocation of full-length cPLA2α and its C2 domain from the cytosol to the Golgi apparatus. LacCer also induced the translocation of the D43N mutant of cPLA2α. Treatment of L929 cells with TNF-α induced LacCer generation and mediated the translocation of cPLA2α and AA release, which was attenuated by treatment with PPMP. In vitro studies were then conducted to test whether LacCer interacts directly with cPLA2α. Phosphatidylcholine vesicles containing LacCer increased cPLA2α activity. LacCer bound to cPLA2α and its C2 domain in a Ca(2+)-independent manner. Thus, we propose that LacCer is a direct activator of cPLA2α.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Magrioti V, Kokotos G. Phospholipase A2inhibitors for the treatment of inflammatory diseases: a patent review (2010 – present). Expert Opin Ther Pat 2013; 23:333-44. [DOI: 10.1517/13543776.2013.754425] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Calcium Signaling in Mast Cells: Focusing on L-Type Calcium Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:955-77. [DOI: 10.1007/978-94-007-2888-2_44] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 864] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
33
|
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011; 111:5866-98. [PMID: 21936577 DOI: 10.1021/cr200246d] [Citation(s) in RCA: 654] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
34
|
Hayama K, Suzuki Y, Inoue T, Ochiai T, Terui T, Ra C. Gold activates mast cells via calcium influx through multiple H2O2-sensitive pathways including L-type calcium channels. Free Radic Biol Med 2011; 50:1417-28. [PMID: 21376117 DOI: 10.1016/j.freeradbiomed.2011.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/17/2011] [Accepted: 02/23/2011] [Indexed: 11/23/2022]
Abstract
Heavy metals, including gold, induce severe contact hypersensitivity and autoimmune disorders, which develop through an initial Th2-independent process followed by a Th2-dependent process. It has been shown that mast cell activation plays a role in the Th2-independent process and that gold stimulates histamine release in vitro. However, the mechanisms of the gold-induced mast cell activation remain largely unclear. Here we report that gold directly activates mast cells in a Ca2+-dependent manner. HAuCl4 [Au(III)] at nontoxic concentrations (≤50 μM) induced substantial degranulation and leukotriene C4 secretion in an extracellular Ca2+-dependent manner. Au(III) induced a robust Ca2+ influx but not Ca2+ mobilization from internal stores. Au(III) also stimulated intracellular production of reactive oxygen species, including H2O2, and blockade of the production abolished the mediator release and Ca2+ influx. Au(III) induced Ca2+ influx through multiple store-independent Ca2+ channels, including Cav1.2 L-type Ca2+ channels (LTCCs) and 2-aminoethoxydiphenyl borate (2-APB)-sensitive Ca2+ channels. The 2-APB-sensitive channel seemed to mediate Au(III)-induced degranulation. Our results indicate that gold stimulates Ca2+ influx and mediator release in mast cells through multiple H2O2-sensitive Ca2+ channels including LTCCs and 2-APB-sensitive Ca2+ channels. These findings provide insight into the roles of these Ca2+ channels in the Th2-independent process of gold-induced immunological disorders.
Collapse
Affiliation(s)
- Koremasa Hayama
- Division of Molecular Cell Immunology and Allergology, Graduate School of Medical Science, Nihon University, and Department of Dermatology, Nihon University Surugadai Hospital, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Holinstat M, Boutaud O, Apopa PL, Vesci J, Bala M, Oates JA, Hamm HE. Protease-activated receptor signaling in platelets activates cytosolic phospholipase A2α differently for cyclooxygenase-1 and 12-lipoxygenase catalysis. Arterioscler Thromb Vasc Biol 2011; 31:435-42. [PMID: 21127289 PMCID: PMC3035574 DOI: 10.1161/atvbaha.110.219527] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 11/19/2010] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The rate-limiting step in the biosynthesis of thromboxane A(2) (TxA(2)) and 12-hydroxyeicosatetraenoic acid (12-HETE) by platelets is activation of cytosolic phospholipase A(2α) (cPLA(2α)), which releases arachidonic acid, which is the substrate for cyclooxygenase-1 (COX-1) and 12-lipoxygenase. We evaluated signaling via the human platelet thrombin receptors, protease-activated receptor (PAR) 1 and PAR4, to the activation of cPLA(2α), which provides a substrate for the biosynthesis of TxA(2) and 12-HETE. METHODS AND RESULTS Stimulating washed human platelets resulted in delayed biosynthesis of 12-HETE, which continues after maximal formation of TxA(2) is completed, suggesting that 12-HETE is not formed by the same pool of arachidonic acid that provides a substrate to COX-1. PAR1-induced formation of TxA(2) was inhibited by the phosphatidylinositol kinase inhibitor LY294002, whereas this inhibitor did not block 12-HETE biosynthesis. Both 1-butanol and propranolol also blocked TxA(2) biosynthesis but did not inhibit 12-HETE formation. CONCLUSIONS The concerted evidence indicates that the platelet thrombin receptors signal activation of cPLA(2α) coupled to COX-1 by a pathway different from that signaling activation of the cPLA(2α) coupled to 12-lipoxygenase.
Collapse
Affiliation(s)
- Michael Holinstat
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Rossi A, Pergola C, Koeberle A, Hoffmann M, Dehm F, Bramanti P, Cuzzocrea S, Werz O, Sautebin L. The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages. Br J Pharmacol 2011; 161:555-70. [PMID: 20880396 DOI: 10.1111/j.1476-5381.2010.00930.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Zileuton is the only 5-lipoxygenase (5-LOX) inhibitor marketed as a treatment for asthma, and is often utilized as a selective tool to evaluate the role of 5-LOX and leukotrienes. The aim of this study was to investigate the effect of zileuton on prostaglandin (PG) production in vitro and in vivo. EXPERIMENTAL APPROACH Peritoneal macrophages activated with lipopolysaccharide (LPS)/interferon γ (LPS/IFNγ), J774 macrophages and human whole blood stimulated with LPS were used as in vitro models and rat carrageenan-induced pleurisy as an in vivo model. KEY RESULTS Zileuton suppressed PG biosynthesis by interference with arachidonic acid (AA) release in macrophages. We found that zileuton significantly reduced PGE2 and 6-keto prostaglandin F1α (PGF1α) levels in activated mouse peritoneal macrophages and in J774 macrophages. This effect was not related to 5-LOX inhibition, because it was also observed in macrophages from 5-LOX knockout mice. Notably, zileuton inhibited PGE2 production in LPS-stimulated human whole blood and suppressed PGE2 and 6-keto PGF1α pleural levels in rat carrageenan-induced pleurisy. Interestingly, zileuton failed to inhibit the activity of microsomal PGE2 synthase1 and of cyclooxygenase (COX)-2 and did not affect COX-2 expression. However, zileuton significantly decreased AA release in macrophages accompanied by inhibition of phospholipase A2 translocation to cellular membranes. CONCLUSIONS AND IMPLICATION Zileuton inhibited PG production by interfering at the level of AA release. Its mechanism of action, as well as its use as a pharmacological tool, in experimental models of inflammation should be reassessed.
Collapse
Affiliation(s)
- A Rossi
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ara T, Honjo KI, Fujinami Y, Hattori T, Imamura Y, Wang PL. Preventive effects of a kampo medicine, orento on inflammatory responses in lipopolysaccharide treated human gingival fibroblasts. Biol Pharm Bull 2010; 33:611-6. [PMID: 20410594 DOI: 10.1248/bpb.33.611] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we investigated the effects of a Kampo medicine Orento (TJ-120) on the production of prostaglandin E(2) (PGE(2)), interleukin (IL)-6 and IL-8 by human gingival fibroblasts (HGFs) treated with lipopolysaccharide from Porphyromonas gingivalis (PgLPS). HGFs proliferation was dose-dependently decreased with Orento at days 3 and 7. However, treatment with PgLPS (10 ng/ml), Orento (up to 1 mg/ml) and their combinations for 24 h did not affect the viability of HGFs. Orento suppressed PgLPS-induced PGE(2) production in a dose-dependent manner but did not alter basal PGE(2) level. In contrast, Orento did not alter PgLPS-induced IL-6 and IL-8 productions. These alterations by Orento were similar to those by a mitogen-activated protein kinase kinase (MAPKK/MEK) inhibitor, PD98059. A Orento showed no effect on cyclooxygenase (COX)-1 and COX-2 activities, and increased cytoplasmic phospholipase A(2) (cPLA(2)) expression and increased PgLPS-induced COX-2 expression. Orento suppressed PgLPS-induced mobility retardation of cPLA(2) band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels, that is cPLA(2) phosphorylation and its activation, while Orento alone did not alter cPLA(2) phosphorylation. Orento suppressed PgLPS-induced extracellular signal-regulated kinase (ERK) phosphorylation, which is known to lead to ERK activation and cPLA(2) phosphorylation. These results suggest that Orento decreased PGE(2) production by inhibition of cPLA(2) phosphorylation and its activation via inhibition of ERK phosphorylation, and also that Orento may be useful to improve gingival inflammation in periodontal disease.
Collapse
Affiliation(s)
- Toshiaki Ara
- Department of Pharmacology, Matsumoto Dental University, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Haeggström JZ, Rinaldo-Matthis A, Wheelock CE, Wetterholm A. Advances in eicosanoid research, novel therapeutic implications. Biochem Biophys Res Commun 2010; 396:135-9. [DOI: 10.1016/j.bbrc.2010.03.140] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
|
39
|
Song H, Bao S, Lei X, Jin C, Zhang S, Turk J, Ramanadham S. Evidence for proteolytic processing and stimulated organelle redistribution of iPLA(2)beta. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:547-58. [PMID: 20132906 PMCID: PMC2848069 DOI: 10.1016/j.bbalip.2010.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/24/2009] [Accepted: 01/19/2010] [Indexed: 12/31/2022]
Abstract
Over the past decade, important roles for the 84-88kDa Group VIA Ca(2+)-independent phospholipase A(2) (iPLA(2)beta) in various organs have been described. We demonstrated that iPLA(2)beta participates in insulin secretion, insulinoma cells and native pancreatic islets express full-length and truncated isoforms of iPLA(2)beta, and certain stimuli promote perinuclear localization of iPLA(2)beta. To gain a better understanding of its mobilization, iPLA(2)beta was expressed in INS-1 cells as a fusion protein with EGFP, enabling detection of subcellular localization of iPLA(2)beta by monitoring EGFP fluorescence. Cells stably-transfected with fusion protein expressed nearly 5-fold higher catalytic iPLA(2)beta activity than control cells transfected with EGFP cDNA alone, indicating that co-expression of EGFP does not interfere with manifestation of iPLA(2)beta activity. Dual fluorescence monitoring of EGFP and organelle Trackers combined with immunoblotting analyses revealed expression of truncated iPLA(2)beta isoforms in separate subcellular organelles. Exposure to secretagogues and induction of ER stress are known to activate iPLA(2)beta in beta-cells and we find here that these stimuli promote differential localization of iPLA(2)beta in subcellular organelles. Further, mass spectrometric analyses identified iPLA(2)beta variants from which N-terminal residues were removed. Collectively, these findings provide evidence for endogenous proteolytic processing of iPLA(2)beta and redistribution of iPLA(2)beta variants in subcellular compartments. It might be proposed that in vivo processing of iPLA(2)beta facilitates its participation in multiple biological processes.
Collapse
Affiliation(s)
- Haowei Song
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Shunzhong Bao
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Xiaoyong Lei
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Chun Jin
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Sheng Zhang
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - John Turk
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Sasanka Ramanadham
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| |
Collapse
|
40
|
Mirshafiey A, Jadidi-Niaragh F. Immunopharmacological role of the Leukotriene Receptor Antagonists and inhibitors of leukotrienes generating enzymes in Multiple Sclerosis. Immunopharmacol Immunotoxicol 2010; 32:219-27. [DOI: 10.3109/08923970903283662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Mirshafiey A, Jadidi-Niaragh F. Prostaglandins in pathogenesis and treatment of multiple sclerosis. Immunopharmacol Immunotoxicol 2010; 32:543-54. [PMID: 20233088 DOI: 10.3109/08923971003667627] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) characterized by inflammation, demyelination, axonal loss, and gliosis. The inflammatory lesions are manifested by a large infiltration and a heterogeneous population of cellular and soluble mediators of the immune system, such as T cells, B cells, macrophages, and microglia, as well as a broad range of cytokines, chemokines, antibodies, complement, and other toxic substances. Prostaglandins (PGs) are arachidonic acid-derived autacoids that have a role in the modulation of many physiological systems including the CNS, respiratory, cardiovascular, gastrointestinal, genitourinary, endocrine, and immune systems. PG production is associated with inflammation, a major feature in MS that is characterized by the loss of myelinating oligodendrocytes in the CNS. With respect to the role of PGs in the induction of inflammation, they can be effective mediators in the pathophysiology of MS. Thus use of agonists or antagonists of PG receptors may be considered as a new therapeutic protocol in MS. In this review, we try to clarify the role of PGs in immunopathology and treatment of MS.
Collapse
Affiliation(s)
- Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran 14155, Iran.
| | | |
Collapse
|
42
|
Nakazono Y, Ara T, Fujinami Y, Hattori T, Wang PL. Preventive Effects of a Kampo Medicine, Hangeshashinto on Inflammatory Responses in Lipopolysaccharide-Treated Human Gingival Fibroblasts. J HARD TISSUE BIOL 2010. [DOI: 10.2485/jhtb.19.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Gubern A, Barceló-Torns M, Barneda D, López JM, Masgrau R, Picatoste F, Chalfant CE, Balsinde J, Balboa MA, Claro E. JNK and ceramide kinase govern the biogenesis of lipid droplets through activation of group IVA phospholipase A2. J Biol Chem 2009; 284:32359-69. [PMID: 19778898 DOI: 10.1074/jbc.m109.061515] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The biogenesis of lipid droplets (LD) induced by serum depends on group IVA phospholipase A(2) (cPLA(2)alpha). This work dissects the pathway leading to cPLA(2)alpha activation and LD biogenesis. Both processes were Ca(2+)-independent, as they took place after pharmacological blockade of Ca(2+) transients elicited by serum or chelation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester). The single mutation D43N in cPLA(2)alpha, which abrogates its Ca(2+) binding capacity and translocation to membranes, did not affect enzyme activation and formation of LD. In contrast, the mutation S505A did not affect membrane relocation of the enzyme in response to Ca(2+) but prevented its phosphorylation, activation, and the appearance of LD. Expression of specific activators of different mitogen-activated protein kinases showed that phosphorylation of cPLA(2)alpha at Ser-505 is due to JNK. This was confirmed by pharmacological inhibition and expression of a dominant-negative form of the upstream activator MEKK1. LD biogenesis was accompanied by increased synthesis of ceramide 1-phosphate. Overexpression of its synthesizing enzyme ceramide kinase increased phosphorylation of cPLA(2)alpha at Ser-505 and formation of LD, and its down-regulation blocked the phosphorylation of cPLA(2)alpha and LD biogenesis. These results demonstrate that LD biogenesis induced by serum is regulated by JNK and ceramide kinase.
Collapse
Affiliation(s)
- Albert Gubern
- Institut de Neurociències i Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zachos NC, Kovbasnjuk O, Donowitz M. Regulation of intestinal electroneutral sodium absorption and the brush border Na+/H+ exchanger by intracellular calcium. Ann N Y Acad Sci 2009; 1165:240-8. [PMID: 19538312 PMCID: PMC3115783 DOI: 10.1111/j.1749-6632.2009.04055.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intestinal electroneutral Na(+) absorptive processes account for most small intestinal Na(+) absorption in the period between meals and also for the great majority of the increase in ileal Na(+) absorption that occurs postprandially. In most diarrheal diseases, there is inhibition of neutral NaCl absorption. Elevated levels of intracellular calcium ([Ca(2+)](i)) are known to inhibit NaCl absorption and involve multiple components of the Ca(2+) signaling pathway. The BB Na(+)/H(+) exchanger NHE3 accounts for most of the recognized digestive changes in neutral NaCl absorption, as well as most of the changes in Na(+) absorption that occur in diarrheal diseases. Previous studies have examined several aspects of Ca(2+) regulation of NHE3 activity. These include phosphorylation, protein trafficking, and multiprotein complex formation. In addition, recent studies have demonstrated the role of the NHERF family of PDZ domain-containing proteins in Ca(2+) regulation of NHE3 activity, thereby adding a new level of complexity to understanding Ca(2+)-dependent inhibition of Na(+) absorption. In this article, we will review the current understanding of (1) Ca(2+) signaling events in intestinal epithelial cells; (2) Ca(2+) regulation of intestinal electroneutral sodium absorption, which includes NHE3; and (3) the role of the NHERF family of PDZ domain-containing proteins in Ca(2+) regulation of NHE3 activity. We will also present new data on using advanced imaging showing rapid BB NHE3 endocytosis in response to elevated [Ca(2+)](i).
Collapse
Affiliation(s)
- Nicholas C. Zachos
- Department of Medicine, 720 Rutland Avenue, 925 Ross Research Building, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Olga Kovbasnjuk
- Department of Medicine, 720 Rutland Avenue, 925 Ross Research Building, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mark Donowitz
- Department of Medicine, 720 Rutland Avenue, 925 Ross Research Building, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Physiology, Division of Gastroenterology, 720 Rutland Avenue, 925 Ross Research Building, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
45
|
Lee SH, Na SI, Heo JS, Kim MH, Kim YH, Lee MY, Kim SH, Lee YJ, Han HJ. Arachidonic acid release by H2O2mediated proliferation of mouse embryonic stem cells: Involvement of Ca2+/PKC and MAPKs-induced EGFR transactivation. J Cell Biochem 2009; 106:787-97. [DOI: 10.1002/jcb.22013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Tucker DE, Ghosh M, Ghomashchi F, Loper R, Suram S, John BS, Girotti M, Bollinger JG, Gelb MH, Leslie CC. Role of phosphorylation and basic residues in the catalytic domain of cytosolic phospholipase A2alpha in regulating interfacial kinetics and binding and cellular function. J Biol Chem 2009; 284:9596-611. [PMID: 19176526 DOI: 10.1074/jbc.m807299200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) is regulated by phosphorylation and calcium-induced translocation to membranes. Immortalized mouse lung fibroblasts lacking endogenous cPLA(2)alpha (IMLF(-/-)) were reconstituted with wild type and cPLA(2)alpha mutants to investigate how calcium, phosphorylation, and the putative phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding site regulate translocation and arachidonic acid (AA) release. Agonists that elicit distinct modes of calcium mobilization were used. Serum induced cPLA(2)alpha translocation to Golgi within seconds that temporally paralleled the initial calcium transient. However, the subsequent influx of extracellular calcium was essential for stable binding of cPLA(2)alpha to Golgi and AA release. In contrast, phorbol 12-myristate 13-acetate induced low amplitude calcium oscillations, slower translocation of cPLA(2)alpha to Golgi, and much less AA release, which were blocked by chelating extracellular calcium. AA release from IMLF(-/-) expressing phosphorylation site (S505A) and PIP(2) binding site (K488N/K543N/K544N) mutants was partially reduced compared with cells expressing wild type cPLA(2)alpha, but calcium-induced translocation was not impaired. Consistent with these results, Ser-505 phosphorylation did not change the calcium requirement for interfacial binding and catalysis in vitro but increased activity by 2-fold. Mutations in basic residues in the catalytic domain of cPLA(2)alpha reduced activation by PIP(2) but did not affect the concentration of calcium required for interfacial binding or phospholipid hydrolysis. The results demonstrate that Ser-505 phosphorylation and basic residues in the catalytic domain principally act to regulate cPLA(2)alpha hydrolytic activity.
Collapse
Affiliation(s)
- Dawn E Tucker
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ho TC, Chen SL, Yang YC, Lo TH, Hsieh JW, Cheng HC, Tsao YP. Cytosolic phospholipase A2-{alpha} is an early apoptotic activator in PEDF-induced endothelial cell apoptosis. Am J Physiol Cell Physiol 2008; 296:C273-84. [PMID: 19091957 DOI: 10.1152/ajpcell.00432.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is an intrinsic antiangiogenic factor and a potential therapeutic agent. Previously, we discovered the mechanism of PEDF-induced apoptosis of human umbilical vein endothelial cells (HUVECs) as sequential induction/activation of p38 mitogen-activated protein kinase (MAPK), peroxisome proliferator-activated receptor gamma (PPAR-gamma), and p53. In the present study, we investigated the signaling role of cytosolic calcium-dependent phospholipase A(2)-alpha (cPLA(2)-alpha) to bridge p38 MAPK and PPAR-gamma activation. PEDF induced cPLA(2)-alpha activation in HUVECs and in endothelial cells in chemical burn-induced vessels on mouse cornea. The cPLA(2)-alpha activation is evident from the phosphorylation and nuclear translocation of cPLA(2)-alpha as well as arachidonic acid release and the cleavage of PED6, a synthetic PLA(2) substrate. Such activation can be abolished by p38 MAPK inhibitor. The PEDF-induced PPAR-gamma activation, p53 expression, caspase-3 activity, and apoptosis can be abolished by both cPLA(2) inhibitor and small interfering RNA targeting cPLA(2)-alpha. Our observation not only establishes the signaling role of cPLA(2)-alpha but also for the first time demonstrates the sequential activation of p38 MAPK, cPLA(2)-alpha, PPAR-gamma, and p53 as the mechanism of PEDF-induced endothelial cell apoptosis.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Dept. of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
Hsu MF, Chang LC, Chen SC, Kuo SC, Lee HY, Lu MC, Wang JP. Blockade of cytosolic phospholipase A2 and 5-lipoxygenase activation in neutrophils by a natural isoflavanquinone abruquinone A. Eur J Pharmacol 2008; 598:123-31. [DOI: 10.1016/j.ejphar.2008.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/29/2008] [Accepted: 09/09/2008] [Indexed: 01/22/2023]
|
49
|
Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK-scaffold complexes. Mol Cell 2008; 31:708-21. [PMID: 18775330 DOI: 10.1016/j.molcel.2008.07.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 04/28/2008] [Accepted: 07/18/2008] [Indexed: 11/22/2022]
Abstract
Signals transmitted by ERK MAP kinases regulate the functions of multiple substrates present in the nucleus and in the cytoplasm. ERK signals are optimized by scaffold proteins that modulate their intensity and spatial fidelity. Once phosphorylated, ERKs dimerize, but how dimerization impacts on the activation of the different pools of substrates and whether it affects scaffolds functions as spatial regulators are unknown aspects of ERK signaling. Here we demonstrate that scaffolds and ERK dimers are essential for the activation of cytoplasmic but not nuclear substrates. Dimerization is critical for connecting the scaffolded ERK complex to cognate cytoplasmic substrates. Contrarily, nuclear substrates associate to ERK monomers. Furthermore, we show that preventing ERK dimerization is sufficient for attenuating cellular proliferation, transformation, and tumor development. Our results disclose a functional relationship between scaffold proteins and ERK dimers and identify dimerization as a key determinant of the spatial specificity of ERK signals.
Collapse
|
50
|
Wooten RE, Willingham MC, Daniel LW, Leslie CC, Rogers LC, Sergeant S, O’Flaherty JT. Novel translocation responses of cytosolic phospholipase A2alpha fluorescent proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:1544-50. [PMID: 18406359 PMCID: PMC2474710 DOI: 10.1016/j.bbamcr.2008.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 12/13/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2)alpha responds to the rise in cytosolic Ca2+ ([Ca2+]i) attending cell stimulation by moving to intracellular membranes, releasing arachidonic acid (AA) from these membranes, and thereby initiating the synthesis of various lipid mediators. Under some conditions, however, cPLA2alpha translocation occurs without any corresponding changes in [Ca2+]i. The signal for such responses has not been identified. Using confocal microscopy to track fluorescent proteins fused to cPLA2alpha or cPLA2alpha's C2 domain, we find that AA mimics Ca2+ ionophores in stimulating cPLA(2)alpha translocations to the perinuclear ER and to a novel site, the lipid body. Unlike the ionophores, AA acted independently of [Ca2+](i) rises and did not translocate the proteins to the Golgi. AA's action did not involve its metabolism to eicosanoids or acylation into cellular lipids. Receptor agonists also stimulated translocations targeting lipid bodies. We propose that AA is a signal for Ca2+-independent cPLA2alpha translocation and that lipid bodies are common targets of cPLA2alpha and contributors to stimulus-induced lipid mediator synthesis.
Collapse
Affiliation(s)
- Rhonda E. Wooten
- Departments of Internal Medicine, Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| | - Mark C. Willingham
- Deperatment of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| | - Larry W. Daniel
- Departments of Internal Medicine, Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| | - Christina C. Leslie
- Department of Pediatrics, National Jewish Medical and Research Center, Denver CO, 90206
| | | | - Susan Sergeant
- Departments of Internal Medicine, Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| | - Joseph T. O’Flaherty
- *To whom all correspondence should be addressed: Mailing address: Joseph T. O’Flaherty, Department of Internal Medicine, Section on Infectious Diseases, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157, USA., Telephone: 336-716-6039; Fax: 336-716-1214, E-mail:
| |
Collapse
|