1
|
Lange TE, Naji A, van der Hoeven R, Liang H, Zhou Y, Hammond GR, Hancock JF, Cho KJ. MTMR regulates KRAS function by controlling plasma membrane levels of phospholipids. J Cell Biol 2025; 224:e202403126. [PMID: 40314454 PMCID: PMC12047185 DOI: 10.1083/jcb.202403126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/08/2024] [Accepted: 10/18/2024] [Indexed: 05/03/2025] Open
Abstract
KRAS, a small GTPase involved in cell proliferation and differentiation, frequently gains activating mutations in human cancers. For KRAS to function, it must bind the plasma membrane (PM) via interactions between its membrane anchor and phosphatidylserine (PtdSer). Therefore, depleting PM PtdSer abrogates KRAS PM binding and activity. From a genome-wide siRNA screen to identify genes regulating KRAS PM localization, we identified a set of phosphatidylinositol (PI) 3-phosphatases: myotubularin-related proteins (MTMR) 2, 3, 4, and 7. Here, we show that silencing MTMR 2/3/4/7 disrupts KRAS PM interactions by reducing PM PI 4-phosphate (PI4P) levels, thereby disrupting the localization and operation of ORP5, a lipid transfer protein maintaining PM PtdSer enrichment. Concomitantly, silencing MTMR 2/3/4/7 elevates PM PI3P levels while reducing PM and total PtdSer levels. We also observed MTMR 2/3/4/7 expression is interdependent. We propose that the PI 3-phosphatase activity of MTMR is required for generating PM PI, necessary for PM PI4P synthesis, promoting the PM localization of PtdSer and KRAS.
Collapse
Affiliation(s)
- Taylor E. Lange
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Ali Naji
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ransome van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Gerald R.V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Kwang-jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
2
|
Fink JC, Webb LJ. The Effect of Phosphoserine-Containing Membranes on Electrostatic Fields at the Protein-Protein Interface Measured through Vibrational Stark Effect Spectroscopy. Biochemistry 2025; 64:2280-2290. [PMID: 40346024 DOI: 10.1021/acs.biochem.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
In the cell, Ras GTPases function as membrane-bound molecular switches for a variety of cell signaling pathways. Ras isoforms have long been of interest because of the connection between amino acid mutations and tumorigenesis. Much research focused on Ras has used truncated, solubilized constructs, which exclude the membrane-binding domain and therefore ignore the effects of membrane binding on Ras function. Since the membrane is a highly charged surface, it could have a significant impact on the electrostatic environment at or near the protein-protein interface. Here, we use a thiocyanate probe chemically inserted into the Ras-binding domain of RalGDS to investigate the effect of membrane binding at the Ras active site. Changes in the electric field caused by the membrane were measured by the probe as vibrational energy shifts in the infrared (IR) spectrum. For a selection of mutants which caused large shifts at this interface on the soluble H-Ras construct, binding to a 30% phosphatidylserine (PS)/70% phosphatidylcholine (PC) nanodisc caused reduced shifts compared to the solubilized counterparts. Additionally, the vibrational probe bonded to the wildtype (WT) Ras construct demonstrated a shift of 0.7 cm-1 as a PC nanodisc was doped from 0% to 30% PS, but mutations introduced to the Ras active site caused the probe to show no shift across these PS concentrations. These results indicate that the local membrane environment has an effect on the electrostatics at the Ras active site and needs to be considered when investigating the effect of oncogenic mutations on Ras function.
Collapse
Affiliation(s)
- Jackson C Fink
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lauren J Webb
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Abdulrahman FA, Benford KA, Lin GT, Maroun AJ, Sammons C, Shirzad DN, Tsai H, Van Brunt VL, Jones Z, Marquez JE, Ratkus EC, Shehadeh AK, Abasto Valle H, Fejzo D, Gilbert AE, McWee CA, Underwood LF, Indico E, Rork BB, Nanjundan M. zDHHC-Mediated S-Palmitoylation in Skin Health and Its Targeting as a Treatment Perspective. Int J Mol Sci 2025; 26:1673. [PMID: 40004137 PMCID: PMC11854935 DOI: 10.3390/ijms26041673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
S-acylation, which includes S-palmitoylation, is the only known reversible lipid-based post-translational protein modification. S-palmitoylation is mediated by palmitoyl acyltransferases (PATs), a family of 23 enzymes commonly referred to as zDHHCs, which catalyze the addition of palmitate to cysteine residues on specific target proteins. Aberrant S-palmitoylation events have been linked to the pathogenesis of multiple human diseases. While there have been advances in elucidating the molecular mechanisms underlying the pathogenesis of various skin conditions, there remain gaps in the knowledge, specifically with respect to the contribution of S-palmitoylation to the maintenance of skin barrier function. Towards this goal, we performed PubMed literature searches relevant to S-palmitoylation in skin to define current knowledge and areas that may benefit from further research studies. Furthermore, to identify alterations in gene products that are S-palmitoylated, we utilized bioinformatic tools such as SwissPalm and analyzed relevant data from publicly available databases such as cBioportal. Since the targeting of S-palmitoylated targets may offer an innovative treatment perspective, we surveyed small molecules inhibiting zDHHCs, including 2-bromopalmitate (2-BP) which is associated with off-target effects, and other targeting strategies. Collectively, our work aims to advance both basic and clinical research on skin barrier function with a focus on zDHHCs and relevant protein targets that may contribute to the pathogenesis of skin conditions such as atopic dermatitis, psoriasis, and skin cancers including melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (F.A.A.); (K.A.B.); (G.T.L.); (A.J.M.); (C.S.); (D.N.S.); (H.T.); (V.L.V.B.); (Z.J.); (J.E.M.); (E.C.R.); (A.K.S.); (H.A.V.); (D.F.); (A.E.G.); (C.A.M.); (L.F.U.); (E.I.); (B.B.R.)
| |
Collapse
|
4
|
Lange TE, Naji A, van der Hoeven R, Liang H, Zhou Y, Hammond GRV, Hancock JF, Cho KJ. MTMR regulates KRAS function by controlling plasma membrane levels of phospholipids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.22.576612. [PMID: 38328115 PMCID: PMC10849561 DOI: 10.1101/2024.01.22.576612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
KRAS, a small GTPase involved in cell proliferation and differentiation, frequently gains activating mutations in human cancers. For KRAS to function, it must bind the plasma membrane (PM) via interactions between its membrane anchor and phosphatidylserine (PtdSer). Therefore, depleting PM PtdSer abrogates KRAS PM binding and activity. From a genome-wide siRNA screen to identify genes regulating KRAS PM localization, we identified a set of phosphatidylinositol (PI) 3-phosphatases: myotubularin-related proteins (MTMR) 2, 3, 4, and 7. Here, we show that silencing MTMR 2/3/4/7 disrupts KRAS PM interactions by reducing PM PI 4-phosphate (PI4P) levels, thereby disrupting the localization and operation of ORP5, a lipid transfer protein maintaining PM PtdSer enrichment. Concomitantly, silencing MTMR 2/3/4/7 elevates PM PI3P levels while reducing PM and total PtdSer levels. We also observed MTMR 2/3/4/7 expression is interdependent. We propose that the PI 3-phosphatase activity of MTMR is required for generating PM PI, necessary for PM PI4P synthesis, promoting the PM localization of PtdSer and KRAS. eTOC summary We discovered that silencing the phosphatidylinositol (PI) 3-phosphatase, MTMR , disrupts the PM localization of PtdSer and KRAS. We propose a model, where MTMR loss depletes PM PI needed for PM PI4P synthesis, an essential phospholipid for PM PtdSer enrichment, thereby impairing KRAS PM localization.
Collapse
|
5
|
Li W, Shi X, Tan C, Jiang Z, Li M, Ji Z, Zhou J, Luo M, Fan Z, Ding Z, Fang Y, Sun J, Ding J, Lu H, Ma W, Xie W, Su W. Plasma membrane-associated ARAF condensates fuel RAS-related cancer drug resistance. Nat Chem Biol 2025:10.1038/s41589-024-01826-8. [PMID: 39870764 DOI: 10.1038/s41589-024-01826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/11/2024] [Indexed: 01/29/2025]
Abstract
RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation. The disordered N-terminal sequence of ARAF drives self-assembly, forming ARAF-RAS condensates tethered to the plasma membrane. These structures concentrate active RAS locally, impeding NF1-mediated negative regulation of RAS, thereby fostering receptor tyrosine kinase (RTK)-triggered RAS activation. In RAS-mutant tumors, loss of the ARAF N terminus sensitizes tumor cells to pan-RAF inhibition. In hormone-sensitive cancers, increased ARAF condensates drive endocrine therapy resistance, whereas ARAF depletion reverses RTK-dependent resistance. Our findings delineate ARAF-RAS protein condensates as distinct subcellular structures sustaining RAS activity and facilitating oncogenic RAS signaling. Targeting ARAF-RAS condensation may offer a strategy to overcome drug resistance in both wild-type and mutant ARAF-mediated scenarios.
Collapse
Affiliation(s)
- Wen Li
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaoxian Shi
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Caiwei Tan
- Zhejiang University College of Pharmaceutical Sciences, Hangzhou, China
| | - Zhaodi Jiang
- The National Institute of Biological Sciences and Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Mingyi Li
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhiheng Ji
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhou
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Mengxin Luo
- Zhejiang University College of Pharmaceutical Sciences, Hangzhou, China
| | - Zuyan Fan
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhifan Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Fang
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jun Sun
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junjun Ding
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Huasong Lu
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Weirui Ma
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wei Xie
- Zhejiang University College of Pharmaceutical Sciences, Hangzhou, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wenjing Su
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Patat J, Schauer K, Lachuer H. Trafficking in cancer: from gene deregulation to altered organelles and emerging biophysical properties. Front Cell Dev Biol 2025; 12:1491304. [PMID: 39902278 PMCID: PMC11788300 DOI: 10.3389/fcell.2024.1491304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/10/2024] [Indexed: 02/05/2025] Open
Abstract
Intracellular trafficking supports all cell functions maintaining the exchange of material between membrane-bound organelles and the plasma membrane during endocytosis, cargo sorting, and exocytosis/secretion. Several proteins of the intracellular trafficking machinery are deregulated in diseases, particularly cancer. This complex and deadly disease stays a heavy burden for society, despite years of intense research activity. Here, we give an overview about trafficking proteins and highlight that in addition to their molecular functions, they contribute to the emergence of intracellular organelle landscapes. We review recent evidence of organelle landscape alterations in cancer. We argue that focusing on organelles, which represent the higher-order, cumulative behavior of trafficking regulators, could help to better understand, describe and fight cancer. In particular, we propose adopting a physical framework to describe the organelle landscape, with the goal of identifying the key parameters that are crucial for a stable and non-random organelle organization characteristic of healthy cells. By understanding these parameters, we may gain insights into the mechanisms that lead to a pathological organelle spatial organization, which could help explain the plasticity of cancer cells.
Collapse
Affiliation(s)
- Julie Patat
- Cell Biology of Organelle Networks Team, Tumor Cell Dynamics Unit, Inserm U1279 Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Kristine Schauer
- Cell Biology of Organelle Networks Team, Tumor Cell Dynamics Unit, Inserm U1279 Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
- Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Hugo Lachuer
- Institut Jacques Monod, Université de Paris, Paris, France
| |
Collapse
|
7
|
Golysheva EA, Kashnik AS, Baranov DS, Dzuba SA. Nanoclusters of Guest Molecules in Lipid Rafts of a Model Membrane Revealed by Pulsed Dipolar EPR Spectroscopy. J Phys Chem B 2025; 129:650-658. [PMID: 39772603 DOI: 10.1021/acs.jpcb.4c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Plasma membranes are known to segregate into liquid disordered and ordered nanoscale phases, the latter being called lipid rafts. The structure, lipid composition, and function of lipid rafts have been the subject of numerous studies using a variety of experimental and computational methods. Double electron-electron resonance (DEER, also known as PELDOR) is a member of the pulsed dipole EPR spectroscopy (PDS) family of techniques, allowing the study of nanoscale distances between spin-labeled molecules. To extend the possibilities of DEER in the study of molecule clusters, its joint application with the simple two-pulse electron spin echo (2p ESE) method is carried out here. We studied spin-labeled ibuprofen (ibuprofen-SL) diluted in bilayers composed of equimolar mixtures of dioleoyl-glycero-phosphocholine (DOPC) and dipalmitoyl-glycero-phosphocholine (DPPC) phospholipids, with added cholesterol, a system known as a raft-mimicking. The data obtained show that ibuprofen-SL molecules in this system form isolated clusters of about 4 nm in size, containing 6-8 molecules spaced at least 1.3 nm apart. These results indicate the interaction of ibuprofen-SL molecules with lipid rafts, for which the existence of nanoscale substructures at the boundaries of which adsorption of these molecules occurs is suggested.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna S Kashnik
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Denis S Baranov
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Zhang Y, Mazal H, Mandala VS, Pérez-Mitta G, Sondoghdar V, Haselwandter CA, MacKinnon R. Higher-order transient membrane protein structures. Proc Natl Acad Sci U S A 2025; 122:e2421275121. [PMID: 39739811 PMCID: PMC11725870 DOI: 10.1073/pnas.2421275121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
This study shows that five membrane proteins-three GPCRs, an ion channel, and an enzyme-form self-clusters under natural expression levels in a cardiac-derived cell line. The cluster size distributions imply that these proteins self-oligomerize reversibly through weak interactions. When the concentration of the proteins is increased through heterologous expression, the cluster size distributions approach a critical distribution at which point a phase transition occurs, yielding larger bulk phase clusters. A thermodynamic model like that explaining micellization of amphiphiles and lipid membrane formation accounts for this behavior. We propose that many membrane proteins exist as oligomers that form through weak interactions, which we call higher-order transient structures (HOTS). The key characteristics of HOTS are transience, molecular specificity, and a monotonically decreasing size distribution that may become critical at high concentrations. Because molecular specificity invokes self-recognition through protein sequence and structure, we propose that HOTS are genetically encoded supramolecular units.
Collapse
Affiliation(s)
- Yuxi Zhang
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | - Hisham Mazal
- Max Planck Institute for the Science of Light, Erlangen91058, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen91058, Germany
| | - Venkata Shiva Mandala
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | - Gonzalo Pérez-Mitta
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | - Vahid Sondoghdar
- Max Planck Institute for the Science of Light, Erlangen91058, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen91058, Germany
- Department of Physics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen91058, Germany
| | - Christoph A. Haselwandter
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA90089
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA90089
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
9
|
Araya M, Chen W, Ke Y, Zhou Y, Gorfe AA, Hancock JF, Liu J. Differential Lipid Binding Specificities of RAP1A and RAP1B are Encoded by the Amino Acid Sequence of the Membrane Anchors. J Am Chem Soc 2024; 146:19782-19791. [PMID: 39001846 PMCID: PMC11276784 DOI: 10.1021/jacs.4c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
RAP1 proteins belong to the RAS family of small GTPases that operate as molecular switches by cycling between GDP-bound inactive and GTP-bound active states. The C-terminal anchors of RAP1 proteins are known to direct membrane localization, but how these anchors organize RAP1 on the plasma membrane (PM) has not been investigated. Using high-resolution imaging, we show that RAP1A and RAP1B form spatially segregated nanoclusters on the inner leaflet of the PM, with further lateral segregation between GDP-bound and GTP-bound proteins. The C-terminal polybasic anchors of RAP1A and RAP1B differ in their amino acid sequences and exhibit different lipid binding specificities, which can be modified by single-point mutations in the respective polybasic domains (PBD). Molecular dynamics simulations reveal that single PBD mutations substantially reduce the interactions of the membrane anchors with the PM lipid phosphatidylserine. In summary, we show that aggregate lipid binding specificity encoded within the C-terminal anchor determines PM association and nanoclustering of RAP1A and RAP1B. Taken together with previous observations on RAC1 and KRAS, the study reveals that the PBD sequences of small GTPase membrane anchors can encode distinct lipid binding specificities that govern PM interactions.
Collapse
Affiliation(s)
- Mussie
K. Araya
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Wei Chen
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Yuepeng Ke
- Center
for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
- Department
of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, Texas 77030, United States
| | - Yubin Zhou
- Center
for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
- Department
of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, Texas 77030, United States
| | - Alemayehu A. Gorfe
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
- Graduate
School of Biological Sciences, M. D. Anderson
Cancer Center and University of Texas Health Science Center, Houston, Texas 77030, United States
| | - John F. Hancock
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
- Graduate
School of Biological Sciences, M. D. Anderson
Cancer Center and University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Junchen Liu
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
- Graduate
School of Biological Sciences, M. D. Anderson
Cancer Center and University of Texas Health Science Center, Houston, Texas 77030, United States
| |
Collapse
|
10
|
Steffen CL, Manoharan GB, Pavic K, Yeste-Vázquez A, Knuuttila M, Arora N, Zhou Y, Härmä H, Gaigneaux A, Grossmann TN, Abankwa DK. Identification of an H-Ras nanocluster disrupting peptide. Commun Biol 2024; 7:837. [PMID: 38982284 PMCID: PMC11233548 DOI: 10.1038/s42003-024-06523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Hyperactive Ras signalling is found in most cancers. Ras proteins are only active in membrane nanoclusters, which are therefore potential drug targets. We previously showed that the nanocluster scaffold galectin-1 (Gal1) enhances H-Ras nanoclustering via direct interaction with the Ras binding domain (RBD) of Raf. Here, we establish that the B-Raf preference of Gal1 emerges from the divergence of the Raf RBDs at their proposed Gal1-binding interface. We then identify the L5UR peptide, which disrupts this interaction by binding with low micromolar affinity to the B- and C-Raf-RBDs. Its 23-mer core fragment is sufficient to interfere with H-Ras nanoclustering, modulate Ras-signalling and moderately reduce cell viability. These latter two phenotypic effects may also emerge from the ability of L5UR to broadly engage with several RBD- and RA-domain containing Ras interactors. The L5UR-peptide core fragment is a starting point for the development of more specific reagents against Ras-nanoclustering and -interactors.
Collapse
Affiliation(s)
- Candy Laura Steffen
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Ganesh Babu Manoharan
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Karolina Pavic
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Matias Knuuttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health, Houston, TX, 77030, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health, Houston, TX, 77030, USA
| | - Harri Härmä
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500, Turku, Finland
| | - Anthoula Gaigneaux
- Bioinformatics Core, Department of Life Sciences and Medicine, University of Luxembourg, 4367, Esch-sur-Alzette, Luxembourg
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland.
| |
Collapse
|
11
|
Lee AA, Kim NH, Alvarez S, Ren H, DeGrandchamp JB, Lew LJN, Groves JT. Bimodality in Ras signaling originates from processivity of the Ras activator SOS without deterministic bistability. SCIENCE ADVANCES 2024; 10:eadi0707. [PMID: 38905351 PMCID: PMC11192083 DOI: 10.1126/sciadv.adi0707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/15/2024] [Indexed: 06/23/2024]
Abstract
Ras is a small GTPase that is central to important functional decisions in diverse cell types. An important aspect of Ras signaling is its ability to exhibit bimodal or switch-like activity. We describe the total reconstitution of a receptor-mediated Ras activation-deactivation reaction catalyzed by SOS and p120-RasGAP on supported lipid membrane microarrays. The results reveal a bimodal Ras activation response, which is not a result of deterministic bistability but is rather driven by the distinct processivity of the Ras activator, SOS. Furthermore, the bimodal response is controlled by the condensation state of the scaffold protein, LAT, to which SOS is recruited. Processivity-driven bimodality leads to stochastic bursts of Ras activation even under strongly deactivating conditions. This behavior contrasts deterministic bistability and may be more resistant to pharmacological inhibition.
Collapse
Affiliation(s)
- Albert A. Lee
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Neil H. Kim
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Steven Alvarez
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - He Ren
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | - L. J. Nugent Lew
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Arora N, Liang H, Yao W, Ying H, Liu J, Zhou Y. Lysophosphatidylcholine acyltransferase 1 suppresses nanoclustering and function of KRAS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596653. [PMID: 38853864 PMCID: PMC11160780 DOI: 10.1101/2024.05.30.596653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
KRAS is frequently mutated in cancer, contributing to 20% of all human cancer especially pancreatic, colorectal and lung cancer. Signaling of the constitutively active KRAS oncogenic mutants is mostly compartmentalized to proteolipid nanoclusters on the plasma membrane (PM). Signaling nanoclusters of many KRAS mutants selectively enrich phosphatidylserine (PS) lipids with unsaturated sn-2 acyl chains, but not the fully saturated PS species. Thus, remodeling PS acyl chains may suppress KRAS oncogenesis. Lysophosphatidylcholine acyltransferases (LPCATs) remodel sn-2 acyl chains of phospholipids, with LPCAT1 preferentially generating the fully saturated lipids. Here, we show that stable expression of LPCAT1 depletes major PS species with unsaturated sn-2 chains while decreasing minor phosphatidylcholine (PC) species with the corresponding acyl chains. LPCAT1 expression more effectively disrupts the nanoclustering of oncogenic GFP-KRASG12V, which is restored by acute addback of exogenous unsaturated PS. LPCAT1 expression compromises signaling and oncogenic activities of the KRAS-dependent pancreatic tumor lines. LPCAT1 expression sensitizes human pancreatic tumor MiaPaCa-2 cells to KRASG12C specific inhibitor, Sotorasib. Statistical analyses of patient data further reveal that pancreatic cancer patients with KRAS mutations express less LPCAT1. Higher LPCAT1 expression also improves survival probability of pancreatic and lung adenocarcinoma patients with KRAS mutations. Thus, PS acyl chain remodeling selectively suppresses KRAS oncogenesis.
Collapse
Affiliation(s)
- Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Wantong Yao
- Department of Translational Molecular Pathology, Division of Pathology-Lab Medicine Div, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junchen Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
- Program of Biochemistry and Cell Biology, Graduate School of Biological Sciences, M. D. Anderson Cancer Center and University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
13
|
Xia S, Lu AC, Tobin V, Luo K, Moeller L, Shon DJ, Du R, Linton JM, Sui M, Horns F, Elowitz MB. Synthetic protein circuits for programmable control of mammalian cell death. Cell 2024; 187:2785-2800.e16. [PMID: 38657604 PMCID: PMC11127782 DOI: 10.1016/j.cell.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Natural cell death pathways such as apoptosis and pyroptosis play dual roles: they eliminate harmful cells and modulate the immune system by dampening or stimulating inflammation. Synthetic protein circuits capable of triggering specific death programs in target cells could similarly remove harmful cells while appropriately modulating immune responses. However, cells actively influence their death modes in response to natural signals, making it challenging to control death modes. Here, we introduce naturally inspired "synpoptosis" circuits that proteolytically regulate engineered executioner proteins and mammalian cell death. These circuits direct cell death modes, respond to combinations of protease inputs, and selectively eliminate target cells. Furthermore, synpoptosis circuits can be transmitted intercellularly, offering a foundation for engineering synthetic killer cells that induce desired death programs in target cells without self-destruction. Together, these results lay the groundwork for programmable control of mammalian cell death.
Collapse
Affiliation(s)
- Shiyu Xia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew C Lu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; UCLA-Caltech Medical Scientist Training Program, University of California, Los Angeles, CA 90095, USA
| | - Victoria Tobin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; UC Davis-Caltech Veterinary Scientist Training Program, University of California, Davis, CA 95616, USA
| | - Kaiwen Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lukas Moeller
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - D Judy Shon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rongrong Du
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - James M Linton
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Margaret Sui
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Felix Horns
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
14
|
Arora N, Mu H, Liang H, Zhao W, Zhou Y. RAS G-domains allosterically contribute to the recognition of lipid headgroups and acyl chains. J Cell Biol 2024; 223:e202307121. [PMID: 38334958 PMCID: PMC10857904 DOI: 10.1083/jcb.202307121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Mutant RAS are major contributors to cancer and signal primarily from nanoclusters on the plasma membrane (PM). Their C-terminal membrane anchors are main features of membrane association. However, the same RAS isoform bound to different guanine nucleotides spatially segregate. Different RAS nanoclusters all enrich a phospholipid, phosphatidylserine (PS). These findings suggest more complex membrane interactions. Our electron microscopy-spatial analysis shows that wild-types, G12V mutants, and membrane anchors of isoforms HRAS, KRAS4A, and KRAS4B prefer distinct PS species. Mechanistically, reorientation of KRAS4B G-domain exposes distinct residues, such as Arg 135 in orientation state 1 (OS1) and Arg 73/Arg 102 in OS2, to the PM and differentially facilitates the recognition of PS acyl chains. Allele-specific oncogenic mutations of KRAS4B also shift G-domain reorientation equilibrium. Indeed, KRAS4BG12V, KRAS4BG12D, KRAS4BG12C, KRAS4BG13D, and KRAS4BQ61H associate with PM lipids with headgroup and acyl chain specificities. Distribution of these KRAS4B oncogenic mutants favors different nanoscale membrane topography. Thus, RAS G-domains allosterically facilitate membrane lateral distribution.
Collapse
Affiliation(s)
- Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Huanwen Mu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, Singapore
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Program of Molecular and Translational Biology, Graduate School of Biological Sciences, M.D. Anderson Cancer Center and University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
15
|
Liu X, Komladzei S, Guy C. KCBC - a correlation-based method for co-localization analysis of super-resolution microscopy images using bivariate Ripley's K functions. J Appl Stat 2024; 51:3333-3349. [PMID: 39628851 PMCID: PMC11610358 DOI: 10.1080/02664763.2024.2346828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/09/2024] [Indexed: 12/06/2024]
Abstract
Motivated by the high demand for co-localization analysis methods for super-resolution microscopy images which are featured with nanoscale precise locational information of molecules, this paper establishes a novel correlation-based method, KCBC, named after the Coordinated-Based Colocalization (CBC) method proposed by Malkusch et al. in 2012, by using bivariate Ripley's K functions. The local KCBC values are to quantify the local spatial co-localization of molecules between two species by measuring the correlation of bivariate Ripley's K functions over equal-area concentric rings around the base species within a near distance. The mean of local KCBC values is proposed to quantify the co-localization degree of cross-channel to base-channel molecules for the whole image. It could effectively correct the false positives with reduced variance and increased power within the user-defined proximity size. We provide extensive simulation studies under different scenarios to demonstrate the unbiasedness of the KCBC method, and its ability to filter noise signals and random over-counting. Our real data application for super-resolution mitochondria image data illustrates the applicability of our methods with increased effectiveness and power.
Collapse
Affiliation(s)
- Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA, USA
| | - Stephan Komladzei
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Clifford Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
16
|
Lingwood C. Is cholesterol both the lock and key to abnormal transmembrane signals in Autism Spectrum Disorder? Lipids Health Dis 2024; 23:114. [PMID: 38643132 PMCID: PMC11032007 DOI: 10.1186/s12944-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmembrane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cholesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide both the afferent and efferent 'tumblers' across the membrane to allow 'lock and key' receptor transmembrane signals.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Departments of Biochemistry and Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
17
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
18
|
Bildik G, Gray JP, Mao W, Yang H, Ozyurt R, Orellana VR, De Wever O, Carey MS, Bast RC, Lu Z. DIRAS3 induces autophagy and enhances sensitivity to anti-autophagic therapy in KRAS-driven pancreatic and ovarian carcinomas. Autophagy 2024; 20:675-691. [PMID: 38169324 PMCID: PMC10936598 DOI: 10.1080/15548627.2023.2299516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and low-grade ovarian cancer (LGSOC) are characterized by the prevalence of KRAS oncogene mutations. DIRAS3 is the first endogenous non-RAS protein that heterodimerizes with RAS, disrupts RAS clustering, blocks RAS signaling, and inhibits cancer cell growth. Here, we found that DIRAS3-mediated KRAS inhibition induces ROS-mediated apoptosis in PDAC and LGSOC cells with KRAS mutations, but not in cells with wild-type KRAS, by downregulating NFE2L2/Nrf2 transcription, reducing antioxidants, and inducing oxidative stress. DIRAS3 also induces cytoprotective macroautophagy/autophagy that may protect mutant KRAS cancer cells from oxidative stress, by inhibiting mutant KRAS, activating the STK11/LKB1-PRKAA/AMPK pathway, increasing lysosomal CDKN1B/p27 localization, and inducing autophagic gene expression. Treatment with chloroquine or the novel dimeric chloroquine analog DC661 significantly enhances DIRAS3-mediated inhibition of mutant KRAS tumor cell growth in vitro and in vivo. Taken together, our study demonstrates that DIRAS3 plays a critical role in regulating mutant KRAS-driven oncogenesis in PDAC and LGSOC.Abbreviations: AFR: autophagic flux reporter; ATG: autophagy related; CQ: chloroquine; DCFDA: 2'-7'-dichlorodihydrofluorescein diacetate; DIRAS3: DIRAS family GTPase 3; DOX: doxycycline; KRAS: KRAS proto-oncogene, LGSOC: low-grade serous ovarian cancer; MiT/TFE: microphthalmia family of transcription factors; NAC: N-acetylcysteine; PDAC: pancreatic ductal adenocarcinoma; ROS: reactive oxygen species; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Gamze Bildik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joshua P. Gray
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiqun Mao
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hailing Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rumeysa Ozyurt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian R. Orellana
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Cancer Research Institute Ghent, Belgium; Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Mark S. Carey
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Robert C. Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Shrestha R, Carpenter TS, Van QN, Agamasu C, Tonelli M, Aydin F, Chen D, Gulten G, Glosli JN, López CA, Oppelstrup T, Neale C, Gnanakaran S, Gillette WK, Ingólfsson HI, Lightstone FC, Stephen AG, Streitz FH, Nissley DV, Turbyville TJ. Membrane lipids drive formation of KRAS4b-RAF1 RBDCRD nanoclusters on the membrane. Commun Biol 2024; 7:242. [PMID: 38418613 PMCID: PMC10902389 DOI: 10.1038/s42003-024-05916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
The oncogene RAS, extensively studied for decades, presents persistent gaps in understanding, hindering the development of effective therapeutic strategies due to a lack of precise details on how RAS initiates MAPK signaling with RAF effector proteins at the plasma membrane. Recent advances in X-ray crystallography, cryo-EM, and super-resolution fluorescence microscopy offer structural and spatial insights, yet the molecular mechanisms involving protein-protein and protein-lipid interactions in RAS-mediated signaling require further characterization. This study utilizes single-molecule experimental techniques, nuclear magnetic resonance spectroscopy, and the computational Machine-Learned Modeling Infrastructure (MuMMI) to examine KRAS4b and RAF1 on a biologically relevant lipid bilayer. MuMMI captures long-timescale events while preserving detailed atomic descriptions, providing testable models for experimental validation. Both in vitro and computational studies reveal that RBDCRD binding alters KRAS lateral diffusion on the lipid bilayer, increasing cluster size and decreasing diffusion. RAS and membrane binding cause hydrophobic residues in the CRD region to penetrate the bilayer, stabilizing complexes through β-strand elongation. These cooperative interactions among lipids, KRAS4b, and RAF1 are proposed as essential for forming nanoclusters, potentially a critical step in MAP kinase signal activation.
Collapse
Affiliation(s)
- Rebika Shrestha
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Timothy S Carpenter
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Que N Van
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Constance Agamasu
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Fikret Aydin
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - De Chen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Gulcin Gulten
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - James N Glosli
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Tomas Oppelstrup
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Chris Neale
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - William K Gillette
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Helgi I Ingólfsson
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Felice C Lightstone
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Andrew G Stephen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Frederick H Streitz
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Dwight V Nissley
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA
| | - Thomas J Turbyville
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD, 21701, USA.
| |
Collapse
|
20
|
Farcas A, Janosi L. GTP-Bound N-Ras Conformational States and Substates Are Modulated by Membrane and Point Mutation. Int J Mol Sci 2024; 25:1430. [PMID: 38338709 PMCID: PMC11154311 DOI: 10.3390/ijms25031430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Oncogenic Ras proteins are known to present multiple conformational states, as reported by the great variety of crystallographic structures. The GTP-bound states are grouped into two main states: the "inactive" state 1 and the "active" state 2. Recent reports on H-Ras have shown that state 2 exhibits two substates, directly related to the orientation of Tyr32: toward the GTP-bound pocket and outwards. In this paper, we show that N-Ras exhibits another substate of state 2, related to a third orientation of Tyr32, toward Ala18 and parallel to the GTP-bound pocket. We also show that this substate is highly sampled in the G12V mutation of N-Ras and barely present in its wild-type form, and that the G12V mutation prohibits the sampling of the GTPase-activating protein (GAP) binding substate, rendering this mutation oncogenic. Furthermore, using molecular dynamics simulations, we explore the importance of the membrane on N-Ras' conformational state dynamics and its strong influence on Ras protein stability. Moreover, the membrane has a significant influence on the conformational (sub)states sampling of Ras. This, in turn, is of crucial importance in the activation/deactivation cycle of Ras, due to the binding of guanine nucleotide exchange factor proteins (GEFs)/GTPase-activating proteins (GAPs).
Collapse
Affiliation(s)
| | - Lorant Janosi
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania;
| |
Collapse
|
21
|
Tariq M, Ikeya T, Togashi N, Fairall L, Kamei S, Mayooramurugan S, Abbott LR, Hasan A, Bueno-Alejo C, Sukegawa S, Romartinez-Alonso B, Muro Campillo MA, Hudson AJ, Ito Y, Schwabe JW, Dominguez C, Tanaka K. Structural insights into the complex of oncogenic KRas4B G12V and Rgl2, a RalA/B activator. Life Sci Alliance 2024; 7:e202302080. [PMID: 37833074 PMCID: PMC10576006 DOI: 10.26508/lsa.202302080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
About a quarter of total human cancers carry mutations in Ras isoforms. Accumulating evidence suggests that small GTPases, RalA, and RalB, and their activators, Ral guanine nucleotide exchange factors (RalGEFs), play an essential role in oncogenic Ras-induced signalling. We studied the interaction between human KRas4B and the Ras association (RA) domain of Rgl2 (Rgl2RA), one of the RA-containing RalGEFs. We show that the G12V oncogenic KRas4B mutation changes the interaction kinetics with Rgl2RA The crystal structure of the KRas4BG12V: Rgl2RA complex shows a 2:2 heterotetramer where the switch I and switch II regions of each KRasG12V interact with both Rgl2RA molecules. This structural arrangement is highly similar to the HRasE31K:RALGDSRA crystal structure and is distinct from the well-characterised Ras:Raf complex. Interestingly, the G12V mutation was found at the dimer interface of KRas4BG12V with its partner. Our study reveals a potentially distinct mode of Ras:effector complex formation by RalGEFs and offers a possible mechanistic explanation for how the oncogenic KRas4BG12V hyperactivates the RalA/B pathway.
Collapse
Affiliation(s)
- Mishal Tariq
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Teppei Ikeya
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Japan
| | - Naoyuki Togashi
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Japan
| | - Louise Fairall
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Leicester Institute of Structure and Chemical Biology, University of Leicester, Leicester, UK
| | - Shun Kamei
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Japan
| | | | - Lauren R Abbott
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Anab Hasan
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Carlos Bueno-Alejo
- Leicester Institute of Structure and Chemical Biology, University of Leicester, Leicester, UK
| | - Sakura Sukegawa
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Japan
| | - Beatriz Romartinez-Alonso
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Leicester Institute of Structure and Chemical Biology, University of Leicester, Leicester, UK
| | | | - Andrew J Hudson
- Leicester Institute of Structure and Chemical Biology, University of Leicester, Leicester, UK
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Yutaka Ito
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Japan
| | - John Wr Schwabe
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Leicester Institute of Structure and Chemical Biology, University of Leicester, Leicester, UK
| | - Cyril Dominguez
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Leicester Institute of Structure and Chemical Biology, University of Leicester, Leicester, UK
| | - Kayoko Tanaka
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
22
|
Anwar MU, van der Goot FG. Refining S-acylation: Structure, regulation, dynamics, and therapeutic implications. J Cell Biol 2023; 222:e202307103. [PMID: 37756661 PMCID: PMC10533364 DOI: 10.1083/jcb.202307103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
With a limited number of genes, cells achieve remarkable diversity. This is to a large extent achieved by chemical posttranslational modifications of proteins. Amongst these are the lipid modifications that have the unique ability to confer hydrophobicity. The last decade has revealed that lipid modifications of proteins are extremely frequent and affect a great variety of cellular pathways and physiological processes. This is particularly true for S-acylation, the only reversible lipid modification. The enzymes involved in S-acylation and deacylation are only starting to be understood, and the list of proteins that undergo this modification is ever-increasing. We will describe the state of knowledge on the enzymes that regulate S-acylation, from their structure to their regulation, how S-acylation influences target proteins, and finally will offer a perspective on how alterations in the balance between S-acylation and deacylation may contribute to disease.
Collapse
Affiliation(s)
- Muhammad U. Anwar
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Jurado M, Zorzano A, Castaño O. Cooperativity and oscillations: Regulatory mechanisms of K-Ras nanoclusters. Comput Biol Med 2023; 166:107455. [PMID: 37742420 DOI: 10.1016/j.compbiomed.2023.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
K-Ras nanoclusters (NCs) concentrate all required molecules belonging to the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway in a small area where signaling events take place, increasing efficiency and specificity of signaling. Such nanostructures are characterized by controlled sizes and lifetimes distributions, but there is a poor understanding of the mechanisms involved in their dynamics of growth/decay. Here, a minimum computational model is presented to analyze the behavior of K-Ras NCs as cooperative dynamic structures that self-regulate their growth and decay according to their size. Indeed, the proposed model reveals that the growth and the local production of a K-Ras nanocluster depend positively on its actual size, whilst its lifetime is inversely proportional to the root of its size. The cooperative binding between the structural constituents of the NC (K-Ras proteins) induces oscillations in the size distributions of K-Ras NCs allowing them to range within controlled values, regulating the growth/decay dynamics of these NCs. Thereby, the size of a K-Ras NC is proposed as a key factor to regulate cell signaling, opening a range of possibilities to develop strategies for use in chronic diseases and cancer.
Collapse
Affiliation(s)
- Manuel Jurado
- Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | - Oscar Castaño
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), Barcelona, Spain; Nanobioengineering and Biomaterials, Institute of Nanoscience and Nanotechnology of the University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Rehl KM, Selvakumar J, Pitsch RL, Hoang D, Arumugam K, Harshman SW, Gorfe AA, Cho KJ. A new ferrocene derivative blocks K-Ras localization and function by oxidative modification at His95. Life Sci Alliance 2023; 6:e202302094. [PMID: 37666666 PMCID: PMC10477449 DOI: 10.26508/lsa.202302094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers harboring oncogenic mutant K-Ras. Here, we tested a novel ferrocene derivative on the growth of pancreatic ductal adenocarcinoma and non-small cell lung cancer. Our compound, which elevated cellular ROS levels, inhibited the growth of K-Ras-driven cancers, and abrogated the PM binding and signaling of K-Ras in an isoform-specific manner. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified that K-Ras His95 residue plays an important role in this process, and it is putatively oxidized by cellular ROS. Together, our study demonstrates that the redox system directly regulates K-Ras/PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced growth and metastasis of K-Ras-driven cancers.
Collapse
Affiliation(s)
- Kristen M Rehl
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jayaraman Selvakumar
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Rhonda L Pitsch
- Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Don Hoang
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Kuppuswamy Arumugam
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Sean W Harshman
- Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
25
|
Mayor S, Bhat A, Kusumi A. A Survey of Models of Cell Membranes: Toward a New Understanding of Membrane Organization. Cold Spring Harb Perspect Biol 2023; 15:a041394. [PMID: 37643877 PMCID: PMC10547391 DOI: 10.1101/cshperspect.a041394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The cell membrane, the boundary that separates living cells from their environment, has been the subject of study for over a century. The fluid-mosaic model of Singer and Nicolson in 1972 proposed the plasma membrane as a two-dimensional fluid composed of lipids and proteins. Fifty years hence, advances in biophysical and biochemical tools, particularly optical imaging techniques, have allowed for a better understanding of the physical nature, organization, and composition of cell membranes. This has been made possible by visualizing membrane heterogeneities and their dynamics and appreciating the asymmetrical arrangement of lipids in living cell membranes. Despite these advances, mechanisms underlying the local spatiotemporal organization of membrane components remain unclear. This review surveys various models of membrane organization, culminating in a new model that incorporates nonequilibrium processes and forces exerted by interactions with extramembrane elements such as the actin cytoskeleton. The proposed model provides a comprehensive understanding of membrane organization, taking into account the dynamic nature of the cell membrane and its interactions with its immediate environment.
Collapse
Affiliation(s)
- Satyajit Mayor
- National Centre for Biological Science, TIFR, Bangalore 560065, India
| | - Abrar Bhat
- National Centre for Biological Science, TIFR, Bangalore 560065, India
| | - Akihiro Kusumi
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
26
|
Morstein J, Shrestha R, Van QN, López CA, Arora N, Tonelli M, Liang H, Chen D, Zhou Y, Hancock JF, Stephen AG, Turbyville TJ, Shokat KM. Direct Modulators of K-Ras-Membrane Interactions. ACS Chem Biol 2023; 18:2082-2093. [PMID: 37579045 PMCID: PMC10510109 DOI: 10.1021/acschembio.3c00413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Protein-membrane interactions (PMIs) are ubiquitous in cellular signaling. Initial steps of signal transduction cascades often rely on transient and dynamic interactions with the inner plasma membrane leaflet to populate and regulate signaling hotspots. Methods to target and modulate these interactions could yield attractive tool compounds and drug candidates. Here, we demonstrate that the conjugation of a medium-chain lipid tail to the covalent K-Ras(G12C) binder MRTX849 at a solvent-exposed site enables such direct modulation of PMIs. The conjugated lipid tail interacts with the tethered membrane and changes the relative membrane orientation and conformation of K-Ras(G12C), as shown by molecular dynamics (MD) simulation-supported NMR studies. In cells, this PMI modulation restricts the lateral mobility of K-Ras(G12C) and disrupts nanoclusters. The described strategy could be broadly applicable to selectively modulate transient PMIs.
Collapse
Affiliation(s)
- Johannes Morstein
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| | - Rebika Shrestha
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Que N. Van
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - César A. López
- Theoretical
Biology and Biophysics Group, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Neha Arora
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Marco Tonelli
- National
Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Hong Liang
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - De Chen
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Yong Zhou
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - John F. Hancock
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Andrew G. Stephen
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Thomas J. Turbyville
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Kevan M. Shokat
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| |
Collapse
|
27
|
Liu J, Arora N, Zhou Y. RAS GTPases and Interleaflet Coupling in the Plasma Membrane. Cold Spring Harb Perspect Biol 2023; 15:a041414. [PMID: 37463719 PMCID: PMC10513163 DOI: 10.1101/cshperspect.a041414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
RAS genes are frequently mutated in cancer. The primary signaling compartment of wild-type and constitutively active oncogenic mutant RAS proteins is the inner leaflet of the plasma membrane (PM). Thus, a better understanding of the unique environment of the PM inner leaflet is important to shed further light on RAS function. Over the past few decades, an integrated approach of superresolution imaging, molecular dynamic simulations, and biophysical assays has yielded new insights into the capacity of RAS proteins to sort lipids with specific headgroups and acyl chains, to assemble signaling nanoclusters on the inner PM. RAS proteins also sense and respond to changes in components of the outer PM leaflet, including glycophosphatidylinositol-anchored proteins, sphingophospholipids, glycosphingolipids, and galectins, as well as cholesterol that translocates between the two leaflets. Such communication between the inner and outer leaflets of the PM, called interleaflet coupling, allows RAS to potentially integrate extracellular mechanical and electrostatic information with intracellular biochemical signaling events, and reciprocally allows mutant RAS-transformed tumor cells to modify tumor microenvironments. Here, we review RAS-lipid interactions and speculate on potential mechanisms that allow communication between the opposing leaflets of the PM.
Collapse
Affiliation(s)
- Junchen Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
- Biochemistry and Cell Biology Program, Graduate School of Biomedical Sciences, MD Anderson Cancer Center and University of Texas, Houston, Texas 77030, USA
| |
Collapse
|
28
|
Pan X, Pérez-Henríquez P, Van Norman JM, Yang Z. Membrane nanodomains: Dynamic nanobuilding blocks of polarized cell growth. PLANT PHYSIOLOGY 2023; 193:83-97. [PMID: 37194569 DOI: 10.1093/plphys/kiad288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Cell polarity is intimately linked to numerous biological processes, such as oriented plant cell division, particular asymmetric division, cell differentiation, cell and tissue morphogenesis, and transport of hormones and nutrients. Cell polarity is typically initiated by a polarizing cue that regulates the spatiotemporal dynamic of polarity molecules, leading to the establishment and maintenance of polar domains at the plasma membrane. Despite considerable progress in identifying key polarity regulators in plants, the molecular and cellular mechanisms underlying cell polarity formation have yet to be fully elucidated. Recent work suggests a critical role for membrane protein/lipid nanodomains in polarized morphogenesis in plants. One outstanding question is how the spatiotemporal dynamics of signaling nanodomains are controlled to achieve robust cell polarization. In this review, we first summarize the current state of knowledge on potential regulatory mechanisms of nanodomain dynamics, with a special focus on Rho-like GTPases from plants. We then discuss the pavement cell system as an example of how cells may integrate multiple signals and nanodomain-involved feedback mechanisms to achieve robust polarity. A mechanistic understanding of nanodomains' roles in plant cell polarity is still in the early stages and will remain an exciting area for future investigations.
Collapse
Affiliation(s)
- Xue Pan
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON M1C 1A4, Canada
| | - Patricio Pérez-Henríquez
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA
| | - Jaimie M Van Norman
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province 518055, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, China
| |
Collapse
|
29
|
Shin DY, Takagi H, Hiroshima M, Matsuoka S, Ueda M. Sphingomyelin metabolism underlies Ras excitability for efficient cell migration and chemotaxis. Cell Struct Funct 2023; 48:145-160. [PMID: 37438131 PMCID: PMC11496829 DOI: 10.1247/csf.23045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023] Open
Abstract
In eukaryotic motile cells, the active Ras (Ras-GTP)-enriched domain is generated in an asymmetric manner on the cell membrane through the excitable dynamics of an intracellular signaling network. This asymmetric Ras signaling regulates pseudopod formation for both spontaneous random migration and chemoattractant-induced directional migration. While membrane lipids, such as sphingomyelin and phosphatidylserine, contribute to Ras signaling in various cell types, whether they are involved in the Ras excitability for cell motility is unknown. Here we report that functional Ras excitability requires the normal metabolism of sphingomyelin for efficient cell motility and chemotaxis. The pharmacological blockade of sphingomyelin metabolism by an acid-sphingomyelinase inhibitor, fendiline, and other inhibitors suppressed the excitable generation of the stable Ras-GTP-enriched domain. The suppressed excitability failed to invoke enough basal motility to achieve directed migration under shallow chemoattractant gradients. The fendiline-induced defects in Ras excitability, motility and stimulation-elicited directionality were due to an accumulation of sphingomyelin on the membrane, which could be recovered by exogenous sphingomyelinase or phosphatidylserine without changing the expression of Ras. These results indicate a novel regulatory mechanism of the excitable system by membrane lipids, in which sphingomyelin metabolism provides a membrane environment to ensure Ras excitation for efficient cellular motility and chemotaxis.Key words: cell polarity, cell migration, Ras, excitability, sphingomyelin.
Collapse
Affiliation(s)
- Da Young Shin
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
| | - Hiroaki Takagi
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Department of Physics, School of Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Michio Hiroshima
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Satomi Matsuoka
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- PRESTO, JST
| | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
30
|
Erazo-Oliveras A, Muñoz-Vega M, Mlih M, Thiriveedi V, Salinas ML, Rivera-Rodríguez JM, Kim E, Wright RC, Wang X, Landrock KK, Goldsby JS, Mullens DA, Roper J, Karpac J, Chapkin RS. Mutant APC reshapes Wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin. Nat Commun 2023; 14:4342. [PMID: 37468468 PMCID: PMC10356786 DOI: 10.1038/s41467-023-39640-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Although the role of the Wnt pathway in colon carcinogenesis has been described previously, it has been recently demonstrated that Wnt signaling originates from highly dynamic nano-assemblies at the plasma membrane. However, little is known regarding the role of oncogenic APC in reshaping Wnt nanodomains. This is noteworthy, because oncogenic APC does not act autonomously and requires activation of Wnt effectors upstream of APC to drive aberrant Wnt signaling. Here, we demonstrate the role of oncogenic APC in increasing plasma membrane free cholesterol and rigidity, thereby modulating Wnt signaling hubs. This results in an overactivation of Wnt signaling in the colon. Finally, using the Drosophila sterol auxotroph model, we demonstrate the unique ability of exogenous free cholesterol to disrupt plasma membrane homeostasis and drive Wnt signaling in a wildtype APC background. Collectively, these findings provide a link between oncogenic APC, loss of plasma membrane homeostasis and CRC development.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mohamed Mlih
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Venkataramana Thiriveedi
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jaileen M Rivera-Rodríguez
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Eunjoo Kim
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kerstin K Landrock
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer S Goldsby
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Destiny A Mullens
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason Karpac
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA.
- Center for Environmental Health Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
31
|
Lee AA, Kim NH, Alvarez S, Ren H, DeGrandchamp JB, Lew LJN, Groves JT. Bimodality in Ras signaling originates from processivity of the Ras activator SOS without classic kinetic bistability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549263. [PMID: 37503094 PMCID: PMC10370109 DOI: 10.1101/2023.07.17.549263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ras is a small GTPase that is central to important functional decisions in diverse cell types. An important aspect of Ras signaling is its ability to exhibit bimodal, or switch-like activity. We describe the total reconstitution of a receptor-mediated Ras activation-deactivation reaction catalyzed by SOS and p120-RasGAP on supported lipid membrane microarrays. The results reveal a bimodal Ras activation response, which is not a result of classic kinetic bistability, but is rather driven by the distinct processivity of the Ras activator, SOS. Furthermore, the bimodal response is controlled by the condensation state of the scaffold protein, LAT, to which SOS is recruited. Processivity-driven bimodality leads to stochastic bursts of Ras activation even under strongly deactivating conditions. This behavior contrasts classic kinetic bistability and is distinctly more resistant to pharmacological inhibition.
Collapse
|
32
|
van Zanten TS, S GP, Mayor S. Quantitative fluorescence emission anisotropy microscopy for implementing homo-fluorescence resonance energy transfer measurements in living cells. Mol Biol Cell 2023; 34:tp1. [PMID: 37144969 DOI: 10.1091/mbc.e22-09-0446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Quantitative fluorescence emission anisotropy microscopy reveals the organization of fluorescently labeled cellular components and allows their characterization in terms of changes in either rotational diffusion or homo-Förster's energy transfer characteristics in living cells. These properties provide insights into molecular organization, such as orientation, confinement, and oligomerization in situ. Here we elucidate how quantitative measurements of anisotropy using multiple microscope systems may be made by bringing out the main parameters that influence the quantification of fluorescence emission anisotropy. We focus on a variety of parameters that contribute to errors associated with the measurement of emission anisotropy in a microscope. These include the requirement for adequate photon counts for the necessary discrimination of anisotropy values, the influence of extinction ratios of the illumination source, the detector system, the role of numerical aperture, and excitation wavelength. All these parameters also affect the ability to capture the dynamic range of emission anisotropy necessary for quantifying its reduction due to homo-FRET and other processes. Finally, we provide easily implementable tests to assess whether homo-FRET is a cause for the observed emission depolarization.
Collapse
Affiliation(s)
- Thomas S van Zanten
- Cell Biology Group, National Centre for Biological Sciences, UAS-GKVK Campus, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Greeshma Pradeep S
- Cell Biology Group, National Centre for Biological Sciences, UAS-GKVK Campus, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Satyajit Mayor
- Cell Biology Group, National Centre for Biological Sciences, UAS-GKVK Campus, Tata Institute for Fundamental Research, Bangalore 560065, India
| |
Collapse
|
33
|
Simanshu DK, Philips MR, Hancock JF. Consensus on the RAS dimerization hypothesis: Strong evidence for lipid-mediated clustering but not for G-domain-mediated interactions. Mol Cell 2023; 83:1210-1215. [PMID: 36990093 PMCID: PMC10150945 DOI: 10.1016/j.molcel.2023.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
One of the open questions in RAS biology is the existence of RAS dimers and their role in RAF dimerization and activation. The idea of RAS dimers arose from the discovery that RAF kinases function as obligate dimers, which generated the hypothesis that RAF dimer formation might be nucleated by G-domain-mediated RAS dimerization. Here, we review the evidence for RAS dimerization and describe a recent discussion among RAS researchers that led to a consensus that the clustering of two or more RAS proteins is not due to the stable association of G-domains but, instead, is a consequence of RAS C-terminal membrane anchors and the membrane phospholipids with which they interact.
Collapse
Affiliation(s)
- Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Mark R Philips
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
34
|
Babu Manoharan G, Guzmán C, Najumudeen AK, Abankwa D. Detection of Ras nanoclustering-dependent homo-FRET using fluorescence anisotropy measurements. Eur J Cell Biol 2023; 102:151314. [PMID: 37058825 DOI: 10.1016/j.ejcb.2023.151314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
The small GTPase Ras is frequently mutated in cancer and a driver of tumorigenesis. The recent years have shown great progress in drug-targeting Ras and understanding how it operates on the plasma membrane. We now know that Ras is non-randomly organized into proteo-lipid complexes on the membrane, called nanoclusters. Nanoclusters contain only a few Ras proteins and are necessary for the recruitment of downstream effectors, such as Raf. If tagged with fluorescent proteins, the dense packing of Ras in nanoclusters can be analyzed by Förster/ fluorescence resonance energy transfer (FRET). Loss of FRET can therefore report on decreased nanoclustering and any process upstream of it, such as Ras lipid modifications and correct trafficking. Thus, cellular FRET screens employing Ras-derived fluorescence biosensors are potentially powerful tools to discover chemical or genetic modulators of functional Ras membrane organization. Here we implement fluorescence anisotropy-based homo-FRET measurements of Ras-derived constructs labelled with only one fluorescent protein on a confocal microscope and a fluorescence plate reader. We show that homo-FRET of both H-Ras- and K-Ras-derived constructs can sensitively report on Ras-lipidation and -trafficking inhibitors, as well as on genetic perturbations of proteins regulating membrane anchorage. By exploiting the switch I/II-binding Ras-dimerizing compound BI-2852, this assay is also suitable to report on the engagement of the K-Ras switch II pocket by small molecules such as AMG 510. Given that homo-FRET only requires one fluorescent protein tagged Ras construct, this approach has significant advantages to create Ras-nanoclustering FRET-biosensor reporter cell lines, as compared to the more common hetero-FRET approaches.
Collapse
Affiliation(s)
- Ganesh Babu Manoharan
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Camilo Guzmán
- Euro-BioImaging ERIC, Statutory Seat, Turku, Finland
| | - Arafath Kaja Najumudeen
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
35
|
Rehl KM, Selvakumar J, Hoang D, Arumugam K, Gorfe AA, Cho KJ. A new ferrocene derivative blocks KRAS localization and function by oxidative modification at His95. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534499. [PMID: 37034642 PMCID: PMC10081197 DOI: 10.1101/2023.03.28.534499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers (NSCLCs) harboring oncogenic mutant K-Ras. Here, we developed and tested a novel ferrocene derivative on the growth of human pancreatic ductal adenocarcinoma (PDAC) and NSCLC. Our compound inhibited the growth of K-Ras-dependent PDAC and NSCLC and abrogated the PM binding and signaling of K-Ras, but not other Ras isoforms. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified K-Ras His95 residue in the G-domain as being involved in the ferrocene-induced K-Ras PM dissociation via oxidative modification. Together, our studies demonstrate that the redox system directly regulates K-Ras PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced metastasis in K-Ras-driven lung cancers.
Collapse
|
36
|
Tantiwong C, Dunster JL, Cavill R, Tomlinson MG, Wierling C, Heemskerk JWM, Gibbins JM. An agent-based approach for modelling and simulation of glycoprotein VI receptor diffusion, localisation and dimerisation in platelet lipid rafts. Sci Rep 2023; 13:3906. [PMID: 36890261 PMCID: PMC9994409 DOI: 10.1038/s41598-023-30884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
Receptor diffusion plays an essential role in cellular signalling via the plasma membrane microenvironment and receptor interactions, but the regulation is not well understood. To aid in understanding of the key determinants of receptor diffusion and signalling, we developed agent-based models (ABMs) to explore the extent of dimerisation of the platelet- and megakaryocyte-specific receptor for collagen glycoprotein VI (GPVI). This approach assessed the importance of glycolipid enriched raft-like domains within the plasma membrane that lower receptor diffusivity. Our model simulations demonstrated that GPVI dimers preferentially concentrate in confined domains and, if diffusivity within domains is decreased relative to outside of domains, dimerisation rates are increased. While an increased amount of confined domains resulted in further dimerisation, merging of domains, which may occur upon membrane rearrangements, was without effect. Modelling of the proportion of the cell membrane which constitutes lipid rafts indicated that dimerisation levels could not be explained by these alone. Crowding of receptors by other membrane proteins was also an important determinant of GPVI dimerisation. Together, these results demonstrate the value of ABM approaches in exploring the interactions on a cell surface, guiding the experimentation for new therapeutic avenues.
Collapse
Affiliation(s)
- Chukiat Tantiwong
- School of Biological Sciences, University of Reading, Reading, UK.,Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Joanne L Dunster
- School of Biological Sciences, University of Reading, Reading, UK
| | - Rachel Cavill
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | | | | | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands.,Synapse Research Institute, Maastricht, The Netherlands
| | | |
Collapse
|
37
|
Zhou Y, Hancock JF. RAS nanoclusters are cell surface transducers that convert extracellular stimuli to intracellular signalling. FEBS Lett 2023; 597:892-908. [PMID: 36595205 PMCID: PMC10919257 DOI: 10.1002/1873-3468.14569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Mutations of rat sarcoma virus (RAS) oncogenes (HRAS, KRAS and NRAS) can contribute to the development of cancers and genetic disorders (RASopathies). The spatiotemporal organization of RAS is an important property that warrants further investigation. In order to function, wild-type or oncogenic mutants of RAS must be localized to the inner leaflet of the plasma membrane (PM), which is driven by interactions between their C-terminal membrane-anchoring domains and PM lipids. The isoform-specific RAS-lipid interactions promote the formation of nanoclusters on the PM. As main sites for effector recruitment, these nanoclusters are biologically important. Since the spatial distribution of lipids is sensitive to changing environments, such as mechanical and electrical perturbations, RAS nanoclusters act as transducers to convert external stimuli to intracellular mitogenic signalling. As such, effective inhibition of RAS oncogenesis requires consideration of the complex interplay between RAS nanoclusters and various cell surface and extracellular stimuli. In this review, we discuss in detail how, by sorting specific lipids in the PM, RAS nanoclusters act as transducers to convert external stimuli into intracellular signalling.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, McGovern Medical School, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and University of Texas Health Science Center, TX, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, McGovern Medical School, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and University of Texas Health Science Center, TX, USA
| |
Collapse
|
38
|
Larsson E, Morén B, McMahon KA, Parton RG, Lundmark R. Dynamin2 functions as an accessory protein to reduce the rate of caveola internalization. J Cell Biol 2023; 222:213853. [PMID: 36729022 PMCID: PMC9929934 DOI: 10.1083/jcb.202205122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 02/03/2023] Open
Abstract
Caveolae are small membrane invaginations that generally are stably attached to the plasma membrane. Their release is believed to depend on the GTPase dynamin 2 (Dyn2), in analogy with its role in fission of clathrin-coated vesicles. The mechanistic understanding of caveola fission is, however, sparse. Here, we used microscopy-based tracking of individual caveolae in living cells to determine the role of Dyn2 in caveola dynamics. We report that Dyn2 stably associated with the bulb of a subset of caveolae, but was not required for formation or fission of caveolae. Dyn2-positive caveolae displayed longer plasma membrane duration times, whereas depletion of Dyn2 resulted in shorter duration times and increased caveola fission. The stabilizing role of Dyn2 was independent of its GTPase activity and the caveola stabilizing protein EHD2. Thus, we propose that, in contrast to the current view, Dyn2 is not a core component of the caveolae machinery, but rather functions as an accessory protein that restrains caveola internalization.
Collapse
Affiliation(s)
- Elin Larsson
- https://ror.org/05kb8h459Integrative Medical Biology, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Björn Morén
- https://ror.org/05kb8h459Integrative Medical Biology, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Kerrie-Ann McMahon
- https://ror.org/00rqy9422Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert G. Parton
- https://ror.org/00rqy9422Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard Lundmark
- https://ror.org/05kb8h459Integrative Medical Biology, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden,Correspondence to Richard Lundmark:
| |
Collapse
|
39
|
Nieves DJ, Pike JA, Levet F, Williamson DJ, Baragilly M, Oloketuyi S, de Marco A, Griffié J, Sage D, Cohen EAK, Sibarita JB, Heilemann M, Owen DM. A framework for evaluating the performance of SMLM cluster analysis algorithms. Nat Methods 2023; 20:259-267. [PMID: 36765136 DOI: 10.1038/s41592-022-01750-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/06/2022] [Indexed: 02/12/2023]
Abstract
Single-molecule localization microscopy (SMLM) generates data in the form of coordinates of localized fluorophores. Cluster analysis is an attractive route for extracting biologically meaningful information from such data and has been widely applied. Despite a range of cluster analysis algorithms, there exists no consensus framework for the evaluation of their performance. Here, we use a systematic approach based on two metrics to score the success of clustering algorithms in simulated conditions mimicking experimental data. We demonstrate the framework using seven diverse analysis algorithms: DBSCAN, ToMATo, KDE, FOCAL, CAML, ClusterViSu and SR-Tesseler. Given that the best performer depended on the underlying distribution of localizations, we demonstrate an analysis pipeline based on statistical similarity measures that enables the selection of the most appropriate algorithm, and the optimized analysis parameters for real SMLM data. We propose that these standard simulated conditions, metrics and analysis pipeline become the basis for future analysis algorithm development and evaluation.
Collapse
Affiliation(s)
- Daniel J Nieves
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Jeremy A Pike
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Florian Levet
- Interdisciplinary Institute for Neuroscience, CNRS, IINS, UMR 5297, Université de Bordeaux, Bordeaux, France.,Bordeaux Imaging Center, CNRS, INSERM, BIC, UMS 3420, US 4, Université de Bordeaux, Bordeaux, France
| | - David J Williamson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Mohammed Baragilly
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Mathematics, Insurance and Applied Statistics, Helwan University, Helwan, Egypt
| | - Sandra Oloketuyi
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Rožna Dolina, Slovenia
| | - Ario de Marco
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Rožna Dolina, Slovenia
| | - Juliette Griffié
- Laboratory of Experimental Biophysics, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel Sage
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Jean-Baptiste Sibarita
- Interdisciplinary Institute for Neuroscience, CNRS, IINS, UMR 5297, Université de Bordeaux, Bordeaux, France
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dylan M Owen
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK. .,School of Mathematics, University of Birmingham, Birmingham, UK.
| |
Collapse
|
40
|
Remodeling of the Plasma Membrane by Surface-Bound Protein Monomers and Oligomers: The Critical Role of Intrinsically Disordered Regions. J Membr Biol 2022; 255:651-663. [PMID: 35930019 PMCID: PMC9718270 DOI: 10.1007/s00232-022-00256-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
The plasma membrane (PM) of cells is a dynamic structure whose morphology and composition is in constant flux. PM morphologic changes are particularly relevant for the assembly and disassembly of signaling platforms involving surface-bound signaling proteins, as well as for many other mechanochemical processes that occur at the PM surface. Surface-bound membrane proteins (SBMP) require efficient association with the PM for their function, which is often achieved by the coordinated interactions of intrinsically disordered regions (IDRs) and globular domains with membrane lipids. This review focuses on the role of IDR-containing SBMPs in remodeling the composition and curvature of the PM. The ability of IDR-bearing SBMPs to remodel the Gaussian and mean curvature energies of the PM is intimately linked to their ability to sort subsets of phospholipids into nanoclusters. We therefore discuss how IDRs of many SBMPs encode lipid-binding specificity or facilitate cluster formation, both of which increase their membrane remodeling capacity, and how SBMP oligomers alter membrane shape by monolayer surface area expansion and molecular crowding.
Collapse
|
41
|
West SJ, Boehning D, Akimzhanov AM. Regulation of T cell function by protein S-acylation. Front Physiol 2022; 13:1040968. [PMID: 36467682 PMCID: PMC9709458 DOI: 10.3389/fphys.2022.1040968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 10/26/2023] Open
Abstract
S-acylation, the reversible lipidation of free cysteine residues with long-chain fatty acids, is a highly dynamic post-translational protein modification that has recently emerged as an important regulator of the T cell function. The reversible nature of S-acylation sets this modification apart from other forms of protein lipidation and allows it to play a unique role in intracellular signal transduction. In recent years, a significant number of T cell proteins, including receptors, enzymes, ion channels, and adaptor proteins, were identified as S-acylated. It has been shown that S-acylation critically contributes to their function by regulating protein localization, stability and protein-protein interactions. Furthermore, it has been demonstrated that zDHHC protein acyltransferases, the family of enzymes mediating this modification, also play a prominent role in T cell activation and differentiation. In this review, we aim to highlight the diversity of proteins undergoing S-acylation in T cells, elucidate the mechanisms by which reversible lipidation can impact protein function, and introduce protein acyltransferases as a novel class of regulatory T cell proteins.
Collapse
Affiliation(s)
- Savannah J. West
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, United States
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, United States
| |
Collapse
|
42
|
Maja M, Tyteca D. Alteration of cholesterol distribution at the plasma membrane of cancer cells: From evidence to pathophysiological implication and promising therapy strategy. Front Physiol 2022; 13:999883. [PMID: 36439249 PMCID: PMC9682260 DOI: 10.3389/fphys.2022.999883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Cholesterol-enriched domains are nowadays proposed to contribute to cancer cell proliferation, survival, death and invasion, with important implications in tumor progression. They could therefore represent promising targets for new anticancer treatment. However, although diverse strategies have been developed over the years from directly targeting cholesterol membrane content/distribution to adjusting sterol intake, all approaches present more or less substantial limitations. Those data emphasize the need to optimize current strategies, to develop new specific cholesterol-targeting anticancer drugs and/or to combine them with additional strategies targeting other lipids than cholesterol. Those objectives can only be achieved if we first decipher (i) the mechanisms that govern the formation and deformation of the different types of cholesterol-enriched domains and their interplay in healthy cells; (ii) the mechanisms behind domain deregulation in cancer; (iii) the potential generalization of observations in different types of cancer; and (iv) the specificity of some alterations in cancer vs. non-cancer cells as promising strategy for anticancer therapy. In this review, we will discuss the current knowledge on the homeostasis, roles and membrane distribution of cholesterol in non-tumorigenic cells. We will then integrate documented alterations of cholesterol distribution in domains at the surface of cancer cells and the mechanisms behind their contribution in cancer processes. We shall finally provide an overview on the potential strategies developed to target those cholesterol-enriched domains in cancer therapy.
Collapse
|
43
|
Yakovian O, Sajman J, Alon M, Arafeh R, Samuels Y, Sherman E. NRas activity is regulated by dynamic interactions with nanoscale signaling clusters at the plasma membrane. iScience 2022; 25:105282. [PMID: 36304112 PMCID: PMC9593252 DOI: 10.1016/j.isci.2022.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/07/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
NRas is a key mediator of the mitogenic pathway in normal cells and in cancer cells. Its dynamics and nanoscale organization at the plasma membrane (PM) facilitate its signaling. Here, we used two-color photoactivated localization microscopy to resolve the organization of individual NRas and associated signaling proteins in live melanoma cells, with resolution down to ∼20 nm. Upon EGF activation, a fraction of NRas and BRAF (dis)assembled synchronously at the PM in co-clusters. NRas and BRAF clusters associated with GPI-enriched domains, serving as possible nucleation sites for these clusters. NRas and BRAF association in mutual clusters was reduced by the NRas farnesylation inhibitor lonafarnib, yet enhanced by the BRAF inhibitor vemurafenib. Surprisingly, dispersed NRas molecules associated with the periphery of self-clusters of either Grb2 or NF1. Thus, NRas-mediated signaling, which is critical in health and disease, is regulated by dynamic interactions with functional clusters of BRAF or other related proteins at the PM.
Collapse
Affiliation(s)
- Oren Yakovian
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Julia Sajman
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Rand Arafeh
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel,Department of Molecular Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel,Corresponding author
| |
Collapse
|
44
|
Banerjee P, Silva DV, Lipowsky R, Santer M. The importance of side branches of glycosylphosphatidylinositol anchors: a molecular dynamics perspective. Glycobiology 2022; 32:933-948. [PMID: 36197124 PMCID: PMC9620968 DOI: 10.1093/glycob/cwac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Many proteins are anchored to the cell surface of eukaryotes using a unique family of glycolipids called glycosylphosphatidylinositol (GPI) anchors. These glycolipids also exist without a covalently bound protein, in particular on the cell surfaces of protozoan parasites where they are densely populated. GPIs and GPI-anchored proteins participate in multiple cellular processes such as signal transduction, cell adhesion, protein trafficking and pathogenesis of Malaria, Toxoplasmosis, Trypanosomiasis and prion diseases, among others. All GPIs share a common conserved glycan core modified in a cell-dependent manner with additional side glycans or phosphoethanolamine residues. Here, we use atomistic molecular dynamic simulations and perform a systematic study to evaluate the structural properties of GPIs with different side chains inserted in lipid bilayers. Our results show a flop-down orientation of GPIs with respect to the membrane surface and the presentation of the side chain residues to the solvent. This finding agrees well with experiments showing the role of the side residues as active epitopes for recognition of GPIs by macrophages and induction of GPI-glycan-specific immune responses. Protein-GPI interactions were investigated by attaching parasitic GPIs to Green Fluorescent Protein. GPIs are observed to recline on the membrane surface and pull down the attached protein close to the membrane facilitating mutual contacts between protein, GPI and the lipid bilayer. This model is efficient in evaluating the interaction of GPIs and GPI-anchored proteins with membranes and can be extended to study other parasitic GPIs and proteins and develop GPI-based immunoprophylaxis to treat infectious diseases.
Collapse
Affiliation(s)
- Pallavi Banerjee
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany.,Mathematisch-Naturwissenschaftlichen Fakultät, University of Potsdam, Potsdam 14476, Germany
| | - Daniel Varon Silva
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Reinhard Lipowsky
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany.,Mathematisch-Naturwissenschaftlichen Fakultät, University of Potsdam, Potsdam 14476, Germany
| | - Mark Santer
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
45
|
Schneider EH, Fitzgerald AC, Ponnapula SS, Dopico AM, Bukiya AN. Differential distribution of cholesterol pools across arteries under high-cholesterol diet. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159235. [PMID: 36113825 DOI: 10.1016/j.bbalip.2022.159235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Excessive cholesterol constitutes a major risk factor for vascular disease. Within cells, cholesterol is distributed in detergent-sensitive and detergent-resistant fractions, with the largest amount of cholesterol residing in cellular membranes. We set out to determine whether various arteries differ in their ability to accumulate esterified and non-esterified cholesterol in detergent-sensitive versus detergent-resistant fractions throughout the course of a high-cholesterol diet. Male Sprague-Dawley rats were placed on 2 % cholesterol diet while a control group was receiving iso-caloric standard chow. Liver, aorta, and pulmonary, mesenteric, and cerebral arteries were collected at 2-6, 8-12, 14-18, and 20-24 weeks from the start of high-cholesterol diet. After fraction separation, esterified and free non-esterified cholesterol levels were measured. In all arteries, largest cholesterol amounts were present in detergent-sensitive fractions in the non-esterified form. Overall, cholesterol in aorta and cerebral arteries was elevated during 14-18 weeks of high-cholesterol diet. Cerebral arteries also exhibited increase in esterified cholesterol within detergent-sensitive domains, as well as increase in cholesterol level in the detergent-resistant fraction at earlier time-points of diet. Pulmonary artery and mesenteric artery were largely resistant to cholesterol accumulation. Quantitative polymerase chain reaction (qPCR) analysis revealed up-regulation of low-density lipoprotein receptor (Ldlr) and low-density lipoprotein receptor-related protein 1 (Lrp1) gene expression in cerebral arteries when compared to mesenteric and pulmonary arteries, respectively. In summary, we unveiled the differential ability of arteries to accumulate cholesterol over the course of a high-cholesterol diet. The differential accumulation of cholesterol seems to correlate with the up-regulated gene expression of proteins responsible for cholesterol uptake.
Collapse
Affiliation(s)
- Elizabeth H Schneider
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Amanda C Fitzgerald
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Supriya Suzy Ponnapula
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
46
|
TGFβ-induced changes in membrane curvature influence Ras oncoprotein membrane localization. Sci Rep 2022; 12:13486. [PMID: 35931724 PMCID: PMC9356053 DOI: 10.1038/s41598-022-17482-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
In the course of cancer progression tumor cells undergo morphological changes that lead to increased motility and invasiveness thus promoting formation of metastases. This process called epithelial to mesenchymal transition (EMT) is triggered by transforming growth factor (TGFβ) but for gaining the full invasive potential an interplay between signaling of TGFβ and Ras GTPases is required. Ras proteins possess a lipidated domain that mediates Ras association with the plasma membrane, which is essential for Ras biological functions. Type and number of the lipid anchors are the main difference among three Ras variants—H-ras, N-ras and K-ras. The lipid anchors determine membrane partitioning of lipidated proteins into membrane areas of specific physico-chemical properties and curvature. In this study, we investigated the effect of TGFβ treatment on the subcellular localization of H-ras and K-ras. We show that TGFβ increases positive plasma membrane curvature, which is subsequently sensed by H-ras, leading to its elevated plasma membrane localization and activation. This observation suggests the existence of a novel positive feedback loop whereby the increased level of plasma membrane curvature during TGFβ induced EMT attracts more Ras molecules to the plasma membrane resulting in increased Ras activity which in turn promotes further EMT and thus ultimately enables the acquisition of full invasive potential.
Collapse
|
47
|
Nanoscopic Spatial Association between Ras and Phosphatidylserine on the Cell Membrane Studied with Multicolor Super Resolution Microscopy. Biomolecules 2022; 12:biom12081033. [PMID: 35892343 PMCID: PMC9332490 DOI: 10.3390/biom12081033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Recent work suggests that Ras small GTPases interact with the anionic lipid phosphatidylserine (PS) in an isoform-specific manner, with direct implications for their biological functions. Studies on PS-Ras associations in cells, however, have relied on immuno-EM imaging of membrane sheets. To study their spatial relationships in intact cells, we have combined the use of Lact-C2-GFP, a biosensor for PS, with multicolor super resolution imaging based on DNA-PAINT. At ~20 nm spatial resolution, the resulting super resolution images clearly show the nonuniform molecular distribution of PS on the cell membrane and its co-enrichment with caveolae, as well as with unidentified membrane structures. Two-color imaging followed by spatial analysis shows that KRas-G12D and HRas-G12V both co-enrich with PS in model U2OS cells, confirming previous observations, yet exhibit clear differences in their association patterns. Whereas HRas-G12V is almost always co-enriched with PS, KRas-G12D is strongly co-enriched with PS in about half of the cells, with the other half exhibiting a more moderate association. In addition, perturbations to the actin cytoskeleton differentially impact PS association with the two Ras isoforms. These results suggest that PS-Ras association is context-dependent and demonstrate the utility of multiplexed super resolution imaging in defining the complex interplay between Ras and the membrane.
Collapse
|
48
|
Seguin L. KRAS Addiction Promotes Cancer Cell Adaptation in Harsh Microenvironment Through Macropinocytosis. Subcell Biochem 2022; 98:189-204. [PMID: 35378709 DOI: 10.1007/978-3-030-94004-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
KRAS is the most frequently mutated oncogene in cancer and despite intensive studies, attempts to develop effective therapies targeting KRAS or its downstream signaling have failed mostly due to the complexity of KRAS activation and function in cancer initiation and progression. Over the years, KRAS has been involved in several biological processes including cell survival, proliferation, and metabolism by promoting not only a favorable tumor environment but also a cell-microenvironment dialog to allow cancer cells to adapt to tumor microenvironment scarcity. One of the mechanisms involved in this adaption is KRAS-mediated macropinocytosis. Macropinocytosis is an evolutionarily conserved, large-scale, and nonselective form of endocytosis involving actin-driven cell membrane remodeling to engulf large amounts of extracellular fluids and proteins from the local environment. While macropinocytosis process has been known for decades, recent gain interest due to its regulation of KRAS-driven tumor growth in adverse microenvironments. By promoting extracellular protein and other macromolecules internalization, macropinocytosis provides a survival mechanism under nutrient scarce conditions and the potential for unrestricted tumor growth. Thus, a better understanding of macropinocytotic process is needed to develop alternative therapeutic strategies.
Collapse
|
49
|
Alazawi MA, Jiang S, Messner SF. Identifying a spatial scale for the analysis of residential burglary: An empirical framework based on point pattern analysis. PLoS One 2022; 17:e0264718. [PMID: 35226707 PMCID: PMC8884495 DOI: 10.1371/journal.pone.0264718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
A key issue in the spatial and temporal analysis of residential burglary is the choice of scale: spatial patterns might differ appreciably for different time periods and vary across geographic units of analysis. Based on point pattern analysis of burglary incidents in Columbus, Ohio during a 9-year period, this study develops an empirical framework to identify a useful spatial scale and its dependence on temporal aggregation. Our analysis reveals that residential burglary in Columbus clusters at a characteristic scale of 2.2 km. An ANOVA test shows no significant impact of temporal aggregation on spatial scale of clustering. This study demonstrates the value of point pattern analysis in identifying a scale for the analysis of crime patterns. Furthermore, the characteristic scale of clustering determined using our method has great potential applications: (1) it can reflect the spatial environment of criminogenic processes and thus be used to define the spatial boundary for place-based policing; (2) it can serve as a candidate for the bandwidth (search radius) for hot spot policing; (3) its independence of temporal aggregation implies that police officials need not be concerned about the shifting sizes of risk-areas depending on the time of the year.
Collapse
Affiliation(s)
- Mohammed A. Alazawi
- Department of Information Science, University at Albany, State University of New York, Albany, NY, United States of America
| | - Shiguo Jiang
- Department of Geography and Planning, University at Albany, State University of New York, Albany, NY, United States of America
| | - Steven F. Messner
- Department of Sociology, University at Albany, State University of New York, Albany, NY, United States of America
| |
Collapse
|
50
|
Mu H, Zeng Y, Zhuang Y, Gao W, Zhou Y, Rajalingam K, Zhao W. Patterning of Oncogenic Ras Clustering in Live Cells Using Vertically Aligned Nanostructure Arrays. NANO LETTERS 2022; 22:1007-1016. [PMID: 35044178 DOI: 10.1021/acs.nanolett.1c03886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a dominant oncogenic protein, Ras is well-known to segregate into clusters on the plasma membrane for activating downstream signaling. However, current technologies for direct measurements of Ras clustering are limited to sophisticated high-resolution techniques like electron microscopy and fluorescence lifetime imaging. To further promote fundamental investigations and the related drug development, we hereby introduce a nanobar-based platform which effectively guides Ras clusters into quantifiable patterns in live cells that is resolvable under conventional microscopy. Major Ras isoforms, K-Ras, H-Ras, and N-Ras, were differentiated, as well as their highly prevalent oncogenic mutants G12V and G13D. Moreover, the isoform specificity and the sensitivity of a Ras inhibitor were successfully characterized on nanobars. We envision that this nanobar-based platform will serve as an effective tool to read Ras clustering on the plasma membrane, enabling a novel avenue both to decipher Ras regulations and to facilitate anti-Ras drug development.
Collapse
Affiliation(s)
- Huanwen Mu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
- Ageing Research Institute for Society and Education, Nanyang Technological University, Singapore 637335, Singapore
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yinyin Zhuang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, Texas 77030, United States
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, United States
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
- University Cancer Center Mainz, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| |
Collapse
|