1
|
Chrysostomou E, Mourikis P. The extracellular matrix niche of muscle stem cells. Curr Top Dev Biol 2024; 158:123-150. [PMID: 38670702 DOI: 10.1016/bs.ctdb.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Preserving the potency of stem cells in adult tissues is very demanding and relies on the concerted action of various cellular and non-cellular elements in a precise stoichiometry. This balanced microenvironment is found in specific anatomical "pockets" within the tissue, known as the stem cell niche. In this review, we explore the interplay between stem cells and their niches, with a primary focus on skeletal muscle stem cells and the extracellular matrix (ECM). Quiescent muscle stem cells, known as satellite cells are active producers of a diverse array of ECM molecules, encompassing major constituents like collagens, laminins, and integrins, some of which are explored in this review. The conventional perception of ECM as merely a structural scaffold is evolving. Collagens can directly interact as ligands with receptors on satellite cells, while other ECM proteins have the capacity to sequester growth factors and regulate their release, especially relevant during satellite cell turnover in homeostasis or activation upon injury. Additionally, we explore an evolutionary perspective on the ECM across a range of multicellular organisms and discuss a model wherein satellite cells are self-sustained by generating their own niche. Considering the prevalence of ECM proteins in the connective tissue of various organs it is not surprising that mutations in ECM genes have pathological implications, including in muscle, where they can lead to myopathies. However, the particular role of certain disease-related ECM proteins in stem cell maintenance highlights the potential contribution of stem cell deregulation to the progression of these disorders.
Collapse
Affiliation(s)
- Eleni Chrysostomou
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France.
| |
Collapse
|
2
|
Amos C, Fox MA, Su J. Collagen XIX is required for pheromone recognition and glutamatergic synapse formation in mouse accessory olfactory bulb. Front Cell Neurosci 2023; 17:1157577. [PMID: 37091919 PMCID: PMC10113670 DOI: 10.3389/fncel.2023.1157577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
In mammals, the accessory olfactory bulb (AOB) receives input from vomeronasal sensory neurons (VSN) which detect pheromones, chemical cues released by animals to regulate the physiology or behaviors of other animals of the same species. Cytoarchitecturally, cells within the AOB are segregated into a glomerular layer (GL), mitral cell layer (MCL), and granule cell layer (GCL). While the cells and circuitry of these layers has been well studied, the molecular mechanism underlying the assembly of such circuitry in the mouse AOB remains unclear. With the goal of identifying synaptogenic mechanisms in AOB, our attention was drawn to Collagen XIX, a non-fibrillar collagen generated by neurons in the mammalian telencephalon that has previously been shown to regulate the assembly of synapses. Here, we used both a targeted mouse mutant that lacks Collagen XIX globally and a conditional allele allowing for cell-specific deletion of this collagen to test if the loss of Collagen XIX causes impaired synaptogenesis in the mouse AOB. These analyses not only revealed defects in excitatory synapse distribution in these Collagen XIX-deficient mutants, but also showed that these mutant mice exhibit altered behavioral responses to pheromones. Although this collagen has been demonstrated to play synaptogenic roles in the telencephalon, those roles are at perisomatic inhibitory synapses, results here are the first to demonstrate the function of this unconventional collagen in glutamatergic synapse formation.
Collapse
Affiliation(s)
- Chase Amos
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Roanoke, VA, United States
| | - Michael A. Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Jianmin Su
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
3
|
Mavropalias G, Boppart M, Usher KM, Grounds MD, Nosaka K, Blazevich AJ. Exercise builds the scaffold of life: muscle extracellular matrix biomarker responses to physical activity, inactivity, and aging. Biol Rev Camb Philos Soc 2023; 98:481-519. [PMID: 36412213 DOI: 10.1111/brv.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
Skeletal muscle extracellular matrix (ECM) is critical for muscle force production and the regulation of important physiological processes during growth, regeneration, and remodelling. ECM remodelling is a tightly orchestrated process, sensitive to multi-directional tensile and compressive stresses and damaging stimuli, and its assessment can convey important information on rehabilitation effectiveness, injury, and disease. Despite its profound importance, ECM biomarkers are underused in studies examining the effects of exercise, disuse, or aging on muscle function, growth, and structure. This review examines patterns of short- and long-term changes in the synthesis and concentrations of ECM markers in biofluids and tissues, which may be useful for describing the time course of ECM remodelling following physical activity and disuse. Forces imposed on the ECM during physical activity critically affect cell signalling while disuse causes non-optimal adaptations, including connective tissue proliferation. The goal of this review is to inform researchers, and rehabilitation, medical, and exercise practitioners better about the role of ECM biomarkers in research and clinical environments to accelerate the development of targeted physical activity treatments, improve ECM status assessment, and enhance function in aging, injury, and disease.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, and Centre for Healthy Aging, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Discipline of Exercise Science, Murdoch University, Murdoch, WA, 6150, Australia
| | - Marni Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 1206 South Fourth St, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, 405 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Kayley M Usher
- School of Biomedical Sciences, University of Western Australia (M504), 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Miranda D Grounds
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
4
|
Khalkhali-Evrigh R, Hedayat N, Ming L, Jirimutu. Identification of selection signatures in Iranian dromedary and Bactrian camels using whole genome sequencing data. Sci Rep 2022; 12:9653. [PMID: 35688969 PMCID: PMC9187634 DOI: 10.1038/s41598-022-14376-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
The Old World camels play an important role as one of the main food sources in large parts of Asia and Africa. Natural selection combined with artificial selection by human has affected parts of the domestic animal genome for adapting them to their habitats and meeting human needs. Here, we used whole genome sequencing data of 34 camels (including 14 dromedaries and 20 Bactrian camels) to identify the genomic signature of selection in the Iranian dromedary (ID) and Bactrian camels (IB). To detect the mentioned regions, we used two methods including population differentiation index (Fst) and cross-population extended haplotype homozygosity (XP-EHH) with 50 kb sliding window and 25 kb step size. Based on gene ontology analysis on the candidate genes identified for IB camels, we found GO terms associated with lung development, nervous system development, immune system and behavior. Also, we identified several genes related to body thermoregulation (ZNF516), meat quality (ANK1 and HSPA13), and high-altitude adaptation (OPA1) for IB camels. In the list of detected candidate genes under selection in ID camels, the genes related to energy metabolism (BDH1), reproduction (DLG1, IMMP2L and FRASI), long-term memory (GRIA1), kidney (SLC12A1), lung development (EMILIN2 and FBN1) and immunity (SOCS2, JAK1, NRROS and SENP1) were found. Our findings, along with further studies in this field, will strengthen our knowledge about the effect of selection on the camelid genome under different geographical, climatic and even cultural conditions.
Collapse
Affiliation(s)
- Reza Khalkhali-Evrigh
- Department of Animal Science, Faculty of Agriculture and Natural Recourses, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Nemat Hedayat
- Department of Animal Science, Faculty of Agriculture and Natural Recourses, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Liang Ming
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, China
| | - Jirimutu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
5
|
Sadri G, Fischer AG, Brittian KR, Elliott E, Nystoriak MA, Uchida S, Wysoczynski M, Leask A, Jones SP, Moore JB. Collagen type XIX regulates cardiac extracellular matrix structure and ventricular function. Matrix Biol 2022; 109:49-69. [PMID: 35346795 PMCID: PMC9161575 DOI: 10.1016/j.matbio.2022.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/13/2022] [Accepted: 03/22/2022] [Indexed: 12/26/2022]
Abstract
The cardiac extracellular matrix plays essential roles in homeostasis and injury responses. Although the role of fibrillar collagens have been thoroughly documented, the functions of non-fibrillar collagen members remain underexplored. These include a distinct group of non-fibrillar collagens, termed, fibril-associated collagens with interrupted triple helices (FACITs). Recent reports of collagen type XIX (encoded by Col19a1) expression in adult heart and evidence of its enhanced expression in cardiac ischemia suggest important functions for this FACIT in cardiac ECM structure and function. Here, we examined the cellular source of collagen XIX in the adult murine heart and evaluated its involvement in ECM structure and ventricular function. Immunodetection of collagen XIX in fractionated cardiovascular cell lineages revealed fibroblasts and smooth muscle cells as the primary sources of collagen XIX in the heart. Based on echocardiographic and histologic analyses, Col19a1 null (Col19a1N/N) mice exhibited reduced systolic function, thinning of left ventricular walls, and increased cardiomyocyte cross-sectional areas-without gross changes in myocardial collagen content or basement membrane morphology. Col19a1N/N cardiac fibroblasts had augmented expression of several enzymes involved in the synthesis and stability of fibrillar collagens, including PLOD1 and LOX. Furthermore, second harmonic generation-imaged ECM derived from Col19a1N/N cardiac fibroblasts, and transmission electron micrographs of decellularized hearts from Col19a1N/N null animals, showed marked reductions in fibrillar collagen structural organization. Col19a1N/N mice also displayed enhanced phosphorylation of focal adhesion kinase (FAK), signifying de-repression of the FAK pathway-a critical mediator of cardiomyocyte hypertrophy. Collectively, we show that collagen XIX, which had a heretofore unknown role in the mammalian heart, participates in the regulation of cardiac structure and function-potentially through modulation of ECM fibrillar collagen structural organization. Further, these data suggest that this FACIT may modify ECM superstructure via acting at the level of the fibroblast to regulate their expression of collagen synthetic and stabilization enzymes.
Collapse
Affiliation(s)
- Ghazal Sadri
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Annalara G Fischer
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kenneth R Brittian
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Erin Elliott
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Matthew A Nystoriak
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Marcin Wysoczynski
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven P Jones
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joseph B Moore
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
6
|
Abnormalities in esophageal smooth muscle induced by mutations in collagen XIX. Histochem Cell Biol 2022; 157:205-216. [PMID: 34993640 DOI: 10.1007/s00418-021-02059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 11/04/2022]
Abstract
Collagen XIX is a nonfibrillar collagen that localizes in restricted tissues at very low amounts. A previous study on Col19a1 null mice revealed that collagen XIX is involved in esophageal muscle physiology and morphogenesis. Here, we use histological analysis to show that mice with a Col19a1 mutant lacking the NC3 domain and seven collagen triplets display abnormal transition of smooth to striated muscle in the abdominal segment of esophagus, and a widened esophagus with age. With two newly prepared antibodies, we analyzed the expression of collagen XIX in the mouse esophagus and show that collagen XIX colocalizes with α-smooth muscle actin. By immunoelectron microscopy, we confirmed the localization of collagen XIX in esophageal smooth muscle cells. Col19a1 mutant mice contained reduced levels of mutated Col19a1 mRNA. Interestingly, hepatocyte growth factor, which has an important role in esophageal striated muscle development, was reduced in the esophagus of the Col19a1 mutant mice. These findings suggest that collagen XIX may be critical for the function of esophageal smooth muscle cells as a scaffold for anteroposterior migration of esophagus-striated muscle cells.
Collapse
|
7
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
8
|
Zhang Y, Bailey D, Yang P, Kim E, Que J. The development and stem cells of the esophagus. Development 2021; 148:148/6/dev193839. [PMID: 33782045 PMCID: PMC8034879 DOI: 10.1242/dev.193839] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The esophagus is derived from the anterior portion of the foregut endoderm, which also gives rise to the respiratory system. As it develops, the esophageal lining is transformed from a simple columnar epithelium into a stratified squamous cell layer, accompanied by the replacement of unspecified mesenchyme with layers of muscle cells. Studies in animal models have provided significant insights into the roles of various signaling pathways in esophageal development. More recent studies using human pluripotent stem cells (hPSCs) further demonstrate that some of these signaling pathways are conserved in human esophageal development. In addition, a combination of mouse genetics and hPSC differentiation approaches have uncovered new players that control esophageal morphogenesis. In this Review, we summarize these new findings and discuss how the esophagus is established and matures throughout different stages, including its initial specification, respiratory-esophageal separation, epithelial morphogenesis and maintenance. We also discuss esophageal muscular development and enteric nervous system innervation, which are essential for esophageal structure and function.
Collapse
Affiliation(s)
- Yongchun Zhang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China,Authors for correspondence (; )
| | - Dominique Bailey
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Patrick Yang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Eugene Kim
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Authors for correspondence (; )
| |
Collapse
|
9
|
Li L, Li H, Wang L, Bu T, Liu S, Mao B, Cheng CY. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis. Crit Rev Biochem Mol Biol 2021; 56:236-254. [PMID: 33761828 DOI: 10.1080/10409238.2021.1901255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
10
|
Paracrine Role for Somatostatin Interneurons in the Assembly of Perisomatic Inhibitory Synapses. J Neurosci 2020; 40:7421-7435. [PMID: 32847968 DOI: 10.1523/jneurosci.0613-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
GABAergic interneurons represent a heterogenous group of cell types in neocortex that can be clustered based on developmental origin, morphology, physiology, and connectivity. Two abundant populations of cortical GABAergic interneurons include the low-threshold, somatostatin (SST)-expressing cells and the fast-spiking, parvalbumin (PV)-expressing cells. While SST+ and PV+ interneurons are both early born and migrate into the developing neocortex at similar times, SST+ cells are incorporated into functional circuits prior to PV+ cells. During this early period of neural development, SST+ cells play critical roles in the assembly and maturation of other cortical circuits; however, the mechanisms underlying this process remain poorly understood. Here, using both sexes of conditional mutant mice, we discovered that SST+ interneuron-derived Collagen XIX, a synaptogenic extracellular matrix protein, is required for the formation of GABAergic, perisomatic synapses by PV+ cells. These results, therefore, identify a paracrine mechanism by which early-born SST+ cells orchestrate inhibitory circuit formation in the developing neocortex.SIGNIFICANCE STATEMENT Inhibitory interneurons in the cerebral cortex represent a heterogenous group of cells that generate the inhibitory neurotransmitter GABA. One such interneuron type is the low-threshold, somatostatin (SST)-expressing cell, which is one of the first types of interneurons to migrate into the cerebral cortex and become incorporated into functional circuits. In addition, to contributing important roles in controlling the flow of information in the adult cerebral cortex, SST+ cells play important roles in the development of other neural circuits in the developing brain. Here, we identified an extracellular matrix protein that is released by these early-born SST+ neurons to orchestrate inhibitory circuit formation in the developing cerebral cortex.
Collapse
|
11
|
Calvo AC, Moreno L, Moreno L, Toivonen JM, Manzano R, Molina N, de la Torre M, López T, Miana-Mena FJ, Muñoz MJ, Zaragoza P, Larrodé P, García-Redondo A, Osta R. Type XIX collagen: a promising biomarker from the basement membranes. Neural Regen Res 2020; 15:988-995. [PMID: 31823868 PMCID: PMC7034273 DOI: 10.4103/1673-5374.270299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Among collagen members in the collagen superfamily, type XIX collagen has raised increasing interest in relation to its structural and biological roles. Type XIX collagen is a Fibril-Associated Collagen with Interrupted Triple helices member, one main subclass of collagens in this superfamily. This collagen contains a triple helix composed of three polypeptide segments aligned in parallel and it is associated with the basement membrane zone in different tissues. The molecular structure of type XIX collagen consists of five collagenous domains, COL1 to COL5, interrupted by six non-collagenous domains, NC1 to NC6. The most relevant domain by which this collagen exerts its biological roles is NC1 domain that can be cleavage enzymatically to release matricryptins, exerting anti-tumor and anti-angiogenic effect in murine and human models of cancer. Under physiological conditions, type XIX collagen expression decreases after birth in different tissues although it is necessary to keep its basal levels, mainly in skeletal muscle and hippocampal and telencephalic interneurons in brain. Notwithstanding, in amyotrophic lateral sclerosis, altered transcript expression levels show a novel biological effect of this collagen beyond its structural role in basement membranes and its anti-tumor and anti-angiogenic properties. Type XIX collagen can exert a compensatory effect to ameliorate the disease progression under neurodegenerative conditions specific to amyotrophic lateral sclerosis in transgenic SOD1G93A mice and amyotrophic lateral sclerosis patients. This novel biological role highlights its nature as prognostic biomarker of disease progression in and as promising therapeutic target, paving the way to a more precise prognosis of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ana C Calvo
- Laboratory of Genetics and Biochemistry (LAGENBIO), University of Zaragoza, Faculty of Veterinary Sciences, Instituto de Investigación Sanitaria de Aragón (IIS), IA2, CIBERNED, Zaragoza, Spain
| | - Laura Moreno
- Laboratory of Genetics and Biochemistry (LAGENBIO), University of Zaragoza, Faculty of Veterinary Sciences, Instituto de Investigación Sanitaria de Aragón (IIS), IA2, CIBERNED, Zaragoza, Spain
| | - Leticia Moreno
- Laboratory of Genetics and Biochemistry (LAGENBIO), University of Zaragoza, Faculty of Veterinary Sciences, Instituto de Investigación Sanitaria de Aragón (IIS), IA2, CIBERNED, Zaragoza, Spain
| | - Janne M Toivonen
- Laboratory of Genetics and Biochemistry (LAGENBIO), University of Zaragoza, Faculty of Veterinary Sciences, Instituto de Investigación Sanitaria de Aragón (IIS), IA2, CIBERNED, Zaragoza, Spain
| | - Raquel Manzano
- Laboratory of Genetics and Biochemistry (LAGENBIO), University of Zaragoza, Faculty of Veterinary Sciences, Instituto de Investigación Sanitaria de Aragón (IIS), IA2, CIBERNED, Zaragoza, Spain
| | - Nora Molina
- Laboratory of Genetics and Biochemistry (LAGENBIO), University of Zaragoza, Faculty of Veterinary Sciences, Instituto de Investigación Sanitaria de Aragón (IIS), IA2, CIBERNED, Zaragoza, Spain
| | - Miriam de la Torre
- Laboratory of Genetics and Biochemistry (LAGENBIO), University of Zaragoza, Faculty of Veterinary Sciences, Instituto de Investigación Sanitaria de Aragón (IIS), IA2, CIBERNED, Zaragoza, Spain
| | - Tresa López
- Laboratory of Genetics and Biochemistry (LAGENBIO), University of Zaragoza, Faculty of Veterinary Sciences, Instituto de Investigación Sanitaria de Aragón (IIS), IA2, CIBERNED, Zaragoza, Spain
| | - Francisco J Miana-Mena
- Laboratory of Genetics and Biochemistry (LAGENBIO), University of Zaragoza, Faculty of Veterinary Sciences, Instituto de Investigación Sanitaria de Aragón (IIS), IA2, CIBERNED, Zaragoza, Spain
| | - María J Muñoz
- Laboratory of Genetics and Biochemistry (LAGENBIO), University of Zaragoza, Faculty of Veterinary Sciences, Instituto de Investigación Sanitaria de Aragón (IIS), IA2, CIBERNED, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratory of Genetics and Biochemistry (LAGENBIO), University of Zaragoza, Faculty of Veterinary Sciences, Instituto de Investigación Sanitaria de Aragón (IIS), IA2, CIBERNED, Zaragoza, Spain
| | - Pilar Larrodé
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | | | - Rosario Osta
- Laboratory of Genetics and Biochemistry (LAGENBIO), University of Zaragoza, Faculty of Veterinary Sciences, Instituto de Investigación Sanitaria de Aragón (IIS), IA2, CIBERNED, Zaragoza, Spain
| |
Collapse
|
12
|
Calvo AC, Cibreiro GA, Merino PT, Roy JF, Galiana A, Rufián AJ, Cano JM, Martín MA, Moreno L, Larrodé P, Vázquez PC, Galán L, Mora J, Muñoz-Blanco JL, Muñoz MJ, Zaragoza P, Pegoraro E, Sorarù G, Mora M, Lunetta C, Penco S, Tarlarini C, Esteban J, Osta R, Redondo AG. Collagen XIX Alpha 1 Improves Prognosis in Amyotrophic Lateral Sclerosis. Aging Dis 2019; 10:278-292. [PMID: 31011479 PMCID: PMC6457048 DOI: 10.14336/ad.2018.0917] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
The identification of more reliable diagnostic or prognostic biomarkers in age-related neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), is urgently needed. The objective in this study was to identify more reliable prognostic biomarkers of ALS mirroring neurodegeneration that could be of help in clinical trials. A total of 268 participants from three cohorts were included in this study. The muscle and blood cohorts were analyzed in two cross-sectional studies, while the serial blood cohort was analyzed in a longitudinal study at 6-monthly intervals. Fifteen target genes and fourteen proteins involved in muscle physiology and differentiation, metabolic processes and neuromuscular junction dismantlement were studied in the three cohorts. In the muscle biopsy cohort, the risk for a higher mortality in an ALS patient that showed high Collagen type XIX, alpha 1 (COL19A1) protein levels and a fast progression of the disease was 70.5% (P < 0.05), while in the blood cohort, this risk was 20% (P < 0.01). In the serial blood cohort, the linear mixed model analysis showed a significant association between increasing COL19A1 gene levels along disease progression and a faster progression during the follow-up period of 24 months (P < 0.05). Additionally, higher COL19A1 levels and a faster progression increased 17.9% the mortality risk (P < 0.01). We provide new evidence that COL19A1 can be considered a prognostic biomarker that could help the selection of homogeneous groups of patients for upcoming clinical trial and may be pointed out as a promising therapeutic target in ALS.
Collapse
Affiliation(s)
- Ana C Calvo
- 1LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-IIS, IA2-CITA, University of Zaragoza, Zaragoza, Spain
| | - Gabriela Atencia Cibreiro
- 2Neurology Department, ALS Unit, CIBERER U-723, Health Research Institute, October 12th Hospital "IIS I+12", Madrid, Spain
| | - Paz Torre Merino
- 2Neurology Department, ALS Unit, CIBERER U-723, Health Research Institute, October 12th Hospital "IIS I+12", Madrid, Spain
| | - Juan F Roy
- 3Ferkauf Graduate School of Psychology, Yeshiva University, NY 10461, USA
| | - Adrián Galiana
- 4Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alexandra Juárez Rufián
- 2Neurology Department, ALS Unit, CIBERER U-723, Health Research Institute, October 12th Hospital "IIS I+12", Madrid, Spain
| | - Juan M Cano
- 5Orthopaedic Surgery Department, October 12th Hospital, Madrid, Spain
| | - Miguel A Martín
- 6Grupo Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), U723-CIBERER, Madrid, España
| | - Laura Moreno
- 1LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-IIS, IA2-CITA, University of Zaragoza, Zaragoza, Spain
| | - Pilar Larrodé
- 1LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-IIS, IA2-CITA, University of Zaragoza, Zaragoza, Spain
| | - Pilar Cordero Vázquez
- 2Neurology Department, ALS Unit, CIBERER U-723, Health Research Institute, October 12th Hospital "IIS I+12", Madrid, Spain
| | - Lucía Galán
- 7Neurology Department, ALS Unit, Clínico Universitario San Carlos Hospital, Madrid, Spain
| | - Jesús Mora
- 8Neurology Department, ALS Unit, Carlos III Hospital, Madrid, Spain
| | - José L Muñoz-Blanco
- 9Neurology Department, ALS Unit, Health Research Institute, Gregorio Marañón Hospital "IISGM", Madrid, Spain
| | - María J Muñoz
- 1LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-IIS, IA2-CITA, University of Zaragoza, Zaragoza, Spain
| | - Pilar Zaragoza
- 1LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-IIS, IA2-CITA, University of Zaragoza, Zaragoza, Spain
| | - Elena Pegoraro
- 10Neurological Clinic, Department of Neurosciences, University of Padova, Padova, Italy
| | - Gianni Sorarù
- 10Neurological Clinic, Department of Neurosciences, University of Padova, Padova, Italy
| | - Marina Mora
- 11Muscle Cell Biology Laboratory, Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Christian Lunetta
- 12NEMO (NEuroMuscular Omnicentre) Clinical Center, Fondazione Serena Onlus, Milan, Italy
| | - Silvana Penco
- 13Medical Genetics Unit, Department of Laboratory Medicine, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Claudia Tarlarini
- 13Medical Genetics Unit, Department of Laboratory Medicine, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Jesús Esteban
- 2Neurology Department, ALS Unit, CIBERER U-723, Health Research Institute, October 12th Hospital "IIS I+12", Madrid, Spain
| | - Rosario Osta
- 1LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-IIS, IA2-CITA, University of Zaragoza, Zaragoza, Spain
| | - Alberto García Redondo
- 2Neurology Department, ALS Unit, CIBERER U-723, Health Research Institute, October 12th Hospital "IIS I+12", Madrid, Spain
| |
Collapse
|
13
|
Inoue SI, Takahara S, Yoshikawa T, Niihori T, Yanai K, Matsubara Y, Aoki Y. Activated Braf induces esophageal dilation and gastric epithelial hyperplasia in mice. Hum Mol Genet 2018; 26:4715-4727. [PMID: 28973166 DOI: 10.1093/hmg/ddx354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022] Open
Abstract
Germline mutations in BRAF are a major cause of cardio-facio-cutaneous (CFC) syndrome, which is characterized by heart defects, characteristic craniofacial dysmorphology and dermatologic abnormalities. Patients with CFC syndrome also commonly show gastrointestinal dysfunction, including feeding and swallowing difficulties and gastroesophageal reflux. We have previously found that knock-in mice expressing a Braf Q241R mutation exhibit CFC syndrome-related phenotypes, such as growth retardation, craniofacial dysmorphisms, congenital heart defects and learning deficits. However, it remains unclear whether BrafQ241R/+ mice exhibit gastrointestinal dysfunction. Here, we report that BrafQ241R/+ mice have neonatal feeding difficulties and esophageal dilation. The esophagus tissues from BrafQ241R/+ mice displayed incomplete replacement of smooth muscle with skeletal muscle and decreased contraction. Furthermore, the BrafQ241R/+ mice showed hyperkeratosis and a thickened muscle layer in the forestomach. Treatment with MEK inhibitors ameliorated the growth retardation, esophageal dilation, hyperkeratosis and thickened muscle layer in the forestomach in BrafQ241R/+ mice. The esophageal dilation with aberrant skeletal-smooth muscle boundary in BrafQ241R/+ mice were recovered after treatment with the histone H3K27 demethylase inhibitor GSK-J4. Our results provide clues to elucidate the pathogenesis and possible treatment of gastrointestinal dysfunction and failure to thrive in patients with CFC syndrome.
Collapse
Affiliation(s)
| | - Shingo Takahara
- Department of Medical Genetics.,Department of Cardiovascular Surgery
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | | | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | - Yoichi Matsubara
- Department of Medical Genetics.,National Research Institute for Child Health and Development, Tokyo, Japan
| | | |
Collapse
|
14
|
Jia X, Min L, Zhu S, Zhang S, Huang X. Loss of sonic hedgehog gene leads to muscle development disorder and megaesophagus in mice. FASEB J 2018; 32:5703-5715. [DOI: 10.1096/fj.201701581r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xueting Jia
- Department of GastroenterologyNational Clinical Research Center for Digestive Diseases, Beijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive Diseases
- Department of StomatologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Li Min
- Department of GastroenterologyNational Clinical Research Center for Digestive Diseases, Beijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive Diseases
| | - Shengtao Zhu
- Department of GastroenterologyNational Clinical Research Center for Digestive Diseases, Beijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive Diseases
| | - Shutian Zhang
- Department of GastroenterologyNational Clinical Research Center for Digestive Diseases, Beijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive Diseases
| | - Xiaofeng Huang
- Department of StomatologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
15
|
Fidler AL, Boudko SP, Rokas A, Hudson BG. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution. J Cell Sci 2018; 131:jcs203950. [PMID: 29632050 PMCID: PMC5963836 DOI: 10.1242/jcs.203950] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cellular microenvironment, characterized by an extracellular matrix (ECM), played an essential role in the transition from unicellularity to multicellularity in animals (metazoans), and in the subsequent evolution of diverse animal tissues and organs. A major ECM component are members of the collagen superfamily -comprising 28 types in vertebrates - that exist in diverse supramolecular assemblies ranging from networks to fibrils. Each assembly is characterized by a hallmark feature, a protein structure called a triple helix. A current gap in knowledge is understanding the mechanisms of how the triple helix encodes and utilizes information in building scaffolds on the outside of cells. Type IV collagen, recently revealed as the evolutionarily most ancient member of the collagen superfamily, serves as an archetype for a fresh view of fundamental structural features of a triple helix that underlie the diversity of biological activities of collagens. In this Opinion, we argue that the triple helix is a protein structure of fundamental importance in building the extracellular matrix, which enabled animal multicellularity and tissue evolution.
Collapse
Affiliation(s)
- Aaron L Fidler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sergei P Boudko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
16
|
Su J, Cole J, Fox MA. Loss of Interneuron-Derived Collagen XIX Leads to a Reduction in Perineuronal Nets in the Mammalian Telencephalon. ASN Neuro 2017; 9:1759091416689020. [PMID: 28090790 PMCID: PMC5298462 DOI: 10.1177/1759091416689020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/22/2016] [Accepted: 12/14/2016] [Indexed: 01/09/2023] Open
Abstract
Perineuronal nets (PNNs) are lattice-like supramolecular assemblies of extracellular glycoproteins that surround subsets of neuronal cell bodies in the mammalian telencephalon. PNNs emerge at the end of the critical period of brain development, limit neuronal plasticity in the adult brain, and are lost in a variety of complex brain disorders diseases, including schizophrenia. The link between PNNs and schizophrenia led us to question whether neuronally expressed extracellular matrix (ECM) molecules associated with schizophrenia contribute to the assembly of these specialized supramolecular ECM assemblies. We focused on collagen XIX-a minor, nonfibrillar collagen expressed by subsets of telencephalic interneurons. Genetic alterations in the region encoding collagen XIX have been associated with familial schizophrenia, and loss of this collagen in mice results in altered inhibitory synapses, seizures, and the acquisition of schizophrenia-related behaviors. Here, we demonstrate that loss of collagen XIX also results in a reduction of telencephalic PNNs. Loss of PNNs was accompanied with reduced levels of aggrecan (Acan), a major component of PNNs. Despite reduced levels of PNN constituents in collagen XIX-deficient mice ( col19a1-/-), we failed to detect reduced expression of genes encoding these ECM molecules. Instead, we discovered a widespread upregulation of extracellular proteases capable of cleaving Acan and other PNN constituents in col19a1-/- brains. Taken together, these results suggest a mechanism by which the loss of collagen XIX speeds PNN degradation and they identify a novel mechanism by which the loss of collagen XIX may contribute to complex brain disorders.
Collapse
Affiliation(s)
- Jianmin Su
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - James Cole
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Michael A. Fox
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
17
|
Oudart JB, Doué M, Vautrin A, Brassart B, Sellier C, Dupont-Deshorgue A, Monboisse JC, Maquart FX, Brassart-Pasco S, Ramont L. The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through αvβ3 integrin interaction. Oncotarget 2016; 7:1516-28. [PMID: 26621838 PMCID: PMC4811477 DOI: 10.18632/oncotarget.6399] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/14/2015] [Indexed: 11/25/2022] Open
Abstract
Type XIX collagen is a minor collagen associated with basement membranes. It was isolated for the first time in a human cDNA library from rhabdomyosarcoma and belongs to the FACITs family (Fibril Associated Collagens with Interrupted Triple Helices). Previously, we demonstrated that the NC1 domain of collagen XIX (NC1(XIX)) exerts anti-tumor properties on melanoma cells by inhibiting their migration and invasion. In the present work, we identified for the first time the integrin αvβ3 as a receptor of NC1(XIX). Moreover, we demonstrated that NC1(XIX) inhibits the FAK/PI3K/Akt/mTOR pathway, by decreasing the phosphorylation and activity of the major proteins involved in this pathway. On the other hand, NC1(XIX) induced an increase of GSK3β activity by decreasing its degree of phosphorylation. Treatments targeting this central signaling pathway in the development of melanoma are promising and new molecules should be developed. NC1(XIX) seems to have the potential for the design of new anti-cancer drugs.
Collapse
Affiliation(s)
- Jean-Baptiste Oudart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - Manon Doué
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Alexia Vautrin
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Christèle Sellier
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Aurelie Dupont-Deshorgue
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Jean-Claude Monboisse
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - François-Xavier Maquart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - Sylvie Brassart-Pasco
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| |
Collapse
|
18
|
Ye M, Zhang Q, Xu X, Zhang Q, Ge Y, Geng P, Yan J, Luo L, Sun Y, Liang X. Loss of JAM-C leads to impaired esophageal innervations and megaesophagus in mice. Dis Esophagus 2016; 29:864-871. [PMID: 26123848 DOI: 10.1111/dote.12383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Megaesophagus is a disease where peristalsis fails to occur properly and esophagus is enlarged. The etiology and mechanism of megaesophagus are not well understood. In this study, we reported that junctional adhesion molecule C (JAM-C) knockout mice on a C57/B6 background developed progressive megaesophagus from embryonic day (E) 15.5 onward with complete penetrance. JAM-C knockout mice exhibited a significant reduction in the number of nerve fibers/ganglia in the wall of the esophagus. However, histological analysis revealed that the esophageal wall thickness and structure of JAM-C knockout mice at embryonic stages and young adult were comparable to that of control littermates. Thus, megaesophagus observed in JAM-C knockout mice could be attributed, at least in part, to impaired esophageal innervations. Our data suggest JAM-C as a potential candidate gene for human megaesophagus, and JAM-C knockout mice might serve as a model for the study of human megaesophagus.
Collapse
Affiliation(s)
- M Ye
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Q Zhang
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - X Xu
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Q Zhang
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Y Ge
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - P Geng
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - J Yan
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - L Luo
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Y Sun
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - X Liang
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
19
|
Krauss RS, Chihara D, Romer AI. Embracing change: striated-for-smooth muscle replacement in esophagus development. Skelet Muscle 2016; 6:27. [PMID: 27504178 PMCID: PMC4976477 DOI: 10.1186/s13395-016-0099-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
The esophagus functions to transport food from the oropharyngeal region to the stomach via waves of peristalsis and transient relaxation of the lower esophageal sphincter. The gastrointestinal tract, including the esophagus, is ensheathed by the muscularis externa (ME). However, while the ME of the gastrointestinal tract distal to the esophagus is exclusively smooth muscle, the esophageal ME of many vertebrate species comprises a variable amount of striated muscle. The esophageal ME is initially composed only of smooth muscle, but its developmental maturation involves proximal-to-distal replacement of smooth muscle with striated muscle. This fascinating phenomenon raises two important questions: what is the developmental origin of the striated muscle precursor cells, and what are the cellular and morphogenetic mechanisms underlying the process? Studies addressing these questions have provided controversial answers. In this review, we discuss the development of ideas in this area and recent work that has shed light on these issues. A working model has emerged that should permit deeper understanding of the role of ME development and maturation in esophageal disorders and in the functional and evolutionary underpinnings of the variable degree of esophageal striated myogenesis in vertebrate species.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA
| | - Daisuke Chihara
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA
| | - Anthony I Romer
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA ; Present address: Department of Genetics and Development, Columbia University, 701 West 168th Street, HHSC 1602, New York, NY 10032 USA
| |
Collapse
|
20
|
Type XIX collagen: A new partner in the interactions between tumor cells and their microenvironment. Matrix Biol 2016; 57-58:169-177. [PMID: 27491275 DOI: 10.1016/j.matbio.2016.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/26/2016] [Accepted: 07/28/2016] [Indexed: 11/22/2022]
Abstract
Type XIX collagen is a minor collagen that is associated with the basement membrane zone that belongs to the FACIT family (Fibril-Associated Collagens with Interrupted Triple helices). The FACIT family is composed of type IX, XII, XIV, XVI, XX, XXI, XXII and XIX collagens, which share many highly conserved structural motifs: a short NC1 domain, a thrombospondin-like N-terminal domain (TSPN), and numerous cysteine residues. The main role of FACITs is to ensure the integrity and stability of the extracellular matrix and its fibrillar collagen network by regulating the formation and size of the collagen fibrils. Type XIX collagen was discovered in a human rhabdomyosarcoma cell line. The collagen α1(XIX) chain is composed of 5 triple-helical domains (COL) interrupted by 6 non-triple-helical (NC) domains with a short, C-terminal, 19 amino acid non-collagenous domain (NC1). This collagen is involved in the differentiation of muscle cells, central nervous system development, and formation of the esophagus. Type XIX collagen is associated with the basement membrane zone, like type XVIII and XV collagens. Its short NC1(XIX) C-terminal domain inhibits the migration and invasion of melanoma cells. It also exerts a strong anti-angiogenic effect by inhibiting MMP-14 and VEGF expression. NC1(XIX) binding to αvβ3 integrin decreases the phosphorylation of proteins involved in the FAK (Focal Adhesion Kinase)/PI3K (PhosphoInositide 3-Kinase)/Akt (protein kinase B)/mTOR (Mammalian Target Of Rapamycin) pathway. On the other hand, NC1(XIX) induces an increase in GSK3β activity by decreasing its level of phosphorylation. The inhibition of this pathway could explain the anti-tumor properties of the NC1(XIX) domain.
Collapse
|
21
|
Su J, Chen J, Lippold K, Monavarfeshani A, Carrillo GL, Jenkins R, Fox MA. Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex. J Cell Biol 2016; 212:721-36. [PMID: 26975851 PMCID: PMC4792079 DOI: 10.1083/jcb.201509085] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/11/2016] [Indexed: 12/31/2022] Open
Abstract
Inhibitory synapses comprise only ∼20% of the total synapses in the mammalian brain but play essential roles in controlling neuronal activity. In fact, perturbing inhibitory synapses is associated with complex brain disorders, such as schizophrenia and epilepsy. Although many types of inhibitory synapses exist, these disorders have been strongly linked to defects in inhibitory synapses formed by Parvalbumin-expressing interneurons. Here, we discovered a novel role for an unconventional collagen-collagen XIX-in the formation of Parvalbumin(+) inhibitory synapses. Loss of this collagen results not only in decreased inhibitory synapse number, but also in the acquisition of schizophrenia-related behaviors. Mechanistically, these studies reveal that a proteolytically released fragment of this collagen, termed a matricryptin, promotes the assembly of inhibitory nerve terminals through integrin receptors. Collectively, these studies not only identify roles for collagen-derived matricryptins in cortical circuit formation, but they also reveal a novel paracrine mechanism that regulates the assembly of these synapses.
Collapse
Affiliation(s)
- Jianmin Su
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016
| | - Jiang Chen
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016
| | - Kumiko Lippold
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016
| | - Aboozar Monavarfeshani
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016 Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | | | - Rachel Jenkins
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Michael A Fox
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016 Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| |
Collapse
|
22
|
Schneider JF, Miles JR, Brown-Brandl TM, Nienaber JA, Rohrer GA, Vallet JL. Genomewide association analysis for average birth interval and stillbirth in swine. J Anim Sci 2016; 93:529-40. [PMID: 26020742 DOI: 10.2527/jas.2014-7899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reproductive efficiency has a great impact on the economic success of pork production. Stillborn pigs and average birth interval contribute to the number of pigs born alive in a litter. To better understand the underlying genetics of these traits, a genomewide association study was undertaken. Samples of DNA were collected and tested using the Illumina Porcine SNP60 BeadChip from 798 females farrowing over a 4-yr period (all first parity). Birth intervals and piglet birth status (stillborn or alive) were determined by videotaping each farrowing event. A total of 41,148 SNP were tested using the Bayes C option of GenSel (version 4.61) and 1-Mb windows. These 1-Mb windows explained proportions of 0.017, 0.002, 0.032, 0.029, and 0.030 of the total variation, respectively, for litter average birth interval after deletion of the last piglet born, last birth interval in the litter, number of stillborn piglets ignoring the last piglet born, number of stillborns in the last birth position, and percent stillborn ignoring the last piglet. Significant 1-Mb nonoverlapping SNP windows were identified by using a conservative approach requiring 1-Mb windows to have a genetic variance ≥1.0% of genomic variance and these were considered to be QTL. Quantitative trait loci were located for number of stillborn piglets ignoring the last piglet born (1 QTL), number of stillborns in the last birth position (1 QTL), and percent stillborn ignoring the last piglet (3 QTL). In addition, 2, 13, 3, and 6 suggestive 1-Mb nonoverlapping SNP windows were identified for litter average birth interval after deletion of the last piglet born, number of stillborn piglets ignoring the last piglet born, number of stillborns in the last birth position, and percent stillborn ignoring the last piglet, respectively. Possible candidate genes affecting both birth interval and stillbirth included () and (). Possible genes affecting only birth interval included (), and (), and those affecting only stillbirth included (), LOC100518697 (a nostrin-like gene), and (). The QTL and the suggestive 1-Mb nonoverlapping SNP windows may lead to genetic markers for marker assisted selection, marker assisted management, or genomic selection applications in commercial pig populations.
Collapse
|
23
|
Ivanova VP, Krivchenko AI. Current viewpoint on structure and on evolution of collagens. II. Fibril-associated collagens. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014040012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Noe E, Tabeling C, Doehn JM, Naujoks J, Opitz B, Hippenstiel S, Witzenrath M, Klopfleisch R. Juvenile megaesophagus in PKCα-deficient mice is associated with an increase in the segment of the distal esophagus lined by smooth muscle cells. Ann Anat 2014; 196:365-71. [DOI: 10.1016/j.aanat.2014.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 12/29/2022]
|
25
|
Abstract
Chemical synapses allow neurons to perform complex computations and regulate other systems of the body. At a chemical synapse, pre- and postsynaptic sites are separated by a small space (the synaptic cleft) and surrounded by astrocytes. The basement membrane (BM), a sheetlike, specialized extracellular matrix (ECM), is found ubiquitously in the PNS. It has become clear that the ECMs not only play a structural role but also serve as barriers and filters in the PNS and CNS. Moreover, proteoglycans and tenascin family proteins in the ECM regulate synapse formation and synaptic plasticity. Although CNS synapses lack the BMs, recent results indicate that the BM-associated collagens are also present in the CNS synaptic cleft and affect synaptogenesis in both the CNS and the PNS. The C1q domain-containing family proteins are important components of the CNS synaptic cleft in regulating synapse formation, maintenance, and the pruning process. The ECM is regarded as a crucial component of the tetrapartite synapse, consisting of pre- and postsynaptic neurons, astrocyte, and ECM.
Collapse
Affiliation(s)
- Anne Heikkinen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University, Bochum, Germany
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
26
|
Romer AI, Singh J, Rattan S, Krauss RS. Smooth muscle fascicular reorientation is required for esophageal morphogenesis and dependent on Cdo. ACTA ACUST UNITED AC 2013; 201:309-23. [PMID: 23569214 PMCID: PMC3628509 DOI: 10.1083/jcb.201301005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cdo-deficient mice have defects in smooth muscle fascicular reorientation during esophageal morphogenesis, resulting in structural and functional defects including an aberrantly proximal skeletal–smooth muscle boundary and achalasia. Postnatal maturation of esophageal musculature involves proximal-to-distal replacement of smooth muscle with skeletal muscle by elusive mechanisms. We report that this process is impaired in mice lacking the cell surface receptor Cdo and identify the underlying developmental mechanism. A myogenic transition zone containing proliferative skeletal muscle precursor cells migrated in a proximal–distal direction, leaving differentiated myofibers in its wake. Distal to the transition zone, smooth muscle fascicles underwent a morphogenetic process whereby they changed their orientation relative to each other and to the lumen. Consequently, a path was cleared for the transition zone, and smooth muscle ultimately occupied only the distal-most esophagus; there was no loss of smooth muscle. Cdo−/− mice were specifically defective in fascicular reorientation, resulting in an aberrantly proximal skeletal–smooth muscle boundary. Furthermore, Cdo−/− mice displayed megaesophagus and achalasia, and their lower esophageal sphincter was resistant to nitric oxide–induced relaxation, suggesting a developmental linkage between patterning and sphincter function. Collectively, these results illuminate mechanisms of esophageal morphogenesis and motility disorders.
Collapse
Affiliation(s)
- Anthony I Romer
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
27
|
Calvo AC, Manzano R, Atencia-Cibreiro G, Oliván S, Muñoz MJ, Zaragoza P, Cordero-Vázquez P, Esteban-Pérez J, García-Redondo A, Osta R. Genetic biomarkers for ALS disease in transgenic SOD1(G93A) mice. PLoS One 2012; 7:e32632. [PMID: 22412900 PMCID: PMC3296719 DOI: 10.1371/journal.pone.0032632] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/28/2012] [Indexed: 12/11/2022] Open
Abstract
The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS) are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10) could be considered potential genetic biomarkers of longevity in transgenic SOD1G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.
Collapse
Affiliation(s)
- Ana C. Calvo
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Raquel Manzano
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Gabriela Atencia-Cibreiro
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Sara Oliván
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - María J. Muñoz
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar Cordero-Vázquez
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Jesús Esteban-Pérez
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Alberto García-Redondo
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Rosario Osta
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
28
|
Hilario JD, Wang C, Beattie CE. Collagen XIXa1 is crucial for motor axon navigation at intermediate targets. Development 2010; 137:4261-9. [PMID: 21098567 DOI: 10.1242/dev.051730] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During development, motor axons navigate from the spinal cord to their muscle targets in the periphery using stereotyped pathways. These pathways are broken down into shorter segments by intermediate targets where axon growth cones are believed to coordinate guidance cues. In zebrafish stumpy mutants, embryonic development proceeds normally; however, as trunk motor axons stall at their intermediate targets, suggesting that Stumpy is needed specifically for motor axon growth cones to proceed past intermediate targets. Fine mapping and positional cloning revealed that stumpy was the zebrafish homolog of the atypical FACIT collagen collagenXIXa1 (colXIX). colXIX expression was observed in a temporal and spatial pattern, consistent with a role in motor axon guidance at intermediate targets. Knocking down zebrafish ColXIX phenocopied the stumpy phenotype and this morpholino phenotype could be rescued by adding back either mouse or zebrafish colXIX RNA. The stumpy phenotype was also partially rescued in mutants by first knocking down zebrafish ColXIX and adding back colXIX RNA, suggesting that the mutation is acting as a dominant negative. Together, these results demonstrate a novel function for a FACIT collagen in guiding vertebrate motor axons through intermediate targets.
Collapse
Affiliation(s)
- Jona D Hilario
- The Ohio State University Center for Molecular Neurobiology and Department of Neuroscience, Columbus, OH 43210, USA
| | | | | |
Collapse
|
29
|
Zizer E, Beilke S, Bäuerle T, Schilling K, Möhnle U, Adler G, Fischer KD, Wagner M. Loss of Lsc/p115 protein leads to neuronal hypoplasia in the esophagus and an achalasia-like phenotype in mice. Gastroenterology 2010; 139:1344-54. [PMID: 20600037 DOI: 10.1053/j.gastro.2010.06.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/21/2010] [Accepted: 06/10/2010] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Lsc/p115 originally was described as hematopoietic Ras homologous protein guanine exchange factor (Rho-GEF) regulating leukocyte migration, adhesion, and marginal zone B-cell homeostasis. Here we investigate the expression pattern of lsc/p115 in the gastrointestinal tract and the consequences of lsc/p115 deficiency in lsc/p115-knockout mice. METHODS The phenotype of lsc/p115-deficient mice was analyzed in vivo with small-animal computed tomography scans and esophageal manometry. The morphology and myenteric plexus were evaluated with immunohistochemistry, morphometry, Western blot analyses, and quantitative reverse-transcription polymerase chain reaction. RESULTS lsc/p115 is expressed in the gastrointestinal tract, sparing the segment of the small intestine. Immunohistochemical staining detects lsc/p115 in the muscle layer and the glial fibrillary acidic protein-positive glia in the esophagus. Esophageal manometry uncovers a severe motor dysfunction in lsc/p115-deficient mice. This achalasia-like phenotype is characterized by disturbed peristalsis, hypertension of the lower esophageal sphincter, and impaired relaxation of the lower esophageal sphincter. Lsc/p115-deficient mice develop a progressive dilatation of the esophagus and decrease of the muscle layer. The muscle cell differentiation is not altered in lsc/p115-deficient mice. However, the density of inhibitory and excitatory neurons and glia cells in the myenteric plexus and the muscle layer are reduced in morphometric analyses. This reduced number of glia cells is accompanied by reduced expression of the neurotrophic nerve growth factor. CONCLUSIONS lsc/p115 deficiency results in impaired neuronal innervation and in motor dysfunction recapitulating several aspects of esophageal achalasia. Reduced expression of nerve growth factor and a reduced number of glia cells most likely contribute to this phenotype.
Collapse
Affiliation(s)
- Eugen Zizer
- Department of Internal Medicine I, Center of Internal Medicine, University Ulm, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
|
32
|
Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 2010; 341:126-40. [PMID: 19854168 PMCID: PMC2854274 DOI: 10.1016/j.ydbio.2009.10.026] [Citation(s) in RCA: 944] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.
Collapse
Affiliation(s)
- Tania Rozario
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
33
|
Su J, Gorse K, Ramirez F, Fox MA. Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses. J Comp Neurol 2010; 518:229-53. [PMID: 19937713 DOI: 10.1002/cne.22228] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) molecules contribute to the formation and maintenance of synapses in the mammalian nervous system. We previously discovered a family of nonfibrillar collagens that organize synaptic differentiation at the neuromuscular junction (NMJ). Although many NMJ-organizing cues contribute to central nervous system (CNS) synaptogenesis, whether similar roles for collagens exist at central synapses remained unclear. In the present study we discovered that col19a1, the gene encoding nonfibrillar collagen XIX, is expressed by subsets of hippocampal neurons. Colocalization with the interneuron-specific enzyme glutamate decarboxylase 67 (Gad67), but not other cell-type-specific markers, suggests that hippocampal expression of col19a1 is restricted to interneurons. However, not all hippocampal interneurons express col19a1 mRNA; subsets of neuropeptide Y (NPY)-, somatostatin (Som)-, and calbindin (Calb)-immunoreactive interneurons express col19a1, but those containing parvalbumin (Parv) or calretinin (Calr) do not. To assess whether collagen XIX is required for the normal formation of hippocampal synapses, we examined synaptic morphology and composition in targeted mouse mutants lacking collagen XIX. We show here that subsets of synaptotagmin 2 (Syt2)-containing hippocampal nerve terminals appear malformed in the absence of collagen XIX. The presence of Syt2 in inhibitory hippocampal synapses, the altered distribution of Gad67 in collagen XIX-deficient subiculum, and abnormal levels of gephyrin in collagen XIX-deficient hippocampal extracts all suggest inhibitory synapses are affected by the loss of collagen XIX. Together, these data not only reveal that collagen XIX is expressed by central neurons, but show for the first time that a nonfibrillar collagen is necessary for the formation of hippocampal synapses.
Collapse
Affiliation(s)
- Jianmin Su
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
34
|
|
35
|
Abstract
The collagens represent a family of trimeric extracellular matrix molecules used by cells for structural integrity and other functions. The three alpha chains that form the triple helical part of the molecule are composed of repeating peptide triplets of glycine-X-Y. X and Y can be any amino acid but are often proline and hydroxyproline, respectively. Flanking the triple helical regions (i.e., Col domains) are non-glycine-X-Y regions, termed non-collagenous domains. These frequently contain recognizable peptide modules found in other matrix molecules. Proper tissue function depends on correctly assembled molecular aggregates being incorporated into the matrix. This review highlights some of the structural characteristics of collagen types I-XXVIII.
Collapse
|
36
|
Thatte HS, He XD, Goyal RK. Imaging of nitric oxide in nitrergic neuromuscular neurotransmission in the gut. PLoS One 2009; 4:e4990. [PMID: 19340298 PMCID: PMC2659787 DOI: 10.1371/journal.pone.0004990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/05/2009] [Indexed: 11/29/2022] Open
Abstract
Background Numerous functional studies have shown that nitrergic neurotransmission plays a central role in peristalsis and sphincter relaxation throughout the gut and impaired nitrergic neurotransmission has been implicated in clinical disorders of all parts of the gut. However, the role of nitric oxide (NO) as a neurotransmitter continues to be controversial because: 1) the cellular site of production during neurotransmission is not well established; 2) NO may interacts with other inhibitory neurotransmitter candidates, making it difficult to understand its precise role. Methodology/Principal Findings Imaging NO can help resolve many of the controversies regarding the role of NO in nitrergic neurotransmission. Imaging of NO and its cellular site of production is now possible. NO forms quantifiable fluorescent compound with diaminofluorescein (DAF) and allows imaging of NO with good specificity and sensitivity in living cells. In this report we describe visualization and regulation of NO and calcium (Ca2+) in the myenteric nerve varicosities during neurotransmission using multiphoton microscopy. Our results in mice gastric muscle strips provide visual proof that NO is produced de novo in the nitrergic nerve varicosities upon nonadrenergic noncholinergic (NANC) nerve stimulation. These studies show that NO is a neurotransmitter rather than a mediator. Changes in NO production in response to various pharmacological treatments correlated well with changes in slow inhibitory junction potential of smooth muscles. Conclusions/Significance Dual imaging and electrophysiologic studies provide visual proof that during nitrergic neurotransmission NO is produced in the nerve terminals. Such studies may help define whether NO production or its signaling pathway is responsible for impaired nitrergic neurotransmission in pathological states.
Collapse
Affiliation(s)
- Hemant S. Thatte
- Department of Surgery (Cardiothoracic Division), VA Boston Health Care System and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xue D. He
- Center for Swallowing and Motility Disorders, Departments of Medicine, VA Boston Health Care System and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Raj K. Goyal
- Center for Swallowing and Motility Disorders, Departments of Medicine, VA Boston Health Care System and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Boudko SP, Engel J, Bächinger HP. Trimerization and triple helix stabilization of the collagen XIX NC2 domain. J Biol Chem 2008; 283:34345-51. [PMID: 18845531 DOI: 10.1074/jbc.m806352200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms of chain selection and assembly of fibril-associated collagens with interrupted triple helices (FACITs) must differ from that of fibrillar collagens, since they lack the characteristic C-propeptide. We analyzed two carboxyl-terminal noncollagenous domains, NC2 and NC1, of collagen XIX as potential trimerization units and found that NC2 forms a stable trimer and substantially stabilizes a collagen triple helix attached to either end. In contrast, the NC1 domain requires formation of an adjacent collagen triple helix to form interchain disulfide bridges. The NC2 domain of collagen XIX and probably of other FACITs is responsible for chain selection and trimerization.
Collapse
Affiliation(s)
- Sergei P Boudko
- Research Department, Shriners Hospital for Children, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
38
|
Reiner DJ, Jan TA, Boughter JD, Li CX, Lu L, Williams RW, Waters RS. Genetic analysis of tongue size and taste papillae number and size in recombinant inbred strains of mice. Chem Senses 2008; 33:693-707. [PMID: 18653645 DOI: 10.1093/chemse/bjn025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantitative trait loci (QTLs) analysis has been used to examine natural variation of phenotypes in the mouse somatosensory cortex, hippocampus, cerebellum, and amygdala. QTL analysis has also been utilized to map and identify genes underlying anatomical features such as muscle, organ, and body weights. However, this methodology has not been previously applied to identification of anatomical structures related to gustatory phenotypes. In this study, we used QTL analysis to map and characterize genes underlying tongue size, papillae number, and papillae area. In a set of 43 BXD recombinant inbred (RI) mice (n = 111) and 2 parental strains (C57BL/6J and DBA/2J; n = 7), we measured tongue length, width, and weight. In a subset of 23 BXD RI mice and the parental mice, we measured filiform and fungiform papillae number and fungiform papillae area. Using QTL linkage analysis (through WebQTL), we detected 2 significant and noninteracting QTLs influencing tongue length on chromosomes 5 and 7. We also found a significant QTL on chromosome 19 underlying fungiform papillae area and a suggestive QTL on chromosome 2 linked to fungiform papillae number. From these QTLs, we identified a number of candidate genes within the QTL intervals that include SRY-box containing gene, nebulin-related anchoring protein, and actin-binding LIM protein 1. This study is an important first step in identifying genetic factors underlying tongue size, papillae size, and papillae number using QTL analysis.
Collapse
Affiliation(s)
- David J Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Matsuo N, Tanaka S, Yoshioka H, Koch M, Gordon MK, Ramirez F. Collagen XXIV (Col24a1) gene expression is a specific marker of osteoblast differentiation and bone formation. Connect Tissue Res 2008; 49:68-75. [PMID: 18382892 DOI: 10.1080/03008200801913502] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Collagen XXIV is an ill-characterized fibrillar collagen that is predominantly expressed in the forming skeleton of the mouse embryo. Here we report that the Col24al gene is constitutively transcribed in the trabecular bone and periosteum of the newborn mouse as well. The bone specificity of Col24al was further documented using three well-characterized cell culture models of osteoblast differentiation. These in vitro analyses indicated that Col24al transcription is activated at about the same time as that of the osteocalcin gene, and gradually increases to eventually plateau as osteoblasts begin to deposit a mineralizing matrix. These findings lend further support to the hypothesis that collagen XXIV may be implicated in the formation of a mineralization-competent bone matrix.
Collapse
Affiliation(s)
- Noritaka Matsuo
- Laboratory of Genetics and Organogenesis, Research Division of the Hospital for Special Surgery, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
40
|
Rishniw M, Fisher PW, Doran RM, Meadows E, Klein WH, Kotlikoff MI. Smooth muscle persists in the muscularis externa of developing and adult mouse esophagus. J Muscle Res Cell Motil 2007; 28:153-65. [PMID: 17638088 DOI: 10.1007/s10974-007-9112-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 06/25/2007] [Indexed: 12/26/2022]
Abstract
Following initial patterning as differentiated smooth muscle (SM) cells, the muscularis externa of the murine esophagus is replaced by skeletal muscle, but the mechanism underlying this process is controversial. The hypothesis that committed SM cells transdifferentiate into striated muscle is not consistent with fate mapping studies. Similarly, apoptosis does not fully explain the process. Using immunohistochemical techniques and transgenic mice that express eGFP and Cre-recombinase exclusively in SM, we have identified a population of remnant SM cells that persist throughout the developing and mature murine esophagus. These cells display an atypical phenotype, are not associated with microvasculature, but are often apposed to cKit positive, interstitial cells of Cajal. The absolute length of the SM component of the developing esophagus remains constant during a period when total esophageal length increases 4-fold, resulting in a small maintained distal segment of smooth muscle. Esophageal SM cells fail to express myogenin during development, and striated muscle cell precursors expressing myogenin fail to express specific SM cell markers, indicating that they did not transdifferentiate from SM cells. Moreover, smooth muscle-specific myogenin inactivation has no effect on esophageal skeletal myogenesis. Taken together, our results provide an alternative hypothesis regarding the fate of SM cells in the developing murine esophagus, which does not invoke apoptosis or transdifferentiation.
Collapse
Affiliation(s)
- Mark Rishniw
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, T4 018 VRT, Box 11, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
41
|
Ramont L, Brassart-Pasco S, Thevenard J, Deshorgue A, Venteo L, Laronze JY, Pluot M, Monboisse JC, Maquart FX. The NC1 domain of type XIX collagen inhibitsin vivomelanoma growth. Mol Cancer Ther 2007; 6:506-14. [PMID: 17308049 DOI: 10.1158/1535-7163.mct-06-0207] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Type XIX collagen is a minor collagen that localizes to basement membrane zones, together with types IV, XV, and XVIII collagens. Because several NC1 COOH-terminal domains of other chains from basement membrane collagens were reported to exhibit antitumor activity, we decided to study the effects of the NC1(XIX) collagen domain on tumor progression using an experimental in vivo model of mouse melanoma. We observed a 70% reduction in tumor volume in NC1(XIX)-treated mice compared with the corresponding controls. Histologic examination of the tumors showed a strong decrease in tumor vascularization in treated mice. In vitro, NC1(XIX) inhibited the migrating capacity of tumor cells and their capacity to invade Matrigel. It also inhibited the capacity of human microvascular endothelial cells to form pseudotubes in Matrigel. This effect was accompanied by a strong inhibition of membrane type-1 matrix metalloproteinase (matrix metalloproteinase-14) and vascular endothelial growth factor expression. Collectively, our data indicate that the NC1 domain of type XIX collagen exerts antitumor activity. This effect is mediated by a strong inhibition of the invasive capacities of tumor cells and antiangiogenic effects. NC1(XIX) should now be considered as a new member of the basement membrane collagen-derived matrikine family with antitumor and antiangiogenic activity.
Collapse
Affiliation(s)
- Laurent Ramont
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Faculté de Medecine, CNRS-UMR 6198, Institut Fédératif de Recherche 53 Biomolecules, Université de Reims Champagne-Ardenne, 51 rue Cognacq Jay, F-51095 Reims Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Aszódi A, Legate KR, Nakchbandi I, Fässler R. What mouse mutants teach us about extracellular matrix function. Annu Rev Cell Dev Biol 2006; 22:591-621. [PMID: 16824013 DOI: 10.1146/annurev.cellbio.22.010305.104258] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For many years the extracellular matrix was viewed as a benign scaffold for arranging cells within connective tissues, but it is now being redefined as a dynamic, mobile, and flexible key player in defining cellular behavior. Gene targeting, transgene expression, and spontaneous mutations of extracellular matrix proteins in mice have greatly accelerated our mechanistic view of the structural and instructive functions of the extracellular matrix in developmental and regenerative processes. This review summarizes the phenotypes of genetic mouse models carrying mutations in extracellular matrix proteins, with specific emphasis on recent advances. The application of reverse genetics has demonstrated the multifunctionality of matrix proteins in a biological context and, in addition, has brought a novel perspective to the understanding of human pathologies.
Collapse
Affiliation(s)
- A Aszódi
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
43
|
Arya R, Demerath E, Jenkinson CP, Göring HHH, Puppala S, Farook V, Fowler S, Schneider J, Granato R, Resendez RG, Dyer TD, Cole SA, Almasy L, Comuzzie AG, Siervogel RM, Bradshaw B, DeFronzo RA, MacCluer J, Stern MP, Towne B, Blangero J, Duggirala R. A quantitative trait locus (QTL) on chromosome 6q influences birth weight in two independent family studies. Hum Mol Genet 2006; 15:1569-79. [PMID: 16611675 DOI: 10.1093/hmg/ddl076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Low birth weight is an important cause of infant mortality and morbidity worldwide. Birth weight has been shown to be inversely correlated with adult complex diseases such as obesity, type-2 diabetes and cardiovascular disease. However, little is known about the genetic factors influencing variation in birth weight and its association with diseases that occur in later life. We, therefore, have performed a genome-wide search to identify genes that influence birth weight in Mexican-Americans using the data from the San Antonio Family Birth Weight Study participants (n=840). Heritability of birth weight was estimated as 72.0+/-8.4% (P<0.0001) after adjusting for the effects of sex and term. Multipoint linkage analysis yielded the strongest evidence for linkage of birth weight (LOD=3.7) between the markers D6S1053 and D6S1031 on chromosome 6q. This finding has been replicated (LOD=2.3) in an independent European-American population. Together, these findings provide substantial evidence (LOD(adj)=4.3) for a major locus influencing variation in birth weight. This region harbors positional candidate genes such as chorionic gonadotropin, alpha chain; collagen, type XIX, alpha-1; and protein-tyrosine phosphatase, type 4A, 1 that may play a role in fetal growth and development. In addition, potential evidence for linkage (LOD>or=1.2) was found on chromosomes 1q, 2q, 3q, 4q, 9p, 19p and 19q with LODs ranging from 1.3 to 2.7. Thus, we have found strong evidence for a major gene on chromosome 6q that influences variation in birth weight in both Mexican- and European-Americans.
Collapse
Affiliation(s)
- Rector Arya
- Division of Clinical Epidemiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ricard-Blum S, Ruggiero F. The collagen superfamily: from the extracellular matrix to the cell membrane. ACTA ACUST UNITED AC 2005; 53:430-42. [PMID: 16085121 DOI: 10.1016/j.patbio.2004.12.024] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 12/10/2004] [Indexed: 12/17/2022]
Abstract
The collagen superfamily is highly complex and shows a remarkable diversity in molecular and supramolecular organization, tissue distribution and function. However, all its members share a common structural feature, the presence of at least one triple-helical domain, which corresponds to a number of (Gly-X-Y)n repeats (X being frequently proline and Y hydroxyproline) in the amino acid sequence. Several sub-families have been determined according to sequence homologies and to similarities in the structural organization and supramolecular assembly. In the present review, we focus on the newly described fibrillar collagens, fibrillar-associated collagens with interrupted triple helix, membrane collagens and multiplexins. Recent advances in the characterization of proteins containing triple-helical domains but not referred to as collagens are also discussed.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS UCBL, IFR128 Biosciences Gerland, Lyon, France.
| | | |
Collapse
|