1
|
Batista IA, Machado JC, Melo SA. Advances in exosomes utilization for clinical applications in cancer. Trends Cancer 2024; 10:947-968. [PMID: 39168775 DOI: 10.1016/j.trecan.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Exosomes are regarded as having transformative potential for clinical applications. Exosome-based liquid biopsies offer a noninvasive method for early cancer detection and real-time disease monitoring. Clinical trials are underway to validate the efficacy of exosomal biomarkers for enhancing diagnostic accuracy and predicting treatment responses. Additionally, engineered exosomes are being developed as targeted drug delivery systems that can navigate the bloodstream to deliver therapeutic agents to tumor sites, thus enhancing treatment efficacy while minimizing systemic toxicity. Exosomes also exhibit immunomodulatory properties, which are being harnessed to boost antitumor immune responses. In this review, we detail the latest advances in clinical trials and research studies, underscoring the potential of exosomes to revolutionize cancer care.
Collapse
Affiliation(s)
- Inês A Batista
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José C Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal
| | - Sonia A Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal.
| |
Collapse
|
2
|
Mehdi SMM, Szczesniak MW, Ludwików A. The Bro1-like domain-containing protein, AtBro1, modulates growth and abiotic stress responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1157435. [PMID: 37251780 PMCID: PMC10213323 DOI: 10.3389/fpls.2023.1157435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Abscisic acid (ABA) affects plant physiology by altering gene expression, enabling plants to adapt to a wide range of environments. Plants have evolved protective mechanisms to allow seed germination in harsh conditions. Here, we explore a subset of these mechanisms involving the AtBro1 gene, which encodes one of a small family of poorly characterised Bro1-like domain-containing proteins, in Arabidopsis thaliana plants subjected to multiple abiotic stresses. AtBro1 transcripts were upregulated by salt, ABA and mannitol stress, while AtBro1-overexpression lines demonstrated robust tolerance to drought and salt stress. Furthermore, we found that ABA elicits stress-resistance responses in loss-of-function bro1-1 mutant plants and AtBro1 regulates drought resistance in Arabidopsis. When the AtBro1 promoter was fused to the β-glucuronidase (GUS) gene and introduced into plants, GUS was expressed mainly in rosette leaves and floral clusters, especially in anthers. Using a construct expressing an AtBro1-GFP fusion protein, AtBro1 was found to be localized in the plasma membrane in Arabidopsis protoplasts. A broad RNA-sequencing analysis revealed specific quantitative differences in the early transcriptional responses to ABA treatment between wild-type and loss-of-function bro1-1 mutant plants, suggesting that ABA stimulates stress-resistance responses via AtBro1. Additionally, transcripts levels of MOP9.5, MRD1, HEI10, and MIOX4 were altered in bro1-1 plants exposed to different stress conditions. Collectively, our results show that AtBro1 plays a significant role in the regulation of the plant transcriptional response to ABA and the induction of resistance responses to abiotic stress.
Collapse
Affiliation(s)
- Syed Muhammad Muntazir Mehdi
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Michal Wojciech Szczesniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Agnieszka Ludwików
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
3
|
The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int J Mol Sci 2023; 24:ijms24021337. [PMID: 36674857 PMCID: PMC9865891 DOI: 10.3390/ijms24021337] [Citation(s) in RCA: 248] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Exosomes are a subtype of membrane-contained vesicles 40-200 nm in diameter that are secreted by cells into their surroundings. By transporting proteins, lipids, mRNA, miRNA, lncRNA, and DNA, exosomes are able to perform such vital functions as maintaining cellular homeostasis, removing cellular debris, and facilitating intercellular and interorgan communication. Exosomes travel in all body fluids and deliver their molecular messages in autocrine, paracrine as well as endocrine manners. In recent years, there has been an increased interest in studying exosomes as diagnostic markers and therapeutic targets, since in many disease conditions this machinery becomes dysregulated or hijacked by pathological processes. Additionally, delivery of exosomes and exosomal miRNA has already been shown to improve systemic metabolism and inhibit progression of cancer development in mice. However, the subcellular machinery of exosomes, including their biogenesis, release and uptake, remains largely unknown. This review will bring molecular details of these processes up to date with the goal of expanding the knowledge basis for designing impactful exosome experiments in the future.
Collapse
|
4
|
Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int J Mol Sci 2022; 23:ijms232315317. [PMID: 36499644 PMCID: PMC9735581 DOI: 10.3390/ijms232315317] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ali Hamraghani
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sophie Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| | - Behzad Yeganeh
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| |
Collapse
|
5
|
Tseng CC, Piper RC, Katzmann DJ. Bro1 family proteins harmonize cargo sorting with vesicle formation. Bioessays 2022; 44:e2100276. [PMID: 35770783 PMCID: PMC9575758 DOI: 10.1002/bies.202100276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
The Endosomal Sorting Complexes Required for Transport (ESCRTs) drive membrane remodeling in a variety of cellular processes that include the formation of endosomal intralumenal vesicles (ILVs) during multivesicular body (MVB) biogenesis. During MVB sorting, ESCRTs recognize ubiquitin (Ub) attached to membrane protein cargo and execute ILV formation by controlling the activities of ESCRT-III polymers regulated by the AAA-ATPase Vps4. Exactly how these events are coordinated to ensure proper cargo loading into ILVs remains unclear. Here we discuss recent work documenting the ability of Bro1, an ESCRT-associated Ub-binding protein, to coordinate ESCRT-III and Vps4-dependent ILV biogenesis with upstream events such as cargo recognition.
Collapse
Affiliation(s)
- Chun-Che Tseng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Buysse D, West M, Leih M, Odorizzi G. Bro1 binds the Vps20 subunit of ESCRT-III and promotes ESCRT-III regulation by Doa4. Traffic 2022; 23:109-119. [PMID: 34908216 PMCID: PMC8792227 DOI: 10.1111/tra.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
The budding of intralumenal vesicles (ILVs) at endosomes requires membrane scission by the ESCRT-III complex. This step is negatively regulated in yeast by Doa4, the ubiquitin hydrolase that deubiquitinates transmembrane proteins sorted as cargoes into ILVs. Doa4 acts non-enzymatically to inhibit ESCRT-III membrane scission activity by directly binding the Snf7 subunit of ESCRT-III. This interaction inhibits the remodeling/disassembly of Snf7 polymers required for the ILV membrane scission reaction. Thus, Doa4 is thought to have a structural role that delays ILV budding while it also functions enzymatically to deubiquitinate ILV cargoes. In this study, we show that Doa4 binding to Snf7 in vivo is antagonized by another ESCRT-III subunit, Vps20. Doa4 is restricted from interacting with Snf7 in yeast expressing a mutant Vps20 allele that constitutively binds Doa4. This inhibitory effect of Vps20 is suppressed by overexpression of another ESCRT-III-associated protein, Bro1. We show that Bro1 binds directly to Vps20, suggesting that Bro1 has a central role in relieving the antagonistic relationship that Vps20 has toward Doa4.
Collapse
Affiliation(s)
- Dalton Buysse
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Matt West
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Mitchell Leih
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA,Author for correspondence ()
| |
Collapse
|
7
|
Agaoua A, Bendahmane A, Moquet F, Dogimont C. Membrane Trafficking Proteins: A New Target to Identify Resistance to Viruses in Plants. PLANTS 2021; 10:plants10102139. [PMID: 34685948 PMCID: PMC8541145 DOI: 10.3390/plants10102139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Replication cycles from most simple-stranded positive RNA viruses infecting plants involve endomembrane deformations. Recent published data revealed several interactions between viral proteins and plant proteins associated with vesicle formation and movement. These plant proteins belong to the COPI/II, SNARE, clathrin and ESCRT endomembrane trafficking mechanisms. In a few cases, variations of these plant proteins leading to virus resistance have been identified. In this review, we summarize all known interactions between these plant cell mechanisms and viruses and highlight strategies allowing fast identification of variant alleles for membrane-associated proteins.
Collapse
Affiliation(s)
- Aimeric Agaoua
- INRAE Génétique et Amélioration des Fruits et Légumes (GAFL), 84140 Montfavet, France;
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences-Paris-Saclay (IPS2), Université Paris-Saclay, INRAE, CNRS, Univ Evry, 91405 Orsay, France;
| | | | - Catherine Dogimont
- INRAE Génétique et Amélioration des Fruits et Légumes (GAFL), 84140 Montfavet, France;
- Correspondence:
| |
Collapse
|
8
|
Wilson ZN, Buysse D, West M, Ahrens D, Odorizzi G. Vacuolar H+-ATPase dysfunction rescues intralumenal vesicle cargo sorting in yeast lacking PI(3,5)P2 or Doa4. J Cell Sci 2021; 134:jcs258459. [PMID: 34342352 PMCID: PMC8353521 DOI: 10.1242/jcs.258459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Endosomes undergo a maturation process highlighted by a reduction in lumenal pH, a conversion of surface markers that prime endosome-lysosome fusion and the sequestration of ubiquitylated transmembrane protein cargos within intralumenal vesicles (ILVs). We investigated ILV cargo sorting in mutant strains of the budding yeast Saccharomyces cerevisiae that are deficient for either the lysosomal/vacuolar signaling lipid PI(3,5)P2 or the Doa4 ubiquitin hydrolase that deubiquitylates ILV cargos. Disruption of PI(3,5)P2 synthesis or Doa4 function causes a defect in sorting of a subset of ILV cargos. We show that these cargo-sorting defects are suppressed by mutations that disrupt Vph1, a subunit of vacuolar H+-ATPase (V-ATPase) complexes that acidify late endosomes and vacuoles. We further show that Vph1 dysfunction increases endosome abundance, and disrupts vacuolar localization of Ypt7 and Vps41, two crucial mediators of endosome-vacuole fusion. Because V-ATPase inhibition attenuates this fusion and rescues the ILV cargo-sorting defects in yeast that lack PI(3,5)P2 or Doa4 activity, our results suggest that the V-ATPase has a role in coordinating ILV cargo sorting with the membrane fusion machinery. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | | | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
9
|
Tseng CC, Dean S, Davies BA, Azmi IF, Pashkova N, Payne JA, Staffenhagen J, West M, Piper RC, Odorizzi G, Katzmann DJ. Bro1 stimulates Vps4 to promote intralumenal vesicle formation during multivesicular body biogenesis. J Cell Biol 2021; 220:212434. [PMID: 34160559 PMCID: PMC8240856 DOI: 10.1083/jcb.202102070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 01/20/2023] Open
Abstract
Endosomal sorting complexes required for transport (ESCRT-0, -I, -II, -III) execute cargo sorting and intralumenal vesicle (ILV) formation during conversion of endosomes to multivesicular bodies (MVBs). The AAA-ATPase Vps4 regulates the ESCRT-III polymer to facilitate membrane remodeling and ILV scission during MVB biogenesis. Here, we show that the conserved V domain of ESCRT-associated protein Bro1 (the yeast homologue of mammalian proteins ALIX and HD-PTP) directly stimulates Vps4. This activity is required for MVB cargo sorting. Furthermore, the Bro1 V domain alone supports Vps4/ESCRT–driven ILV formation in vivo without efficient MVB cargo sorting. These results reveal a novel activity of the V domains of Bro1 homologues in licensing ESCRT-III–dependent ILV formation and suggest a role in coordinating cargo sorting with membrane remodeling during MVB sorting. Moreover, ubiquitin binding enhances V domain stimulation of Vps4 to promote ILV formation via the Bro1–Vps4–ESCRT-III axis, uncovering a novel role for ubiquitin during MVB biogenesis in addition to facilitating cargo recognition.
Collapse
Affiliation(s)
- Chun-Che Tseng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Shirley Dean
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Brian A Davies
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Ishara F Azmi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Natalya Pashkova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Johanna A Payne
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | | | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| |
Collapse
|
10
|
Liao PC, Wolken DMA, Serrano E, Srivastava P, Pon LA. Mitochondria-Associated Degradation Pathway (MAD) Function beyond the Outer Membrane. Cell Rep 2021; 32:107902. [PMID: 32668258 PMCID: PMC7391283 DOI: 10.1016/j.celrep.2020.107902] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/07/2020] [Accepted: 06/23/2020] [Indexed: 12/01/2022] Open
Abstract
The mitochondria-associated degradation pathway (MAD) mediates ubiquitination and degradation of mitochondrial outer membrane (MOM) proteins by the proteasome. We find that the MAD, but not other quality-control pathways including macroautophagy, mitophagy, or mitochondrial chaperones and proteases, is critical for yeast cellular fitness under conditions of paraquat (PQ)-induced oxidative stress in mitochondria. Specifically, inhibition of the MAD increases PQ-induced defects in growth and mitochondrial quality and decreases chronological lifespan. We use mass spectrometry analysis to identify possible MAD substrates as mitochondrial proteins that exhibit increased ubiquitination in response to PQ treatment and inhibition of the MAD. We identify candidate substrates in the mitochondrial matrix and inner membrane and confirm that two matrix proteins are MAD substrates. Our studies reveal a broader function for the MAD in mitochondrial protein surveillance beyond the MOM and a major role for the MAD in cellular and mitochondrial fitness in response to chronic, low-level oxidative stress in mitochondria.
Collapse
Affiliation(s)
- Pin-Chao Liao
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | - Edith Serrano
- Department of Chemistry, Barnard College, Columbia University, New York, NY 10027, USA
| | - Pallavi Srivastava
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
11
|
Picca A, Guerra F, Calvani R, Coelho-Júnior HJ, Landi F, Bernabei R, Romano R, Bucci C, Marzetti E. Extracellular Vesicles and Damage-Associated Molecular Patterns: A Pandora's Box in Health and Disease. Front Immunol 2020; 11:601740. [PMID: 33304353 PMCID: PMC7701251 DOI: 10.3389/fimmu.2020.601740] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Sterile inflammation develops as part of an innate immunity response to molecules released upon tissue injury and collectively indicated as damage-associated molecular patterns (DAMPs). While coordinating the clearance of potential harmful stimuli, promotion of tissue repair, and restoration of tissue homeostasis, a hyper-activation of such an inflammatory response may be detrimental. The complex regulatory pathways modulating DAMPs generation and trafficking are actively investigated for their potential to provide relevant insights into physiological and pathological conditions. Abnormal circulating extracellular vesicles (EVs) stemming from altered endosomal-lysosomal system have also been reported in several age-related conditions, including cancer and neurodegeneration, and indicated as a promising route for therapeutic purposes. Along this pathway, mitochondria may dispose altered components to preserve organelle homeostasis. However, whether a common thread exists between DAMPs and EVs generation is yet to be clarified. A deeper understanding of the highly complex, dynamic, and variable intracellular and extracellular trafficking of DAMPs and EVs, including those of mitochondrial origin, is needed to unveil relevant pathogenic pathways and novel targets for drug development. Herein, we describe the mechanisms of generation of EVs and mitochondrial-derived vesicles along the endocytic pathway and discuss the involvement of the endosomal-lysosomal in cancer and neurodegeneration (i.e., Alzheimer's and Parkinson's disease).
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | | | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
12
|
Liu J, Li J, Gao N, Zhang X, Zhao G, Song X. Identification and characterization of a protein Bro1 essential for sophorolipids synthesis in Starmerella bombicola. J Ind Microbiol Biotechnol 2020; 47:437-448. [PMID: 32377991 DOI: 10.1007/s10295-020-02272-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/23/2020] [Indexed: 01/27/2023]
Abstract
Sophorolipids (SLs) are surface-active molecules produced by the non-pathogenic yeast Starmerella bombicola CGMCC 1576. Several genes involved in the synthesis of SLs have been identified. However, the regulation mechanism of the synthesis pathway for SLs has not been investigated. We recently discovered a protein in S. bombicola, which is structurally related to Yarrowia lipolytica YlBro1. To identify the function of the protein SbBro1 in S. bombicola, the deletion, overexpression, and complementary mutant strains were constructed. We found that the deletion mutant no longer produced SLs. Transcriptome analysis indicated that the expression levels of the key enzyme genes of SLs biosynthetic pathway were significantly down-regulated in the Δbro1, especially the expression level of cyp52m1 encoding the first rate-limiting enzyme in SL synthesis pathway was down-regulated 13-folds and the expression of fatty acid β-oxidation-related enzymes was also down-regulated. This study can give insight into the regulation of SL synthesis.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Jiashan Li
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Na Gao
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Xinyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Guoqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China. .,National Glycoengineering Research Center, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Buysse D, Pfitzner AK, West M, Roux A, Odorizzi G. The ubiquitin hydrolase Doa4 directly binds Snf7 to inhibit recruitment of ESCRT-III remodeling factors in S. cerevisiae. J Cell Sci 2020; 133:jcs.241455. [PMID: 32184262 DOI: 10.1242/jcs.241455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/02/2020] [Indexed: 12/21/2022] Open
Abstract
The ESCRT-III protein complex executes reverse-topology membrane scission. The scission mechanism is unclear but is linked to remodeling of ESCRT-III complexes at the membrane surface. At endosomes, ESCRT-III mediates the budding of intralumenal vesicles (ILVs). In Saccharomyces cerevisiae, ESCRT-III activity at endosomes is regulated through an unknown mechanism by Doa4, an ubiquitin hydrolase that deubiquitylates transmembrane proteins sorted into ILVs. We report that the non-catalytic N-terminus of Doa4 binds Snf7, the predominant ESCRT-III subunit. Through this interaction, Doa4 overexpression alters Snf7 assembly status and inhibits ILV membrane scission. In vitro, the Doa4 N-terminus inhibits association of Snf7 with Vps2, which functions with Vps24 to arrest Snf7 polymerization and remodel Snf7 polymer structure. In vivo, Doa4 overexpression inhibits Snf7 interaction with Vps2 and also with the ATPase Vps4, which is recruited by Vps2 and Vps24 to remodel ESCRT-III complexes by catalyzing subunit turnover. Our data suggest a mechanism by which the deubiquitylation machinery regulates ILV biogenesis by interfering with ESCRT-III remodeling.
Collapse
Affiliation(s)
- Dalton Buysse
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland.,Swiss National Centre for Competence in Research Program Chemical Biology, Geneva CH-1211, Switzerland
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
14
|
Que Y, Xu Z, Wang C, Lv W, Yue X, Xu L, Tang S, Dai H, Wang Z. The putative deubiquitinating enzyme MoUbp4 is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Curr Genet 2019; 66:561-576. [PMID: 31872271 DOI: 10.1007/s00294-019-01049-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022]
Abstract
Ubiquitination is a key regulatory mechanism that affects numerous important biological processes, including cellular differentiation and pathogenesis in eukaryotic cells. Attachment of proteins to ubiquitin is reversed by specialized proteases, deubiquitinating enzymes (DUBs), which are essential for precursor processing, maintaining ubiquitin homeostasis and promoting protein degradation by recycling ubiquitins. Here, we report the identification of a novel non-pathogenic T-DNA-tagged mutant T612 of Magnaporthe oryzae with a single insertion in the second exon of MoUBP4, which encodes a putative ubiquitin carboxyl-terminal hydrolase. Targeted gene deletion mutants of MoUBP4 are significantly reduced in mycelial growth, conidiation, and increased in tolerance to SDS and CR (Congo red) cell-wall damage. The ΔMoubp4 mutants are blocked in penetration and invasive growth, which results in the loss of pathogenicity. Many conidia produced by the ΔMoubp4 mutants are unable to form appressoria and mobilization and degradation of glycogen and lipid droplets are significantly delayed. Moreover, immunohybridization analysis revealed that total protein ubiquitination levels of the null mutants were significantly increased, indicating that MoUbp4 functions as a deubiquitination enzyme. Taken together, we conclude that MoUbp4 is required for deubiquitination, infection-related morphogenesis and pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Yawei Que
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhe Xu
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Chunyan Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Wuyun Lv
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaofeng Yue
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lin Xu
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shuai Tang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Han Dai
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhengyi Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
15
|
García-León M, Cuyas L, El-Moneim DA, Rodriguez L, Belda-Palazón B, Sanchez-Quant E, Fernández Y, Roux B, Zamarreño ÁM, García-Mina JM, Nussaume L, Rodriguez PL, Paz-Ares J, Leonhardt N, Rubio V. Arabidopsis ALIX Regulates Stomatal Aperture and Turnover of Abscisic Acid Receptors. THE PLANT CELL 2019; 31:2411-2429. [PMID: 31363038 PMCID: PMC6790096 DOI: 10.1105/tpc.19.00399] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/03/2019] [Accepted: 07/26/2019] [Indexed: 05/03/2023]
Abstract
The plant endosomal trafficking pathway controls the abundance of membrane-associated soluble proteins, as shown for abscisic acid (ABA) receptors of the PYRABACTIN RESISTANCE1/PYR1-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORS (PYR/PYL/RCAR) family. ABA receptor targeting for vacuolar degradation occurs through the late endosome route and depends on FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING1 (FYVE1) and VACUOLAR PROTEIN SORTING23A (VPS23A), components of the ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT-I (ESCRT-I) complexes. FYVE1 and VPS23A interact with ALG-2 INTERACTING PROTEIN-X (ALIX), an ESCRT-III-associated protein, although the functional relevance of such interactions and their consequences in cargo sorting are unknown. In this study we show that Arabidopsis (Arabidopsis thaliana) ALIX directly binds to ABA receptors in late endosomes, promoting their degradation. Impaired ALIX function leads to altered endosomal localization and increased accumulation of ABA receptors. In line with this activity, partial loss-of-function alix-1 mutants display ABA hypersensitivity during growth and stomatal closure, unveiling a role for the ESCRT machinery in the control of water loss through stomata. ABA-hypersensitive responses are suppressed in alix-1 plants impaired in PYR/PYL/RCAR activity, in accordance with ALIX affecting ABA responses primarily by controlling ABA receptor stability. ALIX-1 mutant protein displays reduced interaction with VPS23A and ABA receptors, providing a molecular basis for ABA hypersensitivity in alix-1 mutants. Our findings unveil a negative feedback mechanism triggered by ABA that acts via ALIX to control the accumulation of specific PYR/PYL/RCAR receptors.
Collapse
Affiliation(s)
| | - Laura Cuyas
- Centro Nacional de Biotecnología, 28049 Madrid, Spain
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, BIAM, UMR7265, SAVE, Saint Paul-Lez-Durance, France
- Centre Mondial de l'Innovation, Groupe Roullier, Saint-Malo, France
| | - Diaa Abd El-Moneim
- Centro Nacional de Biotecnología, 28049 Madrid, Spain
- Department of Plant Production, Genetic Branch, Faculty of Environmental and Agricultural Sciences, Arish University, North Sinai, Egypt
| | - Lesia Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain
| | | | | | - Brice Roux
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, BIAM, UMR7265, SAVE, Saint Paul-Lez-Durance, France
| | - Ángel María Zamarreño
- Department of Environmental Biology, Agricultural Chemistry and Biology Group-CMI Roullier, Faculty of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - José María García-Mina
- Department of Environmental Biology, Agricultural Chemistry and Biology Group-CMI Roullier, Faculty of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Laurent Nussaume
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, BIAM, UMR7265, SAVE, Saint Paul-Lez-Durance, France
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain
| | | | - Nathalie Leonhardt
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, BIAM, UMR7265, SAVE, Saint Paul-Lez-Durance, France
| | - Vicente Rubio
- Centro Nacional de Biotecnología, 28049 Madrid, Spain
| |
Collapse
|
16
|
Mosesso N, Nagel MK, Isono E. Ubiquitin recognition in endocytic trafficking - with or without ESCRT-0. J Cell Sci 2019; 132:132/16/jcs232868. [PMID: 31416855 DOI: 10.1242/jcs.232868] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability to sense and adapt to the constantly changing environment is important for all organisms. Cell surface receptors and transporters are key for the fast response to extracellular stimuli and, thus, their abundance on the plasma membrane has to be strictly controlled. Heteromeric endosomal sorting complexes required for transport (ESCRTs) are responsible for mediating the post-translational degradation of endocytosed plasma membrane proteins in eukaryotes and are essential both in animals and plants. ESCRTs bind and sort ubiquitylated cargoes for vacuolar degradation. Although many components that comprise the multi-subunit ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III complexes are conserved in eukaryotes, plant and animal ESCRTs have diverged during the course of evolution. Homologues of ESCRT-0, which recognises ubiquitylated cargo, have emerged in metazoan and fungi but are not found in plants. Instead, the Arabidopsis genome encodes plant-specific ubiquitin adaptors and a greater number of target of Myb protein 1 (TOM1) homologues than in mammals. In this Review, we summarise and discuss recent findings on ubiquitin-binding proteins in Arabidopsis that could have equivalent functions to ESCRT-0. We further hypothesise that SH3 domain-containing proteins might serve as membrane curvature-sensing endophilin and amphiphysin homologues during plant endocytosis.
Collapse
Affiliation(s)
- Niccolò Mosesso
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | | | - Erika Isono
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
17
|
Ahmed I, Akram Z, Iqbal HMN, Munn AL. The regulation of Endosomal Sorting Complex Required for Transport and accessory proteins in multivesicular body sorting and enveloped viral budding - An overview. Int J Biol Macromol 2019; 127:1-11. [PMID: 30615963 DOI: 10.1016/j.ijbiomac.2019.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
Abstract
ESCRT (Endosomal Sorting Complex Required for Transport) machinery drives different cellular processes such as endosomal sorting, organelle biogenesis, vesicular trafficking, maintenance of plasma membrane integrity, membrane fission during cytokinesis and enveloped virus budding. The normal cycle of assembly and disassembly of some ESCRT complexes at the membrane requires the AAA-ATPase vacuolar protein sorting 4 (Vps4p). A number of ESCRT proteins are hijacked by clinically significant enveloped viruses including Ebola, and Human Immunodeficiency Virus (HIV) to enable enveloped virus budding and Vps4p provides energy for the disassembly/recycling of these ESCRT proteins. Several years ago, the failure of the terminal budding process of HIV following Vps4 protein inhibition was published; although at that time a detailed understanding of the molecular players was missing. However, later it was acknowledged that the ESCRT machinery has a role in enveloped virus budding from cells due to its role in the multivesicular body (MVB) sorting pathway. The MVB sorting pathway facilitates several cellular activities in uninfected cells, such as the down-regulation of signaling through cell surface receptors as well as the process of viral budding from infected host cells. In this review, we focus on summarising the functional organisation of ESCRT proteins at the membrane and the role of ESCRT machinery and Vps4p during MVB sorting and enveloped viral budding.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia.
| | - Zain Akram
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Alan L Munn
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia.
| |
Collapse
|
18
|
Endosomal trafficking of yeast membrane proteins. Biochem Soc Trans 2018; 46:1551-1558. [PMID: 30381337 DOI: 10.1042/bst20180258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/01/2018] [Accepted: 09/14/2018] [Indexed: 01/19/2023]
Abstract
Various membrane trafficking pathways transport molecules through the endosomal system of eukaryotic cells, where trafficking decisions control the localisation and activity of a diverse repertoire of membrane protein cargoes. The budding yeast Saccharomyces cerevisiae has been used to discover and define many mechanisms that regulate conserved features of endosomal trafficking. Internalised surface membrane proteins first localise to endosomes before sorting to other compartments. Ubiquitination of endosomal membrane proteins is a signal for their degradation. Ubiquitinated cargoes are recognised by the endosomal sorting complex required for transport (ESCRT) apparatus, which mediate sorting through the multivesicular body pathway to the lysosome for degradation. Proteins that are not destined for degradation can be recycled to other intracellular compartments, such as the Golgi and the plasma membrane. In this review, we discuss recent developments elucidating the mechanisms that drive membrane protein degradation and recycling pathways in yeast.
Collapse
|
19
|
Mapa CE, Arsenault HE, Conti MM, Poti KE, Benanti JA. A balance of deubiquitinating enzymes controls cell cycle entry. Mol Biol Cell 2018; 29:2821-2834. [PMID: 30207830 PMCID: PMC6249862 DOI: 10.1091/mbc.e18-07-0425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein degradation during the cell cycle is controlled by the opposing activities of ubiquitin ligases and deubiquitinating enzymes (DUBs). Although the functions of ubiquitin ligases in the cell cycle have been studied extensively, the roles of DUBs in this process are less well understood. Here, we used an overexpression screen to examine the specificities of each of the 21 DUBs in budding yeast for 37 cell cycle-regulated proteins. We find that DUBs up-regulate specific subsets of proteins, with five DUBs regulating the greatest number of targets. Overexpression of Ubp10 had the largest effect, stabilizing 15 targets and delaying cells in mitosis. Importantly, UBP10 deletion decreased the stability of the cell cycle regulator Dbf4, delayed the G1/S transition, and slowed proliferation. Remarkably, deletion of UBP10 together with deletion of four additional DUBs restored proliferation to near-wild-type levels. Among this group, deletion of the proteasome-associated DUB Ubp6 alone reversed the G1/S delay and restored the stability of Ubp10 targets in ubp10Δ cells. Similarly, deletion of UBP14, another DUB that promotes proteasomal activity, rescued the proliferation defect in ubp10Δ cells. Our results suggest that DUBs function through a complex genetic network in which their activities are coordinated to facilitate accurate cell cycle progression.
Collapse
Affiliation(s)
- Claudine E Mapa
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Heather E Arsenault
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michelle M Conti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Kristin E Poti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jennifer A Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
20
|
Frankel EB, Audhya A. ESCRT-dependent cargo sorting at multivesicular endosomes. Semin Cell Dev Biol 2018; 74:4-10. [PMID: 28797838 PMCID: PMC5803488 DOI: 10.1016/j.semcdb.2017.08.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 01/26/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of five multi-subunit protein complexes, which act cooperatively at specialized endosomes to facilitate the movement of specific cargoes from the limiting membrane into vesicles that bud into the endosome lumen. Over the past decade, numerous proteins, lipids, and RNAs have been shown to be incorporated into intralumenal vesicles (ILVs), but the mechanisms by which these unique cargoes are captured are only now becoming better understood. Here, we discuss the potential roles that the ESCRT machinery plays during cargo sorting at multivesicular endosomes (MVEs).
Collapse
Affiliation(s)
- E B Frankel
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI, 53706, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI, 53706, USA.
| |
Collapse
|
21
|
|
22
|
Lee S, Tumolo JM, Ehlinger AC, Jernigan KK, Qualls-Histed SJ, Hsu PC, McDonald WH, Chazin WJ, MacGurn JA. Ubiquitin turnover and endocytic trafficking in yeast are regulated by Ser57 phosphorylation of ubiquitin. eLife 2017; 6:29176. [PMID: 29130884 PMCID: PMC5706963 DOI: 10.7554/elife.29176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/10/2017] [Indexed: 11/30/2022] Open
Abstract
Despite its central role in protein degradation little is known about the molecular mechanisms that sense, maintain, and regulate steady state concentration of ubiquitin in the cell. Here, we describe a novel mechanism for regulation of ubiquitin homeostasis that is mediated by phosphorylation of ubiquitin at the Ser57 position. We find that loss of Ppz phosphatase activity leads to defects in ubiquitin homeostasis that are at least partially attributable to elevated levels of Ser57 phosphorylated ubiquitin. Phosphomimetic mutation at the Ser57 position of ubiquitin conferred increased rates of endocytic trafficking and ubiquitin turnover. These phenotypes are associated with bypass of recognition by endosome-localized deubiquitylases - including Doa4 which is critical for regulation of ubiquitin recycling. Thus, ubiquitin homeostasis is significantly impacted by the rate of ubiquitin flux through the endocytic pathway and by signaling pathways that converge on ubiquitin itself to determine whether it is recycled or degraded in the vacuole.
Collapse
Affiliation(s)
- Sora Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Jessica M Tumolo
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Aaron C Ehlinger
- Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Kristin K Jernigan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Susan J Qualls-Histed
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Pi-Chiang Hsu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University, Nashville, United States.,Mass Spectrometry Research Center, Vanderbilt University, Nashville, United States
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
23
|
Johnson N, West M, Odorizzi G. Regulation of yeast ESCRT-III membrane scission activity by the Doa4 ubiquitin hydrolase. Mol Biol Cell 2017; 28:661-672. [PMID: 28057764 PMCID: PMC5328624 DOI: 10.1091/mbc.e16-11-0761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/15/2016] [Accepted: 12/30/2016] [Indexed: 11/23/2022] Open
Abstract
Doa4 is the ubiquitin hydrolase in yeast that deubiquitinates transmembrane proteins sorted by ESCRTs. Results support a model for bidirectional regulation between Doa4 and the ESCRT-III complex. ESCRT-III executes membrane scission during the budding of intralumenal vesicles (ILVs) at endosomes. The scission mechanism is unknown but appears to be linked to the cycle of assembly and disassembly of ESCRT-III complexes at membranes. Regulating this cycle is therefore expected to be important for determining the timing of ESCRT-III–mediated membrane scission. We show that in Saccharomyces cerevisiae, ESCRT-III complexes are stabilized and ILV membrane scission is delayed by Doa4, which is the ubiquitin hydrolase that deubiquitinates transmembrane proteins sorted as cargoes into ILVs. These results suggest a mechanism to delay ILV budding while cargoes undergo deubiquitination. We further show that deubiquitination of ILV cargoes is inhibited via Doa4 binding to Vps20, which is the subunit of ESCRT-III that initiates assembly of the complex. Current models suggest that ESCRT-III complexes surround ubiquitinated cargoes to trap them at the site of ILV budding while the cargoes undergo deubiquitination. Thus our results also propose a mechanism to prevent the onset of ILV cargo deubiquitination at the initiation of ESCRT-III complex assembly.
Collapse
Affiliation(s)
- Natalie Johnson
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Matt West
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Greg Odorizzi
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
24
|
Wolters N, Amerik A. Inactivation of the VID27 gene prevents suppression of the doa4 degradation defect in doa4Δ did3Δ double mutant. Biochem Biophys Res Commun 2016; 482:1341-1345. [PMID: 27939891 DOI: 10.1016/j.bbrc.2016.12.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 11/30/2022]
Abstract
Ubiquitination is a key regulatory mechanism that affects numerous cellular processes. This modification is reversible. Deubiquitinating enzymes (DUBs) remove the ubiquitin tag from modified proteins. DUB Doa4 is involved in deubiquitination of conjugates at the late endosome/pre vacuolar compartment. A genetic screen led to isolation of seven extragenic suppressors of the doa4 phenotypic abnormalities. Remarkably, cloned Doa4-independent degradation (DID) genes encode the class E vacuolar protein-sorting factors involved in membrane protein trafficking. Here we provide evidence that inactivation of Vid27 (vacuolar import and degradation) prevents suppression of the doa4 phenotype by did3 mutation. Vid27 is a cytoplasmic protein essential for delivery of fructose-1,6-bisphosphatase into VID vesicles. Thus, our data revealed another connection between Doa4 and vacuolar protein sorting.
Collapse
Affiliation(s)
- Nazia Wolters
- Department of Pharmacology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Alexander Amerik
- Department of Pharmacology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA; Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119991, Russian Federation.
| |
Collapse
|
25
|
Alam MA, Kelly JM. Proteins interacting with CreA and CreB in the carbon catabolite repression network in Aspergillus nidulans. Curr Genet 2016; 63:669-683. [PMID: 27915380 DOI: 10.1007/s00294-016-0667-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/26/2022]
Abstract
In Aspergillus nidulans, carbon catabolite repression (CCR) is mediated by the global repressor protein CreA. The deubiquitinating enzyme CreB is a component of the CCR network. Genetic interaction was confirmed using a strain containing complete loss-of-function alleles of both creA and creB. No direct physical interaction was identified between tagged versions of CreA and CreB. To identify any possible protein(s) that may form a bridge between CreA and CreB, we purified both proteins from mycelia grown in media that result in repression or derepression. The purified proteins were analysed by LC/MS and identified using MaxQuant and Mascot databases. For both CreA and CreB, 47 proteins were identified in repressing and derepressing conditions. Orthologues of the co-purified proteins were identified in S. cerevisiae and humans. Gene ontology analyses of A. nidulans proteins and yeast and human orthologues were performed. Functional annotation analysis revealed that proteins that preferentially interact with CreA in repressing conditions include histones and histone transcription regulator 3 (Hir3). Proteins interacting with CreB tend to be involved in cellular transportation and organization. Similar findings were obtained using yeast and human orthologues, although the yeast background generated a number of other biological processes involving Mig1p which were not present in the A. nidulans or human background analyses. Hir3 was present in repressing conditions for CreA and in both growth conditions for CreB, suggesting that Hir3, or proteins interacting with Hir3, could be a possible target of CreB.
Collapse
Affiliation(s)
- Md Ashiqul Alam
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Joan M Kelly
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, SA, Australia.
| |
Collapse
|
26
|
Schroeter S, Beckmann S, Schmitt HD. Coat/Tether Interactions-Exception or Rule? Front Cell Dev Biol 2016; 4:44. [PMID: 27243008 PMCID: PMC4868844 DOI: 10.3389/fcell.2016.00044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/25/2016] [Indexed: 12/02/2022] Open
Abstract
Coat complexes are important for cargo selection and vesicle formation. Recent evidence suggests that they may also be involved in vesicle targeting. Tethering factors, which form an initial bridge between vesicles and the target membrane, may bind to coat complexes. In this review, we ask whether these coat/tether interactions share some common mechanisms, or whether they are special adaptations to the needs of very specific transport steps. We compare recent findings in two multisubunit tethering complexes, the Dsl1 complex and the HOPS complex, and put them into context with the TRAPP I complex as a prominent example for coat/tether interactions. We explore where coat/tether interactions are found, compare their function and structure, and comment on a possible evolution from a common ancestor of coats and tethers.
Collapse
Affiliation(s)
- Saskia Schroeter
- Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| | - Sabrina Beckmann
- Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| | - Hans Dieter Schmitt
- Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| |
Collapse
|
27
|
Tang S, Buchkovich NJ, Henne WM, Banjade S, Kim YJ, Emr SD. ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. eLife 2016; 5. [PMID: 27074665 PMCID: PMC4865371 DOI: 10.7554/elife.15507] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway facilitates multiple fundamental membrane remodeling events. Previously, we determined X-ray crystal structures of ESCRT-III subunit Snf7, the yeast CHMP4 ortholog, in its active and polymeric state (Tang et al., 2015). However, how ESCRT-III activation is coordinated by the upstream ESCRT components at endosomes remains unclear. Here, we provide a molecular explanation for the functional divergence of structurally similar ESCRT-III subunits. We characterize novel mutations in ESCRT-III Snf7 that trigger activation, and identify a novel role of Bro1, the yeast ALIX ortholog, in Snf7 assembly. We show that upstream ESCRTs regulate Snf7 activation at both its N-terminal core domain and the C-terminus α6 helix through two parallel ubiquitin-dependent pathways: the ESCRT-I-ESCRT-II-Vps20 pathway and the ESCRT-0-Bro1 pathway. We therefore provide an enhanced understanding for the activation of the spatially unique ESCRT-III-mediated membrane remodeling. DOI:http://dx.doi.org/10.7554/eLife.15507.001
Collapse
Affiliation(s)
- Shaogeng Tang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Nicholas J Buchkovich
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - W Mike Henne
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Sudeep Banjade
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Yun Jung Kim
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Scott D Emr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
28
|
Wu X, Li L, Jiang H. Doa1 targets ubiquitinated substrates for mitochondria-associated degradation. J Cell Biol 2016; 213:49-63. [PMID: 27044889 PMCID: PMC4828692 DOI: 10.1083/jcb.201510098] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023] Open
Abstract
Wu et al. show that Doa1 recognizes and recruits ubiquitinated mitochondrial outer-membrane proteins to the Cdc48–proteasome degradation pathway. Doa1 deficiency sensitizes cells to mitochondrial oxidative stress. Mitochondria-associated degradation (MAD) mediated by the Cdc48 complex and proteasome degrades ubiquitinated mitochondrial outer-membrane proteins. MAD is critical for mitochondrial proteostasis, but it remains poorly characterized. We identified several mitochondrial Cdc48 substrates and developed a genetic screen assay to uncover regulators of the Cdc48-dependent MAD pathway. Surprisingly, we identified Doa1, a substrate-processing factor of Cdc48 that inhibits the degradation of some Cdc48 substrates, as a critical mediator of the turnover of mitochondrial Cdc48 substrates. Deletion of DOA1 causes the accumulation and mislocalization of substrates on mitochondria. Profiling of Cdc48 cofactors shows that Doa1 and Cdc48-Ufd1-Npl4 form a functional complex mediating MAD. Biochemically, Doa1 interacts with ubiquitinated substrates and facilitates substrate recruitment to the Cdc48-Ufd1-Npl4 complex. Functionally, Doa1 is critical for cell survival under mitochondrial oxidative stress, but not ER stress, conditions. Collectively, our results demonstrate the essential role of the Doa1–Cdc48-Ufd1-Npl4 complex in mitochondrial proteostasis and suggest that Doa1 plays dual roles on the Cdc48 complex.
Collapse
Affiliation(s)
- Xi Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lanlan Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hui Jiang
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
29
|
Waite KA, De-La Mota-Peynado A, Vontz G, Roelofs J. Starvation Induces Proteasome Autophagy with Different Pathways for Core and Regulatory Particles. J Biol Chem 2015; 291:3239-53. [PMID: 26670610 PMCID: PMC4751371 DOI: 10.1074/jbc.m115.699124] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 12/21/2022] Open
Abstract
The proteasome is responsible for the degradation of many cellular proteins. If and how this abundant and normally stable complex is degraded by cells is largely unknown. Here we show that in yeast, upon nitrogen starvation, proteasomes are targeted for vacuolar degradation through autophagy. Using GFP-tagged proteasome subunits, we observed that autophagy of a core particle (CP) subunit depends on the deubiquitinating enzyme Ubp3, although a regulatory particle (RP) subunit does not. Furthermore, upon blocking of autophagy, RP remained largely nuclear, although CP largely localized to the cytosol as well as granular structures within the cytosol. In all, our data reveal a regulated process for the removal of proteasomes upon nitrogen starvation. This process involves CP and RP dissociation, nuclear export, and independent vacuolar targeting of CP and RP. Thus, in addition to the well characterized transcriptional up-regulation of genes encoding proteasome subunits, cells are also capable of down-regulating cellular levels of proteasomes through proteaphagy.
Collapse
Affiliation(s)
- Kenrick A Waite
- From the Division of Biology, Kansas State University, Manhattan, Kansas 66506
| | | | - Gabrielle Vontz
- From the Division of Biology, Kansas State University, Manhattan, Kansas 66506
| | - Jeroen Roelofs
- From the Division of Biology, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
30
|
Nickerson DP, Merz AJ. LUCID: A Quantitative Assay of ESCRT-Mediated Cargo Sorting into Multivesicular Bodies. Traffic 2015; 16:1318-29. [PMID: 26424513 DOI: 10.1111/tra.12331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 11/30/2022]
Abstract
Endosomes are transportation nodes, mediating selective transport of soluble and transmembrane cargos to and from the Golgi apparatus, plasma membrane and lysosomes. As endosomes mature to become multivesicular bodies (MVBs), Endosomal Sorting Complexes Required for Transport (ESCRTs) selectively incorporate transmembrane cargos into vesicles that bud into the endosome lumen. Luminal vesicles and their cargoes are targeted for destruction when MVBs fuse with lysosomes. Common assays of endosomal luminal targeting, including fluorescence microscopy and monitoring of proteolytic cargo maturation, possess significant limitations. We present a quantitative assay system called LUCID (LUCiferase reporter of Intraluminal Deposition) that monitors exposure of chimeric luciferase-cargo reporters to cytosol. Luciferase-chimera signal increases when sorting to the endosome lumen is disrupted, and silencing of signal from the chimera depends upon luminal delivery of the reporter rather than proteolytic degradation. The system presents several advantages, including rapidity, microscale operation and a high degree of reproducibility that enables detection of subtle phenotypic differences. Luciferase reporters provide linear signal over an extremely broad dynamic range, allowing analysis of reporter traffic even at anemic levels of expression. Furthermore, LUCID reports transport kinetics when applied to inducible trafficking reporters.
Collapse
Affiliation(s)
- Daniel P Nickerson
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-7350, USA
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-7350, USA.,Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195-7350, USA
| |
Collapse
|
31
|
The N-terminal domains determine cellular localization and functions of the Doa4 and Ubp5 deubiquitinating enzymes. Biochem Biophys Res Commun 2015; 467:570-6. [PMID: 26427873 DOI: 10.1016/j.bbrc.2015.09.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 11/24/2022]
Abstract
Ubiquitination is involved in numerous cellular regulatory mechanisms including the cell cycle, signal transduction and quality control. Ubiquitin modifies proteins by consecutive actions of ubiquitin-activating/conjugating enzymes. Attachment of ubiquitin is reversible. Deubiquitinating enzymes are responsible for removal of ubiquitin from ubiquitin-protein conjugates. Genome of the yeast Saccharomyces cerevisiae encodes structurally related but functionally distinct enzymes - Doa4 and Ubp5. Doa4 is involved in general ubiquitin-dependent proteolysis and is responsible for deubiquitination of ubiquitin-protein conjugates at the cytoplasmic face of the late endosome. The N-terminal domain targets the enzyme to the endosome membrane after ESCRT-III complex has formed there. By contrast, corresponding region of homologous Ubp5 is critical for its bud neck localization in dividing cells. Conceivably, Ubp5 plays an essential role in cytokinesis. Here we show that Doa4 physically interacts with the ESCRT-III component Snf7 and preferentially cleaves Lys63-linked ubiquitin oligomers involved in membrane protein trafficking. We also demonstrate that the unstable regulator of cytokinesis Hof1 accumulates in proteasomal mutants and is required for cellular localization of Ubp5.
Collapse
|
32
|
Cardona-López X, Cuyas L, Marín E, Rajulu C, Irigoyen ML, Gil E, Puga MI, Bligny R, Nussaume L, Geldner N, Paz-Ares J, Rubio V. ESCRT-III-Associated Protein ALIX Mediates High-Affinity Phosphate Transporter Trafficking to Maintain Phosphate Homeostasis in Arabidopsis. THE PLANT CELL 2015; 27:2560-81. [PMID: 26342016 PMCID: PMC4815105 DOI: 10.1105/tpc.15.00393] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 05/18/2023]
Abstract
Prior to the release of their cargoes into the vacuolar lumen, sorting endosomes mature into multivesicular bodies (MVBs) through the action of ENDOSOMAL COMPLEX REQUIRED FOR TRANSPORT (ESCRT) protein complexes. MVB-mediated sorting of high-affinity phosphate transporters (PHT1) to the vacuole limits their plasma membrane levels under phosphate-sufficient conditions, a process that allows plants to maintain phosphate homeostasis. Here, we describe ALIX, a cytosolic protein that associates with MVB by interacting with ESCRT-III subunit SNF7 and mediates PHT1;1 trafficking to the vacuole in Arabidopsis thaliana. We show that the partial loss-of-function mutant alix-1 displays reduced vacuolar degradation of PHT1;1. ALIX derivatives containing the alix-1 mutation showed reduced interaction with SNF7, providing a simple molecular explanation for impaired cargo trafficking in alix-1 mutants. In fact, the alix-1 mutation also hampered vacuolar sorting of the brassinosteroid receptor BRI1. We also show that alix-1 displays altered vacuole morphogenesis, implying a new role for ALIX proteins in vacuolar biogenesis, likely acting as part of ESCRT-III complexes. In line with a presumed broad target spectrum, the alix-1 mutation is pleiotropic, leading to reduced plant growth and late flowering, with stronger alix mutations being lethal, indicating that ALIX participates in diverse processes in plants essential for their life.
Collapse
Affiliation(s)
| | - Laura Cuyas
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain Unité Mixte de Recherche 6191, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lès-Durance Cedex, France
| | - Elena Marín
- Unité Mixte de Recherche 6191, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lès-Durance Cedex, France
| | - Charukesi Rajulu
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| | | | - Erica Gil
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| | - María Isabel Puga
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| | - Richard Bligny
- Laboratoire de Physiologie Cellulaire Vegetale, Unité Mixte de Recherche 5168, Institut de Recherche en Technologie et Sciences pour le Vivant, CEA, Grenoble Cedex 9, France
| | - Laurent Nussaume
- Unité Mixte de Recherche 6191, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lès-Durance Cedex, France
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Javier Paz-Ares
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| | - Vicente Rubio
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| |
Collapse
|
33
|
Arabidopsis ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3. Proc Natl Acad Sci U S A 2015; 112:E5543-51. [PMID: 26324913 DOI: 10.1073/pnas.1510516112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ubiquitination is a signal for various cellular processes, including for endocytic degradation of plasma membrane cargos. Ubiquitinating as well as deubiquitinating enzymes (DUBs) can regulate these processes by modifying the ubiquitination status of target protein. Although accumulating evidence points to the important regulatory role of DUBs, the molecular basis of their regulation is still not well understood. Associated molecule with the SH3 domain of signal transduction adaptor molecule (STAM) (AMSH) is a conserved metalloprotease DUB in eukaryotes. AMSH proteins interact with components of the endosomal sorting complex required for transport (ESCRT) and are implicated in intracellular trafficking. To investigate how the function of AMSH is regulated at the cellular level, we carried out an interaction screen for the Arabidopsis AMSH proteins and identified the Arabidopsis homolog of apoptosis-linked gene-2 interacting protein X (ALIX) as a protein interacting with AMSH3 in vitro and in vivo. Analysis of alix knockout mutants in Arabidopsis showed that ALIX is essential for plant growth and development and that ALIX is important for the biogenesis of the vacuole and multivesicular bodies (MVBs). Cell biological analysis revealed that ALIX and AMSH3 colocalize on late endosomes. Although ALIX did not stimulate AMSH3 activity in vitro, in the absence of ALIX, AMSH3 localization on endosomes was abolished. Taken together, our data indicate that ALIX could function as an important regulator for AMSH3 function at the late endosomes.
Collapse
|
34
|
Conserved Mode of Interaction between Yeast Bro1 Family V Domains and YP(X)nL Motif-Containing Target Proteins. EUKARYOTIC CELL 2015; 14:976-82. [PMID: 26150415 DOI: 10.1128/ec.00091-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022]
Abstract
Yeast Bro1 and Rim20 belong to a family of proteins which possess a common architecture of Bro1 and V domains. Alix and His domain protein tyrosine phosphatase (HD-PTP), mammalian Bro1 family proteins, bind YP(X)nL (n = 1 to 3) motifs in their target proteins through their V domains. In Alix, the Phe residue, which is located in the hydrophobic groove of the V domain, is critical for binding to the YP(X)nL motif. Although the overall sequences are not highly conserved between mammalian and yeast V domains, we show that the conserved Phe residue in the yeast Bro1 V domain is important for binding to its YP(X)nL-containing target protein, Rfu1. Furthermore, we show that Rim20 binds to its target protein Rim101 through the interaction between the V domain of Rim20 and the YPIKL motif of Rim101. The mutation of either the critical Phe residue in the Rim20 V domain or the YPIKL motif of Rim101 affected the Rim20-mediated processing of Rim101. These results suggest that the interactions between V domains and YP(X)nL motif-containing proteins are conserved from yeast to mammalian cells. Moreover, the specificities of each V domain to their target protein suggest that unidentified elements determine the binding specificity.
Collapse
|
35
|
Shideler T, Nickerson DP, Merz AJ, Odorizzi G. Ubiquitin binding by the CUE domain promotes endosomal localization of the Rab5 GEF Vps9. Mol Biol Cell 2015; 26:1345-56. [PMID: 25673804 PMCID: PMC4454180 DOI: 10.1091/mbc.e14-06-1156] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vps9 is a guanine nucleotide exchange factor that activates Rab5 GTPases in the yeast endolysosomal pathway. Ubiquitin binding by its CUE domain is dispensable for Vps9 function. The CUE domain is shown to target Vps9 to endosomes, supporting a model in which it senses ubiquitinated transmembrane proteins trafficking in the endolysosomal pathway. Vps9 and Muk1 are guanine nucleotide exchange factors (GEFs) in Saccharomyces cerevisiae that regulate membrane trafficking in the endolysosomal pathway by activating Rab5 GTPases. We show that Vps9 is the primary Rab5 GEF required for biogenesis of late endosomal multivesicular bodies (MVBs). However, only Vps9 (but not Muk1) is required for the formation of aberrant class E compartments that arise upon dysfunction of endosomal sorting complexes required for transport (ESCRTs). ESCRT dysfunction causes ubiquitinated transmembrane proteins to accumulate at endosomes, and we demonstrate that endosomal recruitment of Vps9 is promoted by its ubiquitin-binding CUE domain. Muk1 lacks ubiquitin-binding motifs, but its fusion to the Vps9 CUE domain allows Muk1 to rescue endosome morphology, cargo trafficking, and cellular stress-tolerance phenotypes that result from loss of Vps9 function. These results indicate that ubiquitin binding by the CUE domain promotes Vps9 function in endolysosomal membrane trafficking via promotion of localization.
Collapse
Affiliation(s)
- Tess Shideler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| | - Daniel P Nickerson
- Department of Biochemistry, University of Washington, Seattle, WA 98195-3750
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, WA 98195-3750
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| |
Collapse
|
36
|
Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells 2014; 3:1027-88. [PMID: 25396681 PMCID: PMC4276913 DOI: 10.3390/cells3041027] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
Modification by Lys63-linked ubiquitin (UbK63) chains is the second most abundant form of ubiquitylation. In addition to their role in DNA repair or kinase activation, UbK63 chains interfere with multiple steps of intracellular trafficking. UbK63 chains decorate many plasma membrane proteins, providing a signal that is often, but not always, required for their internalization. In yeast, plants, worms and mammals, this same modification appears to be critical for efficient sorting to multivesicular bodies and subsequent lysosomal degradation. UbK63 chains are also one of the modifications involved in various forms of autophagy (mitophagy, xenophagy, or aggrephagy). Here, in the context of trafficking, we report recent structural studies investigating UbK63 chains assembly by various E2/E3 pairs, disassembly by deubiquitylases, and specifically recognition as sorting signals by receptors carrying Ub-binding domains, often acting in tandem. In addition, we address emerging and unanticipated roles of UbK63 chains in various recycling pathways that function by activating nucleators required for actin polymerization, as well as in the transient recruitment of signaling molecules at the plasma or ER membrane. In this review, we describe recent advances that converge to elucidate the mechanisms underlying the wealth of trafficking functions of UbK63 chains.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| | - Olivier Walker
- Institut des Sciences Analytiques, UMR5280, Université de Lyon/Université Lyon 1, 69100 Villeurbanne, France.
| | - Rosine Haguenauer-Tsapis
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| |
Collapse
|
37
|
Kimura Y, Kawawaki J, Kakiyama Y, Shimoda A, Tanaka K. The ESCRT-III adaptor protein Bro1 controls functions of regulator for free ubiquitin chains 1 (Rfu1) in ubiquitin homeostasis. J Biol Chem 2014; 289:21760-9. [PMID: 24962567 DOI: 10.1074/jbc.m114.550871] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Rfu1 (regulator for free ubiquitin chain 1) localizes to endosomes and plays a role in ubiquitin homeostasis by inhibiting the activity of Doa4. We show that Bro1, a member of the class E vacuolar protein sorting proteins that recruits Doa4 to endosomes and stimulates Doa4 deubiquitinating activity, also recruits Rfu1 to endosomes for involvement in ubiquitin homeostasis. This recruitment was mediated by the direct interaction between a region containing the YPEL motif in Rfu1 and the V domain in Bro1, which could be analogous to the interaction between the mammalian Alix V domain and YPXnL motifs of viral and cellular proteins. Furthermore, overexpression of Bro1, particularly the V domain, prevented Rfu1 degradation in response to heat shock. Thus, Bro1, a Doa4 positive regulator, regulated Rfu1, a negative regulator of Doa4. Rfu1 degradation partly involved the proteasome and a ubiquitin ligase Rsp5, suggesting that Rfu1 stability was regulated by ubiquitin-proteasome pathways.
Collapse
Affiliation(s)
- Yoko Kimura
- From the Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 113-8613 and the Department of Applied Biological Chemistry, Graduate School of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Junko Kawawaki
- From the Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 113-8613 and
| | - Yukie Kakiyama
- From the Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 113-8613 and
| | - Ayumi Shimoda
- From the Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 113-8613 and
| | - Keiji Tanaka
- From the Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 113-8613 and
| |
Collapse
|
38
|
Babst M. Quality control: quality control at the plasma membrane: one mechanism does not fit all. ACTA ACUST UNITED AC 2014; 205:11-20. [PMID: 24733583 PMCID: PMC3987138 DOI: 10.1083/jcb.201310113] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasma membrane quality control system of eukaryotic cells is able to recognize and degrade damaged cell surface proteins. Recent studies have identified two mechanisms involved in the recognition of unfolded transmembrane proteins. One system uses chaperones to detect unfolded cytoplasmic domains of transmembrane proteins, whereas the second mechanism relies on an internal quality control system of the protein, which can trigger degradation when the protein deviates from the folded state. Both quality control mechanisms are key to prevent proteotoxic effects at the cell surface and to ensure cell integrity.
Collapse
Affiliation(s)
- Markus Babst
- Department of Biology, Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
39
|
Massoumi Alamouti S, Haridas S, Feau N, Robertson G, Bohlmann J, Breuil C. Comparative Genomics of the Pine Pathogens and Beetle Symbionts in the Genus Grosmannia. Mol Biol Evol 2014; 31:1454-74. [DOI: 10.1093/molbev/msu102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
40
|
Bissig C, Gruenberg J. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol 2014; 24:19-25. [DOI: 10.1016/j.tcb.2013.10.009] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/19/2023]
|
41
|
Piper RC, Dikic I, Lukacs GL. Ubiquitin-dependent sorting in endocytosis. Cold Spring Harb Perspect Biol 2014; 6:6/1/a016808. [PMID: 24384571 DOI: 10.1101/cshperspect.a016808] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When ubiquitin (Ub) is attached to membrane proteins on the plasma membrane, it directs them through a series of sorting steps that culminate in their delivery to the lumen of the lysosome where they undergo complete proteolysis. Ubiquitin is recognized by a series of complexes that operate at a number of vesicle transport steps. Ubiquitin serves as a sorting signal for internalization at the plasma membrane and is the major signal for incorporation into intraluminal vesicles of multivesicular late endosomes. The sorting machineries that catalyze these steps can bind Ub via a variety of Ub-binding domains. At the same time, many of these complexes are themselves ubiquitinated, thus providing a plethora of potential mechanisms to regulate their activity. Here we provide an overview of how membrane proteins are selected for ubiquitination and deubiquitination within the endocytic pathway and how that ubiquitin signal is interpreted by endocytic sorting machineries.
Collapse
Affiliation(s)
- Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | | | | |
Collapse
|
42
|
Balderhaar HJK, Ungermann C. CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci 2013; 126:1307-16. [PMID: 23645161 DOI: 10.1242/jcs.107805] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein and lipid transport along the endolysosomal system of eukaryotic cells depends on multiple fusion and fission events. Over the past few years, the molecular constituents of both fission and fusion machineries have been identified. Here, we focus on the mechanism of membrane fusion at endosomes, vacuoles and lysosomes, and in particular on the role of the two homologous tethering complexes called CORVET and HOPS. Both complexes are heterohexamers; they share four subunits, interact with Rab GTPases and soluble NSF attachment protein receptors (SNAREs) and can tether membranes. Owing to the presence of specific subunits, CORVET is a Rab5 effector complex, whereas HOPS can bind efficiently to late endosomes and lysosomes through Rab7. Based on the recently described overall structure of the HOPS complex and a number of in vivo and in vitro analyses, important insights into their function have been obtained. Here, we discuss the general function of both complexes in yeast and in metazoan cells in the context of endosomal biogenesis and maturation.
Collapse
Affiliation(s)
- Henning J kleine Balderhaar
- University of Osnabrück, Department of Biology/Chemistry, Biochemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
| | | |
Collapse
|
43
|
Sirisaengtaksin N, Gireud M, Yan Q, Kubota Y, Meza D, Waymire JC, Zage PE, Bean AJ. UBE4B protein couples ubiquitination and sorting machineries to enable epidermal growth factor receptor (EGFR) degradation. J Biol Chem 2013; 289:3026-39. [PMID: 24344129 DOI: 10.1074/jbc.m113.495671] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The signaling of plasma membrane proteins is tuned by internalization and sorting in the endocytic pathway prior to recycling or degradation in lysosomes. Ubiquitin modification allows recognition and association of cargo with endosomally associated protein complexes, enabling sorting of proteins to be degraded from those to be recycled. The mechanism that provides coordination between the cellular machineries that mediate ubiquitination and endosomal sorting is unknown. We report that the ubiquitin ligase UBE4B is recruited to endosomes in response to epidermal growth factor receptor (EGFR) activation by binding to Hrs, a key component of endosomal sorting complex required for transport (ESCRT) 0. We identify the EGFR as a substrate for UBE4B, establish UBE4B as a regulator of EGFR degradation, and describe a mechanism by which UBE4B regulates endosomal sorting, affecting cellular levels of the EGFR and its downstream signaling. We propose a model in which the coordinated action of UBE4B, ESCRT-0, and the deubiquitinating enzyme USP8 enable the endosomal sorting and lysosomal degradation of the EGFR.
Collapse
Affiliation(s)
- Natalie Sirisaengtaksin
- From the Department of Neurobiology and Anatomy and the Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mageswaran SK, Dixon MG, Curtiss M, Keener JP, Babst M. Binding to any ESCRT can mediate ubiquitin-independent cargo sorting. Traffic 2013; 15:212-29. [PMID: 24148098 DOI: 10.1111/tra.12135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/18/2013] [Accepted: 10/18/2013] [Indexed: 11/28/2022]
Abstract
The ESCRT (endosomal sorting complex required for transport) machinery is known to sort ubiquitinated transmembrane proteins into vesicles that bud into the lumen of multivesicular bodies (MVBs). Although the ESCRTs themselves are ubiquitinated they are excluded from the intraluminal vesicles and recycle back to the cytoplasm for further rounds of sorting. To obtain insights into the rules that distinguish ESCRT machinery from cargo we analyzed the trafficking of artificial ESCRT-like protein fusions. These studies showed that lowering ESCRT-binding affinity converts a protein from behaving like ESCRT machinery into cargo of the MVB pathway, highlighting the close relationship between machinery and the cargoes they sort. Furthermore, our findings give insights into the targeting of soluble proteins into the MVB pathway and show that binding to any of the ESCRTs can mediate ubiquitin-independent MVB sorting.
Collapse
Affiliation(s)
- Shrawan Kumar Mageswaran
- Center for Cell and Genome Science and Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
BACKGROUND Retroviruses and many other enveloped viruses usurp the cellular ESCRT pathway to bud from cells. However, the stepwise process of ESCRT-mediated virus budding can be challenging to analyze in retroviruses like HIV-1 that recruit multiple different ESCRT factors to initiate budding. RESULTS In this study, we characterized the ESCRT factor requirements for budding of Equine Infectious Anemia Virus (EIAV), whose only known direct ESCRT protein interaction is with ALIX. siRNA depletion of endogenous ESCRT proteins and "rescue" experiments with exogenous siRNA-resistant wild type and mutant constructs revealed budding requirements for the following ESCRT proteins: ALIX, CHMP4B, CHMP2A and VPS4A or VPS4B. EIAV budding was inhibited by point mutations that abrogate the direct interactions between ALIX:CHMP4B, CHMP4B:CHMP2A, and CHMP2A:VPS4A/B, indicating that each of these interactions is required for EIAV budding. Unexpectedly, CHMP4B depletion led to formation of multi-lobed and long tubular EIAV virions. CONCLUSIONS We conclude that EIAV budding requires an ESCRT protein network that comprises EIAV Gag-ALIX-CHMP4B-CHMP2A-VPS4 interactions. Our experiments also suggest that CHMP4B recruitment/polymerization helps control Gag polymerization and/or processing to ensure that ESCRT factor assembly and membrane fission occur at the proper stage of virion assembly. These studies help establish EIAV as a streamlined model system for dissecting the stepwise processes of lentivirus assembly and ESCRT-mediated budding.
Collapse
Affiliation(s)
- Virginie Sandrin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84112-5650, Utah, USA
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84112-5650, Utah, USA
| |
Collapse
|
46
|
Lam MHY, Emili A. Ubp2 regulates Rsp5 ubiquitination activity in vivo and in vitro. PLoS One 2013; 8:e75372. [PMID: 24069405 PMCID: PMC3777918 DOI: 10.1371/journal.pone.0075372] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 08/15/2013] [Indexed: 11/19/2022] Open
Abstract
The yeast HECT-family E3 ubiquitin ligase Rsp5 has been implicated in diverse cell functions. Previously, we and others [1], [2] reported the physical and functional interaction of Rsp5 with the deubiquitinating enzyme Ubp2, and the ubiquitin associated (UBA) domain-containing cofactor Rup1. To investigate the mechanism and significance of the Rsp5-Rup1-Ubp2 complex, we examined Rsp5 ubiquitination status in the presence or absence of these cofactors. We found that, similar to its mammalian homologues, Rsp5 is auto-ubiquitinated in vivo. Association with a substrate or Rup1 increased Rsp5 self-ubiquitination, whereas Ubp2 efficiently deubiquitinates Rsp5 in vivo and in vitro. The data reported here imply an auto-modulatory mechanism of Rsp5 regulation common to other E3 ligases.
Collapse
Affiliation(s)
- Mandy H. Y. Lam
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Emili
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Mulet JM, Llopis-Torregrosa V, Primo C, Marqués MC, Yenush L. Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Curr Genet 2013; 59:207-30. [PMID: 23974285 DOI: 10.1007/s00294-013-0401-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 12/30/2022]
Abstract
The relative concentrations of ions and solutes inside cells are actively maintained by several classes of transport proteins, in many cases against their concentration gradient. These transport processes, which consume a large portion of cellular energy, must be constantly regulated. Many structurally distinct families of channels, carriers, and pumps have been characterized in considerable detail during the past decades and defects in the function of some of these proteins have been linked to a growing list of human diseases. The dynamic regulation of the transport proteins present at the cell surface is vital for both normal cellular function and for the successful adaptation to changing environments. The composition of proteins present at the cell surface is controlled on both the transcriptional and post-translational level. Post-translational regulation involves highly conserved mechanisms of phosphorylation- and ubiquitylation-dependent signal transduction routes used to modify the cohort of receptors and transport proteins present under any given circumstances. In this review, we will summarize what is currently known about one facet of this regulatory process: the endocytic regulation of alkali metal transport proteins. The physiological relevance, major contributors, parallels and missing pieces of the puzzle in mammals, yeast and plants will be discussed.
Collapse
Affiliation(s)
- José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avd. de los Naranjos s/n, 46022, Valencia, Spain
| | | | | | | | | |
Collapse
|
48
|
Pashkova N, Gakhar L, Winistorfer SC, Sunshine AB, Rich M, Dunham MJ, Yu L, Piper RC. The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes. Dev Cell 2013; 25:520-33. [PMID: 23726974 DOI: 10.1016/j.devcel.2013.04.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/08/2013] [Accepted: 04/09/2013] [Indexed: 12/23/2022]
Abstract
Sorting of ubiquitinated membrane proteins into lumenal vesicles of multivesicular bodies is mediated by the Endosomal Sorting Complex Required for Transport (ESCRT) apparatus and accessory proteins such as Bro1, which recruits the deubiquitinating enzyme Doa4 to remove ubiquitin from cargo. Here we propose that Bro1 works as a receptor for the selective sorting of ubiquitinated cargoes. We found synthetic genetic interactions between BRO1 and ESCRT-0, suggesting that Bro1 functions similarly to ESCRT-0. Multiple structural approaches demonstrated that Bro1 binds ubiquitin via the N-terminal trihelical arm of its middle V domain. Mutants of Bro1 that lack the ability to bind Ub were dramatically impaired in their ability to sort Ub-cargo membrane proteins, but only when combined with hypomorphic alleles of ESCRT-0. These data suggest that Bro1 and other Bro1 family members function in parallel with ESCRT-0 to recognize and sort Ub-cargoes.
Collapse
Affiliation(s)
- Natasha Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Where do they come from and where do they go: candidates for regulating extracellular vesicle formation in fungi. Int J Mol Sci 2013; 14:9581-603. [PMID: 23644887 PMCID: PMC3676800 DOI: 10.3390/ijms14059581] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/11/2013] [Accepted: 04/17/2013] [Indexed: 01/23/2023] Open
Abstract
In the past few years, extracellular vesicles (EVs) from at least eight fungal species were characterized. EV proteome in four fungal species indicated putative biogenesis pathways and suggested interesting similarities with mammalian exosomes. Moreover, as observed for mammalian exosomes, fungal EVs were demonstrated to be immunologically active. Here we review the seminal and most recent findings related to the production of EVs by fungi. Based on the current literature about secretion of fungal molecules and biogenesis of EVs in eukaryotes, we focus our discussion on a list of cellular proteins with the potential to regulate vesicle biogenesis in the fungi.
Collapse
|
50
|
Boonyaratanakornkit J, Schomacker H, Collins P, Schmidt A. Alix serves as an adaptor that allows human parainfluenza virus type 1 to interact with the host cell ESCRT system. PLoS One 2013; 8:e59462. [PMID: 23527201 PMCID: PMC3602193 DOI: 10.1371/journal.pone.0059462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/18/2013] [Indexed: 12/19/2022] Open
Abstract
The cellular ESCRT (endosomal sorting complex required for transport) system functions in cargo-sorting, in the formation of intraluminal vesicles that comprise multivesicular bodies (MVB), and in cytokinesis, and this system can be hijacked by a number of enveloped viruses to promote budding. The respiratory pathogen human parainfluenza virus type I (HPIV1) encodes a nested set of accessory C proteins that play important roles in down-regulating viral transcription and replication, in suppressing the type I interferon (IFN) response, and in suppressing apoptosis. Deletion or mutation of the C proteins attenuates HPIV1 in vivo, and such mutants are being evaluated preclinically and clinically as vaccines. We show here that the C proteins interact and co-localize with the cellular protein Alix, which is a member of the class E vacuolar protein sorting (Vps) proteins that assemble at endosomal membranes into ESCRT complexes. The HPIV1 C proteins interact with the Bro1 domain of Alix at a site that is also required for the interaction between Alix and Chmp4b, a subunit of ESCRT-III. The C proteins are ubiquitinated and subjected to proteasome-mediated degradation, but the interaction with AlixBro1 protects the C proteins from degradation. Neither over-expression nor knock-down of Alix expression had an effect on HPIV1 replication, although this might be due to the large redundancy of Alix-like proteins. In contrast, knocking down the expression of Chmp4 led to an approximately 100-fold reduction in viral titer during infection with wild-type (WT) HPIV1. This level of reduction was similar to that observed for the viral mutant, P(C-) HPIV1, in which expression of the C proteins were knocked out. Chmp4 is capable of out-competing the HPIV1 C proteins for binding Alix. Together, this suggests a possible model in which Chmp4, through Alix, recruits the C proteins to a common site on intracellular membranes and facilitates budding.
Collapse
Affiliation(s)
- Jim Boonyaratanakornkit
- Laboratory of Infectious Diseases, RNA Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Henrick Schomacker
- Laboratory of Infectious Diseases, RNA Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter Collins
- Laboratory of Infectious Diseases, RNA Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander Schmidt
- Laboratory of Infectious Diseases, RNA Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|