1
|
Kalous J, Aleshkina D, Anger M. A Role of PI3K/Akt Signaling in Oocyte Maturation and Early Embryo Development. Cells 2023; 12:1830. [PMID: 37508495 PMCID: PMC10378481 DOI: 10.3390/cells12141830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
A serine/threonine-specific protein kinase B (PKB), also known as Akt, is a key factor in the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway that regulates cell survival, metabolism and proliferation. Akt phosphorylates many downstream specific substrates, which subsequently control the nuclear envelope breakdown (NEBD), centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. In vertebrates, Akt is also an important player during oogenesis and preimplantation development. In the signaling pathways regulating mRNA translation, Akt is involved in the control of mammalian target of rapamycin complex 1 (mTORC1) and thereby regulates the activity of a translational repressor, the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). In this review, we summarize the functions of Akt in mitosis, meiosis and early embryonic development. Additionally, the role of Akt in the regulation of mRNA translation is addressed with respect to the significance of this process during early development.
Collapse
Affiliation(s)
- Jaroslav Kalous
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Praha, Czech Republic
| | - Martin Anger
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| |
Collapse
|
2
|
Wang W, Zheng X, Azoitei A, John A, Zengerling F, Wezel F, Bolenz C, Günes C. The Role of TKS5 in Chromosome Stability and Bladder Cancer Progression. Int J Mol Sci 2022; 23:ijms232214283. [PMID: 36430759 PMCID: PMC9698602 DOI: 10.3390/ijms232214283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
TKS5 promotes invasion and migration through the formation of invadopodia in some tumour cells, and it also has an important physiological function in cell migration through podosome formation in various nontumour cells. To date, the role of TKS5 in urothelial cells, and its potential role in BC initiation and progression, has not yet been addressed. Moreover, the contribution of TKS5 to ploidy control and chromosome stability has not been reported in previous studies. Therefore, in the present study, we wished to address the following questions: (i) Is TKS5 involved in the ploidy control of urothelial cells? (ii) What is the mechanism that leads to aneuploidy in response to TKS5 knockdown? (iii) Is TKS5 an oncogene or tumour-suppressor gene in the context of BC? (iv) Does TKS5 affect the proliferation, migration and invasion of BC cells? We assessed the gene and protein expressions via qPCR and Western blot analyses in a set of nontumour cell strains (Y235T, HBLAK and UROtsa) and a set of BC cell lines (RT4, T24, UMUC3 and J82). Following the shRNA knockdown in the TKS5-proficient cells and the ectopic TKS5 expression in the cell lines with low/absent TKS5 expression, we performed functional experiments, such as metaphase, invadopodia and gelatine degradation assays. Moreover, we determined the invasion and migration abilities of these genetically modified cells by using the Boyden chamber and wound-healing assays. The TKS5 expression was lower in the bladder cancer cell lines with higher invasive capacities (T24, UMUC3 and J82) compared to the nontumour cell lines from human ureter (Y235T, HBLAK and UROtsa) and the noninvasive BC cell line RT4. The reduced TKS5 expression in the Y235T cells resulted in augmented aneuploidy and impaired cell division. According to the Boyden chamber and wound-healing assays, TKS5 promotes the invasion and migration of bladder cancer cells. According to the present study, TKS5 regulates the migration and invasion processes of bladder cancer (BC) cell lines and plays an important role in genome stability.
Collapse
|
3
|
Nuclear speed and cycle length co-vary with local density during syncytial blastoderm formation in a cricket. Nat Commun 2022; 13:3889. [PMID: 35794113 PMCID: PMC9259616 DOI: 10.1038/s41467-022-31212-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The blastoderm is a broadly conserved stage of early animal development, wherein cells form a layer at the embryo’s periphery. The cellular behaviors underlying blastoderm formation are varied and poorly understood. In most insects, the pre-blastoderm embryo is a syncytium: nuclei divide and move throughout the shared cytoplasm, ultimately reaching the cortex. In Drosophila melanogaster, some early nuclear movements result from pulsed cytoplasmic flows that are coupled to synchronous divisions. Here, we show that the cricket Gryllus bimaculatus has a different solution to the problem of creating a blastoderm. We quantified nuclear dynamics during blastoderm formation in G. bimaculatus embryos, finding that: (1) cytoplasmic flows are unimportant for nuclear movement, and (2) division cycles, nuclear speeds, and the directions of nuclear movement are not synchronized, instead being heterogeneous in space and time. Moreover, nuclear divisions and movements co-vary with local nuclear density. We show that several previously proposed models for nuclear movements in D. melanogaster cannot explain the dynamics of G. bimaculatus nuclei. We introduce a geometric model based on asymmetric pulling forces on nuclei, which recapitulates the patterns of nuclear speeds and orientations of both unperturbed G. bimaculatus embryos, and of embryos physically manipulated to have atypical nuclear densities. Early in insect embryo development, many nuclei share one large cell, travel varied paths and self-organize into a single layer. Donoughe et al. illuminate this process with live-imaging, modeling, and experimental changes to the embryo’s shape.
Collapse
|
4
|
Wiechmann S, Ruprecht B, Siekmann T, Zheng R, Frejno M, Kunold E, Bajaj T, Zolg DP, Sieber SA, Gassen NC, Kuster B. Chemical Phosphoproteomics Sheds New Light on the Targets and Modes of Action of AKT Inhibitors. ACS Chem Biol 2021; 16:631-641. [PMID: 33755436 DOI: 10.1021/acschembio.0c00872] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to its important roles in oncogenic signaling, AKT has been subjected to extensive drug discovery efforts leading to small molecule inhibitors investigated in advanced clinical trials. To better understand how these drugs exert their therapeutic effects at the molecular level, we combined chemoproteomic target affinity profiling using kinobeads and phosphoproteomics to analyze the five clinical AKT inhibitors AZD5363 (Capivasertib), GSK2110183 (Afuresertib), GSK690693, Ipatasertib, and MK-2206 in BT-474 breast cancer cells. Kinobead profiling identified between four and 29 nM targets for these compounds and showed that AKT1 and AKT2 were the only common targets. Similarly, measuring the response of the phosphoproteome to the same inhibitors identified ∼1700 regulated phosphorylation sites, 276 of which were perturbed by all five compounds. This analysis expanded the known AKT signaling network by 119 phosphoproteins that may represent direct or indirect targets of AKT. Within this new network, 41 regulated phosphorylation sites harbor the AKT substrate motif, and recombinant kinase assays validated 16 as novel AKT substrates. These included CEP170 and FAM83H, suggesting a regulatory function of AKT in mitosis and cytoskeleton organization. In addition, a specific phosphorylation pattern on the ULK1-FIP200-ATG13-VAPB complex was found to determine the active state of ULK1, leading to elevated autophagy in response to AKT inhibition.
Collapse
Affiliation(s)
- Svenja Wiechmann
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 80336 Munich, Germany
- German Cancer Center (DKFZ), 69120 Heidelberg, Germany
| | - Benjamin Ruprecht
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Theresa Siekmann
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Runsheng Zheng
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Martin Frejno
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Elena Kunold
- Organic Chemistry II, Technical University of Munich, 85748 Garching, Germany
| | - Thomas Bajaj
- Department of Psychiatry, Bonn Clinical Center, 53127 Bonn, Germany
| | - Daniel P. Zolg
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Stephan A. Sieber
- Organic Chemistry II, Technical University of Munich, 85748 Garching, Germany
| | - Nils C. Gassen
- Department of Psychiatry, Bonn Clinical Center, 53127 Bonn, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 80336 Munich, Germany
- German Cancer Center (DKFZ), 69120 Heidelberg, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, 85354 Freising, Germany
| |
Collapse
|
5
|
Lv Z, de-Carvalho J, Telley IA, Großhans J. Cytoskeletal mechanics and dynamics in the Drosophila syncytial embryo. J Cell Sci 2021; 134:134/4/jcs246496. [PMID: 33597155 DOI: 10.1242/jcs.246496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cell and tissue functions rely on the genetic programmes and cascades of biochemical signals. It has become evident during the past decade that the physical properties of soft material that govern the mechanics of cells and tissues play an important role in cellular function and morphology. The biophysical properties of cells and tissues are determined by the cytoskeleton, consisting of dynamic networks of F-actin and microtubules, molecular motors, crosslinkers and other associated proteins, among other factors such as cell-cell interactions. The Drosophila syncytial embryo represents a simple pseudo-tissue, with its nuclei orderly embedded in a structured cytoskeletal matrix at the embryonic cortex with no physical separation by cellular membranes. Here, we review the stereotypic dynamics and regulation of the cytoskeleton in Drosophila syncytial embryos and how cytoskeletal dynamics underlies biophysical properties and the emergence of collective features. We highlight the specific features and processes of syncytial embryos and discuss the applicability of biophysical approaches.
Collapse
Affiliation(s)
- Zhiyi Lv
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jorge de-Carvalho
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, 2780-156 Oeiras, Portugal
| | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, 2780-156 Oeiras, Portugal
| | - Jörg Großhans
- Fachbereich Biologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
6
|
Ma S, Rong Z, Liu C, Qin X, Zhang X, Chen Q. DNA damage promotes microtubule dynamics through a DNA-PK-AKT axis for enhanced repair. J Cell Biol 2021; 220:211656. [PMID: 33404607 PMCID: PMC7791344 DOI: 10.1083/jcb.201911025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/01/2020] [Accepted: 12/02/2020] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks (DSBs) are mainly repaired by c-NHEJ and HR pathways. The enhanced DSB mobility after DNA damage is critical for efficient DSB repair. Although microtubule dynamics have been shown to regulate DSB mobility, the reverse effect of DSBs to microtubule dynamics remains elusive. Here, we uncovered a novel DSB-induced microtubule dynamics stress response (DMSR), which promotes DSB mobility and facilitates c-NHEJ repair. DMSR is accompanied by interphase centrosome maturation, which occurs in a DNA-PK-AKT-dependent manner. Depletion of PCM proteins attenuates DMSR and the mobility of DSBs, resulting in delayed c-NHEJ. Remarkably, DMSR occurs only in G1 or G0 cells and lasts around 6 h. Both inhibition of DNA-PK and depletion of 53BP1 abolish DMSR. Taken together, our study reveals a positive DNA repair mechanism in G1 or G0 cells in which DSBs actively promote microtubule dynamics and facilitate the c-NHEJ process.
Collapse
Affiliation(s)
- Shuyun Ma
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zeming Rong
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Chen Liu
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xiaobing Qin
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xiaoyan Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiang Chen
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China,Correspondence to Qiang Chen:
| |
Collapse
|
7
|
Vanhaesebroeck B, Bilanges B, Madsen RR, Dale KL, Lau E, Vladimirou E. Perspective: Potential Impact and Therapeutic Implications of Oncogenic PI3K Activation on Chromosomal Instability. Biomolecules 2019; 9:E331. [PMID: 31374965 PMCID: PMC6723836 DOI: 10.3390/biom9080331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Abstract
Genetic activation of the class I PI3K pathway is very common in cancer. This mostly results from oncogenic mutations in PIK3CA, the gene encoding the ubiquitously expressed PI3Kα catalytic subunit, or from inactivation of the PTEN tumour suppressor, a lipid phosphatase that opposes class I PI3K signalling. The clinical impact of PI3K inhibitors in solid tumours, aimed at dampening cancer-cell-intrinsic PI3K activity, has thus far been limited. Challenges include poor drug tolerance, incomplete pathway inhibition and pre-existing or inhibitor-induced resistance. The principle of pharmacologically targeting cancer-cell-intrinsic PI3K activity also assumes that all cancer-promoting effects of PI3K activation are reversible, which might not be the case. Emerging evidence suggests that genetic PI3K pathway activation can induce and/or allow cells to tolerate chromosomal instability, which-even if occurring in a low fraction of the cell population-might help to facilitate and/or drive tumour evolution. While it is clear that such genomic events cannot be reverted pharmacologically, a role for PI3K in the regulation of chromosomal instability could be exploited by using PI3K pathway inhibitors to prevent those genomic events from happening and/or reduce the pace at which they are occurring, thereby dampening cancer development or progression. Such an impact might be most effective in tumours with clonal PI3K activation and achievable at lower drug doses than the maximum-tolerated doses of PI3K inhibitors currently used in the clinic.
Collapse
Affiliation(s)
- Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK.
| | - Benoit Bilanges
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Ralitsa R Madsen
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Katie L Dale
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Evelyn Lau
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Elina Vladimirou
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
8
|
Franco M, Carmena A. Eph signaling controls mitotic spindle orientation and cell proliferation in neuroepithelial cells. J Cell Biol 2019; 218:1200-1217. [PMID: 30808706 PMCID: PMC6446852 DOI: 10.1083/jcb.201807157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/16/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, Franco and Carmena uncover a function for Eph signaling as a novel extrinsic mechanism controlling mitotic spindle alignment in Drosophila neuroepithelial cells through aPKC activity–dependent myosin II regulation. Additionally, Eph loss leads to a Rho signaling–dependent activation of the PI3K–Akt1 pathway, enhancing cell proliferation within this neuroepithelium. Mitotic spindle orientation must be tightly regulated during development and adult tissue homeostasis. It determines cell-fate specification and tissue architecture during asymmetric and symmetric cell division, respectively. Here, we uncover a novel role for Ephrin–Eph intercellular signaling in controlling mitotic spindle alignment in Drosophila optic lobe neuroepithelial cells through aPKC activity–dependent myosin II regulation. We show that conserved core components of the mitotic spindle orientation machinery, including Discs Large1, Mud/NuMA, and Canoe/Afadin, mislocalize in dividing Eph mutant neuroepithelial cells and produce spindle alignment defects in these cells when they are down-regulated. In addition, the loss of Eph leads to a Rho signaling–dependent activation of the PI3K–Akt1 pathway, enhancing cell proliferation within this neuroepithelium. Hence, Eph signaling is a novel extrinsic mechanism that regulates both spindle orientation and cell proliferation in the Drosophila optic lobe neuroepithelium. Similar mechanisms could operate in other Drosophila and vertebrate epithelia.
Collapse
Affiliation(s)
- Maribel Franco
- Developmental Neurobiology Department, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, Alicante, Spain
| | - Ana Carmena
- Developmental Neurobiology Department, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
9
|
Abstract
For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.
Collapse
|
10
|
Blake-Hedges C, Megraw TL. Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster. Results Probl Cell Differ 2019; 67:277-321. [PMID: 31435800 PMCID: PMC11725063 DOI: 10.1007/978-3-030-23173-6_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first 3 h of Drosophila melanogaster embryo development are exemplified by rapid nuclear divisions within a large syncytium, transforming the zygote to the cellular blastoderm after 13 successive cleavage divisions. As the syncytial embryo develops, it relies on centrosomes and cytoskeletal dynamics to transport nuclei, maintain uniform nuclear distribution throughout cleavage cycles, ensure generation of germ cells, and coordinate cellularization. For the sake of this review, we classify six early embryo stages that rely on processes coordinated by the centrosome and its regulation of the cytoskeleton. The first stage features migration of one of the female pronuclei toward the male pronucleus following maturation of the first embryonic centrosomes. Two subsequent stages distribute the nuclei first axially and then radially in the embryo. The remaining three stages involve centrosome-actin dynamics that control cortical plasma membrane morphogenesis. In this review, we highlight the dynamics of the centrosome and its role in controlling the six stages that culminate in the cellularization of the blastoderm embryo.
Collapse
Affiliation(s)
- Caitlyn Blake-Hedges
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
11
|
Pellacani C, Bucciarelli E, Renda F, Hayward D, Palena A, Chen J, Bonaccorsi S, Wakefield JG, Gatti M, Somma MP. Splicing factors Sf3A2 and Prp31 have direct roles in mitotic chromosome segregation. eLife 2018; 7:40325. [PMID: 30475206 PMCID: PMC6287947 DOI: 10.7554/elife.40325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022] Open
Abstract
Several studies have shown that RNAi-mediated depletion of splicing factors (SFs) results in mitotic abnormalities. However, it is currently unclear whether these abnormalities reflect defective splicing of specific pre-mRNAs or a direct role of the SFs in mitosis. Here, we show that two highly conserved SFs, Sf3A2 and Prp31, are required for chromosome segregation in both Drosophila and human cells. Injections of anti-Sf3A2 and anti-Prp31 antibodies into Drosophila embryos disrupt mitotic division within 1 min, arguing strongly against a splicing-related mitotic function of these factors. We demonstrate that both SFs bind spindle microtubules (MTs) and the Ndc80 complex, which in Sf3A2- and Prp31-depleted cells is not tightly associated with the kinetochores; in HeLa cells the Ndc80/HEC1-SF interaction is restricted to the M phase. These results indicate that Sf3A2 and Prp31 directly regulate interactions among kinetochores, spindle microtubules and the Ndc80 complex in both Drosophila and human cells.
Collapse
Affiliation(s)
- Claudia Pellacani
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| | - Elisabetta Bucciarelli
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| | - Fioranna Renda
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Roma, Italy
| | - Daniel Hayward
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Antonella Palena
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| | - Jack Chen
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Silvia Bonaccorsi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Roma, Italy
| | - James G Wakefield
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Maurizio Gatti
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy.,Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Roma, Italy
| | - Maria Patrizia Somma
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
12
|
Regulation of Carbohydrate Energy Metabolism in Drosophila melanogaster. Genetics 2018; 207:1231-1253. [PMID: 29203701 DOI: 10.1534/genetics.117.199885] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 02/08/2023] Open
Abstract
Carbohydrate metabolism is essential for cellular energy balance as well as for the biosynthesis of new cellular building blocks. As animal nutrient intake displays temporal fluctuations and each cell type within the animal possesses specific metabolic needs, elaborate regulatory systems are needed to coordinate carbohydrate metabolism in time and space. Carbohydrate metabolism is regulated locally through gene regulatory networks and signaling pathways, which receive inputs from nutrient sensors as well as other pathways, such as developmental signals. Superimposed on cell-intrinsic control, hormonal signaling mediates intertissue information to maintain organismal homeostasis. Misregulation of carbohydrate metabolism is causative for many human diseases, such as diabetes and cancer. Recent work in Drosophila melanogaster has uncovered new regulators of carbohydrate metabolism and introduced novel physiological roles for previously known pathways. Moreover, genetically tractable Drosophila models to study carbohydrate metabolism-related human diseases have provided new insight into the mechanisms of pathogenesis. Due to the high degree of conservation of relevant regulatory pathways, as well as vast possibilities for the analysis of gene-nutrient interactions and tissue-specific gene function, Drosophila is emerging as an important model system for research on carbohydrate metabolism.
Collapse
|
13
|
Palladin is a novel microtubule-associated protein responsible for spindle orientation. Sci Rep 2017; 7:11806. [PMID: 28924223 PMCID: PMC5603589 DOI: 10.1038/s41598-017-12051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/25/2017] [Indexed: 11/26/2022] Open
Abstract
Mitotic spindles, which consist of microtubules (MTs) and associated proteins, play critical roles in controlling cell division and maintaining tissue homeostasis. The orientation of the mitotic spindle is closely related with the duration of mitosis. However, the molecular mechanism in regulating the orientation of the mitotic spindles is largely undefined. In this study, we found that Palladin is a novel MT-associated protein and regulator of spindle orientation, which maintains proper spindle orientation by stabilizing astral MTs. Palladin depletion distorted spindle orientation, prolonged the metaphase, and impaired proliferation of HeLa cells. Results showed that Palladin depletion-induced spindle misorientation and astral MT instability could be rescued by constitutively active AKT1 or dominant negative GSK3β. Our findings revealed that Palladin regulates spindle orientation and mitotic progression mainly through the AKT1–GSK3β pathway.
Collapse
|
14
|
Xie W, Zhou J. Regulation of mitotic spindle orientation during epidermal stratification. J Cell Physiol 2017; 232:1634-1639. [DOI: 10.1002/jcp.25750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Wei Xie
- Key Laboratory of Animal Resistance Biology of Shandong Province; Institute of Biomedical Sciences; College of Life Sciences; Shandong Normal University; Jinan Shandong China
| | - Jun Zhou
- Key Laboratory of Animal Resistance Biology of Shandong Province; Institute of Biomedical Sciences; College of Life Sciences; Shandong Normal University; Jinan Shandong China
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials of the Ministry of Education; College of Life Sciences; Nankai University; Tianjin China
| |
Collapse
|
15
|
PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex. Proc Natl Acad Sci U S A 2016; 113:E2955-64. [PMID: 27170189 DOI: 10.1073/pnas.1516321113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons migrate a long radial distance by a process known as locomotion in the developing mammalian neocortex. During locomotion, immature neurons undergo saltatory movement along radial glia fibers. The molecular mechanisms that regulate the speed of locomotion are largely unknown. We now show that the serine/threonine kinase Akt and its activator phosphoinositide-dependent protein kinase 1 (PDK1) regulate the speed of locomotion of mouse neocortical neurons through the cortical plate. Inactivation of the PDK1-Akt pathway impaired the coordinated movement of the nucleus and centrosome, a microtubule-dependent process, during neuronal migration. Moreover, the PDK1-Akt pathway was found to control microtubules, likely by regulating the binding of accessory proteins including the dynactin subunit p150(glued) Consistent with this notion, we found that PDK1 regulates the expression of cytoplasmic dynein intermediate chain and light intermediate chain at a posttranscriptional level in the developing neocortex. Our results thus reveal an essential role for the PDK1-Akt pathway in the regulation of a key step of neuronal migration.
Collapse
|
16
|
Chen JWC, Barker AR, Wakefield JG. The Ran Pathway in Drosophila melanogaster Mitosis. Front Cell Dev Biol 2015; 3:74. [PMID: 26636083 PMCID: PMC4659922 DOI: 10.3389/fcell.2015.00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/09/2015] [Indexed: 11/29/2022] Open
Abstract
Over the last two decades, the small GTPase Ran has emerged as a central regulator of both mitosis and meiosis, particularly in the generation, maintenance, and regulation of the microtubule (MT)-based bipolar spindle. Ran-regulated pathways in mitosis bear many similarities to the well-characterized functions of Ran in nuclear transport and, as with transport, the majority of these mitotic effects are mediated through affecting the physical interaction between karyopherins and Spindle Assembly Factors (SAFs)—a loose term describing proteins or protein complexes involved in spindle assembly through promoting nucleation, stabilization, and/or depolymerization of MTs, through anchoring MTs to specific structures such as centrosomes, chromatin or kinetochores, or through sliding MTs along each other to generate the force required to achieve bipolarity. As such, the Ran-mediated pathway represents a crucial functional module within the wider spindle assembly landscape. Research into mitosis using the model organism Drosophila melanogaster has contributed substantially to our understanding of centrosome and spindle function. However, in comparison to mammalian systems, very little is known about the contribution of Ran-mediated pathways in Drosophila mitosis. This article sets out to summarize our understanding of the roles of the Ran pathway components in Drosophila mitosis, focusing on the syncytial blastoderm embryo, arguing that it can provide important insights into the conserved functions on Ran during spindle formation.
Collapse
Affiliation(s)
- Jack W C Chen
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Amy R Barker
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK ; Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - James G Wakefield
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
17
|
Ruiz N, de Abreu LA, Parizi LF, Kim TK, Mulenga A, Braz GRC, Vaz IDS, Logullo C. Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation. PLoS One 2015; 10:e0130008. [PMID: 26091260 PMCID: PMC4474930 DOI: 10.1371/journal.pone.0130008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 05/15/2015] [Indexed: 11/18/2022] Open
Abstract
RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT)/Glycogen Synthase Kinase (GSK) axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development. Evidence of AKT and GSK dsRNA delivery into de-waxed eggs of via electroporation is provided. Primers designed to amplify part of the dsRNA delivered into the electroporated eggs dsRNA confirmed its entry in eggs. In addition, it was shown that electroporation is able to deliver the fluorescent stain, 4',6-diamidino-2-phenylindole (DAPI). To confirm gene silencing, a second set of primers was designed outside the dsRNA sequence of target gene. In this assay, the suppression of AKT and GSK transcripts (approximately 50% reduction in both genes) was demonstrated in 7-day-old eggs. Interestingly, silencing of GSK in 7-day-old eggs caused 25% reduction in hatching. Additionally, the effect of silencing AKT and GSK on embryo energy metabolism was evaluated. As expected, knockdown of AKT, which down regulates GSK, the suppressor of glycogen synthesis, decreased glycogen content in electroporated eggs. These data demonstrate that electroporation of de-waxed R. microplus eggs could be used for gene silencing in tick embryos, and improve the knowledge about arthropod embryogenesis.
Collapse
Affiliation(s)
- Newton Ruiz
- Unidade de Experimentação Animal and Laboratório de Química e Função de Proteínas—Universidade Estadual Norte Fluminense–Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Leonardo Araujo de Abreu
- Laboratório Integrado de Bioquímica Hatisaburo Masuda—Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM/UFRJ), Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
| | - Gloria Regina Cardoso Braz
- Departamento de Bioquímica–Instituto de Química, Universidade Federal do Rio de Janeiro, Ilha do Fundão, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Carlos Logullo
- Unidade de Experimentação Animal and Laboratório de Química e Função de Proteínas—Universidade Estadual Norte Fluminense–Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
- * E-mail:
| |
Collapse
|
18
|
Microinjection techniques for studying centrosome function in Drosophila melanogaster syncytial embryos. Methods Cell Biol 2015; 129:229-249. [PMID: 26175442 DOI: 10.1016/bs.mcb.2015.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Microinjection is a powerful technique that can be used to study protein function. Early Drosophila embryos are particularly amenable to microinjection due to their large size and their single cell status. Here, we report methods to microinject these embryos with various reagents to study the function of proteins at centrosomes and centrosome function more generally. Although precise details vary between laboratories, many aspects of the process are conserved. We describe the process from setting up a fly cage to imaging the injected embryos on a spinning disk confocal microscope and use specific examples to highlight the potency of this technique.
Collapse
|
19
|
Cuesto G, Jordán-Álvarez S, Enriquez-Barreto L, Ferrús A, Morales M, Acebes Á. GSK3β inhibition promotes synaptogenesis in Drosophila and mammalian neurons. PLoS One 2015; 10:e0118475. [PMID: 25764078 PMCID: PMC4357437 DOI: 10.1371/journal.pone.0118475] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/17/2015] [Indexed: 01/22/2023] Open
Abstract
The PI3K-dependent activation of AKT results in the inhibition of GSK3β in most signaling pathways. These kinases regulate multiple neuronal processes including the control of synapse number as shown for Drosophila and rodents. Alzheimer disease's patients exhibit high levels of circulating GSK3β and, consequently, pharmacological strategies based on GSK3β antagonists have been designed. The approach, however, has yielded inconclusive results so far. Here, we carried out a comparative study in Drosophila and rats addressing the role of GSK3β in synaptogenesis. In flies, the genetic inhibition of the shaggy-encoded GSK3β increases the number of synapses, while its upregulation leads to synapse loss. Likewise, in three weeks cultured rat hippocampal neurons, the pharmacological inhibition of GSK3β increases synapse density and Synapsin expression. However, experiments on younger cultures (12 days) yielded an opposite effect, a reduction of synapse density. This unexpected finding seems to unveil an age- and dosage-dependent differential response of mammalian neurons to the stimulation/inhibition of GSK3β, a feature that must be considered in the context of human adult neurogenesis and pharmacological treatments for Alzheimer's disease based on GSK3β antagonists.
Collapse
Affiliation(s)
- Germán Cuesto
- Structural Synaptic Plasticity Laboratory, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de La Rioja, Logroño, La Rioja, Spain
| | - Sheila Jordán-Álvarez
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Lilian Enriquez-Barreto
- Structural Synaptic Plasticity Laboratory, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de La Rioja, Logroño, La Rioja, Spain
| | - Alberto Ferrús
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Miguel Morales
- Structural Synaptic Plasticity Laboratory, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de La Rioja, Logroño, La Rioja, Spain
- * E-mail: (AA); (MM)
| | - Ángel Acebes
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail: (AA); (MM)
| |
Collapse
|
20
|
Arbeille E, Reynaud F, Sanyas I, Bozon M, Kindbeiter K, Causeret F, Pierani A, Falk J, Moret F, Castellani V. Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat Commun 2015; 6:6366. [PMID: 25721514 DOI: 10.1038/ncomms7366] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/22/2015] [Indexed: 01/05/2023] Open
Abstract
The spatial orientation of cell divisions is fundamental for tissue architecture and homeostasis. Here we analysed neuroepithelial progenitors in the developing mouse spinal cord to determine whether extracellular signals orient the mitotic spindle. We report that Semaphorin3B (Sema3B) released from the floor plate and the nascent choroid plexus in the cerebrospinal fluid (CSF) controls progenitor division orientation. Delivery of exogenous Sema3B to neural progenitors after neural tube opening in living embryos promotes planar orientation of their division. Preventing progenitor access to cues present in the CSF by genetically engineered canal obstruction affects the proportion of planar and oblique divisions. Sema3B knockout phenocopies the loss of progenitor access to the CSF. Sema3B binds to the apical surface of mitotic progenitors and exerts its effect via Neuropilin receptors, GSK3 activation and subsequent inhibition of the microtubule stabilizer CRMP2. Thus, extrinsic control mediated by the Semaphorin signalling orients progenitor divisions in neurogenic zones.
Collapse
Affiliation(s)
- Elise Arbeille
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Florie Reynaud
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Isabelle Sanyas
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Muriel Bozon
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Karine Kindbeiter
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Frédéric Causeret
- CNRS UMR 7592, Institut Jacques Monod, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Alessandra Pierani
- CNRS UMR 7592, Institut Jacques Monod, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Julien Falk
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Frédéric Moret
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Valérie Castellani
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| |
Collapse
|
21
|
Zhao J, Zou Y, Liu H, Wang H, Zhang H, Hou W, Li X, Jia X, Zhang J, Hou L, Zhang B. TEIF associated centrosome activity is regulated by EGF/PI3K/Akt signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1851-64. [PMID: 24769208 DOI: 10.1016/j.bbamcr.2014.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/29/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
Centrosome amplification, which is a characteristic of cancer cells, has been understood as a driving force of genetic instability in the development of cancer. In previous work, we demonstrated that TEIF (transcriptional element-interacting factor) distributes in the centrosomes and regulates centrosome status under both physiologic and pathologic conditions. Here we identify TEIF as a downstream effector in EGF/PI3K/Akt signaling. The addition of EGF or transfection of active Akt stimulates centrosome TEIF distribution, resulting in an increase of centrosome splitting and amplification, while inhibitors of either PI3K or Akt attenuate these changes in TEIF and the associated centrosome status. A consensus motif for Akt phosphorylation (RHRVLT) proved to be involved in centrosomal TEIF localization, and the 469-threonine of this motif may be phosphorylated by Akt both in vitro and in vivo. Elimination of this phosphorylated site on TEIF caused reduced centrosome distribution and centrosome splitting or amplification. Moreover, TEIF closely co-localized with C-NAP1 at the proximal ends of centrioles, and centriolar loading of TEIF stimulated by EGF/Akt could displace C-NAP1, resulting in centrosome splitting. These findings reveal linkage of the EGF/PI3K/Akt signaling pathway to regulation of centrosome status which may act as an oncogenic pathway and induce genetic instability in carcinogenesis.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yongxin Zou
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Haijing Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Huali Wang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hong Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Wei Hou
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xin Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xinying Jia
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jing Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Lin Hou
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
22
|
Poulton JS, Mu FW, Roberts DM, Peifer M. APC2 and Axin promote mitotic fidelity by facilitating centrosome separation and cytoskeletal regulation. Development 2013; 140:4226-36. [PMID: 24026117 DOI: 10.1242/dev.094425] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To ensure the accurate transmission of genetic material, chromosome segregation must occur with extremely high fidelity. Segregation errors lead to chromosomal instability (CIN), with deleterious consequences. Mutations in the tumor suppressor adenomatous polyposis coli (APC) initiate most colon cancers and have also been suggested to promote disease progression through increased CIN, but the mechanistic role of APC in preventing CIN remains controversial. Using fly embryos as a model, we investigated the role of APC proteins in CIN. Our findings suggest that APC2 loss leads to increased rates of chromosome segregation error. This occurs through a cascade of events beginning with incomplete centrosome separation leading to failure to inhibit formation of ectopic cleavage furrows, which result in mitotic defects and DNA damage. We test several hypotheses related to the mechanism of action of APC2, revealing that APC2 functions at the embryonic cortex with several protein partners, including Axin, to promote mitotic fidelity. Our in vivo data demonstrate that APC2 protects genome stability by modulating mitotic fidelity through regulation of the cytoskeleton.
Collapse
Affiliation(s)
- John S Poulton
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
23
|
Lu MS, Johnston CA. Molecular pathways regulating mitotic spindle orientation in animal cells. Development 2013; 140:1843-56. [PMID: 23571210 DOI: 10.1242/dev.087627] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Orientation of the cell division axis is essential for the correct development and maintenance of tissue morphology, both for symmetric cell divisions and for the asymmetric distribution of fate determinants during, for example, stem cell divisions. Oriented cell division depends on the positioning of the mitotic spindle relative to an axis of polarity. Recent studies have illuminated an expanding list of spindle orientation regulators, and a molecular model for how cells couple cortical polarity with spindle positioning has begun to emerge. Here, we review both the well-established spindle orientation pathways and recently identified regulators, focusing on how communication between the cell cortex and the spindle is achieved, to provide a contemporary view of how positioning of the mitotic spindle occurs.
Collapse
Affiliation(s)
- Michelle S Lu
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
24
|
Matsumoto T, Nagase Y, Hirose J, Tokuyama N, Yasui T, Kadono Y, Ueki K, Kadowaki T, Nakamura K, Tanaka S. Regulation of bone resorption and sealing zone formation in osteoclasts occurs through protein kinase B-mediated microtubule stabilization. J Bone Miner Res 2013; 28:1191-202. [PMID: 23239117 DOI: 10.1002/jbmr.1844] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/09/2012] [Accepted: 11/29/2012] [Indexed: 01/16/2023]
Abstract
We investigated the role of protein kinase B (Akt), a downstream effector of phosphatidylinositol 3-kinase, in bone-resorbing activity of mature osteoclasts. Treatment with a specific Akt inhibitor disrupted sealing zone formation and decreased the bone-resorbing activity of osteoclasts. The normal microtubule structures were lost and the Akt inhibitor reduced the amount of acetylated tubulin, which reflects stabilized microtubules, whereas forced Akt activation by adenovirus vectors resulted in the opposite effect. Forced Akt activation increased the binding of the microtubule-associated protein adenomatous polyposis coli (APC), the APC-binding protein end-binding protein 1 (EB1) and dynactin, a dynein activator complex, with microtubules. Depletion of Akt1 and Akt2 resulted in a disconnection of APC/EB1 and a decrease in bone-resorbing activity along with reduced sealing zone formation, both of which were recovered upon the addition of LiCl, a glycogen synthase kinase-3β (GSK-3β) inhibitor. The Akt1 and Akt2 double-knockout mice exhibited osteosclerosis due to reduced bone resorption. These findings indicate that Akt controls the bone-resorbing activity of osteoclasts by stabilizing microtubules via a regulation of the binding of microtubule associated proteins.
Collapse
Affiliation(s)
- Takumi Matsumoto
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Robertson AJ, Coluccio A, Jensen S, Rydlizky K, Coffman JA. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division. Biol Open 2013; 2:472-8. [PMID: 23789095 PMCID: PMC3654265 DOI: 10.1242/bio.20133913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/01/2013] [Indexed: 01/22/2023] Open
Abstract
In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB), which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.
Collapse
Affiliation(s)
- Anthony J Robertson
- Present address: King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | | | | | | | | |
Collapse
|
26
|
Yih LH, Hsu NC, Wu YC, Yen WY, Kuo HH. Inhibition of AKT enhances mitotic cell apoptosis induced by arsenic trioxide. Toxicol Appl Pharmacol 2013; 267:228-37. [PMID: 23352504 DOI: 10.1016/j.taap.2013.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/06/2013] [Accepted: 01/10/2013] [Indexed: 11/18/2022]
Abstract
Accumulated evidence has revealed a tight link between arsenic trioxide (ATO)-induced apoptosis and mitotic arrest in cancer cells. AKT, a serine/threonine kinase frequently over-activated in diverse tumors, plays critical roles in stimulating cell cycle progression, abrogating cell cycle checkpoints, suppressing apoptosis, and regulating mitotic spindle assembly. Inhibition of AKT may therefore enhance ATO cytotoxicity and thus its clinical utility. We show that AKT was activated by ATO in HeLa-S3 cells. Inhibition of AKT by inhibitors of the phosphatidyl inositol 3-kinase/AKT pathway significantly enhanced cell sensitivity to ATO by elevating mitotic cell apoptosis. Ectopic expression of the constitutively active AKT1 had no effect on ATO-induced spindle abnormalities but reduced kinetochore localization of BUBR1 and MAD2 and accelerated mitosis exit, prevented mitotic cell apoptosis, and enhanced the formation of micro- or multi-nuclei in ATO-treated cells. These results indicate that AKT1 activation may prevent apoptosis of ATO-arrested mitotic cells by attenuating the function of the spindle checkpoint and therefore allowing the formation of micro- or multi-nuclei in surviving daughter cells. In addition, AKT1 activation upregulated the expression of aurora kinase B (AURKB) and survivin, and depletion of AURKB or survivin reversed the resistance of AKT1-activated cells to ATO-induced apoptosis. Thus, AKT1 activation suppresses ATO-induced mitotic cell apoptosis, despite the presence of numerous spindle abnormalities, probably by upregulating AURKB and survivin and attenuating spindle checkpoint function. Inhibition of AKT therefore effectively sensitizes cancer cells to ATO by enhancing mitotic cell apoptosis.
Collapse
Affiliation(s)
- Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
27
|
Dopamine D2 receptor-mediated Akt/PKB signalling: initiation by the D2S receptor and role in quinpirole-induced behavioural activation. ASN Neuro 2012; 4:371-82. [PMID: 22909302 PMCID: PMC3449306 DOI: 10.1042/an20120013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively) are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3). To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney)-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase) inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.
Collapse
|
28
|
Dunsch AK, Hammond D, Lloyd J, Schermelleh L, Gruneberg U, Barr FA. Dynein light chain 1 and a spindle-associated adaptor promote dynein asymmetry and spindle orientation. ACTA ACUST UNITED AC 2012; 198:1039-54. [PMID: 22965910 PMCID: PMC3444778 DOI: 10.1083/jcb.201202112] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The asymmetric cortical localization of dynein during spindle orientation requires dynein light chain 1 and a spindle-microtubule–associated adaptor formed by CHIA and HMMR. The cytoplasmic dynein motor generates pulling forces to center and orient the mitotic spindle within the cell. During this positioning process, dynein oscillates from one pole of the cell cortex to the other but only accumulates at the pole farthest from the spindle. Here, we show that dynein light chain 1 (DYNLL1) is required for this asymmetric cortical localization of dynein and has a specific function defining spindle orientation. DYNLL1 interacted with a spindle-microtubule–associated adaptor formed by CHICA and HMMR via TQT motifs in CHICA. In cells depleted of CHICA or HMMR, the mitotic spindle failed to orient correctly in relation to the growth surface. Furthermore, CHICA TQT motif mutants localized to the mitotic spindle but failed to recruit DYNLL1 to spindle microtubules and did not correct the spindle orientation or dynein localization defects. These findings support a model where DYNLL1 and CHICA-HMMR form part of the regulatory system feeding back spindle position to dynein at the cell cortex.
Collapse
Affiliation(s)
- Anja K Dunsch
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England, UK
| | | | | | | | | | | |
Collapse
|
29
|
Mao JZ, Jiang P, Cui SP, Ren YL, Zhao J, Yin XH, Enomoto A, Liu HJ, Hou L, Takahashi M, Zhang B. Girdin locates in centrosome and midbody and plays an important role in cell division. Cancer Sci 2012; 103:1780-7. [PMID: 22755556 DOI: 10.1111/j.1349-7006.2012.02378.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/21/2012] [Accepted: 07/01/2012] [Indexed: 12/17/2022] Open
Abstract
Girdin is a downstream effector of epidermal growth factor receptor (EGFR)-AKT and interacts with actin and microtubule. Increasing evidence confirmed that Girdin played an important role in cell migration. Here we report that Girdin also regulates cell division. Overexpression or suppression of Girdin leads to attenuated cell proliferation. Imaging of mitotic cells revealed that Girdin is located in the cell division apparatus such as centrosome and midbody. The sub-cellular localization of Girdin was dependent on the domains, which interacted with actin or microtubules. Overexpression of Girdin lead to increased centrosome splitting and amplification. In addition, data show that pAKT also locates in both the centrosome and midbody, indicating the regulating role of AKT in Girdin-mediated cell division. To elucidate the effect of Girdin on tumor growth in vivo, HeLa cells infected with retrovirus harboring either control or Girdin shRNAs were injected subcutaneously into the immunocompromised nude mice. Downregulation of Girdin by shRNA markedly inhibited the cell growth of subcutaneously transplanted tumors in nude mice. These data demonstrate that Girdin is important for efficient cell division. Taking our previous data into consideration, we speculate that Girdin regulates both cell division and cell migration through cytoskeletal molecules.
Collapse
Affiliation(s)
- Jing-Zhuo Mao
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Roth TM, Chiang CYA, Inaba M, Yuan H, Salzmann V, Roth CE, Yamashita YM. Centrosome misorientation mediates slowing of the cell cycle under limited nutrient conditions in Drosophila male germline stem cells. Mol Biol Cell 2012; 23:1524-32. [PMID: 22357619 PMCID: PMC3327310 DOI: 10.1091/mbc.e11-12-0999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A novel mechanism is found by which Drosophila male germline stem cells (GSCs) slow their cell cycle under limited nutrient conditions. Upon culturing in poor media, GSCs misorient their centrosomes with respect to the stem cell niche, activating the centrosome orientation checkpoint and leading to slowdown of the cell cycle. Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions.
Collapse
Affiliation(s)
- Therese M Roth
- Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Zyss D, Ebrahimi H, Gergely F. Casein kinase I delta controls centrosome positioning during T cell activation. ACTA ACUST UNITED AC 2012; 195:781-97. [PMID: 22123863 PMCID: PMC3257584 DOI: 10.1083/jcb.201106025] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CK1delta binds and phosphorylates the microtubule plus-end–binding protein
EB1 and promotes centrosome translocation to the immunological synapse in T
cells. Although termed central body, the centrosome is located off-center in many
polarized cells. T cell receptor (TCR) engagement by antigens induces a polarity
switch in T cells. This leads to the recruitment of the centrosome to the
immunological synapse (IS), a specialized cell–cell junction. Despite
much recent progress, how TCR signaling triggers centrosome repositioning
remains poorly understood. In this paper, we uncover a critical requirement for
the centrosomal casein kinase I delta (CKIδ) in centrosome translocation
to the IS. CKIδ binds and phosphorylates the microtubule
plus-end–binding protein EB1. Moreover, a putative EB1-binding motif at
the C terminus of CKIδ is required for centrosome translocation to the
IS. We find that depletion of CKIδ in T lymphocytes and inhibition of CKI
in epithelial cells reduce microtubule growth. Therefore, we propose that
CKIδ–EB1 complexes contribute to the increase in microtubule
growth speeds observed in polarized T cells, a mechanism that might serve to
generate long-stable microtubules necessary for centrosome translocation.
Collapse
Affiliation(s)
- Deborah Zyss
- Li Ka Shing Centre, Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, England, UK
| | | | | |
Collapse
|
32
|
Bao R, Fischer T, Bolognesi R, Brown SJ, Friedrich M. Parallel duplication and partial subfunctionalization of β-catenin/armadillo during insect evolution. Mol Biol Evol 2011; 29:647-62. [PMID: 21890476 DOI: 10.1093/molbev/msr219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
β-Catenin is a multifunctional scaffolding protein with roles in Wnt signaling, cell adhesion, and centrosome separation. Here, we report on independent duplications of the insect β-Catenin ortholog armadillo (arm) in the red flour beetle Tribolium castaneum and the pea aphid Acyrthosiphon pisum. Detailed sequence analysis shows that in both species, one paralog lost critical residues of the α-Catenin binding domain, which is essential for cell adhesion, and accumulated a dramatically higher number of amino acid substitutions in the central Arm repeat domain. Residues associated with aspects of Wnt signaling, however, are conserved in both paralogs. Consistent with these molecular signatures, the effects of specific and combinatorial knockdown experiments in the Tribolium embryo indicate that the duplication resulted in redundant involvement in Wnt signaling of both β-Catenin paralogs but differential inheritance of the ancestral cell adhesion and centrosome separation functions. We conclude that the duplicated pea aphid and flour beetle β-catenin genes experienced partial subfunctionalization, which appears to be evolutionarily favored. Providing first evidence of genetic separability of the cell adhesion and centrosome separation functions, the duplicated Tribolium and Acyrthosiphon arm paralogs offer new inroads for context-specific analyses of β-Catenin. Our data also revealed the conservation of a C-terminally truncated Arm isoform in both singleton and duplicated homologs, suggesting an as yet unexplored role in Wnt signaling.
Collapse
Affiliation(s)
- Riyue Bao
- Department of Biological Sciences, Wayne State University, USA
| | | | | | | | | |
Collapse
|
33
|
Tanenbaum ME, Medema RH. Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell 2011; 19:797-806. [PMID: 21145497 DOI: 10.1016/j.devcel.2010.11.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 11/29/2022]
Abstract
Accurate segregation of chromosomes during cell division is accomplished through the assembly of a bipolar microtubule-based structure called the mitotic spindle. Work over the past two decades has identified a core regulator of spindle bipolarity, the microtubule motor protein kinesin-5. However, an increasing body of evidence has emerged demonstrating that kinesin-5-independent mechanisms driving bipolar spindle assembly exist as well. Here, we discuss different pathways that promote initial centrosome separation and bipolar spindle assembly.
Collapse
Affiliation(s)
- Marvin E Tanenbaum
- Department of Medical Oncology, University Medical Center, CG Utrecht, the Netherlands
| | | |
Collapse
|
34
|
Godin JD, Colombo K, Molina-Calavita M, Keryer G, Zala D, Charrin BC, Dietrich P, Volvert ML, Guillemot F, Dragatsis I, Bellaiche Y, Saudou F, Nguyen L, Humbert S. Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis. Neuron 2010; 67:392-406. [PMID: 20696378 DOI: 10.1016/j.neuron.2010.06.027] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2010] [Indexed: 01/06/2023]
Abstract
Huntingtin is the protein mutated in Huntington's disease, a devastating neurodegenerative disorder. We demonstrate here that huntingtin is essential to control mitosis. Huntingtin is localized at spindle poles during mitosis. RNAi-mediated silencing of huntingtin in cells disrupts spindle orientation by mislocalizing the p150(Glued) subunit of dynactin, dynein, and the large nuclear mitotic apparatus NuMA protein. This leads to increased apoptosis following mitosis of adherent cells in vitro. In vivo inactivation of huntingtin by RNAi or by ablation of the Hdh gene affects spindle orientation and cell fate of cortical progenitors of the ventricular zone in mouse embryos. This function is conserved in Drosophila, the specific disruption of Drosophila huntingtin in neuroblast precursors leading to spindle misorientation. Moreover, Drosophila huntingtin restores spindle misorientation in mammalian cells. These findings reveal an unexpected role for huntingtin in dividing cells, with potential important implications in health and disease.
Collapse
|
35
|
Cao J, Crest J, Fasulo B, Sullivan W. Cortical actin dynamics facilitate early-stage centrosome separation. Curr Biol 2010; 20:770-6. [PMID: 20409712 PMCID: PMC3032811 DOI: 10.1016/j.cub.2010.02.060] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 02/07/2023]
Abstract
Proper centrosome separation is a prerequisite for positioning the bipolar spindle. Although studies demonstrate that microtubules (MTs) and their associated motors drive centrosome separation [1], the role of actin in centrosome separation remains less clear. Studies in tissue culture cells indicate that actin- and myosin-based cortical flow is primarily responsible for driving late centrosome separation [2], whereas other studies suggest that actin plays a more passive role by serving as an attachment site for astral MTs to pull centrosomes apart [3-6]. Here we demonstrate that prior to nuclear envelope breakdown (NEB) in Drosophila embryos, proper centrosome separation does not require myosin II but requires dynamic actin rearrangements at the growing edge of the interphase cap. Both Arp2/3- and Formin-mediated actin remodeling are required for separating the centrosome pairs before NEB. The Apc2-Armadillo complex appears to link cap expansion to centrosome separation. In contrast, the mechanisms driving centrosome separation after NEB are independent of the actin cytoskeleton and compensate for earlier separation defects. Our studies show that the dynamics of actin polymerization drive centrosome separation, and this has important implications for centrosome positioning during processes such as cell migration [7, 8], cell polarity maintenance [9, 10], and asymmetric cell division [11, 12].
Collapse
Affiliation(s)
- Jian Cao
- Sinsheimer Laboratories, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
36
|
Cecconi S, Rossi G, Santilli A, Stefano LD, Hoshino Y, Sato E, Palmerini MG, Macchiarelli G. Akt expression in mouse oocytes matured in vivo and in vitro. Reprod Biomed Online 2009; 20:35-41. [PMID: 20158985 DOI: 10.1016/j.rbmo.2009.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/21/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
To improve developmental competence of in vitro matured oocytes, culture medium can be supplemented with hypoxanthine (Hx) and FSH or epidermal growth factor (EGF) to trigger the activation of essential signalling pathways regulating meiotic resumption and progression. Since the serine/threonine kinase, Akt, contributes to the regulation of the meiotic cell cycle, this study analysed its expression level and localization at the meiotic spindle in oocytes matured in vivo or in vitro in the presence of Hx-FSH or Hx-EGF. Independently of culture conditions adopted, Akt mRNA concentration did not vary from germinal vesicle to metaphase I (MI), while at MII a significant decrease in Akt1 mRNA concentration was recorded in oocytes matured in vivo and in those stimulated by Hx-EGF (P < 0.05). Phoshorylated Akt protein content was similar in the different groups of MI oocytes, but it decreased at MII in oocytes matured either in vivo or in vitro with Hx-EGF. Ser-473-phosphorylated Akt was localized uniformly to the meiotic spindle in more than 90% of oocytes. These results indicate that, in mouse oocytes, Akt expression is differentially regulated during in vivo and in vitro maturation and suggest that EGF could be a positive modulator, even stronger than FSH, of oocyte meiotic maturation.
Collapse
Affiliation(s)
- Sandra Cecconi
- Department of Health Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Andreeva AV, Kutuzov MA, Tkachuk VA, Voyno-Yasenetskaya TA. T-cadherin is located in the nucleus and centrosomes in endothelial cells. Am J Physiol Cell Physiol 2009; 297:C1168-77. [PMID: 19726744 DOI: 10.1152/ajpcell.00237.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cadherin (H-cadherin, cadherin 13) is upregulated in vascular proliferative disorders and in tumor-associated neovascularization and is deregulated in many cancers. Unlike canonical cadherins, it lacks transmembrane and intracellular domains and is attached to the plasma membrane via a glycosylphosphatidylinositol anchor. T-cadherin is thought to function in signaling rather than as an adhesion molecule. Some interactive partners of T-cadherin at the plasma membrane have recently been identified. We examined T-cadherin location in human endothelial cells using confocal microscopy and subcellular fractionation. We found that a considerable proportion of T-cadherin is located in the nucleus and in the centrosomes. T-cadherin colocalized with a centrosomal marker gamma-tubulin uniformly throughout the cell cycle at least in human umbilical vein endothelial cells. In the telophase, T-cadherin transiently concentrated in the midbody and was apparently degraded. Its overexpression resulted in an increase in the number of multinuclear cells, whereas its downregulation by small interfering RNA led to an increase in the number of cells with multiple centrosomes. These findings indicate that deregulation of T-cadherin in endothelial cells may lead to disturbances in cytokinesis or centrosomal replication.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
38
|
Hauge H, Fjelland KE, Sioud M, Aasheim HC. Evidence for the involvement of FAM110C protein in cell spreading and migration. Cell Signal 2009; 21:1866-73. [PMID: 19698782 DOI: 10.1016/j.cellsig.2009.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/03/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
Abstract
A number of factors, including protein kinases, Rho GTPases and actin and microtubule cytoskeletons play a crucial role in cell migration and spreading. We have recently shown that ectopic expression of FAM110C can alter cellular morphology by mechanisms yet to be determined. In this study, a FAM110C antiserum has been developed and used to study endogenously expressed FAM110C. Our data show that FAM110C is expressed by different cell lines and it can be detected throughout the cell. Interestingly, depletion of FAM110C by short interfering RNA reduced integrin-mediated filopodia formation, hepatocyte growth factor-induced migration, and phosphorylation of the Akt1 kinase in the epithelial cell line HepG2. Furthermore, co-immunoprecipitation and co-localization studies show that both ectopically and endogenously expressed FAM110C interact, or is part of a protein complex, with the Akt1 kinase. This interaction is transient and follows the activation of Akt1. In addition, we show that alpha-tubulin co-precipitates with FAM110C which further supports an interaction with the microtubule cytoskeleton. Collectively, these findings suggest a new function for FAM110C in the regulation of cell spreading, migration and filopodia induction.
Collapse
Affiliation(s)
- Helena Hauge
- Department of Immunology the Norwegian Radium Hospital Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
39
|
Wainman A, Buster DW, Duncan T, Metz J, Ma A, Sharp D, Wakefield JG. A new Augmin subunit, Msd1, demonstrates the importance of mitotic spindle-templated microtubule nucleation in the absence of functioning centrosomes. Genes Dev 2009; 23:1876-81. [PMID: 19684111 PMCID: PMC2725934 DOI: 10.1101/gad.532209] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 07/07/2009] [Indexed: 11/25/2022]
Abstract
The Drosophila Augmin complex localizes gamma-tubulin to the microtubules of the mitotic spindle, regulating the density of spindle microtubules in tissue culture cells. Here, we identify the microtubule-associated protein Msd1 as a new component of the Augmin complex and demonstrate directly that it is required for nucleation of microtubules from within the mitotic spindle. Although Msd1 is necessary for embryonic syncytial mitoses, flies possessing a mutation in msd1 are viable. Importantly, however, in the absence of centrosomes, microtubule nucleation from within the spindle becomes essential. Thus, the Augmin complex has a crucial role in the development of the fly.
Collapse
Affiliation(s)
- Alan Wainman
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Daniel W. Buster
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 1046, USA
| | - Tommy Duncan
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Jeremy Metz
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 1046, USA
| | - Ao Ma
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 1046, USA
| | - David Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 1046, USA
| | - James G. Wakefield
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
- Life Sciences Interface/Doctoral Training Centre, University of Oxford, Oxford OX1 3QD United Kingdom
| |
Collapse
|
40
|
Yokota Y, Kim WY, Chen Y, Wang X, Stanco A, Komuro Y, Snider W, Anton ES. The adenomatous polyposis coli protein is an essential regulator of radial glial polarity and construction of the cerebral cortex. Neuron 2009; 61:42-56. [PMID: 19146812 PMCID: PMC2804250 DOI: 10.1016/j.neuron.2008.10.053] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/30/2008] [Accepted: 10/31/2008] [Indexed: 11/23/2022]
Abstract
Radial glia are highly polarized cells that serve as neuronal progenitors and as scaffolds for neuronal migration during construction of the cerebral cortex. How radial glial cells establish and maintain their morphological polarity is unknown. Using conditional gene targeting in mice, we demonstrate that adenomatous polyposis coli (APC) serves an essential function in the maintenance of polarized radial glial scaffold during brain development. In the absence of APC, radial glial cells lose their polarity and responsiveness to the extracellular polarity maintenance cues, such as neuregulin-1. Elimination of APC further leads to marked instability of the radial glial microtubule cytoskeleton. The resultant changes in radial glial function and loss of APC in radial glial progeny lead to defective generation and migration of cortical neurons, severely disrupted cortical layer formation, and aberrant axonal tract development. Thus, APC is an essential regulator of radial glial polarity and is critical for the construction of cerebral cortex in mammals.
Collapse
Affiliation(s)
- Yukako Yokota
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Woo- Yang Kim
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Yojun Chen
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Xinshuo Wang
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Amelia Stanco
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Yutaro Komuro
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - William Snider
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - E. S. Anton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
41
|
Duong Van Huyen JP, Cheval L, Bloch-Faure M, Belair MF, Heudes D, Bruneval P, Doucet A. GDF15 triggers homeostatic proliferation of acid-secreting collecting duct cells. J Am Soc Nephrol 2008; 19:1965-74. [PMID: 18650486 DOI: 10.1681/asn.2007070781] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although adult kidney cells are quiescent, enlargement of specific populations of epithelial cells occurs during repair and adaptive processes. A prerequisite to the development of regenerative therapeutics is to identify the mechanisms and factors that control the size of specific populations of renal cells. Unfortunately, in most cases, it is unknown whether the growth of cell populations results from transdifferentiation or proliferation and whether proliferating cells derive from epithelial cells or from circulating or resident progenitors. In this study, the mechanisms underlying the enlargement of the acid-secreting cell population in the mouse kidney collecting duct in response to metabolic acidosis was investigated. Acidosis led to two phases of proliferation that preferentially affected the acid-secreting cells of the outer medullary collecting duct. All proliferating cells displayed polarized expression of functional markers. The first phase of proliferation, which started within 24 h and peaked at day 3, was dependent on the overexpression of growth differentiation factor 15 (GDF15) and cyclin D1 and was abolished when phosphatidylinositol-3 kinase and mammalian target of rapamycin were inhibited. During this phase, cells mostly divided along the tubular axis, contributing to tubule lengthening. The second phase of proliferation was independent of GDF15 but was associated with induction of cyclin D3. During this phase, cells divided transversely. In summary, acid-secreting cells proliferate as the collecting duct adapts to metabolic acidosis, and GDF15 seems to be an important determinant of collecting duct lengthening.
Collapse
Affiliation(s)
- Jean Paul Duong Van Huyen
- UPMC University of Paris 06, Unité Mixte de Recherche Scientifique UMRS 872, and INSERM, UMRS 872, Paris France
| | | | | | | | | | | | | |
Collapse
|