1
|
Wang W, Rui M. Advances in understanding the roles of actin scaffolding and membrane trafficking in dendrite development. J Genet Genomics 2024; 51:1151-1161. [PMID: 38925347 DOI: 10.1016/j.jgg.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Dendritic morphology is typically highly branched, and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received, thus providing the basis for information processing in the nervous system. Once dendritic development is aberrantly compromised or damaged, it may lead to abnormal connectivity of the neural network, affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders. Research on the regulation of dendritic developmental processes has flourished, and much progress is now being made in its regulatory mechanisms. Noteworthily, dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone, requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them. Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development, with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly. In this review, we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites. We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wanting Wang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China
| | - Menglong Rui
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China.
| |
Collapse
|
2
|
Salvador-Garcia D, Jin L, Hensley A, Gölcük M, Gallaud E, Chaaban S, Port F, Vagnoni A, Planelles-Herrero VJ, McClintock MA, Derivery E, Carter AP, Giet R, Gür M, Yildiz A, Bullock SL. A force-sensitive mutation reveals a non-canonical role for dynein in anaphase progression. J Cell Biol 2024; 223:e202310022. [PMID: 38949648 PMCID: PMC11215527 DOI: 10.1083/jcb.202310022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
The diverse roles of the dynein motor in shaping microtubule networks and cargo transport complicate in vivo analysis of its functions significantly. To address this issue, we have generated a series of missense mutations in Drosophila Dynein heavy chain. We show that mutations associated with human neurological disease cause a range of defects, including impaired cargo trafficking in neurons. We also describe a novel microtubule-binding domain mutation that specifically blocks the metaphase-anaphase transition during mitosis in the embryo. This effect is independent from dynein's canonical role in silencing the spindle assembly checkpoint. Optical trapping of purified dynein complexes reveals that this mutation only compromises motor performance under load, a finding rationalized by the results of all-atom molecular dynamics simulations. We propose that dynein has a novel function in anaphase progression that depends on it operating in a specific load regime. More broadly, our work illustrates how in vivo functions of motors can be dissected by manipulating their mechanical properties.
Collapse
Affiliation(s)
- David Salvador-Garcia
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Li Jin
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew Hensley
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Mert Gölcük
- School of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Emmanuel Gallaud
- Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Sami Chaaban
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Fillip Port
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Alessio Vagnoni
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Mark A. McClintock
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Emmanuel Derivery
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew P. Carter
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Régis Giet
- Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Mert Gür
- School of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ahmet Yildiz
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Simon L. Bullock
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
3
|
Peng J, Yang S, Zhou C, Qin C, Fang K, Tan Y, Da J, Zhang J, Zha Y. Identification of common biomarkers in diabetic kidney disease and cognitive dysfunction using machine learning algorithms. Sci Rep 2024; 14:22057. [PMID: 39333211 PMCID: PMC11436791 DOI: 10.1038/s41598-024-72327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Cognitive dysfunction caused by diabetes has become a serious global medical issue. Diabetic kidney disease (DKD) exacerbates cognitive dysfunction in patients, although the precise mechanism behind this remains unclear. Here, we conducted an investigation using RNA sequencing data from the Gene Expression Omnibus (GEO) database. We analyzed the differentially expressed genes in DKD and three types of neurons in the temporal cortex (TC) of diabetic patients with cognitive dysfunction. Through our analysis, we identified a total of 133 differentially expressed genes (DEGs) shared between DKD and TC neurons (62 up-regulated and 71 down-regulated). To identify potential common biomarkers, we employed machine learning algorithms (LASSO and SVM-RFE) and Venn diagram analysis. Ultimately, we identified 8 overlapping marker genes (ZNF564, VPS11, YPEL4, VWA5B1, A2ML1, KRT6A, SEC14L1P1, SH3RF1) as potential biomarkers, which exhibited high sensitivity and specificity in ROC curve analysis. Functional analysis using Gene Ontology (GO) revealed that these genes were primarily enriched in autophagy, ubiquitin/ubiquitin-like protein ligase activity, MAP-kinase scaffold activity, and syntaxin binding. Further enrichment analysis using Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) indicates that these biomarkers may play a crucial role in the development of cognitive dysfunction and diabetic nephropathy. Building upon these biomarkers, we developed a diagnostic model with a reliable predictive ability for DKD complicated by cognitive dysfunction. To validate the 8 biomarkers, we conducted RT-PCR analysis in the cortex, hippocampus and kidney of animal models. The results demonstrated the up-regulation of SH3RF1 in the cortex, hippocampus and kidney of mice, which was further confirmed by immunofluorescence and Western blot validation. Notably, SH3RF1 is a scaffold protein involved in cell survival in the JNK signaling pathway. Based on these findings, we support that SH3RF1 may be a common gene expression feature that influences DKD and cognitive dysfunction through the apoptotic pathway.
Collapse
Affiliation(s)
- Jing Peng
- Guizhou University Medical College, Guiyang, 550002, China
- Department of Anesthesiology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China
| | - Sha Yang
- Guizhou University Medical College, Guiyang, 550002, China
| | - Chaomin Zhou
- Guizhou University Medical College, Guiyang, 550002, China
- Department of Nephrology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China
| | - Chenguang Qin
- Department of Anesthesiology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China
| | - Kaiyun Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China
| | - Jingjing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China.
| | - Jiqing Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China.
| | - Yan Zha
- Guizhou University Medical College, Guiyang, 550002, China.
- Department of Nephrology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China.
| |
Collapse
|
4
|
Zeger M, Stanisławczyk LS, Bulić M, Binder AM, Huber A. tsCRISPR based identification of Rab proteins required for the recycling of Drosophila TRPL ion channel. Front Cell Dev Biol 2024; 12:1444953. [PMID: 39372952 PMCID: PMC11450138 DOI: 10.3389/fcell.2024.1444953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
In polarized cells, the precise regulation of protein transport to and from the plasma membrane is crucial to maintain cellular function. Dysregulation of intracellular protein transport in neurons can lead to neurodegenerative diseases such as Retinitis Pigmentosa, Alzheimer's and Parkinson's disease. Here we used the light-dependent transport of the TRPL (transient receptor potential-like) ion channel in Drosophila photoreceptor cells to study the role of Rab proteins in TRPL recycling. TRPL is located in the rhabdomeric membrane of dark-adapted flies, but it is transported out of the rhabdomere upon light exposure and localizes at the Endoplasmatic Reticulum within 12 h. Upon subsequent dark adaptation, TRPL is recycled back to the rhabdomeric membrane within 90 min. To screen for Rab proteins involved in TRPL recycling, we established a tissue specific (ts) CRISPR/Cas9-mediated knock-out of individual Rab genes in Drosophila photoreceptors and assessed TRPL localization using an eGFP tagged TRPL protein in the intact eyes of these mutants. We observed severe TRPL recycling defects in the knockouts of Rab3, Rab4, Rab7, Rab32, and RabX2. Using immunohistochemistry, we further showed that Rab3 and RabX2 each play a significant role in TRPL recycling and also influence TRPL transport. We localized Rab3 to the late endosome in Drosophila photoreceptors and observed disruption of TRPL transport to the ER in Rab3 knock-out mutants. TRPL transport from the ER to the rhabdomere ensues from the trans-Golgi where RabX2 is located. We observed accumulated TRPL at the trans-Golgi in RabX2 knock-out mutants. In summary, our study reveals the requirement of specific Rab proteins for different steps of TRPL transport in photoreceptor cells and provides evidence for a unique retrograde recycling pathway of TRPL from the ER via the trans-Golgi.
Collapse
Affiliation(s)
| | | | | | | | - Armin Huber
- Department of Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
Dresselhaus EC, Harris KP, Blanchette CR, Koles K, Del Signore SJ, Pescosolido MF, Ermanoska B, Rozencwaig M, Soslowsky RC, Parisi MJ, Stewart BA, Mosca TJ, Rodal AA. ESCRT disruption provides evidence against trans-synaptic signaling via extracellular vesicles. J Cell Biol 2024; 223:e202405025. [PMID: 38842573 PMCID: PMC11157088 DOI: 10.1083/jcb.202405025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Extracellular vesicles (EVs) are released by many cell types, including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating endosomal sorting complex required for transport (ESCRT) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo evenness interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell-autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.
Collapse
Affiliation(s)
| | - Kathryn P. Harris
- Office of the Vice-Principal, Research and Innovation, University of Toronto Mississauga, Mississauga, Canada
| | | | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | | | | | | - Mark Rozencwaig
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | | - Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bryan A. Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Avital A. Rodal
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
6
|
Clayton EL, Huggon L, Cousin MA, Mizielinska S. Synaptopathy: presynaptic convergence in frontotemporal dementia and amyotrophic lateral sclerosis. Brain 2024; 147:2289-2307. [PMID: 38451707 PMCID: PMC11224618 DOI: 10.1093/brain/awae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Frontotemporal dementia and amyotrophic lateral sclerosis are common forms of neurodegenerative disease that share overlapping genetics and pathologies. Crucially, no significantly disease-modifying treatments are available for either disease. Identifying the earliest changes that initiate neuronal dysfunction is important for designing effective intervention therapeutics. The genes mutated in genetic forms of frontotemporal dementia and amyotrophic lateral sclerosis have diverse cellular functions, and multiple disease mechanisms have been proposed for both. Identification of a convergent disease mechanism in frontotemporal dementia and amyotrophic lateral sclerosis would focus research for a targetable pathway, which could potentially effectively treat all forms of frontotemporal dementia and amyotrophic lateral sclerosis (both familial and sporadic). Synaptopathies are diseases resulting from physiological dysfunction of synapses, and define the earliest stages in multiple neuronal diseases, with synapse loss a key feature in dementia. At the presynapse, the process of synaptic vesicle recruitment, fusion and recycling is necessary for activity-dependent neurotransmitter release. The unique distal location of the presynaptic terminal means the tight spatio-temporal control of presynaptic homeostasis is dependent on efficient local protein translation and degradation. Recently, numerous publications have shown that mutations associated with frontotemporal dementia and amyotrophic lateral sclerosis present with synaptopathy characterized by presynaptic dysfunction. This review will describe the complex local signalling and membrane trafficking events that occur at the presynapse to facilitate neurotransmission and will summarize recent publications linking frontotemporal dementia/amyotrophic lateral sclerosis genetic mutations to presynaptic function. This evidence indicates that presynaptic synaptopathy is an early and convergent event in frontotemporal dementia and amyotrophic lateral sclerosis and illustrates the need for further research in this area, to identify potential therapeutic targets with the ability to impact this convergent pathomechanism.
Collapse
Affiliation(s)
- Emma L Clayton
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Laura Huggon
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sarah Mizielinska
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| |
Collapse
|
7
|
Dresselhaus EC, Harris KP, Blanchette CR, Koles K, Del Signore SJ, Pescosolido MF, Ermanoska B, Rozencwaig M, Soslowsky RC, Parisi MJ, Stewart BA, Mosca TJ, Rodal AA. ESCRT disruption provides evidence against transsynaptic signaling functions for extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.22.537920. [PMID: 38746182 PMCID: PMC11092503 DOI: 10.1101/2023.04.22.537920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Extracellular vesicles (EVs) are released by many cell types including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating ESCRT (endosomal sorting complex required for transport) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo Evenness Interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.
Collapse
Affiliation(s)
| | - Kathryn P. Harris
- Office of the Vice-Principal, Research and Innovation, University of Toronto, Mississauga, Mississauga, Canada
| | | | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA
| | | | | | | | | | | | - Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA
| | - Bryan A. Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada; Department of Cell and Systems Biology University of Toronto, Toronto, Canada
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA
| | | |
Collapse
|
8
|
Chang YC, Gao Y, Lee JY, Peng YJ, Langen J, Chang KT. Identification of secretory autophagy as a mechanism modulating activity-induced synaptic remodeling. Proc Natl Acad Sci U S A 2024; 121:e2315958121. [PMID: 38588427 PMCID: PMC11032469 DOI: 10.1073/pnas.2315958121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood, as neurodevelopment and structural plasticity are tightly linked. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity and synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We report that while both synapse development and activity-induced synaptic remodeling at the fly NMJ require macroautophagy (hereafter referred to as autophagy), bifurcation in the autophagy pathway differentially impacts development and synaptic plasticity. We demonstrate that neuronal activity enhances autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a transsynaptic signaling mechanism modulating synaptic plasticity.
Collapse
Affiliation(s)
- Yen-Ching Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Yuan Gao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Joo Yeun Lee
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Yi-Jheng Peng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Jennifer Langen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Karen T. Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| |
Collapse
|
9
|
Todd TW, Shao W, Zhang YJ, Petrucelli L. The endolysosomal pathway and ALS/FTD. Trends Neurosci 2023; 46:1025-1041. [PMID: 37827960 PMCID: PMC10841821 DOI: 10.1016/j.tins.2023.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are considered to be part of a disease spectrum that is associated with causative mutations and risk variants in a wide range of genes. Mounting evidence indicates that several of these genes are linked to the endolysosomal system, highlighting the importance of this pathway in ALS/FTD. Although many studies have focused on how disruption of this pathway impacts on autophagy, recent findings reveal that this may not be the whole picture: specifically, disrupting autophagy may not be sufficient to induce disease, whereas disrupting the endolysosomal system could represent a crucial pathogenic driver. In this review we discuss the connections between ALS/FTD and the endolysosomal system, including a breakdown of how disease-associated genes are implicated in this pathway. We also explore the potential downstream consequences of disrupting endolysosomal activity in the brain, outside of an effect on autophagy.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Wei Shao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
10
|
Bennett CL, Dastidar S, Arnold FJ, McKinstry SU, Stockford C, Freibaum BD, Sopher BL, Wu M, Seidner G, Joiner W, Taylor JP, West RJH, La Spada AR. Senataxin helicase, the causal gene defect in ALS4, is a significant modifier of C9orf72 ALS G4C2 and arginine-containing dipeptide repeat toxicity. Acta Neuropathol Commun 2023; 11:164. [PMID: 37845749 PMCID: PMC10580588 DOI: 10.1186/s40478-023-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Identifying genetic modifiers of familial amyotrophic lateral sclerosis (ALS) may reveal targets for therapeutic modulation with potential application to sporadic ALS. GGGGCC (G4C2) repeat expansions in the C9orf72 gene underlie the most common form of familial ALS, and generate toxic arginine-containing dipeptide repeats (DPRs), which interfere with membraneless organelles, such as the nucleolus. Here we considered senataxin (SETX), the genetic cause of ALS4, as a modifier of C9orf72 ALS, because SETX is a nuclear helicase that may regulate RNA-protein interactions involved in ALS dysfunction. After documenting that decreased SETX expression enhances arginine-containing DPR toxicity and C9orf72 repeat expansion toxicity in HEK293 cells and primary neurons, we generated SETX fly lines and evaluated the effect of SETX in flies expressing either (G4C2)58 repeats or glycine-arginine-50 [GR(50)] DPRs. We observed dramatic suppression of disease phenotypes in (G4C2)58 and GR(50) Drosophila models, and detected a striking relocalization of GR(50) out of the nucleolus in flies co-expressing SETX. Next-generation GR(1000) fly models, that show age-related motor deficits in climbing and movement assays, were similarly rescued with SETX co-expression. We noted that the physical interaction between SETX and arginine-containing DPRs is partially RNA-dependent. Finally, we directly assessed the nucleolus in cells expressing GR-DPRs, confirmed reduced mobility of proteins trafficking to the nucleolus upon GR-DPR expression, and found that SETX dosage modulated nucleolus liquidity in GR-DPR-expressing cells and motor neurons. These findings reveal a hitherto unknown connection between SETX function and cellular processes contributing to neuron demise in the most common form of familial ALS.
Collapse
Affiliation(s)
- Craig L Bennett
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Somasish Dastidar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Molecular Neurosciences, Kasturba Medical College, Manipal, 576104, India
| | - Frederick J Arnold
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Spencer U McKinstry
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cameron Stockford
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bryce L Sopher
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - Meilin Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Glen Seidner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - William Joiner
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Ryan J H West
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Albert R La Spada
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology and Behavior, University of California Irvine School of Biosciences, Irvine, CA, 92697, USA.
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
11
|
Qin Y, Chen J, Li J, Wu N. Relationship between hippocampal gene expression and cognitive performance differences in visual discrimination learning task of male rats. Behav Brain Res 2023; 454:114659. [PMID: 37690703 DOI: 10.1016/j.bbr.2023.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Learning to discriminate between environmental visual stimuli is essential to make right decisions and guide appropriate behaviors. Moreover, impairments in visual discrimination learning are observed in several neuropsychiatric disorders. Visual discrimination learning requires perception and memory processing, in which the hippocampus critically involved. To understand the molecular mechanisms underpinning hippocampus function in visual discrimination learning, we examined the hippocampal gene expression profiles of Sprague-Dawley rats with different cognitive performance (high cognition group vs. low cognition group) in the modified visual discrimination learning task, using high-throughput RNA sequencing technology. Compared with the low cognition group, bioinformatics analysis indicated that 319 genes were differentially expressed in the high cognition group with statistical significance, of which 253 genes were down-regulated and 66 genes were up-regulated. The functional enrichment analysis showed that protein translation and energy metabolism were up-regulated pathways, while transforming growth factor beta receptor signaling pathway, bone morphogenetic protein signaling pathway, apoptosis, inflammation response, transport, and glycosaminoglycan metabolism were down-regulated pathways, which were related to good cognitive performance in the visual discrimination learning task. Taken together, our finding reveals the differential gene expression and enrichment biological pathways related to cognitive performance differences in visual discrimination learning of rats, which provides us direct insight into the molecular mechanisms of hippocampus function in visual discrimination learning and may contribute to developing potential treatment strategies for neuropsychiatric disorders accompanied with cognitive impairments.
Collapse
Affiliation(s)
- Yihan Qin
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Jianmin Chen
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| |
Collapse
|
12
|
Salvador-Garcia D, Jin L, Hensley A, Gölcük M, Gallaud E, Chaaban S, Port F, Vagnoni A, Planelles-Herrero VJ, McClintock MA, Derivery E, Carter AP, Giet R, Gür M, Yildiz A, Bullock SL. A force-sensitive mutation reveals a spindle assembly checkpoint-independent role for dynein in anaphase progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551815. [PMID: 37577480 PMCID: PMC10418259 DOI: 10.1101/2023.08.03.551815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The cytoplasmic dynein-1 (dynein) motor organizes cells by shaping microtubule networks and moving a large variety of cargoes along them. However, dynein's diverse roles complicate in vivo studies of its functions significantly. To address this issue, we have used gene editing to generate a series of missense mutations in Drosophila Dynein heavy chain (Dhc). We find that mutations associated with human neurological disease cause a range of defects in larval and adult flies, including impaired cargo trafficking in neurons. We also describe a novel mutation in the microtubule-binding domain (MTBD) of Dhc that, remarkably, causes metaphase arrest of mitotic spindles in the embryo but does not impair other dynein-dependent processes. We demonstrate that the mitotic arrest is independent of dynein's well-established roles in silencing the spindle assembly checkpoint. In vitro reconstitution and optical trapping assays reveal that the mutation only impairs the performance of dynein under load. In silico all-atom molecular dynamics simulations show that this effect correlates with increased flexibility of the MTBD, as well as an altered orientation of the stalk domain, with respect to the microtubule. Collectively, our data point to a novel role of dynein in anaphase progression that depends on the motor operating in a specific load regime. More broadly, our work illustrates how cytoskeletal transport processes can be dissected in vivo by manipulating mechanical properties of motors.
Collapse
Affiliation(s)
| | - Li Jin
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Andrew Hensley
- Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Mert Gölcük
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, 34437, Turkey
| | - Emmanuel Gallaud
- Institut de Génétique et Développement de Rennes - UMR 6290, Université de Rennes, F-35000 Rennes, France
| | - Sami Chaaban
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Fillip Port
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Current address: Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alessio Vagnoni
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Current address: Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 9RX, UK
| | | | - Mark A. McClintock
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Emmanuel Derivery
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Andrew P. Carter
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Régis Giet
- Institut de Génétique et Développement de Rennes - UMR 6290, Université de Rennes, F-35000 Rennes, France
| | - Mert Gür
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, 34437, Turkey
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ahmet Yildiz
- Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Simon L. Bullock
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
13
|
Jun YW, Lee S, Ban BK, Lee JA, Gao FB. Non-muscle MYH10/myosin IIB recruits ESCRT-III to participate in autophagosome closure to maintain neuronal homeostasis. Autophagy 2023; 19:2045-2061. [PMID: 36849436 PMCID: PMC10283425 DOI: 10.1080/15548627.2023.2169309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 03/01/2023] Open
Abstract
Dysfunction of the endosomal sorting complex required for transport (ESCRT) has been linked to frontotemporal dementia (FTD) due in part to the accumulation of unsealed autophagosomes. However, the mechanisms of ESCRT-mediated membrane closure events on phagophores remain largely unknown. In this study, we found that partial knockdown of non-muscle MYH10/myosin IIB/zip rescues neurodegeneration in both Drosophila and human iPSC-derived cortical neurons expressing FTD-associated mutant CHMP2B, a subunit of ESCRT-III. We also found that MYH10 binds and recruits several autophagy receptor proteins during autophagosome formation induced by mutant CHMP2B or nutrient starvation. Moreover, MYH10 interacted with ESCRT-III to regulate phagophore closure by recruiting ESCRT-III to damaged mitochondria during PRKN/parkin-mediated mitophagy. Evidently, MYH10 is involved in the initiation of induced but not basal autophagy and also links ESCRT-III to mitophagosome sealing, revealing novel roles of MYH10 in the autophagy pathway and in ESCRT-related FTD pathogenesis.Abbreviations: ALS: amyotrophic lateral sclerosis; AP: autophagosome; Atg: autophagy-related; ESCRT: endosomal sorting complex required for transport; FTD: frontotemporal dementia.
Collapse
Affiliation(s)
- Yong-Woo Jun
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Soojin Lee
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Byung-Kwan Ban
- Department of Biotechnology and Biological Sciences, Hannam University, Yuseong-gu, Daejeon, Republic of Korea
| | - Jin-A Lee
- Department of Biotechnology and Biological Sciences, Hannam University, Yuseong-gu, Daejeon, Republic of Korea
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
14
|
Toft A, Sjödin S, Simonsen AH, Ejlerskov P, Roos P, Musaeus CS, Henriksen EE, Nielsen TT, Brinkmalm A, Blennow K, Zetterberg H, Nielsen JE. Endo-lysosomal protein concentrations in CSF from patients with frontotemporal dementia caused by CHMP2B mutation. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12402. [PMID: 36815874 PMCID: PMC9936136 DOI: 10.1002/dad2.12402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 02/19/2023]
Abstract
Introduction Increasing evidence implicates proteostatic dysfunction as an early event in the development of frontotemporal dementia (FTD). This study aimed to explore potential cerebrospinal fluid (CSF) biomarkers associated with the proteolytic systems in genetic FTD caused by CHMP2B mutation. Methods Combining solid-phase extraction and parallel reaction monitoring mass spectrometry, a panel of 47 peptides derived from 20 proteins was analyzed in CSF from 31 members of the Danish CHMP2B-FTD family. Results Compared with family controls, mutation carriers had significantly higher levels of complement C9, lysozyme and transcobalamin II, and lower levels of ubiquitin, cathepsin B, and amyloid precursor protein. Discussion Lower CSF ubiquitin concentrations in CHMP2B mutation carriers indicate that ubiquitin levels relate to the specific disease pathology, rather than all-cause neurodegeneration. Increased lysozyme and complement proteins may indicate innate immune activation. Altered levels of amyloid precursor protein and cathepsins have previously been associated with impaired lysosomal proteolysis in FTD. Highlights CSF markers of proteostasis were explored in CHMP2B-mediated frontotemporal dementia (FTD).31 members of the Danish CHMP2B-FTD family were included.We used solid-phase extraction and parallel reaction monitoring mass spectrometry.Six protein levels were significantly altered in CHMP2B-FTD compared with controls.Lower CSF ubiquitin levels in patients suggest association with disease mechanisms.
Collapse
Affiliation(s)
- Anders Toft
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Simon Sjödin
- Laboratory of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Anja Hviid Simonsen
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Patrick Ejlerskov
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Peter Roos
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Christian Sandøe Musaeus
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Emil Elbæk Henriksen
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Troels Tolstrup Nielsen
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Ann Brinkmalm
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Kaj Blennow
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Henrik Zetterberg
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongChina
| | - Jørgen Erik Nielsen
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| |
Collapse
|
15
|
Petnicki-Ocwieja T, Sharma B, Powale U, Pathak D, Tan S, Hu LT. An AP-3-dependent pathway directs phagosome fusion with Rab8 and Rab11 vesicles involved in TLR2 signaling. Traffic 2022; 23:558-567. [PMID: 36224049 PMCID: PMC10757455 DOI: 10.1111/tra.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 01/20/2023]
Abstract
Intracellular compartmentalization of ligands, receptors and signaling molecules has been recognized as an important regulator of inflammation. The toll-like receptor (TLR) 2 pathway utilizes the trafficking molecule adaptor protein 3 (AP-3) to activate interleukin (IL)-6 signaling from within phagosomal compartments. To better understand the vesicular pathways that may contribute to intracellular signaling and cooperate with AP-3, we performed a vesicular siRNA screen. We identified Rab8 and Rab11 GTPases as important in IL-6 induction upon stimulation with the TLR2 ligand Pam3 CSK4 or the pathogen, Borrelia burgdorferi (Bb), the causative agent of Lyme disease. These Rabs were recruited to late and lysosomal stage phagosomes and co-transported with TLR2 signaling adaptors and effectors, such as MyD88, TRAM and TAK1, in an AP-3-dependent manner. Our data support a model where AP-3 mediates the recruitment of recycling and secretory vesicles and the assembly of signaling complexes at the phagosome.
Collapse
Affiliation(s)
- Tanja Petnicki-Ocwieja
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Bijaya Sharma
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Urmila Powale
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Devesh Pathak
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Chen Y, Krishnan G, Parsi S, Pons M, Nikolaki V, Cao L, Xu Z, Gao FB. The enhanced association between mutant CHMP2B and spastin is a novel pathological link between frontotemporal dementia and hereditary spastic paraplegias. Acta Neuropathol Commun 2022; 10:169. [PMID: 36414997 PMCID: PMC9682730 DOI: 10.1186/s40478-022-01476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Chromosome 3-linked frontotemporal dementia (FTD3) is caused by a gain-of-function mutation in CHMP2B, resulting in the production of a truncated toxic protein, CHMP2BIntron5. Loss-of-function mutations in spastin are the most common genetic cause of hereditary spastic paraplegias (HSP). How these proteins might interact with each other to drive pathology remains to be explored. Here we found that spastin binds with greater affinity to CHMP2BIntron5 than to CHMP2BWT and colocalizes with CHMP2BIntron5 in p62-positive aggregates. In cultured cells expressing CHMP2BIntron5, spastin level in the cytoplasmic soluble fraction is decreased while insoluble spastin level is increased. These pathological features of spastin are validated in brain neurons of a mouse model of FTD3. Moreover, genetic knockdown of spastin enhances CHMP2BIntron5 toxicity in a Drosophila model of FTD3, indicating the functional significance of their association. Thus, our study reveals that the enhanced association between mutant CHMP2B and spastin represents a novel potential pathological link between FTD3 and HSP.
Collapse
Affiliation(s)
- Yongping Chen
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurology, Lab of Neurodegenerative Disorders, and Rare Disease Center of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gopinath Krishnan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Sepideh Parsi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Marine Pons
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Veroniki Nikolaki
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Lu Cao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
17
|
AP2 Regulates Thickveins Trafficking to Attenuate NMJ Growth Signaling in Drosophila. eNeuro 2022; 9:ENEURO.0044-22.2022. [PMID: 36180220 PMCID: PMC9581581 DOI: 10.1523/eneuro.0044-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022] Open
Abstract
Compromised endocytosis in neurons leads to synapse overgrowth and altered organization of synaptic proteins. However, the molecular players and the signaling pathways which regulate the process remain poorly understood. Here, we show that σ2-adaptin, one of the subunits of the AP2-complex, genetically interacts with Mad, Medea and Dad (components of BMP signaling) to control neuromuscular junction (NMJ) growth in Drosophila Ultrastructural analysis of σ2-adaptin mutants show an accumulation of large vesicles and membranous structures akin to endosomes at the synapse. We found that mutations in σ2-adaptin lead to an accumulation of Tkv receptors at the presynaptic membrane. Interestingly, the level of small GTPase Rab11 was significantly reduced in the σ2-adaptin mutant synapses. However, expression of Rab11 does not restore the synaptic defects of σ2-adaptin mutations. We propose a model in which AP2 regulates Tkv internalization and endosomal recycling to control synaptic growth.
Collapse
|
18
|
Liu J, Zhou F, Chen Y, Guan Y, Meng F, Zhao Z, Wang X, Gao X, Jiang X, Zhang H, Wang Q, Zhou S, Wang X. Wnt5a protects motor neurons in amyotrophic lateral sclerosis by regulating the Wnt/Ca 2+ signaling pathway. Am J Transl Res 2022; 14:5343-5362. [PMID: 36105066 PMCID: PMC9452359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES We aimed to detect the expression profile of downstream signaling molecules of non-canonical Wnt pathway in SOD1G93A transgenic mice (ALS mice) and SOD1G93A mutant motor neuron-like hybrid (NSC-34) cells. Characterizing the molecular mechanism of the Wnt5a-mediated non-canonical Wnt/Ca2+ signaling pathway in motor neuron (MN) degeneration may provide a feasible approach to effective treatment of amyotrophic lateral sclerosis (ALS). METHODS The expressions of CaMKII-α, CaMKII-β and TAK1 in the spinal cord of SOD1G93A ALS transgenic mice at different ages were determined using western blotting and immunofluorescence. The level of Ca2+ and cell apoptosis were assessed with flow cytometry and cell viability was evaluated using MTS assay. Cell proliferation was analyzed by the EdU cell proliferation assay. Neurite length was measured after treatment with retinoic acid. RESULTS CaMKII-α, CaMKII-β, and TAK1 were down-regulated in the spinal cord of ALS mice. Ca2+ level and CaMKII-α, CaMKII-β, and TAK1 were down-regulated in SOD1G93A mutant NSC-34 cells. Expression of Ca2+, CaMKII-α, CaMKII-β, and TAK1 were up-regulated in SOD1G93A mutant NSC-34 cells after Wnt5a overexpression and down-regulated after Wnt5a knockdown. Overexpression of Wnt5a promoted cell viability and proliferation but inhibited cell apoptosis. Contrastingly, Wnt5a knockdown inhibited cell viability and proliferation but promoted cell apoptosis. CaMKII inhibitor KN-93 and CaMKII activator oleic acid reversed changes in cell viability, proliferation, apoptosis, and neurite outgrowth induced by Wnt5a overexpression and knockdown. CONCLUSIONS This study demonstrates that Wnt5a protects MNs in ALS by regulating cell viability, proliferation, apoptosis, and neurite growth through the Wnt/Ca2+ signaling pathway. Our data indicate that the non-canonical Wnt/Ca2+ signaling pathway regulated by Wnt5a is involved in MN degeneration in ALS.
Collapse
Affiliation(s)
- Jinmeng Liu
- Laboratory of Biochemistry and Molecular Biology, Weifang Medical UniversityWeifang 261053, Shandong, PR China
| | - Fenghua Zhou
- Department of Pathology, Weifang Medical UniversityWeifang 261053, Shandong, PR China
| | - Yanchun Chen
- Department of Histology and Embryology, Weifang Medical UniversityWeifang 261053, Shandong, PR China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical UniversityWeifang 261053, Shandong, PR China
| | - Yingjun Guan
- Department of Histology and Embryology, Weifang Medical UniversityWeifang 261053, Shandong, PR China
| | - Fandi Meng
- Department of Histology and Embryology, Weifang Medical UniversityWeifang 261053, Shandong, PR China
| | - Zhenhan Zhao
- Department of Histology and Embryology, Weifang Medical UniversityWeifang 261053, Shandong, PR China
| | - Xuemei Wang
- Department of Histology and Embryology, Weifang Medical UniversityWeifang 261053, Shandong, PR China
| | - Xueshuai Gao
- Department of Histology and Embryology, Weifang Medical UniversityWeifang 261053, Shandong, PR China
| | - Xin Jiang
- Department of Histology and Embryology, Weifang Medical UniversityWeifang 261053, Shandong, PR China
| | - Haoyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical UniversityWeifang 261053, Shandong, PR China
| | - Qing Wang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical UniversityWeifang 261053, Shandong, PR China
| | - Shuanhu Zhou
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBoston 02115, MA, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical SchoolBoston 02115, MA, USA
| |
Collapse
|
19
|
Blanchette CR, Scalera AL, Harris KP, Zhao Z, Dresselhaus EC, Koles K, Yeh A, Apiki JK, Stewart BA, Rodal AA. Local regulation of extracellular vesicle traffic by the synaptic endocytic machinery. J Cell Biol 2022; 221:e202112094. [PMID: 35320349 PMCID: PMC8952828 DOI: 10.1083/jcb.202112094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Neuronal extracellular vesicles (EVs) are locally released from presynaptic terminals, carrying cargoes critical for intercellular signaling and disease. EVs are derived from endosomes, but it is unknown how these cargoes are directed to the EV pathway rather than for conventional endolysosomal degradation. Here, we find that endocytic machinery plays an unexpected role in maintaining a release-competent pool of EV cargoes at synapses. Endocytic mutants, including nervous wreck (nwk), shibire/dynamin, and AP-2, unexpectedly exhibit local presynaptic depletion specifically of EV cargoes. Accordingly, nwk mutants phenocopy synaptic plasticity defects associated with loss of the EV cargo synaptotagmin-4 (Syt4) and suppress lethality upon overexpression of the EV cargo amyloid precursor protein (APP). These EV defects are genetically separable from canonical endocytic functions in synaptic vesicle recycling and synaptic growth. Endocytic machinery opposes the endosomal retromer complex to regulate EV cargo levels and acts upstream of synaptic cargo removal by retrograde axonal transport. Our data suggest a novel molecular mechanism that locally promotes cargo loading into synaptic EVs.
Collapse
Affiliation(s)
| | | | - Kathryn P. Harris
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Zechuan Zhao
- Department of Biology, Brandeis University, Waltham, MA
| | | | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA
| | - Anna Yeh
- Department of Biology, Brandeis University, Waltham, MA
| | | | - Bryan A. Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
20
|
Cho TS, Beigaitė E, Klein NE, Sweeney ST, Bhattacharya MRC. The Putative Drosophila TMEM184B Ortholog Tmep Ensures Proper Locomotion by Restraining Ectopic Firing at the Neuromuscular Junction. Mol Neurobiol 2022; 59:2605-2619. [PMID: 35107803 PMCID: PMC9018515 DOI: 10.1007/s12035-022-02760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Abstract
TMEM184B is a putative seven-pass membrane protein that promotes axon degeneration after injury. TMEM184B mutation causes aberrant neuromuscular architecture and sensory and motor behavioral defects in mice. The mechanism through which TMEM184B causes neuromuscular defects is unknown. We employed Drosophila melanogaster to investigate the function of the closely related gene, Tmep (CG12004), at the neuromuscular junction. We show that Tmep is required for full adult viability and efficient larval locomotion. Tmep mutant larvae have a reduced body contraction rate compared to controls, with stronger deficits in females. In recordings from body wall muscles, Tmep mutants show substantial hyperexcitability, with many postsynaptic potentials fired in response to a single stimulation, consistent with a role for Tmep in restraining synaptic excitability. Additional branches and satellite boutons at Tmep mutant neuromuscular junctions are consistent with an activity-dependent synaptic overgrowth. Tmep is expressed in endosomes and synaptic vesicles within motor neurons, suggesting a possible role in synaptic membrane trafficking. Using RNAi knockdown, we show that Tmep is required in motor neurons for proper larval locomotion and excitability, and that its reduction increases levels of presynaptic calcium. Locomotor defects can be rescued by presynaptic knockdown of endoplasmic reticulum calcium channels or by reducing evoked release probability, further suggesting that excess synaptic activity drives behavioral deficiencies. Our work establishes a critical function for Tmep in the regulation of synaptic transmission and locomotor behavior.
Collapse
Affiliation(s)
- Tiffany S Cho
- Department of Neuroscience, University of Arizona, 1040 E 4th Street, Tucson, AZ, 85721, USA
| | - Eglė Beigaitė
- Department of Biology, University of York, York, YO10 5DD, UK.,York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Nathaniel E Klein
- Department of Neuroscience, University of Arizona, 1040 E 4th Street, Tucson, AZ, 85721, USA
| | - Sean T Sweeney
- Department of Biology, University of York, York, YO10 5DD, UK.,York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Martha R C Bhattacharya
- Department of Neuroscience, University of Arizona, 1040 E 4th Street, Tucson, AZ, 85721, USA.
| |
Collapse
|
21
|
Walsh RB, Dresselhaus EC, Becalska AN, Zunitch MJ, Blanchette CR, Scalera AL, Lemos T, Lee SM, Apiki J, Wang S, Isaac B, Yeh A, Koles K, Rodal AA. Opposing functions for retromer and Rab11 in extracellular vesicle traffic at presynaptic terminals. J Cell Biol 2021; 220:212178. [PMID: 34019080 PMCID: PMC8144913 DOI: 10.1083/jcb.202012034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer's disease, and suggest that misregulated EV traffic may be an underlying defect.
Collapse
Affiliation(s)
- Rylie B Walsh
- Department of Biology, Brandeis University, Waltham, MA
| | | | | | | | | | - Amy L Scalera
- Department of Biology, Brandeis University, Waltham, MA
| | - Tania Lemos
- Department of Biology, Brandeis University, Waltham, MA
| | - So Min Lee
- Department of Biology, Brandeis University, Waltham, MA
| | - Julia Apiki
- Department of Biology, Brandeis University, Waltham, MA
| | - ShiYu Wang
- Department of Biology, Brandeis University, Waltham, MA
| | - Berith Isaac
- Department of Biology, Brandeis University, Waltham, MA
| | - Anna Yeh
- Department of Biology, Brandeis University, Waltham, MA
| | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA
| | | |
Collapse
|
22
|
Bridi JC, Bereczki E, Smith SK, Poças GM, Kottler B, Domingos PM, Elliott CJ, Aarsland D, Hirth F. Presynaptic accumulation of α-synuclein causes synaptopathy and progressive neurodegeneration in Drosophila. Brain Commun 2021; 3:fcab049. [PMID: 33997781 PMCID: PMC8111063 DOI: 10.1093/braincomms/fcab049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Alpha-synuclein (α-syn) mislocalization and accumulation in intracellular inclusions is the major pathological hallmark of degenerative synucleinopathies, including Parkinson's disease, Parkinson's disease with dementia and dementia with Lewy bodies. Typical symptoms are behavioural abnormalities including motor deficits that mark disease progression, while non-motor symptoms and synaptic deficits are already apparent during the early stages of disease. Synucleinopathies have therefore been considered synaptopathies that exhibit synaptic dysfunction prior to neurodegeneration. However, the mechanisms and events underlying synaptopathy are largely unknown. Here we investigated the cascade of pathological events underlying α-syn accumulation and toxicity in a Drosophila model of synucleinopathy by employing a combination of histological, biochemical, behavioural and electrophysiological assays. Our findings demonstrate that targeted expression of human α-syn leads to its accumulation in presynaptic terminals that caused downregulation of synaptic proteins, cysteine string protein, synapsin, and syntaxin 1A, and a reduction in the number of Bruchpilot puncta, the core component of the presynaptic active zone essential for its structural integrity and function. These α-syn-mediated presynaptic alterations resulted in impaired neuronal function, which triggered behavioural deficits in ageing Drosophila that occurred prior to progressive degeneration of dopaminergic neurons. Comparable alterations in presynaptic active zone protein were found in patient brain samples of dementia with Lewy bodies. Together, these findings demonstrate that presynaptic accumulation of α-syn impairs the active zone and neuronal function, which together cause synaptopathy that results in behavioural deficits and the progressive loss of dopaminergic neurons. This sequence of events resembles the cytological and behavioural phenotypes that characterise the onset and progression of synucleinopathies, suggesting that α-syn-mediated synaptopathy is an initiating cause of age-related neurodegeneration.
Collapse
Affiliation(s)
- Jessika C Bridi
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| | - Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Novum, Stockholm 171 77, Sweden
| | - Saffron K Smith
- Department of Biology and York Biomedical Research Institute, University of York, York YO1 5DD, UK
| | - Gonçalo M Poças
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Lisbon 2780-157, Portugal
- School of Biological Sciences, Monash University, Melbourne, VIC 34QP+JV, Australia
| | - Benjamin Kottler
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Lisbon 2780-157, Portugal
| | - Christopher J Elliott
- Department of Biology and York Biomedical Research Institute, University of York, York YO1 5DD, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger 4068, Norway
| | - Frank Hirth
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| |
Collapse
|
23
|
Gore T, Matusek T, D'Angelo G, Giordano C, Tognacci T, Lavenant-Staccini L, Rabouille C, Thérond PP. The GTPase Rab8 differentially controls the long- and short-range activity of the Hedgehog morphogen gradient by regulating Hedgehog apico-basal distribution. Development 2021; 148:dev.191791. [PMID: 33547132 DOI: 10.1242/dev.191791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023]
Abstract
The Hedgehog (Hh) morphogen gradient is required for patterning during metazoan development, yet the mechanisms involved in Hh apical and basolateral release and how this influences short- and long-range target induction are poorly understood. We found that depletion of the GTPase Rab8 in Hh-producing cells induces an imbalance between the level of apically and laterally released Hh. This leads to non-cell-autonomous differential effects on the expression of Hh target genes, namely an increase in its short-range targets and a concomitant decrease in long-range targets. We further found that Rab8 regulates the endocytosis and apico-basal distribution of Ihog, a transmembrane protein known to bind to Hh and to be crucial for establishment of the Hh gradient. Our data provide new insights into morphogen gradient formation, whereby morphogen activity is functionally distributed between apically and basolaterally secreted pools.
Collapse
Affiliation(s)
- Tanvi Gore
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Tamás Matusek
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Gisela D'Angelo
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France.,Institut Curie, UMR144 CNRS, 12 Rue Lhomond, 75005 Paris, France
| | - Cécile Giordano
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France.,Institut Curie, UMR144 CNRS, 12 Rue Lhomond, 75005 Paris, France
| | - Thomas Tognacci
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Laurence Lavenant-Staccini
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Catherine Rabouille
- Department of Cell Biology, Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences & University Medical Center Utrecht, 3584 CT Utrecht, Netherlands.,Department of Biomedical Science of Cells and Systems, University Medical Center Groningen, 9700 AD Groningen, Netherlands
| | - Pascal P Thérond
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| |
Collapse
|
24
|
Beckers J, Tharkeshwar AK, Van Damme P. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels. Autophagy 2021; 17:3306-3322. [PMID: 33632058 PMCID: PMC8632097 DOI: 10.1080/15548627.2021.1872189] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two clinically distinct classes of neurodegenerative disorders. Yet, they share a range of genetic, cellular, and molecular features. Hexanucleotide repeat expansions (HREs) in the C9orf72 gene and the accumulation of toxic protein aggregates in the nervous systems of the affected individuals are among such common features. Though the mechanisms by which HREs cause toxicity is not clear, the toxic gain of function due to transcribed HRE RNA or dipeptide repeat proteins (DPRs) produced by repeat-associated non-AUG translation together with a reduction in C9orf72 expression are proposed as the contributing factors for disease pathogenesis in ALS and FTD. In addition, several recent studies point toward alterations in protein homeostasis as one of the root causes of the disease pathogenesis. In this review, we discuss the effects of the C9orf72 HRE in the autophagy-lysosome pathway based on various recent findings. We suggest that dysfunction of the autophagy-lysosome pathway synergizes with toxicity from C9orf72 repeat RNA and DPRs to drive disease pathogenesis. Abbreviation: ALP: autophagy-lysosome pathway; ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related; ASO: antisense oligonucleotide; C9orf72: C9orf72-SMCR8 complex subunit; DENN: differentially expressed in normal and neoplastic cells; DPR: dipeptide repeat protein; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; ER: endoplasmic reticulum; FTD: frontotemporal dementia; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; HRE: hexanucleotide repeat expansion; iPSC: induced pluripotent stem cell; ISR: integrated stress response; M6PR: mannose-6-phosphate receptor, cation dependent; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MN: motor neuron; MTORC1: mechanistic target of rapamycin kinase complex 1; ND: neurodegenerative disorder; RAN: repeat-associated non-ATG; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SLC66A1/PQLC2: solute carrier family 66 member 1; SMCR8: SMCR8-C9orf72 complex subunit; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK binding kinase 1; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system; WDR41: WD repeat domain 41.
Collapse
Affiliation(s)
- Jimmy Beckers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Arun Kumar Tharkeshwar
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| |
Collapse
|
25
|
Fellgett A, Middleton CA, Munns J, Ugbode C, Jaciuch D, Wilson LG, Chawla S, Elliott CJ. Multiple Pathways of LRRK2-G2019S/Rab10 Interaction in Dopaminergic Neurons. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1805-1820. [PMID: 34250948 PMCID: PMC8609683 DOI: 10.3233/jpd-202421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Inherited mutations in the LRRK2 protein are common causes of Parkinson's disease, but the mechanisms by which increased kinase activity of mutant LRRK2 leads to pathological events remain to be determined. In vitro assays (heterologous cell culture, phospho-protein mass spectrometry) suggest that several Rab proteins might be directly phosphorylated by LRRK2-G2019S. An in vivo screen of Rab expression in dopaminergic neurons in young adult Drosophila demonstrated a strong genetic interaction between LRRK2-G2019S and Rab10. OBJECTIVE To determine if Rab10 is necessary for LRRK2-induced pathophysiological responses in the neurons that control movement, vision, circadian activity, and memory. These four systems were chosen because they are modulated by dopaminergic neurons in both humans and flies. METHODS LRRK2-G2019S was expressed in Drosophila dopaminergic neurons and the effects of Rab10 depletion on Proboscis Extension, retinal neurophysiology, circadian activity pattern ('sleep'), and courtship memory determined in aged flies. RESULTS Rab10 loss-of-function rescued LRRK2-G2019S induced bradykinesia and retinal signaling deficits. Rab10 knock-down, however, did not rescue the marked sleep phenotype which results from dopaminergic LRRK2-G2019S. Courtship memory is not affected by LRRK2, but is markedly improved by Rab10 depletion. Anatomically, both LRRK2-G2019S and Rab10 are seen in the cytoplasm and at the synaptic endings of dopaminergic neurons. CONCLUSION We conclude that, in Drosophila dopaminergic neurons, Rab10 is involved in some, but not all, LRRK2-induced behavioral deficits. Therefore, variations in Rab expression may contribute to susceptibility of different dopaminergic nuclei to neurodegeneration seen in people with Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Jack Munns
- Department of Biology, University of York, York, UK
| | - Chris Ugbode
- Department of Biology, University of York, York, UK
| | | | - Laurence G. Wilson
- Department of Physics, University of York, York, UK
- York Biomedical Research Institute, Department of Biology, University of York, UK
| | - Sangeeta Chawla
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, Department of Biology, University of York, UK
| | - Christopher J.H. Elliott
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, Department of Biology, University of York, UK
| |
Collapse
|
26
|
Lessons learned from CHMP2B, implications for frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 147:105144. [PMID: 33144171 DOI: 10.1016/j.nbd.2020.105144] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are two neurodegenerative diseases with clinical, genetic and pathological overlap. As such, they are commonly regarded as a single spectrum disorder, with pure FTD and pure ALS representing distinct ends of a continuum. Dysfunctional endo-lysosomal and autophagic trafficking, leading to impaired proteostasis is common across the FTD-ALS spectrum. These pathways are, in part, mediated by CHMP2B, a protein that coordinates membrane scission events as a core component of the ESCRT machinery. Here we review how ALS and FTD disease causing mutations in CHMP2B have greatly contributed to our understanding of how endosomal-lysosomal and autophagic dysfunction contribute to neurodegeneration, and how in vitro and in vivo models have helped elucidate novel candidates for potential therapeutic intervention with implications across the FTD-ALS spectrum.
Collapse
|
27
|
West RJH, Ugbode C, Fort-Aznar L, Sweeney ST. Neuroprotective activity of ursodeoxycholic acid in CHMP2B Intron5 models of frontotemporal dementia. Neurobiol Dis 2020; 144:105047. [PMID: 32801000 PMCID: PMC7491204 DOI: 10.1016/j.nbd.2020.105047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is one of the most prevalent forms of early-onset dementia. It represents part of the FTD-Amyotrophic Lateral Sclerosis (ALS) spectrum, a continuum of genetically and pathologically overlapping disorders. FTD-causing mutations in CHMP2B, a gene encoding a core component of the heteromeric ESCRT-III Complex, lead to perturbed endosomal-lysosomal and autophagic trafficking with impaired proteostasis. While CHMP2B mutations are rare, dysfunctional endosomal-lysosomal signalling is common across the FTD-ALS spectrum. Using our established Drosophila and mammalian models of CHMP2BIntron5 induced FTD we demonstrate that the FDA-approved compound Ursodeoxycholic Acid (UDCA) conveys neuroprotection, downstream of endosomal-lysosomal dysfunction in both Drosophila and primary mammalian neurons. UDCA exhibited a dose dependent rescue of neuronal structure and function in Drosophila pan-neuronally expressing CHMP2BIntron5. Rescue of CHMP2BIntron5 dependent dendritic collapse and apoptosis with UDCA in rat primary neurons was also observed. UDCA failed to ameliorate aberrant accumulation of endosomal and autophagic organelles or ubiquitinated neuronal inclusions in both models. We demonstrate the neuroprotective activity of UDCA downstream of endosomal-lysosomal and autophagic dysfunction, delineating the molecular mode of action of UDCA and highlighting its potential as a therapeutic for the treatment of FTD-ALS spectrum disorders.
Collapse
Affiliation(s)
- Ryan J H West
- Sheffield Institute for Translational Neuroscience, University of Sheffield, S10 2HQ, UK; Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Chris Ugbode
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
28
|
Fort-Aznar L, Ugbode C, Sweeney ST. Retrovirus reactivation in CHMP2BIntron5 models of frontotemporal dementia. Hum Mol Genet 2020; 29:2637-2646. [PMID: 32628265 PMCID: PMC7530534 DOI: 10.1093/hmg/ddaa142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Frontotemporal dementia (FTD) is the second most prevalent form of pre-senile dementia after Alzheimer's disease. Amyotrophic lateral sclerosis (ALS) can overlap genetically, pathologically and clinically with FTD indicating the two conditions are ends of a spectrum and may share common pathological mechanisms. FTD-ALS causing mutations are known to be involved in endosomal trafficking and RNA regulation. Using an unbiased genome-wide genetic screen to identify mutations affecting an FTD-ALS-related phenotype in Drosophila caused by CHMP2BIntron5 expression, we have uncovered repressors of retrovirus (RV) activity as modifiers of CHMP2BIntron5 toxicity. We report that neuronal expression of CHMP2BIntron5 causes an increase in the activity of the endogenous Drosophila RV, gypsy, in the nervous system. Genetically blocking Drosophila gypsy activation and pharmacologically inhibiting viral reverse transcriptase activity prevents degenerative phenotypes observed in fly and rat neurons. These findings directly link endosomal dysfunction to RV de-repression in an FTD-ALS model without TDP-43 pathology. These observations may contribute an understanding to previous discoveries of RV activation in ALS affected patients.
Collapse
Affiliation(s)
- Laura Fort-Aznar
- Department of Biology, University of York, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Chris Ugbode
- Department of Biology, University of York, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| |
Collapse
|
29
|
West RJH, Sharpe JL, Voelzmann A, Munro AL, Hahn I, Baines RA, Pickering-Brown S. Co-expression of C9orf72 related dipeptide-repeats over 1000 repeat units reveals age- and combination-specific phenotypic profiles in Drosophila. Acta Neuropathol Commun 2020; 8:158. [PMID: 32894207 PMCID: PMC7487709 DOI: 10.1186/s40478-020-01028-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
A large intronic hexanucleotide repeat expansion (GGGGCC) within the C9orf72 (C9orf72-SMCR8 Complex Subunit) locus is the most prevalent genetic cause of both Frontotemporal Dementia (FTD) and Motor Neuron Disease (MND). In patients this expansion is typically hundreds to thousands of repeat units in length. Repeat associated non-AUG translation of the expansion leads to the formation of toxic, pathological Dipeptide-Repeat Proteins (DPRs). To date there remains a lack of in vivo models expressing C9orf72 related DPRs with a repeat length of more than a few hundred repeats. As such our understanding of how physiologically relevant repeat length DPRs effect the nervous system in an ageing in vivo system remains limited. In this study we generated Drosophila models expressing DPRs over 1000 repeat units in length, a known pathological length in humans. Using these models, we demonstrate each DPR exhibits a unique, age-dependent, phenotypic and pathological profile. Furthermore, we show co-expression of specific DPR combinations leads to distinct, age-dependent, phenotypes not observed through expression of single DPRs. We propose these models represent a unique, in vivo, tool for dissecting the molecular mechanisms implicated in disease pathology, opening up new avenues in the study of both MND and FTD.
Collapse
Affiliation(s)
- Ryan J. H. West
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN UK
| | - Joanne L. Sharpe
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - André Voelzmann
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Anna L. Munro
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ines Hahn
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Richard A. Baines
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Stuart Pickering-Brown
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
30
|
Ugbode C, Garnham N, Fort-Aznar L, Evans GJO, Chawla S, Sweeney ST. JNK signalling regulates antioxidant responses in neurons. Redox Biol 2020; 37:101712. [PMID: 32949970 PMCID: PMC7502373 DOI: 10.1016/j.redox.2020.101712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are generated during physiological bouts of synaptic activity and as a consequence of pathological conditions in the central nervous system. How neurons respond to and distinguish between ROS in these different contexts is currently unknown. In Drosophila mutants with enhanced JNK activity, lower levels of ROS are observed and these animals are resistant to both changes in ROS and changes in synapse morphology induced by oxidative stress. In wild type flies, disrupting JNK-AP-1 signalling perturbs redox homeostasis suggesting JNK activity positively regulates neuronal antioxidant defense. We validated this hypothesis in mammalian neurons, finding that JNK activity regulates the expression of the antioxidant gene Srxn-1, in a c-Jun dependent manner. We describe a conserved ‘adaptive’ role for neuronal JNK in the maintenance of redox homeostasis that is relevant to several neurodegenerative diseases.
Collapse
Affiliation(s)
- Chris Ugbode
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Nathan Garnham
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Laura Fort-Aznar
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Gareth J O Evans
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Sangeeta Chawla
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| | - Sean T Sweeney
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| |
Collapse
|
31
|
Lu Y, West RJH, Pons M, Sweeney ST, Gao FB. Ik2/TBK1 and Hook/Dynein, an adaptor complex for early endosome transport, are genetic modifiers of FTD-associated mutant CHMP2B toxicity in Drosophila. Sci Rep 2020; 10:14221. [PMID: 32848189 PMCID: PMC7450086 DOI: 10.1038/s41598-020-71097-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in CHMP2B, encoding a protein in the endosomal sorting complexes required for transport (ESCRT) machinery, causes frontotemporal dementia linked to chromosome 3 (FTD3). FTD, the second most common form of pre-senile dementia, can also be caused by genetic mutations in other genes, including TANK-binding kinase 1 (TBK1). How FTD-causing disease genes interact is largely unknown. We found that partial loss function of Ik2, the fly homologue of TBK1 also known as I-kappaB kinase ε (IKKε), enhanced the toxicity of mutant CHMP2B in the fly eye and that Ik2 overexpression suppressed the effect of mutant CHMP2B in neurons. Partial loss of function of Spn-F, a downstream phosphorylation target of Ik2, greatly enhanced the mutant CHMP2B phenotype. An interactome analysis to understand cellular processes regulated by Spn-F identified a network of interacting proteins including Spn-F, Ik2, dynein light chain, and Hook, an adaptor protein in early endosome transport. Partial loss of function of dynein light chain or Hook also enhanced mutant CHMP2B toxicity. These findings identify several evolutionarily conserved genes, including ik2/TBK1, cut up (encoding dynein light chain) and hook, as genetic modifiers of FTD3-associated mutant CHMP2B toxicity and implicate early endosome transport as a potential contributing pathway in FTD.
Collapse
Affiliation(s)
- Yubing Lu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ryan J H West
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Marine Pons
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sean T Sweeney
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
32
|
Patel PH, Wilkinson EC, Starke EL, McGimsey MR, Blankenship JT, Barbee SA. Vps54 regulates Drosophila neuromuscular junction development and interacts genetically with Rab7 to control composition of the postsynaptic density. Biol Open 2020; 9:bio053421. [PMID: 32747448 PMCID: PMC7473652 DOI: 10.1242/bio.053421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 01/04/2023] Open
Abstract
Vps54 is a subunit of the Golgi-associated retrograde protein (GARP) complex, which is involved in tethering endosome-derived vesicles to the trans-Golgi network (TGN). In the wobbler mouse, a model for human motor neuron (MN) disease, reduction in the levels of Vps54 causes neurodegeneration. However, it is unclear how disruption of the GARP complex leads to MN dysfunction. To better understand the role of Vps54 in MNs, we have disrupted expression of the Vps54 ortholog in Drosophila and examined the impact on the larval neuromuscular junction (NMJ). Surprisingly, we show that both null mutants and MN-specific knockdown of Vps54 leads to NMJ overgrowth. Reduction of Vps54 partially disrupts localization of the t-SNARE, Syntaxin-16, to the TGN but has no visible impact on endosomal pools. MN-specific knockdown of Vps54 in MNs combined with overexpression of the small GTPases Rab5, Rab7, or Rab11 suppresses the Vps54 NMJ phenotype. Conversely, knockdown of Vps54 combined with overexpression of dominant negative Rab7 causes NMJ and behavioral abnormalities including a decrease in postsynaptic Dlg and GluRIIB levels without any effect on GluRIIA. Taken together, these data suggest that Vps54 controls larval MN axon development and postsynaptic density composition through a mechanism that requires Rab7.
Collapse
Affiliation(s)
- Prajal H Patel
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Emily C Wilkinson
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Emily L Starke
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Malea R McGimsey
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80210, USA
| | - Scott A Barbee
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
33
|
Petridi S, Middleton CA, Ugbode C, Fellgett A, Covill L, Elliott CJH. In Vivo Visual Screen for Dopaminergic Rab ↔ LRRK2-G2019S Interactions in Drosophila Discriminates Rab10 from Rab3. G3 (BETHESDA, MD.) 2020; 10:1903-1914. [PMID: 32321836 PMCID: PMC7263684 DOI: 10.1534/g3.120.401289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
LRRK2 mutations cause Parkinson's, but the molecular link from increased kinase activity to pathological neurodegeneration remains undetermined. Previous in vitro assays indicate that LRRK2 substrates include at least 8 Rab GTPases. We have now examined this hypothesis in vivo in a functional, electroretinogram screen, expressing each Rab with/without LRRK2-G2019S in selected Drosophila dopaminergic neurons. Our screen discriminated Rab10 from Rab3. The strongest Rab/LRRK2-G2019S interaction is with Rab10; the weakest with Rab3. Rab10 is expressed in a different set of dopaminergic neurons from Rab3. Thus, anatomical and physiological patterns of Rab10 are related. We conclude that Rab10 is a valid substrate of LRRK2 in dopaminergic neurons in vivo We propose that variations in Rab expression contribute to differences in the rate of neurodegeneration recorded in different dopaminergic nuclei in Parkinson's.
Collapse
Affiliation(s)
- Stavroula Petridi
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - C Adam Middleton
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Chris Ugbode
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Alison Fellgett
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Laura Covill
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Christopher J H Elliott
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| |
Collapse
|
34
|
Nassari S, Del Olmo T, Jean S. Rabs in Signaling and Embryonic Development. Int J Mol Sci 2020; 21:E1064. [PMID: 32033485 PMCID: PMC7037298 DOI: 10.3390/ijms21031064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Rab GTPases play key roles in various cellular processes. They are essential, among other roles, to membrane trafficking and intracellular signaling events. Both trafficking and signaling events are crucial for proper embryonic development. Indeed, embryogenesis is a complex process in which cells respond to various signals and undergo dramatic changes in their shape, position, and function. Over the last few decades, cellular studies have highlighted the novel signaling roles played by Rab GTPases, while numerous studies have shed light on the important requirements of Rab proteins at various steps of embryonic development. In this review, we aimed to generate an overview of Rab contributions during animal embryogenesis. We first briefly summarize the involvement of Rabs in signaling events. We then extensively highlight the contribution of Rabs in shaping metazoan development and conclude with new approaches that will allow investigation of Rab functions in vivo.
Collapse
Affiliation(s)
| | | | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada; (S.N.); (T.D.O.)
| |
Collapse
|
35
|
Wilson C, Kavaler J, Ahmad ST. Expression of a human variant of CHMP2B linked to neurodegeneration in Drosophila external sensory organs leads to cell fate transformations associated with increased Notch activity. Dev Neurobiol 2019; 80:85-97. [PMID: 31587468 DOI: 10.1002/dneu.22722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/19/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
Proper function of cell signaling pathways is dependent upon regulated membrane trafficking events that lead to the endocytosis, recycling, and degradation of cell surface receptors. The endosomal complexes required for transport (ESCRT) genes play a critical role in the sorting of ubiquitinated cell surface proteins. CHMP2BIntron5 , a truncated form of a human ESCRT-III protein, was discovered in a Danish family afflicted by a hereditary form of frontotemporal dementia (FTD). Although the mechanism by which the CHMP2B mutation in this family causes FTD is unknown, the resulting protein has been shown to disrupt normal endosomal-lysosomal pathway function and leads to aberrant regulation of signaling pathways. Here we have misexpressed CHMP2BIntron5 in the developing Drosophila external sensory (ES) organ lineage and demonstrate that it is capable of altering cell fates. Each of the cell fate transformations seen is compatible with an increase in Notch signaling. Furthermore, this interpretation is supported by evidence that expression of CHMP2BIntron5 in the notum environment is capable of raising the levels of Notch signaling. As such, these results add to a growing body of evidence that CHMP2BIntron5 can act rapidly to disrupt normal cellular function via the misregulation of critical cell surface receptor function.
Collapse
|
36
|
Peng JJ, Lin SH, Liu YT, Lin HC, Li TN, Yao CK. A circuit-dependent ROS feedback loop mediates glutamate excitotoxicity to sculpt the Drosophila motor system. eLife 2019; 8:47372. [PMID: 31318331 PMCID: PMC6682402 DOI: 10.7554/elife.47372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) is known to mediate glutamate excitotoxicity in neurological diseases. However, how ROS burdens can influence neural circuit integrity remains unclear. Here, we investigate the impact of excitotoxicity induced by depletion of Drosophila Eaat1, an astrocytic glutamate transporter, on locomotor central pattern generator (CPG) activity, neuromuscular junction architecture, and motor function. We show that glutamate excitotoxicity triggers a circuit-dependent ROS feedback loop to sculpt the motor system. Excitotoxicity initially elevates ROS, thereby inactivating cholinergic interneurons and consequently changing CPG output activity to overexcite motor neurons and muscles. Remarkably, tonic motor neuron stimulation boosts muscular ROS, gradually dampening muscle contractility to feedback-enhance ROS accumulation in the CPG circuit and subsequently exacerbate circuit dysfunction. Ultimately, excess premotor excitation of motor neurons promotes ROS-activated stress signaling that alters neuromuscular junction architecture. Collectively, our results reveal that excitotoxicity-induced ROS can perturb motor system integrity through a circuit-dependent mechanism.
Collapse
Affiliation(s)
- Jhan-Jie Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shih-Han Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Tzu Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hsin-Chieh Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tsai-Ning Li
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chi-Kuang Yao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
37
|
Zhu S, Chen R, Soba P, Jan YN. JNK signaling coordinates with ecdysone signaling to promote pruning of Drosophila sensory neuron dendrites. Development 2019; 146:dev.163592. [PMID: 30936183 DOI: 10.1242/dev.163592] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Developmental pruning of axons and dendrites is crucial for the formation of precise neuronal connections, but the mechanisms underlying developmental pruning are not fully understood. Here, we have investigated the function of JNK signaling in dendrite pruning using Drosophila class IV dendritic arborization (c4da) neurons as a model. We find that loss of JNK or its canonical downstream effectors Jun or Fos led to dendrite-pruning defects in c4da neurons. Interestingly, our data show that JNK activity in c4da neurons remains constant from larval to pupal stages but the expression of Fos is specifically activated by ecdysone receptor B1 (EcRB1) at early pupal stages, suggesting that ecdysone signaling provides temporal control of the regulation of dendrite pruning by JNK signaling. Thus, our work not only identifies a novel pathway involved in dendrite pruning and a new downstream target of EcRB1 in c4da neurons, but also reveals that JNK and Ecdysone signaling coordinate to promote dendrite pruning.
Collapse
Affiliation(s)
- Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA .,Department of Physiology, Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 20251, USA
| | - Rui Chen
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Peter Soba
- Department of Physiology, Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 20251, USA.,Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Yuh-Nung Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 20251, USA
| |
Collapse
|
38
|
Rosa-Ferreira C, Sweeney ST, Munro S. The small G protein Arl8 contributes to lysosomal function and long-range axonal transport in Drosophila. Biol Open 2018; 7:bio.035964. [PMID: 30115618 PMCID: PMC6176938 DOI: 10.1242/bio.035964] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The small GTPase Arl8 has emerged as a major regulatory GTPase on lysosomes. Studies in mammalian cells have shown that it regulates both fusion with late endosomes and also lysosomal motility. In its active GTP-bound state, it recruits to lysosomes the HOPS (homotypic fusion and protein sorting) endosomal tethering complex and also proteins that link lysosomes to microtubule motors such as the kinesin adaptor PLEKHM2. To gain further insights into Arl8 biology, we examined the single Drosophila ortholog. Drosophila Arl8 is essential for viability, and mitotic clones of mutant cells are able to continue to divide but show perturbation of the late endocytic pathway. Progeny-lacking Arl8 die as late larvae with movement-paralysis characteristic of defects in neuronal function. This phenotype was rescued by expression of Arl8 in motor neurons. Examination of these neurons in the mutant larvae revealed smaller synapses and axons with elevated levels of carriers containing synaptic components. Affinity chromatography revealed binding of Drosophila Arl8 to the HOPS complex, and to the Drosophila ortholog of RILP, a protein that, in mammals, recruits dynein to late endosomes, with dynein being known to be required for neuronal transport. Thus Drosophila Arl8 controls late endocytic function and transport via at least two distinct effectors. This article has an associated First Person interview with the first author of the paper. Summary:Drosophila Arl8 is essential for viability and is required for normal functioning of the late endocytic pathway and for long-range transport in axons.
Collapse
Affiliation(s)
| | - Sean T Sweeney
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
39
|
West RJH, Briggs L, Perona Fjeldstad M, Ribchester RR, Sweeney ST. Sphingolipids regulate neuromuscular synapse structure and function in Drosophila. J Comp Neurol 2018; 526:1995-2009. [PMID: 29761896 PMCID: PMC6175220 DOI: 10.1002/cne.24466] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/27/2022]
Abstract
Sphingolipids are found in abundance at synapses and have been implicated in regulation of synapse structure, function, and degeneration. Their precise role in these processes, however, remains obscure. Serine Palmitoyl-transferase (SPT) is the first enzymatic step for synthesis of sphingolipids. Analysis of the Drosophila larval neuromuscular junction (NMJ) revealed mutations in the SPT enzyme subunit, lace/SPTLC2 resulted in deficits in synaptic structure and function. Although NMJ length is normal in lace mutants, the number of boutons per NMJ is reduced to ∼50% of the wild type number. Synaptic boutons in lace mutants are much larger but show little perturbation to the general ultrastructure. Electrophysiological analysis of lace mutant synapses revealed strong synaptic transmission coupled with predominance of depression over facilitation. The structural and functional phenotypes of lace mirrored aspects of Basigin (Bsg), a small Ig-domain adhesion molecule also known to regulate synaptic structure and function. Mutant combinations of lace and Bsg generated large synaptic boutons, while lace mutants showed abnormal accumulation of Bsg at synapses, suggesting that Bsg requires sphingolipid to regulate structure of the synapse. In support of this, we found Bsg to be enriched in lipid rafts. Our data points to a role for sphingolipids in the regulation and fine-tuning of synaptic structure and function while sphingolipid regulation of synaptic structure may be mediated via the activity of Bsg.
Collapse
Affiliation(s)
- Ryan J. H. West
- Department of Biology and Hull York Medical SchoolUniversity of YorkHeslingtonYork YO10 5DDUK
| | - Laura Briggs
- Department of Biology and Hull York Medical SchoolUniversity of YorkHeslingtonYork YO10 5DDUK
| | - Maria Perona Fjeldstad
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Discovery Brain SciencesUniversity of EdinburghEdinburgh EH8 9JZUK
| | - Richard R. Ribchester
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Discovery Brain SciencesUniversity of EdinburghEdinburgh EH8 9JZUK
| | - Sean T. Sweeney
- Department of Biology and Hull York Medical SchoolUniversity of YorkHeslingtonYork YO10 5DDUK
| |
Collapse
|
40
|
Vandal SE, Zheng X, Ahmad ST. Molecular Genetics of Frontotemporal Dementia Elucidated by Drosophila Models-Defects in Endosomal⁻Lysosomal Pathway. Int J Mol Sci 2018; 19:ijms19061714. [PMID: 29890743 PMCID: PMC6032313 DOI: 10.3390/ijms19061714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 01/31/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second most common senile neurodegenerative disease. FTD is a heterogeneous disease that can be classified into several subtypes. A mutation in CHMP2B locus (CHMP2Bintron5), which encodes a component of endosomal sorting complex required for transport-III (ESCRT-III), is associated with a rare hereditary subtype of FTD linked to chromosome 3 (FTD-3). ESCRT is involved in critical cellular processes such as multivesicular body (MVB) formation during endosomal–lysosomal pathway and autophagy. ESCRT mutants causes diverse physiological defects primarily due to accumulation of endosomes and defective MVBs resulting in misregulation of signaling pathways. Charged multivesicular body protein 2B (CHMP2B) is important for neuronal physiology which especially rely on precise regulation of protein homeostasis due to their post-mitotic status. Drosophila has proven to be an excellent model for charaterization of mechanistic underpinning of neurodegenerative disorders including FTD. In this review, current understanding of various FTD-related mutations is discussed with a focus on Drosophila models of CHMP2Bintron5-associated FTD.
Collapse
Affiliation(s)
- Sarah E Vandal
- Department of Biology, Colby College, 5720 Mayflower Hill, Waterville, ME 04901, USA.
| | - Xiaoyue Zheng
- Department of Biology, Colby College, 5720 Mayflower Hill, Waterville, ME 04901, USA.
| | - S Tariq Ahmad
- Department of Biology, Colby College, 5720 Mayflower Hill, Waterville, ME 04901, USA.
| |
Collapse
|
41
|
West RJH, Ugbode C, Gao FB, Sweeney ST. The pro-apoptotic JNK scaffold POSH/SH3RF1 mediates CHMP2BIntron5-associated toxicity in animal models of frontotemporal dementia. Hum Mol Genet 2018; 27:1382-1395. [PMID: 29432529 PMCID: PMC6454437 DOI: 10.1093/hmg/ddy048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is one of the most prevalent forms of early-onset dementia. However, the pathological mechanisms driving neuronal atrophy in FTD remain poorly understood. Here we identify a conserved role for the novel pro-apoptotic protein plenty of SH3s (POSH)/SH3 domain containing ring finger 1 in mediating neuropathology in Drosophila and mammalian models of charged multivesicular body protein 2B (CHMP2BIntron5) associated FTD. Aberrant, AKT dependent, accumulation of POSH was observed throughout the nervous system of both Drosophila and mice expressing CHMP2BIntron5. Knockdown of POSH was shown to be neuroprotective and sufficient to alleviate aberrant neuronal morphology, behavioral deficits and premature-lethality in Drosophila models, as well as dendritic collapse and cell death in CHMP2BIntron5expressing rat primary neurons. POSH knockdown also ameliorated elevated markers of Jun N-terminal kinase and apoptotic cascades in both Drosophila and mammalian models. This study provides the first characterization of POSH as a potential component of an FTD neuropathology, identifying a novel apoptotic pathway with relevance to the FTD spectrum.
Collapse
Affiliation(s)
- Ryan J H West
- Department of Biology, University of York, York YO10 5DD, UK
| | - Chris Ugbode
- Department of Biology, University of York, York YO10 5DD, UK
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
42
|
Starr A, Sattler R. Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD. Brain Res 2018; 1693:98-108. [PMID: 29453960 DOI: 10.1016/j.brainres.2018.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by a progressive degeneration of upper and lower motor neurons, resulting in fatal paralysis due to denervation of the muscle. Due to genetic, pathological and symptomatic overlap, ALS is now considered a spectrum disease together with frontotemporal dementia (FTD), the second most common cause of dementia in individuals under the age of 65. Interestingly, in both diseases, there is a large prevalence of RNA binding proteins (RBPs) that are mutated and considered disease-causing, or whose dysfunction contribute to disease pathogenesis. The most common shared genetic mutation in ALS/FTD is a hexanucleuotide repeat expansion within intron 1 of C9ORF72 (C9). Three potentially overlapping, putative toxic mechanisms have been proposed: loss of function due to haploinsufficient expression of the C9ORF72 mRNA, gain of function of the repeat RNA aggregates, or RNA foci, and repeat-associated non-ATG-initiated translation (RAN) of the repeat RNA into toxic dipeptide repeats (DPRs). Regardless of the causative mechanism, disease symptoms are ultimately caused by a failure of neurotransmission in three regions: the brain, the spinal cord, and the neuromuscular junction. Here, we review C9 ALS/FTD-associated synaptic dysfunction and aberrant neuronal excitability in these three key regions, focusing on changes in morphology and synapse formation, excitability, and excitotoxicity in patients, animal models, and in vitro models. We compare these deficits to those seen in other forms of ALS and FTD in search of shared pathways, and discuss the potential targeting of synaptic dysfunctions for therapeutic intervention in ALS and FTD patients.
Collapse
Affiliation(s)
- Alexander Starr
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Rita Sattler
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States.
| |
Collapse
|
43
|
POSH regulates Hippo signaling through ubiquitin-mediated expanded degradation. Proc Natl Acad Sci U S A 2018; 115:2150-2155. [PMID: 29440430 DOI: 10.1073/pnas.1715165115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Hippo signaling pathway is a master regulator of organ growth, tissue homeostasis, and tumorigenesis. The activity of the Hippo pathway is controlled by various upstream components, including Expanded (Ex), but the precise molecular mechanism of how Ex is regulated remains poorly understood. Here we identify Plenty of SH3s (POSH), an E3 ubiquitin ligase, as a key component of Hippo signaling in DrosophilaPOSH overexpression synergizes with loss of Kibra to induce overgrowth and up-regulation of Hippo pathway target genes. Furthermore, knockdown of POSH impedes dextran sulfate sodium-induced Yorkie-dependent intestinal stem cell renewal, suggesting a physiological role of POSH in modulating Hippo signaling. Mechanistically, POSH binds to the C-terminal of Ex and is essential for the Crumbs-induced ubiquitination and degradation of Ex. Our findings establish POSH as a crucial regulator that integrates the signal from the cell surface to negatively regulate Ex-mediated Hippo activation in Drosophila.
Collapse
|
44
|
Kashima R, Hata A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim Biophys Sin (Shanghai) 2018; 50:106-120. [PMID: 29190314 PMCID: PMC5846707 DOI: 10.1093/abbs/gmx124] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/02/2017] [Indexed: 12/12/2022] Open
Abstract
The TGF-β superfamily signaling is involved in a variety of biological processes during embryogenesis and in adult tissue homeostasis. Faulty regulation of the signaling pathway that transduces the TGF-β superfamily signals accordingly leads to a number of ailments, such as cancer and cardiovascular, metabolic, urinary, intestinal, skeletal, and immune diseases. In recent years, a number of studies have elucidated the essential roles of TGF-βs and BMPs during neuronal development in the maintenance of appropriate innervation and neuronal activity. The new advancement implicates significant roles of the aberrant TGF-β superfamily signaling in the pathogenesis of neurological disorders. In this review, we compile a number of reports implicating the deregulation of TGF-β/BMP signaling pathways in the pathogenesis of cognitive and neurodegenerative disorders in animal models and patients. We apologize in advance that the review falls short of providing details of the role of TGF-β/BMP signaling or mechanisms underlying the pathogenesis of neurological disorders. The goal of this article is to reveal a gap in our knowledge regarding the association between TGF-β/BMP signaling pathways and neuronal tissue homeostasis and development and facilitate the research with a potential to develop new therapies for neurological ailments by modulating the pathways.
Collapse
Affiliation(s)
- Risa Kashima
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
45
|
Tang SS, Li J, Tan L, Yu JT. Genetics of Frontotemporal Lobar Degeneration: From the Bench to the Clinic. J Alzheimers Dis 2017; 52:1157-76. [PMID: 27104909 DOI: 10.3233/jad-160236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is a clinically heterogeneous neurodegenerative disease with a strong genetic component. In this review, we summarize most common mutations in MAPT, GRN, and C90RF72, as well as less common mutations in VCP, CHMP2B, TARDBP, FUS gene and so on. Several guidelines have been developed to help gene testing based on genotype-phenotype correlation, the underlying histopathological subtypes, and the neuroanatomic associations. Furthermore, we also summarize molecular pathways implicated by genes and novel targets for FTLD prevention and management in recent years.
Collapse
|
46
|
Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Füllgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Zhu Y, Skidmore J, Rubinsztein DC. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron 2017; 93:1015-1034. [PMID: 28279350 DOI: 10.1016/j.neuron.2017.01.022] [Citation(s) in RCA: 839] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
Abstract
Autophagy is a conserved pathway that delivers cytoplasmic contents to the lysosome for degradation. Here we consider its roles in neuronal health and disease. We review evidence from mouse knockout studies demonstrating the normal functions of autophagy as a protective factor against neurodegeneration associated with intracytoplasmic aggregate-prone protein accumulation as well as other roles, including in neuronal stem cell differentiation. We then describe how autophagy may be affected in a range of neurodegenerative diseases. Finally, we describe how autophagy upregulation may be a therapeutic strategy in a wide range of neurodegenerative conditions and consider possible pathways and druggable targets that may be suitable for this objective.
Collapse
Affiliation(s)
- Fiona M Menzies
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Angeleen Fleming
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Andrea Caricasole
- Alzheimer's Research UK Cambridge Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK
| | - Carla F Bento
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Stephen P Andrews
- Alzheimer's Research UK Cambridge Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK
| | - Avraham Ashkenazi
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Jens Füllgrabe
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Anne Jackson
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Maria Jimenez Sanchez
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Cansu Karabiyik
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Floriana Licitra
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ana Lopez Ramirez
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Mariana Pavel
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Maurizio Renna
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Thomas Ricketts
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Lars Schlotawa
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Mariella Vicinanza
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Hyeran Won
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ye Zhu
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - John Skidmore
- Alzheimer's Research UK Cambridge Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
47
|
Nassif M, Woehlbier U, Manque PA. The Enigmatic Role of C9ORF72 in Autophagy. Front Neurosci 2017; 11:442. [PMID: 28824365 PMCID: PMC5541066 DOI: 10.3389/fnins.2017.00442] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the loss of motor neurons resulting in a progressive and irreversible muscular paralysis. Advances in large-scale genetics and genomics have revealed intronic hexanucleotide repeat expansions in the gene encoding C9ORF72 as a main genetic cause of ALS and frontotemporal dementia (FTD), the second most common cause of early-onset dementia after Alzheimer's disease. Novel insights regarding the underlying pathogenic mechanisms of C9ORF72 seem to suggest a synergy of loss and gain of toxic function during disease. C9ORF72, thus far, has been found to be involved in homeostatic cellular pathways, such as actin dynamics, regulation of membrane trafficking, and macroautophagy. All these pathways have been found compromised in the pathogenesis of ALS. In this review, we aim to summarize recent findings on the function of C9ORF72, particularly in the macroautophagy pathway, hinting at a requirement to maintain the fine balance of macroautophagy to prevent neurodegeneration.
Collapse
Affiliation(s)
- Melissa Nassif
- Faculty of Science, Center for Integrative Biology, Universidad MayorSantiago, Chile.,Faculty of Science, Center for Genomics and Bioinformatics, Universidad MayorSantiago, Chile
| | - Ute Woehlbier
- Faculty of Science, Center for Integrative Biology, Universidad MayorSantiago, Chile.,Faculty of Science, Center for Genomics and Bioinformatics, Universidad MayorSantiago, Chile
| | - Patricio A Manque
- Faculty of Science, Center for Integrative Biology, Universidad MayorSantiago, Chile.,Faculty of Science, Center for Genomics and Bioinformatics, Universidad MayorSantiago, Chile
| |
Collapse
|
48
|
Mallik B, Dwivedi MK, Mushtaq Z, Kumari M, Verma PK, Kumar V. Regulation of neuromuscular junction organization by Rab2 and its effector ICA69 in Drosophila. Development 2017; 144:2032-2044. [PMID: 28455372 DOI: 10.1242/dev.145920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of Drosophila BAR-domain proteins and identified islet cell autoantigen 69 kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that Drosophila ICA69 colocalizes with α-Spectrin at the NMJ. The conserved N-BAR domain of ICA69 deforms liposomes in vitro Full-length ICA69 and the ICAC but not the N-BAR domain of ICA69 induce filopodia in cultured cells. Consistent with its cytoskeleton regulatory role, ICA69 mutants show reduced α-Spectrin immunoreactivity at the larval NMJ. Manipulating levels of ICA69 or its interactor PICK1 alters the synaptic level of ionotropic glutamate receptors (iGluRs). Moreover, reducing PICK1 or Rab2 levels phenocopies ICA69 mutation. Interestingly, Rab2 regulates not only synaptic iGluR but also ICA69 levels. Thus, our data suggest that: (1) ICA69 regulates NMJ organization through a pathway that involves PICK1 and Rab2, and (2) Rab2 functions genetically upstream of ICA69 and regulates NMJ organization and targeting/retention of iGluRs by regulating ICA69 levels.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manish Kumar Dwivedi
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manisha Kumari
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Vimlesh Kumar
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
49
|
Mukherjee R, Das A, Chakrabarti S, Chakrabarti O. Calcium dependent regulation of protein ubiquitination - Interplay between E3 ligases and calcium binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1227-1235. [PMID: 28285986 DOI: 10.1016/j.bbamcr.2017.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/18/2022]
Abstract
The ubiquitination status of proteins and intracellular calcium levels are two factors which keep changing inside any living cell. These two events appear to be independent of each other but recent experimental evidences show that ubiquitination of cellular proteins are influenced by calcium, Calmodulin, Calmodulin-dependent kinase II and other proteins of calcium dependent pathways. E3 ligases like Nedd4, SCF complex, APC, GP78 and ITCH are important regulators of calcium mediated processes. A bioinformatics analysis to inspect sequences and interacting partners of 242 candidate E3 ligases show the presence of calcium and/or Calmodulin binding motifs/domains within their sequences. Building a protein-protein interaction (PPI) network of human E3 ligase proteins identifies Ca2+ related proteins as direct interacting partners of E3 ligases. Review of literature, analysis of E3 ligase sequences and their interactome suggests an interconnectivity between calcium signaling and the overall UPS system, especially emphasizing that a subset of E3 ligases have importance in physiological pathways modulated by calcium.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Aneesha Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
50
|
Sheehan P, Waites CL. Coordination of synaptic vesicle trafficking and turnover by the Rab35 signaling network. Small GTPases 2017; 10:54-63. [PMID: 28129039 PMCID: PMC6343537 DOI: 10.1080/21541248.2016.1270392] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab35 and the Rab35 network of GAPs, GEFs, and effectors are important regulators of membrane trafficking for a variety of cellular processes, from cytokinesis and phagocytosis to neurite outgrowth. In the past five years, components of this signaling network have also been implicated as critical mediators of synaptic vesicle (SV) recycling and protein homeostasis. Recent studies by several groups, including our own, have demonstrated that Rab35-mediated endosomal sorting is required for the degradation of SV proteins via the ESCRT pathway, thereby eliminating old or damaged proteins from the SV pool. This sorting process is regulated by Rab35 activation in response to neuronal activity, and potentially by an antagonistic signaling relationship between Rab35 and the small GTPase Arf6 that directs SVs into distinct recycling pathways depending on neuronal activity levels. Furthermore, mutations in genes encoding Rab35 regulatory proteins are emerging as causative factors in human neurologic and neurodegenerative diseases, consistent with their important roles in synaptic and neuronal health. Here, we review these recent findings and offer our perspective on how the Rab35 signaling network functions to maintain neurotransmission and synaptic fitness.
Collapse
Affiliation(s)
- Patricia Sheehan
- a Department of Pathology and Cell Biology , Columbia University Medical Center , New York , NY , USA
| | - Clarissa L Waites
- a Department of Pathology and Cell Biology , Columbia University Medical Center , New York , NY , USA.,b Department of Neuroscience , Columbia University Medical Center , New York , NY , USA
| |
Collapse
|