1
|
Ferreira G, Cardozo R, Chavarria L, Santander A, Sobrevia L, Chang W, Gundersen G, Nicolson GL. The LINC complex in blood vessels: from physiology to pathological implications in arterioles. J Physiol 2025. [PMID: 39898417 DOI: 10.1113/jp285906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
The LINC (linker of nucleoskeleton and cytoskeleton) complex is a critical component of the cellular architecture that bridges the nucleoskeleton and cytoskeleton and mediates mechanotransduction to and from the nucleus. Though it plays important roles in all blood vessels, it is in arterioles that this complex plays a pivotal role in maintaining endothelial cell integrity, regulating vascular tone, forming new microvessels and modulating responses to mechanical and biochemical stimuli. It is also important in vascular smooth muscle cells and fibroblasts, where it possibly plays a role in the contractile to secretory phenotypic transformation during atherosclerosis and vascular ageing, and in fibroblasts' migration and inflammatory responses in the adventitia. Physiologically, the LINC complex contributes to the stability of arteriolar structure, adaptations to changes in blood flow and injury repair mechanisms. Pathologically, dysregulation or mutations in LINC complex components can lead to compromised endothelial function, vascular remodelling and exacerbation of cardiovascular diseases such as atherosclerosis (arteriolosclerosis). This review summarizes our current understanding of the roles of the LINC complex in cells from arterioles, highlighting its most important physiological functions, exploring its implications for vascular pathology and emphasizing some of its functional characteristics in endothelial cells. By elucidating the LINC complex's role in health and disease, we aim to provide insights that could improve future therapeutic strategies targeting LINC complex-related vascular disorders.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Romina Cardozo
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luisina Chavarria
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Axel Santander
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Sao Paulo, Brazil
- Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, QLD, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Wakam Chang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Gregg Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Garth L Nicolson
- Department of Molecular Pathology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
2
|
Yang Z, Liu X, Li X, Abbate M, Rui H, Guan M, Sun Z. The destruction of cytoplasmic skeleton leads to the change of nuclear structure and the looseness of lamin A submicroscopic network. Heliyon 2024; 10:e36583. [PMID: 39309767 PMCID: PMC11414493 DOI: 10.1016/j.heliyon.2024.e36583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The interaction between lamin A and the cytoplasmic skeleton plays a key role in maintaining nuclear mechanical properties. However, the effect of destruction of the cytoplasmic skeleton on the 3D submicroscopic structure of lamin A has not been elucidated. In this study, we developed an image quantization algorithm to quantify changes in the submicroscopic structure of the intact lamin A 3D network within the nucleus. We used blebbistatin or nocodazole to disrupt the fibrillar structure of F-actin or tubulin, respectively, and then quantified changes in the lamin A super-resolution network structure, the morphological and mechanical properties of the nucleus and the spatial distribution of chromosomes. Ultimately, we found for the first time that disruption of the cytoplasmic skeleton changes the lamin A submicroscopic network and nuclear structural characteristics. In summary, this study contributes to understanding the trans-nuclear membrane interaction characteristics of lamin A and the cytoplasmic skeleton.
Collapse
Affiliation(s)
- Zhenyu Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Xianglong Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Xiaoliang Li
- ZEISS Research Microscopy Solutions, Shanghai, China
| | | | - Han Rui
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhenglong Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
3
|
King MC. Dynamic regulation of LINC complex composition and function across tissues and contexts. FEBS Lett 2023; 597:2823-2832. [PMID: 37846646 DOI: 10.1002/1873-3468.14757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
The concept of mechanotransduction to the nucleus through a direct force transmission mechanism has fascinated cell biologists for decades. Central to such a mechanism is the linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope to couple the cytoplasmic cytoskeleton to the nuclear lamina. In reality, there is not one LINC complex identity, but instead, a family of protein configurations of varied composition that exert both shared and unique functions. Regulated expression of LINC complex components, splice variants, and mechanoresponsive protein turnover mechanisms together shape the complement of LINC complex forms present in a given cell type. Disrupting specific gene(s) encoding LINC complex components therefore gives rise to a range of organismal defects. Moreover, evidence suggests that the mechanical environment remodels LINC complexes, providing a feedback mechanism by which cellular context influences the integration of the nucleus into the cytoskeleton. In particular, evidence for crosstalk between the nuclear and cytoplasmic intermediate filament networks communicated through the LINC complex represents an emerging theme in this active area of ongoing investigation.
Collapse
Affiliation(s)
- Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Lee S, Carrasquillo Rodríguez JW, Merta H, Bahmanyar S. A membrane-sensing mechanism links lipid metabolism to protein degradation at the nuclear envelope. J Cell Biol 2023; 222:e202304026. [PMID: 37382667 PMCID: PMC10309186 DOI: 10.1083/jcb.202304026] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Lipid composition determines organelle identity; however, whether the lipid composition of the inner nuclear membrane (INM) domain of the ER contributes to its identity is not known. Here, we show that the INM lipid environment of animal cells is under local control by CTDNEP1, the master regulator of the phosphatidic acid phosphatase lipin 1. Loss of CTDNEP1 reduces association of an INM-specific diacylglycerol (DAG) biosensor and results in a decreased percentage of polyunsaturated containing DAG species. Alterations in DAG metabolism impact the levels of the resident INM protein Sun2, which is under local proteasomal regulation. We identify a lipid-binding amphipathic helix (AH) in the nucleoplasmic domain of Sun2 that prefers membrane packing defects. INM dissociation of the Sun2 AH is linked to its proteasomal degradation. We suggest that direct lipid-protein interactions contribute to sculpting the INM proteome and that INM identity is adaptable to lipid metabolism, which has broad implications on disease mechanisms associated with the nuclear envelope.
Collapse
Affiliation(s)
- Shoken Lee
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Holly Merta
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Sharma R, Hetzer MW. Disulfide bond in SUN2 regulates dynamic remodeling of LINC complexes at the nuclear envelope. Life Sci Alliance 2023; 6:e202302031. [PMID: 37188462 PMCID: PMC10193101 DOI: 10.26508/lsa.202302031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
The LINC complex tethers the cell nucleus to the cytoskeleton to regulate mechanical forces during cell migration, differentiation, and various diseases. The function of LINC complexes relies on the interaction between highly conserved SUN and KASH proteins that form higher-order assemblies capable of load bearing. These structural details have emerged from in vitro assembled LINC complexes; however, the principles of in vivo assembly remain obscure. Here, we report a conformation-specific SUN2 antibody as a tool to visualize LINC complex dynamics in situ. Using imaging, biochemical, and cellular methods, we find that conserved cysteines in SUN2 undergo KASH-dependent inter- and intra-molecular disulfide bond rearrangements. Disruption of the SUN2 terminal disulfide bond compromises SUN2 localization, turnover, LINC complex assembly in addition to cytoskeletal organization and cell migration. Moreover, using pharmacological and genetic perturbations, we identify components of the ER lumen as SUN2 cysteines redox state regulators. Overall, we provide evidence for SUN2 disulfide bond rearrangement as a physiologically relevant structural modification that regulates LINC complex functions.
Collapse
Affiliation(s)
- Rahul Sharma
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
6
|
Buglak DB, Bougaran P, Kulikauskas MR, Liu Z, Monaghan-Benson E, Gold AL, Marvin AP, Burciu A, Tanke NT, Oatley M, Ricketts SN, Kinghorn K, Johnson BN, Shiau CE, Rogers S, Guilluy C, Bautch VL. Nuclear SUN1 stabilizes endothelial cell junctions via microtubules to regulate blood vessel formation. eLife 2023; 12:83652. [PMID: 36989130 PMCID: PMC10059686 DOI: 10.7554/elife.83652] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Endothelial cells line all blood vessels, where they coordinate blood vessel formation and the blood-tissue barrier via regulation of cell-cell junctions. The nucleus also regulates endothelial cell behaviors, but it is unclear how the nucleus contributes to endothelial cell activities at the cell periphery. Here, we show that the nuclear-localized linker of the nucleoskeleton and cytoskeleton (LINC) complex protein SUN1 regulates vascular sprouting and endothelial cell-cell junction morphology and function. Loss of murine endothelial Sun1 impaired blood vessel formation and destabilized junctions, angiogenic sprouts formed but retracted in SUN1-depleted sprouts, and zebrafish vessels lacking Sun1b had aberrant junctions and defective cell-cell connections. At the cellular level, SUN1 stabilized endothelial cell-cell junctions, promoted junction function, and regulated contractility. Mechanistically, SUN1 depletion altered cell behaviors via the cytoskeleton without changing transcriptional profiles. Reduced peripheral microtubule density, fewer junction contacts, and increased catastrophes accompanied SUN1 loss, and microtubule depolymerization phenocopied effects on junctions. Depletion of GEF-H1, a microtubule-regulated Rho activator, or the LINC complex protein nesprin-1 rescued defective junctions of SUN1-depleted endothelial cells. Thus, endothelial SUN1 regulates peripheral cell-cell junctions from the nucleus via LINC complex-based microtubule interactions that affect peripheral microtubule dynamics and Rho-regulated contractility, and this long-range regulation is important for proper blood vessel sprouting and junction integrity.
Collapse
Affiliation(s)
- Danielle B Buglak
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Pauline Bougaran
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Ziqing Liu
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Elizabeth Monaghan-Benson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
| | - Ariel L Gold
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Allison P Marvin
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Andrew Burciu
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Morgan Oatley
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Shea N Ricketts
- Department of Pathology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Karina Kinghorn
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Bryan N Johnson
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Celia E Shiau
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Stephen Rogers
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Christophe Guilluy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
- McAllister Heart Institute, The University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
7
|
Sawaya AP, Uchiyama A, Hope E, Bajpai D, Worrell S, Cross M, Beniash E, Jenkins LM, Duverger O, Morasso MI. Keratin 75 Is a Component of the LINC Complex and Has an Essential Role in Mediating the SOX2 Rapid Healing Response during Wound Repair. J Invest Dermatol 2023; 143:494-498. [PMID: 36174715 PMCID: PMC9974572 DOI: 10.1016/j.jid.2022.08.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Andrew P Sawaya
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Akihiko Uchiyama
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emma Hope
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Deepti Bajpai
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen Worrell
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Cross
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elia Beniash
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lisa M Jenkins
- Mass Spectrometry Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
8
|
The transcription factor PREP1(PKNOX1) regulates nuclear stiffness, the expression of LINC complex proteins and mechanotransduction. Commun Biol 2022; 5:456. [PMID: 35550602 PMCID: PMC9098460 DOI: 10.1038/s42003-022-03406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanosignaling, initiated by extracellular forces and propagated through the intracellular cytoskeletal network, triggers signaling cascades employed in processes as embryogenesis, tissue maintenance and disease development. While signal transduction by transcription factors occurs downstream of cellular mechanosensing, little is known about the cell intrinsic mechanisms that can regulate mechanosignaling. Here we show that transcription factor PREP1 (PKNOX1) regulates the stiffness of the nucleus, the expression of LINC complex proteins and mechanotransduction of YAP-TAZ. PREP1 depletion upsets the nuclear membrane protein stoichiometry and renders nuclei soft. Intriguingly, these cells display fortified actomyosin network with bigger focal adhesion complexes resulting in greater traction forces at the substratum. Despite the high traction, YAP-TAZ translocation is impaired indicating disrupted mechanotransduction. Our data demonstrate mechanosignaling upstream of YAP-TAZ and suggest the existence of a transcriptional mechanism actively regulating nuclear membrane homeostasis and signal transduction through the active engagement/disengagement of the cell from the extracellular matrix. The transcription factor PREP1 binds to promoter regions of SUN1, SUN2 and LAP2 genes and promotes nuclear stiffness, and its depletion results in impaired mechanotransduction.
Collapse
|
9
|
Integrating mechanical signals into cellular identity. Trends Cell Biol 2022; 32:669-680. [PMID: 35337714 PMCID: PMC9288541 DOI: 10.1016/j.tcb.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
Abstract
The large arrays of cell types in a multicellular organism are defined by their stereotypic size and/or morphology, and, for cells in vivo, by their anatomic positions. Historically, this identity-structure-function correlation was conceptualized as arising from distinct gene expression programs that dictate how cells appear and behave. However, a growing number of studies suggest that a cell's mechanical state is also an important determinant of its identity, both in lineage-committed cells and in pluripotent stem cells. Defining the mechanism by which mechanical inputs influence complex cellular programs remains an area of ongoing investigation. Here, we discuss how the cytoskeleton actively participates in instructing the response of the nucleus and genome to integrate mechanical and biochemical inputs, with a primary focus on the role of the actomyosin-LINC (linker of nucleoskeleton and cytoskeleton) complex axis.
Collapse
|
10
|
Kim MH, Kino-Oka M. Mechanobiological conceptual framework for assessing stem cell bioprocess effectiveness. Biotechnol Bioeng 2021; 118:4537-4549. [PMID: 34460101 DOI: 10.1002/bit.27929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
Fully realizing the enormous potential of stem cells requires developing efficient bioprocesses and optimizations founded in mechanobiological considerations. Here, we emphasize the importance of mechanotransduction as one of the governing principles of stem cell bioprocesses, underscoring the need to further explore the behavioral mechanisms involved in sensing mechanical cues and coordinating transcriptional responses. We identify the sources of intrinsic, extrinsic, and external noise in bioprocesses requiring further study, and discuss the criteria and indicators that may be used to assess and predict cell-to-cell variability resulting from environmental fluctuations. Specifically, we propose a conceptual framework to explain the impact of mechanical forces within the cellular environment, identify key cell state determinants in bioprocesses, and discuss downstream implementation challenges.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Culturing Keratinocytes on Biomimetic Substrates Facilitates Improved Epidermal Assembly In Vitro. Cells 2021; 10:cells10051177. [PMID: 34066027 PMCID: PMC8151809 DOI: 10.3390/cells10051177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Mechanotransduction is defined as the ability of cells to sense mechanical stimuli from their surroundings and translate them into biochemical signals. Epidermal keratinocytes respond to mechanical cues by altering their proliferation, migration, and differentiation. In vitro cell culture, however, utilises tissue culture plastic, which is significantly stiffer than the in vivo environment. Current epidermal models fail to consider the effects of culturing keratinocytes on plastic prior to setting up three-dimensional cultures, so the impact of this non-physiological exposure on epidermal assembly is largely overlooked. In this study, primary keratinocytes cultured on plastic were compared with those grown on 4, 8, and 50 kPa stiff biomimetic hydrogels that have similar mechanical properties to skin. Our data show that keratinocytes cultured on biomimetic hydrogels exhibited major changes in cellular architecture, cell density, nuclear biomechanics, and mechanoprotein expression, such as specific Linker of Nucleoskeleton and Cytoskeleton (LINC) complex constituents. Mechanical conditioning of keratinocytes on 50 kPa biomimetic hydrogels improved the thickness and organisation of 3D epidermal models. In summary, the current study demonstrates that the effects of extracellular mechanics on keratinocyte cell biology are significant and therefore should be harnessed in skin research to ensure the successful production of physiologically relevant skin models.
Collapse
|
12
|
Chakraborty S, Lan T, Tseng Y, Wong SWK. Bayesian analysis of coupled cellular and nuclear trajectories for cell migration. Biometrics 2021; 78:1209-1220. [PMID: 33813733 DOI: 10.1111/biom.13468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2021] [Accepted: 03/31/2021] [Indexed: 01/02/2023]
Abstract
Cell migration, the process by which cells move from one location to another, plays crucial roles in many biological events. While much research has been devoted to understand the process, most statistical cell migration models rely on using time-lapse microscopy data from cell trajectories alone. However, the cell and its associated nucleus work together to orchestrate cell movement, which motivates a joint analysis of coupled cell-nucleus trajectories. In this paper, we propose a Bayesian hierarchical model for analyzing cell migration. We incorporate a bivariate angular distribution to handle the coupled cell-nucleus trajectories and introduce latent motility status indicators to model a cell's motility as a time-dependent characteristic. A Markov chain Monte Carlo algorithm is provided for practical implementation of our model, which is used on real experimental data from MDA-MB-231 and NIH 3T3 cells. Through the fitted models, deeper insights into the migratory patterns of these experimental cell populations are gained and their differences are quantified.
Collapse
Affiliation(s)
- Saptarshi Chakraborty
- Department of Biostatistics, State University of New York at Buffalo, Buffalo, New York, USA
| | - Tian Lan
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Yiider Tseng
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Samuel W K Wong
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
13
|
Carley E, Stewart RM, Zieman A, Jalilian I, King DE, Zubek A, Lin S, Horsley V, King MC. The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation. eLife 2021; 10:e58541. [PMID: 33779546 PMCID: PMC8051949 DOI: 10.7554/elife.58541] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
While the mechanisms by which chemical signals control cell fate have been well studied, the impact of mechanical inputs on cell fate decisions is not well understood. Here, using the well-defined system of keratinocyte differentiation in the skin, we examine whether and how direct force transmission to the nucleus regulates epidermal cell fate. Using a molecular biosensor, we find that tension on the nucleus through linker of nucleoskeleton and cytoskeleton (LINC) complexes requires integrin engagement in undifferentiated epidermal stem cells and is released during differentiation concomitant with decreased tension on A-type lamins. LINC complex ablation in mice reveals that LINC complexes are required to repress epidermal differentiation in vivo and in vitro and influence accessibility of epidermal differentiation genes, suggesting that force transduction from engaged integrins to the nucleus plays a role in maintaining keratinocyte progenitors. This work reveals a direct mechanotransduction pathway capable of relaying adhesion-specific signals to regulate cell fate.
Collapse
Affiliation(s)
- Emma Carley
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Rachel M Stewart
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Abigail Zieman
- Department of Molecular, Cell and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Iman Jalilian
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Diane E King
- Sunnycrest BioinformaticsFlemingtonUnited States
| | - Amanda Zubek
- Department of Dermatology, Yale School of MedicineNew HavenUnited States
| | - Samantha Lin
- Department of Molecular, Cell and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Valerie Horsley
- Department of Molecular, Cell and Developmental Biology, Yale UniversityNew HavenUnited States
- Department of Dermatology, Yale School of MedicineNew HavenUnited States
| | - Megan C King
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
- Department of Molecular, Cell and Developmental Biology, Yale UniversityNew HavenUnited States
| |
Collapse
|
14
|
Pennacchio FA, Nastały P, Poli A, Maiuri P. Tailoring Cellular Function: The Contribution of the Nucleus in Mechanotransduction. Front Bioeng Biotechnol 2021; 8:596746. [PMID: 33490050 PMCID: PMC7820809 DOI: 10.3389/fbioe.2020.596746] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cells sense a variety of different mechanochemical stimuli and promptly react to such signals by reshaping their morphology and adapting their structural organization and tensional state. Cell reactions to mechanical stimuli arising from the local microenvironment, mechanotransduction, play a crucial role in many cellular functions in both physiological and pathological conditions. To decipher this complex process, several studies have been undertaken to develop engineered materials and devices as tools to properly control cell mechanical state and evaluate cellular responses. Recent reports highlight how the nucleus serves as an important mechanosensor organelle and governs cell mechanoresponse. In this review, we will introduce the basic mechanisms linking cytoskeleton organization to the nucleus and how this reacts to mechanical properties of the cell microenvironment. We will also discuss how perturbations of nucleus-cytoskeleton connections, affecting mechanotransduction, influence health and disease. Moreover, we will present some of the main technological tools used to characterize and perturb the nuclear mechanical state.
Collapse
Affiliation(s)
- Fabrizio A. Pennacchio
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paulina Nastały
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Alessandro Poli
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paolo Maiuri
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
15
|
Abdel Fattah AR, Ranga A. Nanoparticles as Versatile Tools for Mechanotransduction in Tissues and Organoids. Front Bioeng Biotechnol 2020; 8:240. [PMID: 32363177 PMCID: PMC7180186 DOI: 10.3389/fbioe.2020.00240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
Organoids are 3D multicellular constructs that rely on self-organized cell differentiation, patterning and morphogenesis to recapitulate key features of the form and function of tissues and organs of interest. Dynamic changes in these systems are orchestrated by biochemical and mechanical microenvironments, which can be engineered and manipulated to probe their role in developmental and disease mechanisms. In particular, the in vitro investigation of mechanical cues has been the focus of recent research, where mechanical manipulations imparting local as well as large-scale mechanical stresses aim to mimic in vivo tissue deformations which occur through proliferation, folding, invagination, and elongation. However, current in vitro approaches largely impose homogeneous mechanical changes via a host matrix and lack the required positional and directional specificity to mimic the diversity of in vivo scenarios. Thus, while organoids exhibit limited aspects of in vivo morphogenetic events, how local forces are coordinated to enable large-scale changes in tissue architecture remains a difficult question to address using current techniques. Nanoparticles, through their efficient internalization by cells and dispersion through extracellular matrices, have the ability to provide local or global, as well as passive or active modulation of mechanical stresses on organoids and tissues. In this review, we explore how nanoparticles can be used to manipulate matrix and tissue mechanics, and highlight their potential as tools for fate regulation through mechanotransduction in multicellular model systems.
Collapse
Affiliation(s)
- Abdel Rahman Abdel Fattah
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Stein JV, Ruef N. Regulation of global CD8 + T-cell positioning by the actomyosin cytoskeleton. Immunol Rev 2020; 289:232-249. [PMID: 30977193 DOI: 10.1111/imr.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
CD8+ T cells have evolved as one of the most motile mammalian cell types, designed to continuously scan peptide-major histocompatibility complexes class I on the surfaces of other cells. Chemoattractants and adhesion molecules direct CD8+ T-cell homing to and migration within secondary lymphoid organs, where these cells colocalize with antigen-presenting dendritic cells in confined tissue volumes. CD8+ T-cell activation induces a switch to infiltration of non-lymphoid tissue (NLT), which differ in their topology and biophysical properties from lymphoid tissue. Here, we provide a short overview on regulation of organism-wide trafficking patterns during naive T-cell recirculation and their switch to non-lymphoid tissue homing during activation. The migratory lifestyle of CD8+ T cells is regulated by their actomyosin cytoskeleton, which translates chemical signals from surface receptors into mechanical work. We explore how properties of the actomyosin cytoskeleton and its regulators affect CD8+ T cell function in lymphoid and non-lymphoid tissue, combining recent findings in the field of cell migration and actin network regulation with tissue anatomy. Finally, we hypothesize that under certain conditions, intrinsic regulation of actomyosin dynamics may render NLT CD8+ T-cell populations less dependent on input from extrinsic signals during tissue scanning.
Collapse
Affiliation(s)
- Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
17
|
Porter L, Minaisah RM, Ahmed S, Ali S, Norton R, Zhang Q, Ferraro E, Molenaar C, Holt M, Cox S, Fountain S, Shanahan C, Warren D. SUN1/2 Are Essential for RhoA/ROCK-Regulated Actomyosin Activity in Isolated Vascular Smooth Muscle Cells. Cells 2020; 9:cells9010132. [PMID: 31935926 PMCID: PMC7017107 DOI: 10.3390/cells9010132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the blood vessel wall. Changes in VSMC actomyosin activity and morphology are prevalent in cardiovascular disease. The actin cytoskeleton actively defines cellular shape and the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex, comprised of nesprin and the Sad1p, UNC-84 (SUN)-domain family members SUN1/2, has emerged as a key regulator of actin cytoskeletal organisation. Although SUN1 and SUN2 function is partially redundant, they possess specific functions and LINC complex composition is tailored for cell-type-specific functions. We investigated the importance of SUN1 and SUN2 in regulating actomyosin activity and cell morphology in VSMCs. We demonstrate that siRNA-mediated depletion of either SUN1 or SUN2 altered VSMC spreading and impaired actomyosin activity and RhoA activity. Importantly, these findings were recapitulated using aortic VSMCs isolated from wild-type and SUN2 knockout (SUN2 KO) mice. Inhibition of actomyosin activity, using the rho-associated, coiled-coil-containing protein kinase1/2 (ROCK1/2) inhibitor Y27632 or blebbistatin, reduced SUN2 mobility in the nuclear envelope and decreased the association between SUN2 and lamin A, confirming that SUN2 dynamics and interactions are influenced by actomyosin activity. We propose that the LINC complex exists in a mechanical feedback circuit with RhoA to regulate VSMC actomyosin activity and morphology.
Collapse
Affiliation(s)
- Lauren Porter
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Rose-Marie Minaisah
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Sultan Ahmed
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Seema Ali
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Rosemary Norton
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Qiuping Zhang
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Elisa Ferraro
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Chris Molenaar
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Mark Holt
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London SE1 1YR, UK
| | - Susan Cox
- Randall Division of Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London SE1 1YR, UK
| | - Samuel Fountain
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Catherine Shanahan
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Derek Warren
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Correspondence:
| |
Collapse
|
18
|
Zhang Q, Narayanan V, Mui KL, O'Bryan CS, Anderson RH, Kc B, Cabe JI, Denis KB, Antoku S, Roux KJ, Dickinson RB, Angelini TE, Gundersen GG, Conway DE, Lele TP. Mechanical Stabilization of the Glandular Acinus by Linker of Nucleoskeleton and Cytoskeleton Complex. Curr Biol 2019; 29:2826-2839.e4. [PMID: 31402305 PMCID: PMC6736724 DOI: 10.1016/j.cub.2019.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/03/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Abstract
The nucleoskeleton and cytoskeleton are important protein networks that govern cellular behavior and are connected together by the linker of nucleoskeleton and cytoskeleton (LINC) complex. Mutations in LINC complex components may be relevant to cancer, but how cell-level changes might translate into tissue-level malignancy is unclear. We used glandular epithelial cells in a three-dimensional culture model to investigate the effect of perturbations of the LINC complex on higher order cellular architecture. We show that inducible LINC complex disruption in human mammary epithelial MCF-10A cells and canine kidney epithelial MDCK II cells mechanically destabilizes the acinus. Lumenal collapse occurs because the acinus is unstable to increased mechanical tension that is caused by upregulation of Rho-kinase-dependent non-muscle myosin II motor activity. These findings provide a potential mechanistic explanation for how disruption of LINC complex may contribute to a loss of tissue structure in glandular epithelia.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Keeley L Mui
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Christopher S O'Bryan
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | - Birendra Kc
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jolene I Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Kevin B Denis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Susumu Antoku
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
19
|
Stewart RM, Rodriguez EC, King MC. Ablation of SUN2-containing LINC complexes drives cardiac hypertrophy without interstitial fibrosis. Mol Biol Cell 2019; 30:1664-1675. [PMID: 31091167 PMCID: PMC6727752 DOI: 10.1091/mbc.e18-07-0438] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cardiomyocyte cytoskeleton, including the sarcomeric contractile apparatus, forms a cohesive network with cellular adhesions at the plasma membrane and nuclear--cytoskeletal linkages (LINC complexes) at the nuclear envelope. Human cardiomyopathies are genetically linked to the LINC complex and A-type lamins, but a full understanding of disease etiology in these patients is lacking. Here we show that SUN2-null mice display cardiac hypertrophy coincident with enhanced AKT/MAPK signaling, as has been described previously for mice lacking A-type lamins. Surprisingly, in contrast to lamin A/C-null mice, SUN2-null mice fail to show coincident fibrosis or upregulation of pathological hypertrophy markers. Thus, cardiac hypertrophy is uncoupled from profibrotic signaling in this mouse model, which we tie to a requirement for the LINC complex in productive TGFβ signaling. In the absence of SUN2, we detect elevated levels of the integral inner nuclear membrane protein MAN1, an established negative regulator of TGFβ signaling, at the nuclear envelope. We suggest that A-type lamins and SUN2 play antagonistic roles in the modulation of profibrotic signaling through opposite effects on MAN1 levels at the nuclear lamina, suggesting a new perspective on disease etiology.
Collapse
Affiliation(s)
- Rachel M Stewart
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002
| | - Elisa C Rodriguez
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002
| |
Collapse
|
20
|
MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nat Commun 2019; 10:1695. [PMID: 30979898 PMCID: PMC6461646 DOI: 10.1038/s41467-019-09636-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Actin cytoskeleton is well-known for providing structural/mechanical support, but whether and how it regulates chromatin and cell fate reprogramming is far less clear. Here, we report that MKL1, the key transcriptional co-activator of many actin cytoskeletal genes, regulates genomic accessibility and cell fate reprogramming. The MKL1-actin pathway weakens during somatic cell reprogramming by pluripotency transcription factors. Cells that reprogram efficiently display low endogenous MKL1 and inhibition of actin polymerization promotes mature pluripotency activation. Sustained MKL1 expression at a level seen in typical fibroblasts yields excessive actin cytoskeleton, decreases nuclear volume and reduces global chromatin accessibility, stalling cells on their trajectory toward mature pluripotency. In addition, the MKL1-actin imposed block of pluripotency can be bypassed, at least partially, when the Sun2-containing linker of the nucleoskeleton and cytoskeleton (LINC) complex is inhibited. Thus, we unveil a previously unappreciated aspect of control on chromatin and cell fate reprogramming exerted by the MKL1-actin pathway. MKL1 is a key transcriptional co-activator of actin cytoskeleton genes. Here the authors show that MKL1 activation in somatic cells reduces chromatin accessibility and hinders full reprogramming to pluripotency. Reduction of MKL1, disruption of actin cytoskeleton and its links to the nucleus relieve this repression.
Collapse
|
21
|
Lecland N, Hsu CY, Chemin C, Merdes A, Bierkamp C. Epidermal development requires ninein for spindle orientation and cortical microtubule organization. Life Sci Alliance 2019; 2:2/2/e201900373. [PMID: 30923192 PMCID: PMC6441496 DOI: 10.26508/lsa.201900373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
In the epidermis, ninein affects spindle orientation of progenitor cells, as well as cortical microtubule organization, desmosome assembly, and lamellar body secretion in differentiating cells. In mammalian skin, ninein localizes to the centrosomes of progenitor cells and relocates to the cell cortex upon differentiation of keratinocytes, where cortical arrays of microtubules are formed. To examine the function of ninein in skin development, we use epidermis-specific and constitutive ninein-knockout mice to demonstrate that ninein is necessary for maintaining regular protein levels of the differentiation markers filaggrin and involucrin, for the formation of desmosomes, for the secretion of lamellar bodies, and for the formation of the epidermal barrier. Ninein-deficient mice are viable but develop a thinner skin with partly impaired epidermal barrier. We propose two underlying mechanisms: first, ninein contributes to spindle orientation during the division of progenitor cells, whereas its absence leads to misoriented cell divisions, altering the pool of progenitor cells. Second, ninein is required for the cortical organization of microtubules in differentiating keratinocytes, and for the cortical re-localization of microtubule-organizing proteins, and may thus affect any mechanisms that depend on localized microtubule-dependent transport.
Collapse
Affiliation(s)
- Nicolas Lecland
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Chiung-Yueh Hsu
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Cécile Chemin
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Andreas Merdes
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Christiane Bierkamp
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| |
Collapse
|
22
|
Hieda M. Signal Transduction across the Nuclear Envelope: Role of the LINC Complex in Bidirectional Signaling. Cells 2019; 8:cells8020124. [PMID: 30720758 PMCID: PMC6406650 DOI: 10.3390/cells8020124] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
Abstract
The primary functions of the nuclear envelope are to isolate the nucleoplasm and its contents from the cytoplasm as well as maintain the spatial and structural integrity of the nucleus. The nuclear envelope also plays a role in the transfer of various molecules and signals to and from the nucleus. To reach the nucleus, an extracellular signal must be transmitted across three biological membranes: the plasma membrane, as well as the inner and outer nuclear membranes. While signal transduction across the plasma membrane is well characterized, signal transduction across the nuclear envelope, which is essential for cellular functions such as transcriptional regulation and cell cycle progression, remains poorly understood. As a physical entity, the nuclear envelope, which contains more than 100 proteins, functions as a binding scaffold for both the cytoskeleton and the nucleoskeleton, and acts in mechanotransduction by relaying extracellular signals to the nucleus. Recent results show that the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, which is a conserved molecular bridge that spans the nuclear envelope and connects the nucleoskeleton and cytoskeleton, is also capable of transmitting information bidirectionally between the nucleus and the cytoplasm. This short review discusses bidirectional signal transduction across the nuclear envelope, with a particular focus on mechanotransduction.
Collapse
Affiliation(s)
- Miki Hieda
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, 543 Takooda, Tobecho,Ehime 791-2102, Japan.
| |
Collapse
|
23
|
Fantastic nuclear envelope herniations and where to find them. Biochem Soc Trans 2018; 46:877-889. [PMID: 30026368 DOI: 10.1042/bst20170442] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
Abstract
Morphological abnormalities of the bounding membranes of the nucleus have long been associated with human diseases from cancer to premature aging to neurodegeneration. Studies over the past few decades support that there are both cell intrinsic and extrinsic factors (e.g. mechanical force) that can lead to nuclear envelope 'herniations', a broad catch-all term that reveals little about the underlying molecular mechanisms that contribute to these morphological defects. While there are many genetic perturbations that could ultimately change nuclear shape, here, we focus on a subset of nuclear envelope herniations that likely arise as a consequence of disrupting physiological nuclear membrane remodeling pathways required to maintain nuclear envelope homeostasis. For example, stalling of the interphase nuclear pore complex (NPC) biogenesis pathway and/or triggering of NPC quality control mechanisms can lead to herniations in budding yeast, which are remarkably similar to those observed in human disease models of early-onset dystonia. By also examining the provenance of nuclear envelope herniations associated with emerging nuclear autophagy and nuclear egress pathways, we will provide a framework to help understand the molecular pathways that contribute to nuclear deformation.
Collapse
|
24
|
May CK, Carroll CW. Differential incorporation of SUN-domain proteins into LINC complexes is coupled to gene expression. PLoS One 2018; 13:e0197621. [PMID: 29813079 PMCID: PMC5973619 DOI: 10.1371/journal.pone.0197621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/05/2018] [Indexed: 11/19/2022] Open
Abstract
LInkers of Nucleoskeleton and Cytoskeleton (LINC) complexes, composed of SUN and KASH-domain proteins, span the nuclear envelope and physically connect the nuclear interior to cytoskeletal elements. Most human cells contain two SUN proteins, Sun1 and Sun2, and several KASH-proteins suggesting that multiple functionally distinct LINC complexes co-exist in the nuclear envelope. We show here, however, that while Sun1 and Sun2 in HeLa cells are each able to bind KASH-domains, Sun1 is more efficiently incorporated into LINC complexes under normal growth conditions. Furthermore, the balance of Sun1 and Sun2 incorporated into LINC complexes is cell type-specific and is correlated with SRF/Mkl1-dependent gene expression. In addition, we found that Sun1 has a LINC complex-independent role in transcriptional control, possibly by regulating the SRF/Mkl1 pathway. Together, these data reveal novel insights into the mechanisms of LINC complex regulation and demonstrate that Sun1 modulates gene expression independently of its incorporation into LINC complexes.
Collapse
Affiliation(s)
- Christopher K. May
- Dept. Of Cell Biology, Yale School of Medicine, New Haven, CT, United States of America
| | - Christopher W. Carroll
- Dept. Of Cell Biology, Yale School of Medicine, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
25
|
Yang Y, Qu R, Fan T, Zhu X, Feng Y, Yang Y, Deng T, Peng Y, Huang W, Ouyang J, Dai J. Cross-talk between microtubules and the linker of nucleoskeleton complex plays a critical role in the adipogenesis of human adipose-derived stem cells. Stem Cell Res Ther 2018; 9:125. [PMID: 29720241 PMCID: PMC5930445 DOI: 10.1186/s13287-018-0836-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 12/28/2022] Open
Abstract
Background Adipose-derived stem cells (ASCs) that show multidifferentiation and anti-immune rejection capacities have been widely used in plastic and reconstructive surgery. Previous studies have indicated that mechanical and biophysical interactions between cells and their surrounding environment regulate essential processes, such as growth, survival, and differentiation, and the cytoskeleton system plays an important role in the mechanotransduction. However, the role of mechanical force in the determination of lineage fate is still unclear. Methods Human ASCs (hASCs) were obtained from three different donors by liposuction. Adipogenesis and osteogenesis were determined by Oil Red O and Alizarin Red staining, respectively. The mRNA levels of the cytoskeleton system, PPARγ, and C/EBPα were determined by real-time polymerase chain reaction (RT-PCR). The level of cytoskeleton, PPARγ, and C/EBPα protein levels were measured by Western blotting. The morphology of the cytoskeleton system during adipogenesis was observed with confocal microscopy. hASCs were transfected with a SUN2-specific shRNA to knockdown sun2, and a nontargeting shRNA was used as a control. Results We found that disrupting the physiological balance between the cytoskeleton and the linker of the nucleoskeleton and cytoskeleton (LINC) complex (especially SUN2) could impact the adipogenesis of hASCs in vitro. Microtubule (MT) depolymerization with nocodazole (which interferes with the polymerization of MTs) increased the expression of SUN2 and PPARγ, while taxol (an inhibitor of MT disassembly) showed the opposite results. Meanwhile, hASCs with sun2 knockdown overexpressed MTs and decreased PPARγ expression, thereby inhibiting the adipogenesis. Furthermore, knockdown of sun2 changed the structure of perinuclear MTs. Conclusions We demonstrated the presence of cross-talk between MT and SUN2, and this cross-talk plays a critical role in the rebalance of the mechanical environment and is involved in the regulation of PPARγ transport during adipogenic differentiation of hASCs. Electronic supplementary material The online version of this article (10.1186/s13287-018-0836-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiting Yang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rongmei Qu
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tingyu Fan
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xi Zhu
- Departments of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanting Feng
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuchao Yang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Deng
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan Peng
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenhua Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Ouyang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jingxing Dai
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
26
|
Anselme K, Wakhloo NT, Rougerie P, Pieuchot L. Role of the Nucleus as a Sensor of Cell Environment Topography. Adv Healthc Mater 2018; 7:e1701154. [PMID: 29283219 DOI: 10.1002/adhm.201701154] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Indexed: 12/25/2022]
Abstract
The proper integration of biophysical cues from the cell vicinity is crucial for cells to maintain homeostasis, cooperate with other cells within the tissues, and properly fulfill their biological function. It is therefore crucial to fully understand how cells integrate these extracellular signals for tissue engineering and regenerative medicine. Topography has emerged as a prominent component of the cellular microenvironment that has pleiotropic effects on cell behavior. This progress report focuses on the recent advances in the understanding of the topography sensing mechanism with a special emphasis on the role of the nucleus. Here, recent techniques developed for monitoring the nuclear mechanics are reviewed and the impact of various topographies and their consequences on nuclear organization, gene regulation, and stem cell fate is summarized. The role of the cell nucleus as a sensor of cell-scale topography is further discussed.
Collapse
Affiliation(s)
- Karine Anselme
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| | - Nayana Tusamda Wakhloo
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| | - Pablo Rougerie
- Institute of Biomedical SciencesFederal University of Rio de Janeiro Rio de Janeiro RJ 21941‐902 Brazil
| | - Laurent Pieuchot
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| |
Collapse
|
27
|
Uhler C, Shivashankar GV. Nuclear Mechanopathology and Cancer Diagnosis. Trends Cancer 2018; 4:320-331. [PMID: 29606315 DOI: 10.1016/j.trecan.2018.02.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 11/29/2022]
Abstract
Abnormalities in nuclear and chromatin organization are hallmarks of many diseases including cancer. In this review, we highlight our understanding of how the cellular microenvironment regulates nuclear morphology and, with it, the spatial organization of chromosomes and genes, resulting in cell type-specific genomic programs. We also discuss the molecular basis for maintaining nuclear and genomic integrity and how alterations in nuclear mechanotransduction pathways result in various diseases. Finally, we highlight the importance of digital pathology based on nuclear morphometric features combined with single-cell genomics for early cancer diagnostics.
Collapse
Affiliation(s)
- Caroline Uhler
- Department of Electrical Engineering & Computer Science, Institute for Data, Systems & Society, MIT, Cambridge, MA, USA
| | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, Singapore; FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.
| |
Collapse
|
28
|
Graham DM, Andersen T, Sharek L, Uzer G, Rothenberg K, Hoffman BD, Rubin J, Balland M, Bear JE, Burridge K. Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction. J Cell Biol 2018; 217:895-914. [PMID: 29351995 PMCID: PMC5839789 DOI: 10.1083/jcb.201706097] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/16/2017] [Accepted: 12/14/2017] [Indexed: 01/11/2023] Open
Abstract
The nucleus has long been postulated to play a critical physical role during cell polarization and migration, but that role has not been defined or rigorously tested. Here, we enucleated cells to test the physical necessity of the nucleus during cell polarization and directed migration. Using enucleated mammalian cells (cytoplasts), we found that polarity establishment and cell migration in one dimension (1D) and two dimensions (2D) occur without the nucleus. Cytoplasts directionally migrate toward soluble (chemotaxis) and surface-bound (haptotaxis) extracellular cues and migrate collectively in scratch-wound assays. Consistent with previous studies, migration in 3D environments was dependent on the nucleus. In part, this likely reflects the decreased force exerted by cytoplasts on mechanically compliant substrates. This response is mimicked both in cells with nucleocytoskeletal defects and upon inhibition of actomyosin-based contractility. Together, our observations reveal that the nucleus is dispensable for polarization and migration in 1D and 2D but critical for proper cell mechanical responses.
Collapse
Affiliation(s)
- David M Graham
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tomas Andersen
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, Grenoble, France
| | - Lisa Sharek
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Gunes Uzer
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID
| | | | | | - Janet Rubin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, Grenoble, France
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
29
|
Emerging views of the nucleus as a cellular mechanosensor. Nat Cell Biol 2018; 20:373-381. [PMID: 29467443 DOI: 10.1038/s41556-018-0038-y] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
The ability of cells to respond to mechanical forces is critical for numerous biological processes. Emerging evidence indicates that external mechanical forces trigger changes in nuclear envelope structure and composition, chromatin organization and gene expression. However, it remains unclear if these processes originate in the nucleus or are downstream of cytoplasmic signals. Here we discuss recent findings that support a direct role of the nucleus in cellular mechanosensing and highlight novel tools to study nuclear mechanotransduction.
Collapse
|
30
|
Argentati C, Morena F, Montanucci P, Rallini M, Basta G, Calabrese N, Calafiore R, Cordellini M, Emiliani C, Armentano I, Martino S. Surface Hydrophilicity of Poly(l-Lactide) Acid Polymer Film Changes the Human Adult Adipose Stem Cell Architecture. Polymers (Basel) 2018; 10:polym10020140. [PMID: 30966176 PMCID: PMC6414915 DOI: 10.3390/polym10020140] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 01/09/2023] Open
Abstract
Current knowledge indicates that the molecular cross-talk between stem cells and biomaterials guides the stem cells’ fate within a tissue engineering system. In this work, we have explored the effects of the interaction between the poly(l-lactide) acid (PLLA) polymer film and human adult adipose stem cells (hASCs), focusing on the events correlating the materials’ surface characteristics and the cells’ plasma membrane. hASCs were seeded on films of pristine PLLA polymer and on a PLLA surface modified by the radiofrequency plasma method under oxygen flow (PLLA+O2). Comparative experiments were performed using human bone-marrow mesenchymal stem cells (hBM-MSCs) and human umbilical matrix stem cells (hUCMSCs). After treatment with oxygen-plasma, the surface of PLLA films became hydrophilic, whereas the bulk properties were not affected. hASCs cultured on pristine PLLA polymer films acquired a spheroid conformation. On the contrary, hASCs seeded on PLLA+O2 film surface maintained the fibroblast-like morphology typically observed on tissue culture polystyrene. This suggests that the surface hydrophilicity is involved in the acquisition of the spheroid conformation. Noteworthy, the oxygen treatment had no effects on hBM-MSC and hUCMSC cultures and both stem cells maintained the same shape observed on PLLA films. This different behavior suggests that the biomaterial-interaction is stem cell specific.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, Biochemistry and Molecular Biology Unit, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, Biochemistry and Molecular Biology Unit, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Pia Montanucci
- Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine, University of Perugia, 06126 Perugia, Italy.
| | - Marco Rallini
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, 05100 Terni, Italy.
| | - Giuseppe Basta
- Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine, University of Perugia, 06126 Perugia, Italy.
| | | | - Riccardo Calafiore
- Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine, University of Perugia, 06126 Perugia, Italy.
| | | | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, Biochemistry and Molecular Biology Unit, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University, 01100 Viterbo, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, Biochemistry and Molecular Biology Unit, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| |
Collapse
|
31
|
Tschumperlin DJ, Ligresti G, Hilscher MB, Shah VH. Mechanosensing and fibrosis. J Clin Invest 2018; 128:74-84. [PMID: 29293092 DOI: 10.1172/jci93561] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue injury disrupts the mechanical homeostasis that underlies normal tissue architecture and function. The failure to resolve injury and restore homeostasis gives rise to progressive fibrosis that is accompanied by persistent alterations in the mechanical environment as a consequence of pathological matrix deposition and stiffening. This Review focuses on our rapidly growing understanding of the molecular mechanisms linking the altered mechanical environment in injury, repair, and fibrosis to cellular activation. In particular, our focus is on the mechanisms by which cells transduce mechanical signals, leading to transcriptional and epigenetic responses that underlie both transient and persistent alterations in cell state that contribute to fibrosis. Translation of these mechanobiological insights may enable new approaches to promote tissue repair and arrest or reverse fibrotic tissue remodeling.
Collapse
Affiliation(s)
| | | | - Moira B Hilscher
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
32
|
Lee YL, Burke B. LINC complexes and nuclear positioning. Semin Cell Dev Biol 2017; 82:67-76. [PMID: 29191370 DOI: 10.1016/j.semcdb.2017.11.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
One of the characteristics of eukaryotic cells is their structural plasticity associated with the ability to carry out a broad range of complex functions, both autonomously and as components of tissues and organs. Major cellular rearrangements can be observed in various systems from meiosis in fission yeast, through dermal differentiation in nematodes, to muscle and neuronal development in vertebrates. Each of these processes involves oftentimes dramatic relocation of the nucleus within the cell. During the last decade it has become apparent that the nuclear periphery represents a nexus of cytoskeletal interactions that are involved not only in nuclear movement but also in the distribution and dissemination of mechanical forces throughout the cell. Nucleocytoskeletal coupling is mediated in large part by SUN- and KASH-domain proteins of the nuclear membranes, that together assemble to form LINC (Linker of the Nucleoskeleton and Cytoskeleton) complexes. In this review we will describe how the LINC complex repertoire contributes to nuclear positioning and chromosome dynamics in a variety of cellular contexts.
Collapse
Affiliation(s)
- Yin Loon Lee
- Laboratory of Nuclear Dynamics and Architecture, Institute of Medical Biology, 8A Biomedical Grove, Immunos, 138648, Singapore
| | - Brian Burke
- Laboratory of Nuclear Dynamics and Architecture, Institute of Medical Biology, 8A Biomedical Grove, Immunos, 138648, Singapore.
| |
Collapse
|
33
|
Wasik AA, Schiller HB. Functional proteomics of cellular mechanosensing mechanisms. Semin Cell Dev Biol 2017; 71:118-128. [DOI: 10.1016/j.semcdb.2017.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
|
34
|
Zhu R, Antoku S, Gundersen GG. Centrifugal Displacement of Nuclei Reveals Multiple LINC Complex Mechanisms for Homeostatic Nuclear Positioning. Curr Biol 2017; 27:3097-3110.e5. [PMID: 28988861 DOI: 10.1016/j.cub.2017.08.073] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/26/2017] [Accepted: 08/30/2017] [Indexed: 11/18/2022]
Abstract
Nuclear movement is critical for developmental events, cell polarity, and migration and is usually mediated by linker of nucleoskeleton and cytoskeleton (LINC) complexes connecting the nucleus to cytoskeletal elements. Compared to active nuclear movement, relatively little is known about homeostatic positioning of nuclei, including whether it is an active process. To explore homeostatic nuclear positioning, we developed a method to displace nuclei in adherent cells using centrifugal force. Nuclei displaced by centrifugation rapidly recentered by mechanisms that depended on cell context. In cell monolayers with wounds oriented orthogonal to the force, nuclei were displaced toward the front and back of the cells on the two sides of the wound. Nuclei recentered from both positions, but at different rates and with different cytoskeletal linkage mechanisms. Rearward recentering was actomyosin, nesprin-2G, and SUN2 dependent, whereas forward recentering was microtubule, dynein, nesprin-2G, and SUN1 dependent. Nesprin-2G engaged actin through its N terminus and microtubules through a novel dynein interacting site near its C terminus. Both activities were necessary to maintain nuclear position in uncentrifuged cells. Thus, even when not moving, nuclei are actively maintained in position by engaging the cytoskeleton through the LINC complex.
Collapse
Affiliation(s)
- Ruijun Zhu
- Department of Pathology and Cell Biology, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Susumu Antoku
- Department of Pathology and Cell Biology, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
35
|
Rapisarda V, Malashchuk I, Asamaowei IE, Poterlowicz K, Fessing MY, Sharov AA, Karakesisoglou I, Botchkarev VA, Mardaryev A. p63 Transcription Factor Regulates Nuclear Shape and Expression of Nuclear Envelope-Associated Genes in Epidermal Keratinocytes. J Invest Dermatol 2017; 137:2157-2167. [PMID: 28595999 PMCID: PMC5610935 DOI: 10.1016/j.jid.2017.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 01/07/2023]
Abstract
The maintenance of a proper nuclear architecture and three-dimensional organization of the genes, enhancer elements, and transcription machinery plays an essential role in tissue development and regeneration. Here we show that in the developing skin, epidermal progenitor cells of mice lacking p63 transcription factor display alterations in the nuclear shape accompanied by a marked decrease in expression of several nuclear envelope-associated components (Lamin B1, Lamin A/C, Sun1, Nesprin-3, Plectin) compared with controls. Furthermore, chromatin immunoprecipitation-quantitative PCR assay showed enrichment of p63 on Sun1, Syne3, and Plec promoters, suggesting them as p63 targets. Alterations in the nuclei shape and expression of nuclear envelope-associated proteins were accompanied by altered distribution patterns of the repressive histone marks trimethylation on lysine 27 of histone H3, trimethylation on lysine 9 of histone H3, and heterochromatin protein 1-alpha in p63-null keratinocytes. These changes were also accompanied by downregulation of the transcriptional activity and relocation of the keratinocyte-specific gene loci away from the sites of active transcription toward the heterochromatin-enriched repressive nuclear compartments in p63-null cells. These data demonstrate functional links between the nuclear envelope organization, chromatin architecture, and gene expression in keratinocytes and suggest nuclear envelope-associated genes as important targets mediating p63-regulated gene expression program in the epidermis.
Collapse
Key Words
- cc, chromocenter
- chip-qpcr, chromatin immunoprecipitation-quantitative pcr
- h3k9me3, trimethylation on lysine 9 of histone h3
- h3k27me3, trimethylation on lysine 27 of histone h3
- ktyi, keratin type i
- ktyii, keratin type ii
- pmk, primary mouse keratinocyte
- if, intermediate filament
- nm, nuclear membrane
- ne, nuclear envelope
- wt, wild-type
Collapse
Affiliation(s)
| | - Igor Malashchuk
- Centre for Skin Sciences, University of Bradford, Bradford, UK
| | | | | | | | - Andrey A Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Vladimir A Botchkarev
- Centre for Skin Sciences, University of Bradford, Bradford, UK; Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | | |
Collapse
|
36
|
Design of a nanocomposite substrate inducing adult stem cell assembly and progression toward an Epiblast-like or Primitive Endoderm-like phenotype via mechanotransduction. Biomaterials 2017; 144:211-229. [PMID: 28841465 DOI: 10.1016/j.biomaterials.2017.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/01/2017] [Accepted: 08/13/2017] [Indexed: 01/10/2023]
Abstract
This work shows that the active interaction between human umbilical cord matrix stem cells and Poly (l-lactide)acid (PLLA) and PLLA/Multi Walled Carbon Nanotubes (MWCNTs) nanocomposite films results in the stem cell assembly as a spheroid conformation and affects the stem cell fate transition. We demonstrated that spheroids directly respond to a tunable surface and the bulk properties (electric, dielectric and thermal) of plain and nanocomposite PLLA films by triggering a mechanotransduction axis. This stepwise process starts from tethering of the cells' focal adhesion proteins to the surface, together with the adherens junctions between cells. Both complexes transmit traction forces to F-Actin stress fibres that link Filamin-A and Myosin-IIA proteins, generating a biological scaffold, with increased stiffening conformation from PLLA to PLLA/MWCNTs, and enable the nucleoskeleton proteins to boost chromatin reprogramming processes. Herein, the opposite expression of NANOG and GATA6 transcription factors, together with other lineage specification related proteins, steer spheroids toward an Epiblast-like or Primitive Endoderm-like lineage commitment, depending on the absence or presence of 1 wt% MWCNTs, respectively. This work represents a pioneering effort to create a stem cell/material interface that can model the stem cell fate transition under growth culture conditions.
Collapse
|
37
|
Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization. Sci Rep 2017; 7:5219. [PMID: 28701767 PMCID: PMC5507932 DOI: 10.1038/s41598-017-05467-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/31/2017] [Indexed: 01/07/2023] Open
Abstract
The regulation of nuclear state by the cytoskeleton is an important part of cellular function. Actomyosin stress fibres, microtubules and intermediate filaments have distinct and complementary roles in integrating the nucleus into its environment and influencing its mechanical state. However, the interconnectedness of cytoskeletal networks makes it difficult to dissect their individual effects on the nucleus. We use simple image analysis approaches to characterize nuclear state, estimating nuclear volume, Poisson's ratio, apparent elastic modulus and chromatin condensation. By combining them with cytoskeletal quantification, we assess how cytoskeletal organization regulates nuclear state. We report for a number of cell types that nuclei display auxetic properties. Furthermore, stress fibres and intermediate filaments modulate the mechanical properties of the nucleus and also chromatin condensation. Conversely, nuclear volume and its gross morphology are regulated by intracellular outward pulling forces exerted by myosin. The modulation exerted by the cytoskeleton onto the nucleus results in changes that are of similar magnitude to those observed when the nucleus is altered intrinsically, inducing chromatin decondensation or cell differentiation. Our approach allows pinpointing the contribution of distinct cytoskeletal proteins to nuclear mechanical state in physio- and pathological conditions, furthering our understanding of a key aspect of cellular behaviour.
Collapse
|
38
|
Watt FM. Engineered Microenvironments to Direct Epidermal Stem Cell Behavior at Single-Cell Resolution. Dev Cell 2017; 38:601-9. [PMID: 27676433 DOI: 10.1016/j.devcel.2016.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Abstract
Mammalian epidermis is maintained through proliferation of stem cells and differentiation of their progeny. The balance between self-renewal and differentiation is controlled by a variety of interacting intrinsic and extrinsic factors. Although the nature of these interactions is complex, they can be modeled in a reductionist fashion by capturing single epidermal stem cells on micropatterned substrates and exposing them to individual stimuli, alone or in combination, over defined time points. These studies have shown that different extrinsic stimuli trigger a common outcome-initiation of terminal differentiation-by activating different signaling pathways and eliciting different transcriptional responses.
Collapse
Affiliation(s)
- Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
39
|
Thorpe SD, Lee DA. Dynamic regulation of nuclear architecture and mechanics-a rheostatic role for the nucleus in tailoring cellular mechanosensitivity. Nucleus 2017; 8:287-300. [PMID: 28152338 PMCID: PMC5499908 DOI: 10.1080/19491034.2017.1285988] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response.
Collapse
Affiliation(s)
- Stephen D Thorpe
- a Institute of Bioengineering, School of Engineering and Materials Science , Queen Mary University of London , London , UK
| | - David A Lee
- a Institute of Bioengineering, School of Engineering and Materials Science , Queen Mary University of London , London , UK
| |
Collapse
|
40
|
Hieda M. Implications for Diverse Functions of the LINC Complexes Based on the Structure. Cells 2017; 6:cells6010003. [PMID: 28134781 PMCID: PMC5371868 DOI: 10.3390/cells6010003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 12/18/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is composed of the outer and inner nuclear membrane protein families Klarsicht, Anc-1, and Syne homology (KASH), and Sad1 and UNC-84 (SUN) homology domain proteins. Increasing evidence has pointed to diverse functions of the LINC complex, such as in nuclear migration, nuclear integrity, chromosome movement and pairing during meiosis, and mechanotransduction to the genome. In metazoan cells, the nuclear envelope possesses the nuclear lamina, which is a thin meshwork of intermediate filaments known as A-type and B-type lamins and lamin binding proteins. Both of lamins physically interact with the inner nuclear membrane spanning SUN proteins. The nuclear lamina has also been implicated in various functions, including maintenance of nuclear integrity, mechanotransduction, cellular signalling, and heterochromatin dynamics. Thus, it is clear that the LINC complex and nuclear lamins perform diverse but related functions. However, it is unknown whether the LINC complex-lamins interactions are involved in these diverse functions, and their regulation mechanism has thus far been elusive. Recent structural analysis suggested a dynamic nature of the LINC complex component, thus providing an explanation for LINC complex organization. This review, elaborating on the integration of crystallographic and biochemical data, helps to integrate this research to gain a better understanding of the diverse functions of the LINC complex.
Collapse
Affiliation(s)
- Miki Hieda
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, Ehime 791-2101, Japan.
| |
Collapse
|
41
|
Thakar K, May CK, Rogers A, Carroll CW. Opposing roles for distinct LINC complexes in regulation of the small GTPase RhoA. Mol Biol Cell 2016; 28:182-191. [PMID: 28035049 PMCID: PMC5221622 DOI: 10.1091/mbc.e16-06-0467] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/20/2016] [Accepted: 11/02/2016] [Indexed: 12/01/2022] Open
Abstract
Different forms of nuclear envelope–spanning LINC complexes have opposing roles in the transcription-independent control of the small GTPase RhoA. Competition between LINC complexes in the nuclear envelope may therefore dictate the outcome of signaling to cytoskeletal networks. Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes span the nuclear envelope and transduce force from dynamic cytoskeletal networks to the nuclear lamina. Here we show that LINC complexes also signal from the nuclear envelope to critical regulators of the actin cytoskeleton. Specifically, we find that LINC complexes that contain the inner nuclear membrane protein Sun2 promote focal adhesion assembly by activating the small GTPase RhoA. A key effector in this process is the transcription factor/coactivator complex composed of SRF/Mkl1. A constitutively active form of SRF/Mkl1 was not sufficient to induce focal adhesion assembly in cells lacking Sun2, however, suggesting that LINC complexes support RhoA activity through a transcription-independent mechanism. Strikingly, we also find that the inner nuclear membrane protein Sun1 antagonizes Sun2 LINC complexes and inhibits RhoA activation and focal adhesion assembly. Thus different LINC complexes have opposing roles in the transcription-independent control of the actin cytoskeleton through the small GTPase RhoA.
Collapse
Affiliation(s)
- Ketan Thakar
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Christopher K May
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Anna Rogers
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | |
Collapse
|
42
|
Cytoskeletal Configuration Modulates Mechanically Induced Changes in Mesenchymal Stem Cell Osteogenesis, Morphology, and Stiffness. Sci Rep 2016; 6:34791. [PMID: 27708389 PMCID: PMC5052530 DOI: 10.1038/srep34791] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSC) responding to mechanical cues generated by physical activity is critical for skeletal development and remodeling. Here, we utilized low intensity vibrations (LIV) as a physiologically relevant mechanical signal and hypothesized that the confined cytoskeletal configuration imposed by 2D culture will enable human bone marrow MSCs (hBMSC) to respond more robustly when LIV is applied in-plane (horizontal-LIV) rather than out-of-plane (vertical-LIV). All LIV signals enhanced hBMSC proliferation, osteogenic differentiation, and upregulated genes associated with cytoskeletal structure. The cellular response was more pronounced at higher frequencies (100 Hz vs 30 Hz) and when applied in the horizontal plane. Horizontal but not vertical LIV realigned the cell cytoskeleton, culminating in increased cell stiffness. Our results show that applying very small oscillatory motions within the primary cell attachment plane, rather than perpendicular to it, amplifies the cell's response to LIV, ostensibly facilitating a more effective transfer of intracellular forces. Transcriptional and structural changes in particular with horizontal LIV, together with the strong frequency dependency of the signal, emphasize the importance of intracellular cytoskeletal configuration in sensing and responding to high-frequency mechanical signals at low intensities.
Collapse
|
43
|
Pederson T, King MC, Marko JF. Forces, fluctuations, and self-organization in the nucleus. Mol Biol Cell 2016; 26:3915-9. [PMID: 26543199 PMCID: PMC4710223 DOI: 10.1091/mbc.e15-06-0357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We address several processes and domains in the nucleus wherein holding the perspective of physics either reveals a conundrum or is likely to enable progress.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - John F Marko
- Department of Molecular Biosciences and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
44
|
Jordan S. Megan King: A force to be reckoned with. ACTA ACUST UNITED AC 2016; 214:2-3. [PMID: 27377246 DOI: 10.1083/jcb.2141pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
King’s work focuses on the intimate biomechanical link between the nucleus and the cytoskeleton.
Collapse
|
45
|
Wallrath LL, Bohnekamp J, Magin TM. Cross talk between the cytoplasm and nucleus during development and disease. Curr Opin Genet Dev 2016; 37:129-136. [PMID: 27110666 DOI: 10.1016/j.gde.2016.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 01/03/2023]
Abstract
Mechanotransduction is a process whereby mechanical stimuli outside the cell are sensed by components of the plasma membrane and transmitted as signals through the cytoplasm that terminate in the nucleus. The nucleus responds to these signals by altering gene expression. During mechanotransduction, complex networks of proteins are responsible for cross talk between the cytoplasm and the nucleus. These proteins include cell membrane receptors, cytoplasmic filaments, LINC complex members that bridge the nucleus and cytoplasm, and nuclear envelope proteins that connect to the chromatin. Mechanotransduction also plays a critical role in development. Furthermore, it is possible that disrupted mechanotransduction leads to changes in gene expression that underlie the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Lori L Wallrath
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Jens Bohnekamp
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, D-04103 Leipzig, Germany
| | - Thomas M Magin
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
46
|
A model for coordinating nuclear mechanics and membrane remodeling to support nuclear integrity. Curr Opin Cell Biol 2016; 41:9-17. [PMID: 27031045 DOI: 10.1016/j.ceb.2016.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
Abstract
A polymer network of intranuclear lamin filaments underlies the nuclear envelope and provides mechanical stability to the nucleus in metazoans. Recent work demonstrates that the expression of A-type lamins scales positively with the stiffness of the cellular environment, thereby coupling nuclear and extracellular mechanics. Using the spectrin-actin network at the erythrocyte plasma membrane as a model, we contemplate how the relative stiffness of the nuclear scaffold impinges on the growing number of interphase-specific nuclear envelope remodeling events, including recently discovered, nuclear envelope-specialized quality control mechanisms. We suggest that a stiffer lamina impedes these remodeling events, necessitating local lamina remodeling and/or concomitant scaling of the efficacy of membrane-remodeling machineries that act at the nuclear envelope.
Collapse
|
47
|
Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat Commun 2016; 7:10997. [PMID: 26975831 PMCID: PMC4796365 DOI: 10.1038/ncomms10997] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/09/2016] [Indexed: 12/27/2022] Open
Abstract
Cell migration has two opposite faces: although necessary for physiological processes such as immune responses, it can also have detrimental effects by enabling metastatic cells to invade new organs. In vivo, migration occurs in complex environments and often requires a high cellular deformability, a property limited by the cell nucleus. Here we show that dendritic cells, the sentinels of the immune system, possess a mechanism to pass through micrometric constrictions. This mechanism is based on a rapid Arp2/3-dependent actin nucleation around the nucleus that disrupts the nuclear lamina, the main structure limiting nuclear deformability. The cells' requirement for Arp2/3 to pass through constrictions can be relieved when nuclear stiffness is decreased by suppressing lamin A/C expression. We propose a new role for Arp2/3 in three-dimensional cell migration, allowing fast-moving cells such as leukocytes to rapidly and efficiently migrate through narrow gaps, a process probably important for their function.
Collapse
|
48
|
Chang W, Antoku S, Gundersen GG. Wound-Healing Assays to Study Mechanisms of Nuclear Movement in Fibroblasts and Myoblasts. Methods Mol Biol 2016; 1411:255-267. [PMID: 27147048 DOI: 10.1007/978-1-4939-3530-7_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The rearward positioning of the nucleus is a characteristic feature of most migrating cells. Studies using wounded monolayers of fibroblasts and myoblasts have shown that this positioning is actively established before migration by the coupling of dorsal actin cables to the nuclear envelope through nesprin-2G and SUN2 linker of nucleoskeleton and cytoskeleton (LINC) complexes. During nuclear movement, these LINC complexes cluster along the actin cables to form adhesive structures known as transmembrane actin-associated nuclear (TAN) lines. Here we described experimental procedures for studying nuclear movement and TAN lines using wounded monolayers of fibroblasts and myoblasts, the acquisition of data using immunofluorescence microscopy and live-cell imaging, and methods for data analysis and quantification.
Collapse
Affiliation(s)
- Wakam Chang
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, P&S 15-420, 630 West 168th Street, New York, NY, 10032, USA
| | - Susumu Antoku
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, P&S 15-420, 630 West 168th Street, New York, NY, 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, P&S 15-420, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
49
|
Short B. SUN protection for the skin. J Biophys Biochem Cytol 2015. [PMCID: PMC4427797 DOI: 10.1083/jcb.2093if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A component of the nuclear envelope–spanning LINC complex maintains the integrity of epidermal cell adhesions.
Collapse
|