1
|
Trupiano N, Young K, Echuri H, Maghfour J, Orenstein LAV, Hamzavi I. Exploring itch in hidradenitis suppurativa with lessons from atopic dermatitis and psoriasis. J Dermatol 2025; 52:239-246. [PMID: 39812242 DOI: 10.1111/1346-8138.17622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 12/09/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Itch is a prominent symptom in many cutaneous disorders, including atopic dermatitis (AD), prurigo nodularis, and psoriasis. Itch is also a common but overlooked concern in patients with hidradenitis suppurativa (HS). Currently, the mechanisms underlying itch in HS remain unclear. To gain a better understanding, we reviewed the literature on pruritus in HS and other itch-predominant disorders, AD, and psoriasis. In HS, psoriasis, and AD, we found that itch often co-localized with pain and occurred more frequently at night. Furthermore, itch was found to negatively affect sleep and increase the risk for comorbid psychiatric disorders in HS, psoriasis, and AD. However, HS-, psoriasis-, and AD-related itch differ in temporality. Itch in AD is often described as chronic, while itch in HS and psoriasis is often described as episodic. HS-associated itch is likely multifactorial, and several mechanisms have been proposed including peripheral sensitization, central sensitization, and neuroinflammation. Prior studies in HS highlight enhanced IgE production and a dense infiltration of mast cells, along with a variety of cytokines and chemokines. Furthermore, alterations in the skin microbiome may contribute to itch in HS. To date, few therapies have been studied to treat itch in HS. Given the efficacy of several biologics and small molecules in treating itch in AD and psoriasis, similar agents may be explored in future HS studies. Alternative therapies to target neurological and psychiatric contributions to itch may include anticonvulsants, cannabinoids, and nonpharmacological treatments. In conclusion, pathomechanisms of itch in HS remain to be fully elucidated. However, we can draw on lessons from other pruritic disorders to begin addressing the symptom of it and identify important questions for future study.
Collapse
Affiliation(s)
- Nicole Trupiano
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly Young
- University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harika Echuri
- Emory University Department of Dermatology, Atlanta, Georgia, USA
| | - Jalal Maghfour
- Henry Ford Health Department of Dermatology, Detroit, Michigan, USA
| | | | - Iltefat Hamzavi
- Henry Ford Health Department of Dermatology, Detroit, Michigan, USA
| |
Collapse
|
2
|
Chien DCC, Limjunyawong N, Cao C, Meixiong J, Peng Q, Ho CY, Fay JF, Roth BL, Dong X. MRGPRX4 mediates phospho-drug-associated pruritus in a humanized mouse model. Sci Transl Med 2024; 16:eadk8198. [PMID: 38718132 PMCID: PMC11645656 DOI: 10.1126/scitranslmed.adk8198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/12/2024] [Indexed: 05/30/2024]
Abstract
The phosphate modification of drugs is a common chemical strategy to increase solubility and allow for parenteral administration. Unfortunately, phosphate modifications often elicit treatment- or dose-limiting pruritus through an unknown mechanism. Using unbiased high-throughput drug screens, we identified the Mas-related G protein-coupled receptor X4 (MRGPRX4), a primate-specific, sensory neuron receptor previously implicated in itch, as a potential target for phosphate-modified compounds. Using both Gq-mediated calcium mobilization and G protein-independent GPCR assays, we found that phosphate-modified compounds potently activate MRGPRX4. Furthermore, a humanized mouse model expressing MRGPRX4 in sensory neurons exhibited robust phosphomonoester prodrug-evoked itch. To characterize and confirm this interaction, we further determined the structure of MRGPRX4 in complex with a phosphate-modified drug through single-particle cryo-electron microscopy (cryo-EM) and identified critical amino acid residues responsible for the binding of the phosphate group. Together, these findings explain how phosphorylated drugs can elicit treatment-limiting itch and identify MRGPRX4 as a potential therapeutic target to suppress itch and to guide future drug design.
Collapse
Affiliation(s)
- Daphne Chun-Che Chien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathachit Limjunyawong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Can Cao
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - James Meixiong
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Qi Peng
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan F. Fay
- Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
3
|
Jafari AJ, Rivera M, Hebert AA. The role of thymic stromal lymphopoietin in cutaneous disorders. Arch Dermatol Res 2024; 316:123. [PMID: 38630260 DOI: 10.1007/s00403-024-02866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/09/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Thymic Stromal Lymphopoietin (TSLP) is an important cytokine that invokes early immune responses. TSLP, an IL-7-like cytokine encoded by the TSLP gene, activates JAK1 and JAK2 signaling pathways, stimulating dendritic cells to induce inflammatory Th2 cells. This cytokine is associated with pruritus in various cutaneous disorders, particularly atopic dermatitis. Varying levels of the cytokine TSLP have been demonstrated in studies of different cutaneous disorders. Pharmacological treatment targeting TSLP has been explored recently, particularly in the realm of atopic dermatitis.This review explores the relation of TSLP to cutaneous diseases, highlighting its potential as a biomarker for monitoring disease progression in discoid lupus erythematosus (DLE). The pharmacological therapy involving TSLP is discussed, along with the potential role of TSLP promotion in the treatment of alopecia areata. This overview examines the background, structure, and functions of TSLP, with a focus on its association with cutaneous disorders and a special focus on the impact of the atopic march.
Collapse
Affiliation(s)
- Alexander J Jafari
- Department of Dermatology, UTHealth McGovern Medical School, 6500 West Loop South, Suite 200-A, Bellaire, TX, 77401, USA
| | | | - Adelaide A Hebert
- Department of Dermatology, UTHealth McGovern Medical School, 6500 West Loop South, Suite 200-A, Bellaire, TX, 77401, USA.
- Department of Pediatrics, UTHealth McGovern Medical School, Houston, TX, USA.
- Department of Dermatology, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Go EJ, Lee JY, Kim YH, Park CK. Site-Specific Transient Receptor Potential Channel Mechanisms and Their Characteristics for Targeted Chronic Itch Treatment. Biomolecules 2024; 14:107. [PMID: 38254707 PMCID: PMC10813675 DOI: 10.3390/biom14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic itch is a debilitating condition with limited treatment options, severely affecting quality of life. The identification of pruriceptors has sparked a growing interest in the therapeutic potential of TRP channels in the context of itch. In this regard, we provided a comprehensive overview of the site-specific expression of TRP channels and their associated functions in response to a range of pruritogens. Although several potent antipruritic compounds that target specific TRP channels have been developed and have demonstrated efficacy in various chronic itch conditions through experimental means, a more thorough understanding of the potential for adverse effects or interactions with other TRP channels or GPCRs is necessary to develop novel and selective therapeutics that target TRP channels for treating chronic itch. This review focuses on the mechanism of itch associated with TRP channels at specific sites, from the skin to the sensory neuron, with the aim of suggesting specific therapeutic targets for treating this condition.
Collapse
Affiliation(s)
- Eun Jin Go
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea;
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| |
Collapse
|
5
|
Miyahara Y, Funahashi H, Haruta-Tsukamoto A, Kogoh Y, Kanemaru-Kawazoe A, Hirano Y, Nishimori T, Ishida Y. Differential Contribution of 5-HT 4, 5-HT 5, and 5-HT 6 Receptors to Acute Pruriceptive Processing Induced by Chloroquine and Histamine in Mice. Biol Pharm Bull 2023; 46:1601-1608. [PMID: 37722878 DOI: 10.1248/bpb.b23-00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The involvement of serotonin (5-HT) and/or noradrenaline in acute pruriceptive processing in the central nervous system (CNS) has been reported using antidepressants, such as milnacipran, a serotonin and noradrenaline reuptake inhibitor, and mirtazapine, a noradrenergic and specific serotonergic antidepressant; however, the roles of 5-HT receptor family in acute pruriceptive processing have not been fully elucidated in the CNS. In the present study, scratching behavior induced by chloroquine (CQ) was ameliorated by milnacipran or mirtazapine, and these effects were reversed by SB207266, a 5-HT4 antagonist, or SB258585, a 5-HT6 antagonist, but not by SB258585, a 5-HT5 antagonist. Moreover, CQ-induced scratches were mitigated by intrathecal injection of 5-HT4 agonists, such as BIMU8 and ML10302, and the 5-HT6 agonist, WAY208466. Conversely, histamine-induced scratches were not affected by the 5-HT4 agonists or a 5-HT6 agonist. Similarly, the amelioration of histamine-induced scratches by these antidepressants was not reversed by the 5-HT4, 5-HT5, or 5-HT6 receptor antagonist. Therefore, 5-HT is involved in the amelioration of CQ-induced scratches by milnacipran and mirtazapine, and 5-HT4, 5-HT5, and 5-HT6 receptors play differential roles in acute pruriceptive processing after administration of CQ or histamine.
Collapse
Affiliation(s)
- Yu Miyahara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki
| | - Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki
| | | | - Yoichiro Kogoh
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki
| | | | - Yoji Hirano
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki
| | | | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
6
|
Haruta-Tsukamoto A, Kanemaru-Kawazoe A, Kogoh Y, Miyahara Y, Funahashi H, Hirano Y, Nishimori T, Ishida Y. Role of kainate receptors in pruriceptive processing in the mouse spinal cord. Eur J Pharmacol 2023; 957:175998. [PMID: 37597648 DOI: 10.1016/j.ejphar.2023.175998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Pruritus, including neuropathic and psychogenic pruritus, is an unpleasant feeling that causes a desire to scratch, which negatively impacts physical and psychological aspects of daily life. Nonetheless, little is known about the neural mechanisms involved in pruritus. Glutamate is a predominant excitatory neurotransmitter in the mammalian central nervous system and exerts its effects by binding to various glutamate receptors, including kainate (KA) receptors; however, the precise involvement of each glutamate receptor in pruriceptive processing remains unclear, particularly that of KA receptors. Therefore, the roles of KA receptors in histamine-dependent and -independent itch were investigated using CNQX, an AMPA/KA receptors antagonist, UBP310 and UBP302, antagonists of KA receptors, and small interfering (si)RNAs against KA receptor subunits in mice with acute and chronic pruritus. The effects of KA receptor antagonists on histamine-induced c-Fos expression in the spinal cord were also examined. The intrathecal administration of CNQX reduced the number of scratching events induced by histamine and chloroquine. On the other hand, UBP310 or UBP302 and the siRNAs of KA receptor subunits 1-3 significantly inhibited the induction of scratching events in mice treated with histamine, while no significant change was observed in the induction of spontaneous scratching events in mice with chronic pruritus. In addition, antagonists of KA receptors attenuated c-Fos expression in the superficial layers of the dorsal horn induced by histamine. These results indicate that KA receptors are involved in acute pruriceptive processing in the spinal cord induced by histamine, but not chloroquine or chronic itch.
Collapse
Affiliation(s)
- Ayaka Haruta-Tsukamoto
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan; Nozaki Hospital, 5567 Tsunehisa, Miyazaki City, Miyazaki, 880-0916, Japan.
| | - Anna Kanemaru-Kawazoe
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Yoichiro Kogoh
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Yu Miyahara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Yoji Hirano
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Toshikazu Nishimori
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| |
Collapse
|
7
|
Kaczmarska A, Kwiatkowska D, Skrzypek KK, Kowalewski ZT, Jaworecka K, Reich A. Pathomechanism of Pruritus in Psoriasis and Atopic Dermatitis: Novel Approaches, Similarities and Differences. Int J Mol Sci 2023; 24:14734. [PMID: 37834183 PMCID: PMC10573181 DOI: 10.3390/ijms241914734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Pruritus is defined as an unpleasant sensation that elicits a desire to scratch. Nearly a third of the world's population may suffer from pruritus during their lifetime. This symptom is widely observed in numerous inflammatory skin diseases-e.g., approximately 70-90% of patients with psoriasis and almost every patient with atopic dermatitis suffer from pruritus. Although the pathogenesis of atopic dermatitis and psoriasis is different, the complex intricacies between several biochemical mediators, enzymes, and pathways seem to play a crucial role in both conditions. Despite the high prevalence of pruritus in the general population, the pathogenesis of this symptom in various conditions remains elusive. This review aims to summarize current knowledge about the pathogenesis of pruritus in psoriasis and atopic dermatitis. Each molecule involved in the pruritic pathway would merit a separate chapter or even an entire book, however, in the current review we have concentrated on some reports which we found crucial in the understanding of pruritus. However, the pathomechanism of pruritus is an extremely complex and intricate process. Moreover, many of these signaling pathways are currently undergoing detailed analysis or are still unexplained. As a result, it is currently difficult to take an objective view of how far we have come in elucidating the pathogenesis of pruritus in the described diseases. Nevertheless, considerable progress has been made in recent years.
Collapse
Affiliation(s)
- Agnieszka Kaczmarska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | - Dominika Kwiatkowska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | | | | | - Kamila Jaworecka
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | - Adam Reich
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| |
Collapse
|
8
|
Liang Y, Fan Z, Li J, Ma R, Zhang Y, Shi X, Zhu Y, Huang J. GABAergic neurons in the ventral lateral geniculate nucleus and intergeniculate leaflet modulate itch processing in mice. Biochem Biophys Res Commun 2023; 659:72-79. [PMID: 37054505 DOI: 10.1016/j.bbrc.2023.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Itch and pain are two closely related sensations that receiving similar encodings at multiple levels. Accumulated evidences suggest that activation of the ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL)-to-lateral and ventrolateral periaqueductal gray (l/vlPAG) projections mediates the antinociceptive effects of bright light therapy. Clinical study showed that bright light therapy may ameliorate cholestasis-induced pruritus. However, the underlying mechanism and whether this circuit participates in itch modulation remains unclear. In this study, chloroquine and histamine were utilized to induce acute itch models in mice. Neuronal activities in vLGN/IGL nucleus were evaluated with c-fos immunostaining as well as fiber photometry. Optogenetic manipulations were performed to activate or inhibit GABAergic neurons in the vLGN/IGL nucleus. Our results showed that the expressions of c-fos in vLGN/IGL were significantly increased upon both chloroquine- and histamine-induced acute itch stimuli. GABAergic neurons in vLGN/IGL were activated during histamine and chloroquine-induced scratching. Optogenetic activation of the vLGN/IGL GABAergic neurons exerts antipruritic effect, while inhibiting these neurons exerts pruritic effect. Our results provide evidence that GABAergic neurons in vLGN/IGL nucleus might play a crucial role in modulating itch, which may provide clue for application of bright light as an antipruritic treatment in clinic.
Collapse
|
9
|
Upregulation of DRG protein TMEM100 facilitates dry-skin-induced pruritus by enhancing TRPA1 channel function. Acta Biochim Biophys Sin (Shanghai) 2022; 55:404-416. [PMID: 36514220 PMCID: PMC10160222 DOI: 10.3724/abbs.2022180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The dry skin tortures numerous patients with severe itch. The transient receptor potential cation channel V member 1 (TRPV1) and A member 1 (TRPA1) are two essential receptors for peripheral neural coding of itch sensory, mediating histaminergic and nonhistaminergic itch separately. In the dorsal root ganglion, transmembrane protein 100 (TMEM100) is structurally related to both TRPV1 and TRPA1 receptors, but the exact role of TMEM100 in itch sensory coding is still unknown. Here, in this study, we find that TMEM100 + DRG neurons account for the majority of activated neurons in an acetone-ether-water (AEW)-induced dry skin itch model, and some TMEM100 + DRG neurons are colocalized with both TRPA1 and the chloroquine-related Mrgpr itch receptor family. Both the expression and function of TRPA1 channels, but not TRPV1 channels, are upregulated in the AEW model, and specific DRG Tmem100 gene knockdown alleviates AEW-induced itch and rescues the expression and functional changes of TRPA1. Our results strongly suggest that TMEM100 protein in DRG is the main facilitating factor for dry-skin-related chronic itch, and specific suppression of TMEM100 in DRG could be a novel effective treatment strategy for patients who suffer from dry skin-induced itch.
Collapse
|
10
|
Uta D, Inami Y, Fukushima M, Kume T. Light-Touch-Induced Afterdischarge Firing in the Superficial Spinal Dorsal Horn Neurons in Hairless Mice with Irritant Contact Dermatitis. Biol Pharm Bull 2022; 45:1678-1683. [DOI: 10.1248/bpb.b22-00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama
| | | | | | - Toshiaki Kume
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
11
|
Critical Players and Therapeutic Targets in Chronic Itch. Int J Mol Sci 2022; 23:ijms23179935. [PMID: 36077340 PMCID: PMC9456029 DOI: 10.3390/ijms23179935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic itch is one of the most prominent clinical characteristics of diverse systematic diseases. It is a devastating sensation in pathological diseases. Despite its importance, there are no FDA-labelled drugs specifically geared toward chronic itch. The associated complex pathogenesis and diverse causes escalate chronic itch to being one of the top challenges in healthcare. Humanized antibodies against IL-13, IL-4, and IL-31 proved effective in treatment of itch-associated atopic dermatitis but remain to be validated in chronic itch. There are still no satisfactory anti-itch therapeutics available toward itch-related neuropeptides including GRP, BNP, SST, CGRP, and SP. The newly identified potential itch targets including OSM, NMB, glutamate, periostin, and Serpin E1 have opened new avenues for therapeutic development. Proof-of-principle studies have been successfully performed on antagonists against these proteins and their receptors in itch treatment in animal models. Their translational interventions in humans need to be evaluated. It is of great importance to summarize and compare the newly emerging knowledge on chronic itch and its pathways to promote the development of novel anti-itch therapeutics. The goal of this review is to analyze the different physiologies and pathophysiologies of itch mediators, whilst assessing their suitability as new targets and discussing future therapeutic development.
Collapse
|
12
|
Lu Z, Xiao S, Chen W, Zhu R, Yang H, Steinhoff M, Li Y, Cheng W, Yan X, Li L, Xue S, Larkin C, Zhang W, Fan Q, Wang R, Wang J, Meng J. IL-20 promotes cutaneous inflammation and peripheral itch sensation in atopic dermatitis. FASEB J 2022; 36:e22334. [PMID: 35486004 PMCID: PMC9321592 DOI: 10.1096/fj.202101800r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 11/11/2022]
Abstract
Atopic dermatitis (AD) is a chronic skin disease, which is associated with intense itch, skin barrier dysfunction and eczematous lesions. Aberrant IL‐20 expression has been implicated in numerous inflammatory diseases, including psoriasis. However, the role of IL‐20 in AD remains unknown. Here, RNA‐seq, Q‐PCR, and immunocytochemistry were utilized to examine disease‐driven changes of IL‐20 and its cognate receptor subunits in skin from healthy human subjects, AD patients and murine AD‐models. Calcium imaging, knockdown and cytokine array were used to investigate IL‐20‐evoked responses in keratinocytes and sensory neurons. The murine cheek model and behavioral scoring were employed to evaluate IL‐20‐elicited sensations in vivo. We found that transcripts and protein of IL‐20 were upregulated in skin from human AD and murine AD‐like models. Topical MC903 treatment in mice ear enhanced IL‐20R1 expression in the trigeminal sensory ganglia, suggesting a lesion‐associated and epidermal‐driven mechanism for sensitization of sensory IL‐20 signaling. IL‐20 triggered calcium influx in both keratinocytes and sensory neurons, and promoted their AD‐related molecule release and transcription of itch‐related genes. In sensory neurons, IL‐20 application increased TLR2 transcripts, implicating a link between innate immune response and IL‐20. In a murine cheek model of acute itch, intradermal injection IL‐20 and IL‐13 elicited significant itch‐like behavior, though only when co‐injected. Our findings provide novel insights into IL‐20 function in peripheral (skin‐derived) itch and clinically relevant intercellular neuron‐epidermal communication, highlighting a role of IL‐20 signaling in the pathophysiology of AD, thus forming a new basis for the development of a novel antipruritic strategy via interrupting IL‐20 epidermal pathways.
Collapse
Affiliation(s)
- Zhiping Lu
- School of Life Sciences, Henan University, China
| | - Song Xiao
- School of Life Sciences, Henan University, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, China
| | - Renkai Zhu
- School of Life Sciences, Henan University, China
| | - Hua Yang
- School of Life Sciences, Henan University, China
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Yanqing Li
- School of Life Sciences, Henan University, China
| | - Wenke Cheng
- School of Life Sciences, Henan University, China
| | - Xinrong Yan
- School of Life Sciences, Henan University, China
| | - Lianlian Li
- School of Life Sciences, Henan University, China
| | - Shanghai Xue
- School of Life Sciences, Henan University, China
| | - Ciara Larkin
- Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin 9, Ireland.,Faculty of Science and Health, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Wenhao Zhang
- School of Life Sciences, Henan University, China
| | - Qianqian Fan
- School of Life Sciences, Henan University, China
| | - Ruizhen Wang
- School of Life Sciences, Henan University, China
| | - Jiafu Wang
- Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Jianghui Meng
- Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin 9, Ireland.,Faculty of Science and Health, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
13
|
Shindo Y, Fujita K, Tanaka M, Fujio H, Hotta K, Oka K. Mechanical stimulus-evoked signal transduction between keratinocytes and sensory neurons via extracellular ATP. Biochem Biophys Res Commun 2021; 582:131-136. [PMID: 34710828 DOI: 10.1016/j.bbrc.2021.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022]
Abstract
The skin is exposed to various external stimuli. Keratinocytes, which are the main cell type in the epidermis, interact with peripheral sensory neurons and modulate neuronal activity. Recent studies have revealed that keratinocytes play crucial roles in nociception, and that ATP is one of the main mediators of signal transduction from keratinocytes to sensory neurons. However, no quantitative cellular level analyses of ATP-mediated information flow from keratinocytes to sensory dorsal root ganglion (DRG) neurons have been conducted. In this study, we performed simultaneous imaging of cell surface ATP and intracellular Ca2+ signals using both iATPSnFR, a genetically encoded ATP probe localized to the outside of the cell membrane, and the Ca2+ probe, Fura-red. Upon mechanical stimulation of the keratinocyte with a glass needle, an increase in Ca2+ and ATP release were observed around the stimulated area, and these phenomena were positively correlated. In cultured DRG neurons and keratinocytes neighboring the stimulated keratinocyte, increased intracellular Ca2+ concentration and levels of cell surface ATP on the side closer to the stimulated cell were detected. The ratio of Ca2+ response to input ATP signal was significantly larger in DRG neurons than in keratinocytes. We found that DRG neurons were more sensitive to ATP than keratinocytes, and therefore, only DRG neurons responded to ATP at 1 μM or lower concentrations when in co-culture with keratinocytes. Moreover, signals caused by moderate mechanical stimulation of keratinocytes were transmitted predominantly to DRG neurons. These findings would be important in the further determination of the detailed mechanism of nociception in the epidermis.
Collapse
Affiliation(s)
- Yutaka Shindo
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Keigo Fujita
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Mari Tanaka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Hiroki Fujio
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan; Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo, 162-8480, Japan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.
| |
Collapse
|
14
|
Miyahara Y, Funahashi H, Haruta-Tsukamoto A, Kogoh Y, Kanemaru-Kawazoe A, Nishimori T, Ishida Y. Roles of 5-HT 3 and 5-HT 7 receptors in acute pruriceptive processing in mice. Eur J Pharmacol 2021; 911:174513. [PMID: 34555396 DOI: 10.1016/j.ejphar.2021.174513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 01/06/2023]
Abstract
The roles of serotonin (5-HT) and/or noradrenaline in acute pruriceptive processing have been demonstrated using antidepressants, such as milnacipran, a serotonin and noradrenaline reuptake inhibitor, and mirtazapine, a noradrenergic and specific serotonergic antidepressant; however, the involvement of 5-HT in acute pruriceptive processing has not yet been elucidated in detail. Scratching events induced by chloroquine (CQ) were attenuated by the administration of milnacipran or mirtazapine, and these effects were reversed by a treatment with ondansetron, a 5-HT3 antagonist, or SB26970, a 5-HT7 antagonist. CQ-induced scratching events were also ameliorated by the intrathecal administration of 5-HT, SR572227A and RS56812 (5-HT3 agonists), and LP211 and LP44 (5-HT7 agonists), indicating the modulation of CQ-induced scratching events by 5-HT and noradrenaline. By contrast, histamine-induced scratching events were not markedly affected by the administration of 5-HT and 5-HT7 agonists, whereas 5-HT3 agonists exerted attenuating effects. Similarly, they were not clearly reversed by the administration of the 5-HT7 antagonist, unlike a 5-HT3 antagonist. Therefore, 5-HT is involved in the attenuating effects of milnacipran and mirtazapine on CQ- and histamine-induced scratching events, and 5-HT3 and 5-HT7 receptors play different roles in pruriceptive processing induced by histamine or CQ.
Collapse
Affiliation(s)
- Yu Miyahara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Ayaka Haruta-Tsukamoto
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Yoichiro Kogoh
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Anna Kanemaru-Kawazoe
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Toshikazu Nishimori
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki city, Miyazaki, 889-1692, Japan.
| |
Collapse
|
15
|
Xiao S, Lu Z, Steinhoff M, Li Y, Buhl T, Fischer M, Chen W, Cheng W, Zhu R, Yan X, Yang H, Liu Y, Dou Y, Wang W, Wang J, Meng J. Innate immune regulates cutaneous sensory IL-13 receptor alpha 2 to promote atopic dermatitis. Brain Behav Immun 2021; 98:28-39. [PMID: 34391816 DOI: 10.1016/j.bbi.2021.08.211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/02/2023] Open
Abstract
The clinical significance and regulators of IL-13Rα2 in itch and atopic dermatitis (AD) remain unclear. To identify disease-driven regulatory circuits of IL-13Rα2, transcriptomic/pathological analysis was performed in skin from patients with AD, psoriasis, healthy subjects, and murine AD model. Functionality was investigated in sensory neurons, keratinocytes and animal model, by using knockdown (KD), calcium imaging, RNA-seq, cytokine arrays, pharmacological assays, and behavioural investigations. In our study, an upregulated IL-13Rα2 expression was revealed in skin of AD patients, but not psoriasis, in a disease activity-dependent manner. In cultured human keratinocytes, IL-13 increased IL-13Rα2 transcription levels, and this were downregulated by IL-13Rα1KD. IL-13Rα2KD reduced transcription levels of EDNRA, CCL20, CCL26. In contrast, sensory neuron-derived IL-13Rα2 was upregulated by TLR2 heterodimer agonists, Pam3CSK4 and FSL-1. In a mouse cheek model, pre-administration of Pam3CSK4 and FSL-1 enhanced IL-13-elicited scratching behaviour. Consistently, in cultured sensory neurons Pam3CSK4 enhanced IL-13-elicted calcium transients, increased number of responders, and orchestrated chemerin, CCL17 and CCL22 release. These release was inhibited by IL-13Rα2KD. Collectively, IL-13 regulates keratinocyte-derived IL-13Rα2 and TLR2 to modulate neuronal IL-13Rα2, thereby promoting neurogenic inflammation and exacerbating AD and itch. Thus, the cutaneous IL-13-IL-13Rα2 and neuronal TLR2-IL-13Rα2 pathway represent important targets to treat AD and itch.
Collapse
Affiliation(s)
- Song Xiao
- School of Life Sciences, Henan University, China
| | - Zhiping Lu
- School of Life Sciences, Henan University, China
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA
| | - Yanqing Li
- School of Life Sciences, Henan University, China
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Germany
| | - Michael Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Weiwei Chen
- School of Life Sciences, Henan University, China
| | - Wenke Cheng
- School of Life Sciences, Henan University, China
| | - Renkai Zhu
- School of Life Sciences, Henan University, China
| | - Xinrong Yan
- School of Life Sciences, Henan University, China
| | - Hua Yang
- School of Life Sciences, Henan University, China
| | - Yang Liu
- School of Life Sciences, Henan University, China
| | - Yu Dou
- School of Life Sciences, Henan University, China
| | - Wanzhi Wang
- School of Life Sciences, Henan University, China
| | - Jiafu Wang
- School of Life Sciences, Henan University, China; School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Jianghui Meng
- School of Life Sciences, Henan University, China; National Institute for Cellular Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
16
|
Leceta A, García A, Sologuren A, Campo C. Bilastine 10 and 20 mg in paediatric and adult patients: an updated practical approach to treatment decisions. Drugs Context 2021; 10:dic-2021-5-1. [PMID: 34457015 PMCID: PMC8366504 DOI: 10.7573/dic.2021-5-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/02/2021] [Indexed: 01/03/2023] Open
Abstract
Background Bilastine, a non-sedating H1-antihistamine, is indicated to treat the symptoms of allergic disorders (e.g. rhinoconjunctivitis and urticaria) in adults and adolescents and, more recently, in children. Following its marketing approval, many questions regarding the ideal use of bilastine in various clinical practice situations have been received by the Medical Information Department (MID) of Faes Farma Spain. This article is an update of a previous review, with a focus on recent clinical information on the use of bilastine in paediatric and other populations. Methods Results of recent clinical studies in paediatric and other populations as well as questions received and responses provided by the Faes Farma MID. Results The information regarding the use of bilastine in paediatric patients is the most relevant aspect of this updated review. The stepwise approval of the paediatric formulations in various countries started with the European Medicines Agency approval in 2017 in accordance with a 2009 Paediatric Investigation Plan, followed by approval in other countries. The queries that are most commonly received by the Faes Farma MID include the potential for drug interactions involving bilastine and other frequently used drugs, and the use of bilastine in special populations or to treat specific symptoms related to allergic conditions. As the concomitant use of many medications is not permitted during clinical trials, the advice provided regarding the concomitant use of other medications with bilastine considers the pharmacological properties of both the drug in question and bilastine, as well as expert opinion. Likewise, advice regarding the use of bilastine in special populations (e.g. patients with renal impairment, obesity, lactose intolerance, and elderly or pregnant individuals) or to treat specific symptoms (e.g. treatment-resistant urticaria, pruritus or BASCULE syndrome) considers the best evidence from a variety of sources, including clinical studies, real-world experience, guideline recommendations and expert opinion. Conclusion This updated review provides current data regarding the best use of bilastine in specific situations and patients and identifies areas in which further knowledge is required. Although decisions regarding the use of bilastine may be aided by expert opinion that relies on knowledge of the underlying science, additional research and evidence are required to answer certain queries regarding the use of bilastine.
Collapse
Affiliation(s)
- Amalia Leceta
- Medical Affairs Department, Faes Farma SA, Bizkaia, Spain
| | | | | | - Cristina Campo
- Head of Clinical Research Medical Affairs Department, Faes Farma SA, Bizkaia, Spain
| |
Collapse
|
17
|
Kiguchi N, Fukazawa Y, Saika A, Uta D, Saika F, Nakamura TY, Ko M, Kishioka S. Chemogenetic activation of central gastrin-releasing peptide-expressing neurons elicits itch-related scratching behavior in male and female mice. Pharmacol Res Perspect 2021; 9:e00790. [PMID: 34000759 PMCID: PMC8128314 DOI: 10.1002/prp2.790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Several lines of evidence have clarified that the key transmission pathways of itching sensation travel from the periphery to the central nervous system (CNS). Despite the functional significance of gastrin-releasing peptide (GRP) and its cognate receptor in the itch processing mechanism in the spinal dorsal horn (SDH), the roles of GRP-expressing (GRP+ ) neurons in different regions remain unclear. This study aimed to determine whether GRP+ neurons in the CNS directly modulated itch processing. To specifically activate spinal and supraspinal GRP neurons by the designer receptors exclusively activated by designer drugs (DREADDs) system, CAG-LSL-Gq-DREADD mice were crossed with GRP-Cre mice, resulting in the development of GRP-hM3Dq mice. Immunohistochemistry showed that hM3Dq was highly expressed in the SDH and brainstem closely related to sensory processing. The intraperitoneal, intrathecal, or intracerebroventricular administration of clozapine-N-oxide, an agonist of hM3Dq, strongly elicited dermatome-dependent itch-related scratching behavior, but did not change pain sensitivity. Importantly, GRP-Gq-DREADD-mediated scratching behavior in GRP-hM3Dq mice was not affected by the ablation of transient receptor potential vanilloid 1+ sensory C-fibers, and it was also observed to a similar degree under chronic itch conditions. Furthermore, there were no significant sex differences in the scratching behavior elicited by GRP-Gq-DREADD, suggesting that itch-dominant roles of central GRP+ neurons might be common in both sexes, at least under normal physiological conditions. These novel findings not only contribute to understanding the functional roles of central GRP+ neurons further, but also propose the development of future effective therapeutics for intractable itching.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of PharmacologyWakayama Medical UniversityWakayama CityWakayamaJapan
- Department of Physiological SciencesSchool of Pharmaceutical SciencesWakayama Medical UniversityWakayama CityWakayamaJapan
| | - Yohji Fukazawa
- Department of AnatomyKansai University of Health SciencesSennan‐gunOsakaJapan
| | - Ayano Saika
- Department of PharmacologyWakayama Medical UniversityWakayama CityWakayamaJapan
| | - Daisuke Uta
- Department of Applied PharmacologyFaculty of Pharmaceutical SciencesUniversity of ToyamaToyama CityToyamaJapan
| | - Fumihiro Saika
- Department of PharmacologyWakayama Medical UniversityWakayama CityWakayamaJapan
| | - Tomoe Y. Nakamura
- Department of PharmacologyWakayama Medical UniversityWakayama CityWakayamaJapan
| | - Mei‐Chuan Ko
- Department of Physiology and PharmacologyWake Forest University School of MedicineWinston‐SalemNCUSA
| | - Shiroh Kishioka
- Faculty of Wakayama Health Care SciencesTakarazuka University of Medical and Health CareWakayama CityWakayamaJapan
| |
Collapse
|
18
|
Florsheim EB, Sullivan ZA, Khoury-Hanold W, Medzhitov R. Food allergy as a biological food quality control system. Cell 2021; 184:1440-1454. [PMID: 33450204 DOI: 10.1016/j.cell.2020.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022]
Abstract
Food is simultaneously a source of essential nutrients and a potential source of lethal toxins and pathogens. Consequently, multiple sensory mechanisms evolved to monitor the quality of food based on the presence and relative abundance of beneficial and harmful food substances. These include the olfactory, gustatory, and gut chemosensory systems. Here we argue that, in addition to these systems, allergic immunity plays a role in food quality control by mounting allergic defenses against food antigens associated with noxious substances. Exaggeration of these defenses can result in pathological food allergy.
Collapse
Affiliation(s)
- Esther B Florsheim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zuri A Sullivan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William Khoury-Hanold
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, New Haven, CT 06510, USA.
| |
Collapse
|
19
|
Ernst O, Failayev H, Athamna M, He H, Tsfadia Y, Zor T. A dual and conflicting role for imiquimod in inflammation: A TLR7 agonist and a cAMP phosphodiesterase inhibitor. Biochem Pharmacol 2020; 182:114206. [DOI: 10.1016/j.bcp.2020.114206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
|
20
|
Fan JJ, Gao B, Song AQ, Zhu YJ, Zhou J, Li WZ, Yin YY, Wu WN. Spinal cord NLRP1 inflammasome contributes to dry skin induced chronic itch in mice. J Neuroinflammation 2020; 17:122. [PMID: 32312281 PMCID: PMC7168883 DOI: 10.1186/s12974-020-01807-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Dry skin itch is one of the most common skin diseases and elderly people are believed to be particularly prone to it. The inflammasome has been suggested to play an important role in chronic inflammatory disorders including inflammatory skin diseases such as psoriasis. However, little is known about the role of NLRP1 inflammasome in dry skin-induced chronic itch. METHODS Dry skin-induced chronic itch model was established by acetone-ether-water (AEW) treatment. Spontaneous scratching behavior was recorded by video monitoring. The expression of nucleotide oligomerization domain (NOD)-like receptor protein 1 (NLRP1) inflammasome complexes, transient receptor potential vanilloid type 1 (TRPV1), and the level of inflammatory cytokines were determined by western blot, quantitative real-time PCR, and enzyme-linked immunosorbent assay (ELISA) kits. Nlrp1a knockdown was performed by an adeno-associated virus (AAV) vector containing Nlrp1a-shRNA-eGFP infusion. H.E. staining was used to evaluate skin lesion. RESULTS AEW treatment triggers spontaneous scratching and significantly increases the expression of NLRP1, ASC, and caspase-1 and the levels of IL-1β, IL-18, IL-6, and TNF-α in the spinal cord and the skin of mice. Spinal cord Nlrp1a knockdown prevents AEW-induced NLRP1 inflammasome assembly, TRPV1 channel activation, and spontaneous scratching behavior. Capsazepine, a specific antagonist of TRPV1, can also inhibit AEW-induced inflammatory response and scratching behavior. Furthermore, elderly mice and female mice exhibited more significant AEW-induced scratching behavior than young mice and male mice, respectively. Interestingly, AEW-induced increases in the expression of NLRP1 inflammasome complex and the levels of inflammatory cytokines were more remarkable in elderly mice and female mice than in young mice and male mice, respectively. CONCLUSIONS Spinal cord NLRP1 inflammasome-mediated inflammatory response contributes to dry skin-induced chronic itch by TRPV1 channel, and it is also involved in age and sex differences of chronic itch. Inhibition of NLRP1 inflammasome may offer a new therapy for dry skin itch.
Collapse
Affiliation(s)
- Jun-Juan Fan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Bo Gao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ao-Qi Song
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ya-Jing Zhu
- Department of Pharmacy, Xi'an Chest Hospital, Shaanxi University of Chinese Medicine, Xi'an, 710100, People's Republic of China
| | - Jun Zhou
- Department of Pharmacy, Xi'an Chest Hospital, Shaanxi University of Chinese Medicine, Xi'an, 710100, People's Republic of China
| | - Wei-Zu Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.,Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan-Yan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.,Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wen-Ning Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China. .,Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
21
|
Sharif B, Ase AR, Ribeiro-da-Silva A, Séguéla P. Differential Coding of Itch and Pain by a Subpopulation of Primary Afferent Neurons. Neuron 2020; 106:940-951.e4. [PMID: 32298640 DOI: 10.1016/j.neuron.2020.03.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/21/2019] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
Itch and pain are distinct unpleasant sensations that can be triggered from the same receptive fields in the skin, raising the question of how pruriception and nociception are coded and discriminated. Here, we tested the multimodal capacity of peripheral first-order neurons, focusing on the genetically defined subpopulation of mouse C-fibers that express the chloroquine receptor MrgprA3. Using optogenetics, chemogenetics, and pharmacology, we assessed the behavioral effects of their selective stimulation in a wide variety of conditions. We show that metabotropic Gq-linked stimulation of these C-afferents, through activation of native MrgprA3 receptors or DREADDs, evokes stereotypical pruriceptive rather than nocifensive behaviors. In contrast, fast ionotropic stimulation of these same neurons through light-gated cation channels or native ATP-gated P2X3 channels predominantly evokes nocifensive rather than pruriceptive responses. We conclude that C-afferents display intrinsic multimodality, and we provide evidence that optogenetic and chemogenetic interventions on the same neuronal populations can drive distinct behavioral outputs.
Collapse
Affiliation(s)
- Behrang Sharif
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; Alan Edwards Centre for Research on Pain, Montreal, QC H3A 0G1, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ariel R Ase
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; Alan Edwards Centre for Research on Pain, Montreal, QC H3A 0G1, Canada
| | - Alfredo Ribeiro-da-Silva
- Alan Edwards Centre for Research on Pain, Montreal, QC H3A 0G1, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Philippe Séguéla
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; Alan Edwards Centre for Research on Pain, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
22
|
The Neuropathic Itch Caused by Pseudorabies Virus. Pathogens 2020; 9:pathogens9040254. [PMID: 32244386 PMCID: PMC7238046 DOI: 10.3390/pathogens9040254] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Pseudorabies virus (PRV) is an alphaherpesvirus related to varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV1). PRV is the causative agent of Aujeskzy’s disease in swine. PRV infects mucosal epithelium and the peripheral nervous system (PNS) of its host where it can establish a quiescent, latent infection. While the natural host of PRV is the swine, a broad spectrum of mammals, including rodents, cats, dogs, and cattle can be infected. Since the nineteenth century, PRV infection is known to cause a severe acute neuropathy, the so called “mad itch” in non-natural hosts, but surprisingly not in swine. In the past, most scientific efforts have been directed to eradicating PRV from pig farms by the use of effective marker vaccines, but little attention has been given to the processes leading to the mad itch. The main objective of this review is to provide state-of-the-art information on the mechanisms governing PRV-induced neuropathic itch in non-natural hosts. We highlight similarities and key differences in the pathogenesis of PRV infections between non-natural hosts and pigs that might explain their distinctive clinical outcomes. Current knowledge on the neurobiology and possible explanations for the unstoppable itch experienced by PRV-infected animals is also reviewed. We summarize recent findings concerning PRV-induced neuroinflammatory responses in mice and address the relevance of this animal model to study other alphaherpesvirus-induced neuropathies, such as those observed for VZV infection.
Collapse
|
23
|
Kiguchi N, Uta D, Ding H, Uchida H, Saika F, Matsuzaki S, Fukazawa Y, Abe M, Sakimura K, Ko MC, Kishioka S. GRP receptor and AMPA receptor cooperatively regulate itch-responsive neurons in the spinal dorsal horn. Neuropharmacology 2020; 170:108025. [PMID: 32142790 DOI: 10.1016/j.neuropharm.2020.108025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 01/19/2023]
Abstract
Gastrin-releasing peptide (GRP) receptor-expressing (GRPR)+ neurons have a central role in the spinal transmission of itch. Because their fundamental regulatory mechanisms are not yet understood, it is important to determine how such neurons are excited and integrate itch sensation. In this study, we investigated the mechanisms for the activation of itch-responsive GRPR+ neurons in the spinal dorsal horn (SDH). GRPR+ neurons expressed the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) containing the GluR2 subunit. In mice, peripherally elicited histaminergic and non-histaminergic itch was prevented by intrathecal (i.t.) administration of the AMPAR antagonist NBQX, which was consistent with the fact that firing of GRPR+ neurons in SDH under histaminergic and non-histaminergic itch was completely blocked by NBQX, but not by the GRPR antagonist RC-3095. Because GRP+ neurons in SDH contain glutamate, we investigated the role of GRP+ (GRP+/Glu+) neurons in regulating itch. Chemogenetic inhibition of GRP+ neurons suppressed both histaminergic and non-histaminergic itch without affecting the mechanical pain threshold. In nonhuman primates, i.t. administration of NBQX also attenuated peripherally elicited itch without affecting the thermal pain threshold. In a mouse model of diphenylcyclopropenone (DCP)-induced contact dermatitis, GRP, GRPR, and AMPAR subunits were upregulated in SDH. DCP-induced itch was prevented by either silencing GRP+ neurons or ablation of GRPR+ neurons. Altogether, these findings demonstrate that GRP and glutamate cooperatively regulate GRPR+ AMPAR+ neurons in SDH, mediating itch sensation. GRP-GRPR and the glutamate-AMPAR system may play pivotal roles in the spinal transmission of itch in rodents and nonhuman primates.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan.
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama, 930-0194, Japan
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Hitoshi Uchida
- Department of Cellular Neuropathology, Brain Research Institute Niigata University, Niigata City, Niigata, 951-8585, Japan
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan
| | - Yohji Fukazawa
- Department of Anatomy, Kansai University of Health Sciences, Sennan-gun, Osaka, 590-0482, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata City, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata City, Niigata, 951-8585, Japan
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA; W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC, 28144, USA
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan
| |
Collapse
|
24
|
Inami Y, Uta D, Andoh T. Neuronal hyperexcitability and astrocyte activation in spinal dorsal horn of a dermatitis mouse model with cutaneous hypersensitivity. Neurosci Lett 2020; 720:134784. [PMID: 31987915 DOI: 10.1016/j.neulet.2020.134784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/11/2020] [Accepted: 01/23/2020] [Indexed: 10/25/2022]
Abstract
Cleaning products such as soaps, shampoos, and detergents are comprised mainly of surfactants, agents known to cause dermatitis and cutaneous hypersensitivity characterized by itching, stinging, and burning of the skin and scalp. However, the mechanisms underlying surfactant-induced cutaneous hypersensitivity remain unclear. In the present study, we investigated the mechanisms of cutaneous hypersensitivity in mice treated with the detergent sodium dodecyl sulfate (SDS). Repeated SDS application to the skin induced inflammation, xeroderma, and elongation of peripheral nerves into the epidermis. The number of neurons immunopositive for c-Fos, a well known marker of neural activity, was substantially higher (+441%) in spinal dorsal horn (SDH) lamina I-II (but not lamina III-VI) of SDS-treated mice compared to vehicle-treated mice. In vivo extracellular recording revealed enhanced spontaneous (+64%) and non-noxious mechanical stimulation-evoked firing (+139%) of SDH lamina I-II neurons in SDS-treated mice, and stimulation-evoked neuronal firing was sustained (+5333%) even after stimulation. The number of GFAP-positive (activated) astrocytes, but not Iba1-positive microglia, was also elevated (+137%) in SDH lamina I-II of SDS-treated mice compared to vehicle-treated mice. Peripheral nerve elongation and hyperexcitability of afferent or SDH neurons, possible associated with the activation of spinal astrocytes, may underlie cutaneous hypersensitivity induced by surfactants.
Collapse
Affiliation(s)
- Yoshihiro Inami
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Advanced Research Laboratory, Hoyu Co., Ltd., Nagakute, Aichi, Japan.
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
25
|
3'-O-Methylorobol Inhibits the Voltage-Gated Sodium Channel Nav1.7 with Anti-Itch Efficacy in A Histamine-Dependent Itch Mouse Model. Int J Mol Sci 2019; 20:ijms20236058. [PMID: 31805638 PMCID: PMC6928743 DOI: 10.3390/ijms20236058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
An itch is a clinical complication that affects millions of patients. However, few treatment options are available. The voltage-gated sodium channel Nav1.7 is predominantly expressed in peripheral sensory neurons and is responsible for the rising phase of action potentials, thereby mediating nociceptive conduction. A gain-of-function mutation of Nav1.7 results in the hyperexcitability of sensory neurons and causes the inherited paroxysmal itch. Conversely, a monoclonal antibody that selectively inhibits Nav1.7 is able to effectively suppress the histamine-dependent itch in mice. Therefore, Nav1.7 inhibitors may possess the potential to relieve the itch. In the present study, using whole-cell voltage-clamp recordings, we demonstrated that 3’-O-methylorobol inhibited Na+ currents in Nav1.7-CHO cells and tetrodotoxin-sensitive Na+ currents in mouse dorsal root ganglion (DRG) neurons with IC50 (half-maximal inhibitory concentration) values of 3.46 and 6.60 μM, respectively. 3’-O-methylorobol also suppressed the tetrodotoxin-resistant Na+ currents in DRG neurons, though with reduced potency (~43% inhibition at 30 µM). 3’-O-methylorobol (10 µM) affected the Nav1.7 by shifting the half-maximal voltage (V1/2) of activation to a depolarizing direction by ~6.76 mV, and it shifted the V1/2 of inactivation to a hyperpolarizing direction by ~16.79 mV. An analysis of 3’-O-methylorobol activity toward an array of itch targets revealed that 3’-O-methylorobol was without effect on histamine H1 receptor, TRPV1, TRPV3, TRPV4, TRPC4 and TRPM8. The intrathecal administration of 3’-O-methylorobol significantly attenuated compound 48/80-induced histamine-dependent spontaneous scratching bouts and the expression level of c-fos in the nuclei of spinal dorsal horn neurons with a comparable efficacy to that of cyproheptadine. Our data illustrated the therapeutic potential for 3’-O-methylorobol for histamine-dependent itching, and the small molecule inhibition of Nav1.7 may represent a useful strategy to develop novel therapeutics for itching.
Collapse
|
26
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
27
|
Chung K, Pitcher T, Grant AD, Hewitt E, Lindstrom E, Malcangio M. Cathepsin S acts via protease-activated receptor 2 to activate sensory neurons and induce itch-like behaviour. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2019; 6:100032. [PMID: 31223140 PMCID: PMC6565756 DOI: 10.1016/j.ynpai.2019.100032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 01/19/2023]
Abstract
Chronic itch is a debilitating condition characterised by excessive scratching and is a symptom frequently reported in skin diseases such as atopic dermatitis. It has been proposed that release of the cysteine protease Cathepsin S (CatS) from skin keratinocytes or immune cells resident in or infiltrating the skin could act as a pruritogen in chronic itch conditions. CatS is known to activate protease-activated receptor 2 (PAR2). We therefore hypothesised that enzymatic activation of neuronally expressed PAR2 by CatS was responsible for activation of sensory neurons and transmission of itch signals. Intradermally-injected human recombinant (hr)-CatS or the PAR2 agonist, SLIGRL-NH2 behaved as pruritogens by causing scratching behaviour in mice. Hr-CatS-induced scratching behaviour was prevented by CatS inhibitors and PAR2 antagonists and reduced by 50% in TRPV1-/- mice compared with wild-type mice, whilst no significant reduction in scratching behaviour was observed in TRPA1-/- mice. Cultured dorsal root ganglion (DRG) cells showed an increase in [Ca2+]i following incubation with hr-CatS, and the percentage of neurons that responded to hr-CatS decreased in the presence of a PAR2 antagonist or in cultures of neurons from TRPV1-/- mice. Taken together, our results indicate CatS acts as a pruritogen via PAR2 activation in TRPV1-expressing sensory neurons.
Collapse
Affiliation(s)
- Keshi Chung
- Wolfson Centre for Age-Related Diseases, King’s College London, UK
| | - Thomas Pitcher
- Wolfson Centre for Age-Related Diseases, King’s College London, UK
| | - Andrew D. Grant
- Wolfson Centre for Age-Related Diseases, King’s College London, UK
| | | | | | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King’s College London, UK
| |
Collapse
|
28
|
Dong X, Dong X. Peripheral and Central Mechanisms of Itch. Neuron 2019; 98:482-494. [PMID: 29723501 DOI: 10.1016/j.neuron.2018.03.023] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
Itch is a unique sensory experience that is encoded by genetically distinguishable neurons both in the peripheral nervous system (PNS) and central nervous system (CNS) to elicit a characteristic behavioral response (scratching). Itch interacts with the other sensory modalities at multiple locations, from its initiation in a particular dermatome to its transmission to the brain where it is finally perceived. In this review, we summarize the current understanding of the molecular and neural mechanisms of itch by starting in the periphery, where itch is initiated, and discussing the circuits involved in itch processing in the CNS.
Collapse
Affiliation(s)
- Xintong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Andoh T, Akasaka C, Shimizu K, Lee JB, Yoshihisa Y, Shimizu T. Involvement of α-Melanocyte-Stimulating Hormone-Thromboxane A 2 System on Itching in Atopic Dermatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1775-1785. [PMID: 31220451 DOI: 10.1016/j.ajpath.2019.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
α-Melanocyte-stimulating hormone (α-MSH) is an endogenous peptide hormone involved in cutaneous pigmentation in atopic dermatitis (AD) with severe itching. α-MSH elicits itch-related responses in mice. We, therefore, investigated whether α-MSH was involved in itching in AD. In the skin of AD patients and mice with atopy-like dermatitis, α-MSH and the prohormone convertase 2, which is the key processing enzyme for the production of α-MSH, were distributed mainly in keratinocytes. In the skin of mice with dermatitis, melanocortin receptors (MC1R and MC5R) were expressed at the mRNA level and were distributed in the dermis. In the dorsal root ganglion of mice with dermatitis, mRNAs encoding MC1R, MC3R, and MC5R were also expressed. MC1R antagonist agouti-signaling protein inhibited spontaneous scratching in mice with dermatitis. In healthy mice, intradermal α-MSH elicited itch-associated responses, which were inhibited by thromboxane (TX) A2 receptor antagonist ONO-3708. In mouse keratinocytes, α-MSH increased the production of TXA2, which was inhibited by adenylyl cyclase inhibitor SQ-22536 and Ca2+ chelator EGTA. In mouse keratinocytes treated with siRNA for MC1R and/or MC5R, α-MSH-induced TXA2 production was decreased. α-MSH increased intracellular Ca2+ ion concentration in dorsal root ganglion neurons and keratinocytes. These results suggest that α-MSH is involved in itching during AD and may elicit itching through the direct action of primary afferents and TXA2 production by keratinocytes.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Chihiro Akasaka
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kyoko Shimizu
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Jung-Bum Lee
- Laboratory of Medicinal Bio-resources, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoko Yoshihisa
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
30
|
Hide M, Suzuki T, Tanaka A, Aoki H. Long-term safety and efficacy of rupatadine in Japanese patients with itching due to chronic spontaneous urticaria, dermatitis, or pruritus: A 12-month, multicenter, open-label clinical trial. J Dermatol Sci 2019; 94:339-345. [PMID: 31196788 DOI: 10.1016/j.jdermsci.2019.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Rupatadine is a novel H1 antihistamine with platelet-activating factor antagonist activity. Its efficacy and safety on pruritic skin diseases have been demonstrated by 10mg/day rupatadine in a two weeks clinical trial. OBJECTIVE To investigate the long-term efficacy and safety of rupatadine in the management of pruritus, and the clinical effect of updosing to 20mg in Japanese adult and adolescent patients. METHODS In this 52-week, multicenter, open-label clinical trial (JapicCTI-152787), 206 patients (132, eczema or dermatitis; 58, pruritus; and 16, chronic spontaneous urticaria) received the study medication. The primary efficacy endpoint was change from baseline in the total pruritus score to Week 2 by treatment with rupatadine 10mg once daily. From Week 3 to Week 52, rupatadine updosing to 20mg was allowed. RESULTS The mean [95% CI] change from baseline to Week 2 in the total pruritus score was -1.241 [-1.450, -1.033] (paired t test, P< 0.001). The therapeutic effect persisted up to Week 52 (paired t test, P< 0.001). Adverse drug reactions (ADRs) were reported at an overall incidence of 18.0% (45 events in 37 patients). No serious or clinically significant ADRs were reported. Somnolence was the most common ADR (14.1%). CONCLUSIONS This clinical trial demonstrated the short- and long-term benefits of rupatadine in the management of patients with chronic spontaneous urticaria, dermatitis, and pruritus. Rupatadine 10 and 20mg doses are effective for the treatment of itch in adults and adolescents, and can be used safely on a long-term basis.
Collapse
Affiliation(s)
- Michihiro Hide
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | | | | | | |
Collapse
|
31
|
Su XY, Chen M, Yuan Y, Li Y, Guo SS, Luo HQ, Huang C, Sun W, Li Y, Zhu MX, Liu MG, Hu J, Xu TL. Central Processing of Itch in the Midbrain Reward Center. Neuron 2019; 102:858-872.e5. [PMID: 31000426 DOI: 10.1016/j.neuron.2019.03.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/28/2018] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
Itch is an aversive sensation that evokes a desire to scratch. Paradoxically, scratching the itch also produces a hedonic experience. The specific brain circuits processing these different aspects of itch, however, remain elusive. Here, we report that GABAergic (GABA) and dopaminergic (DA) neurons in the ventral tegmental area (VTA) are activated with different temporal patterns during acute and chronic itch. DA neuron activation lags behind GABA neurons and is dependent on scratching of the itchy site. Optogenetic manipulations of VTA GABA neurons rapidly modulated scratching behaviors through encoding itch-associated aversion. In contrast, optogenetic manipulations of VTA DA neurons revealed their roles in sustaining recurrent scratching episodes through signaling scratching-induced reward. A similar dichotomy exists for the role of VTA in chronic itch. These findings advance understanding of circuit mechanisms of the unstoppable itch-scratch cycles and shed important insights into chronic itch therapy.
Collapse
Affiliation(s)
- Xin-Yu Su
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Yuan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Su-Shan Guo
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huo-Qing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chen Huang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenzhi Sun
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Yong Li
- Collaborative Innovation Center for Brain Science, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ming-Gang Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China.
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China.
| |
Collapse
|
32
|
Sumpter TL, Balmert SC, Kaplan DH. Cutaneous immune responses mediated by dendritic cells and mast cells. JCI Insight 2019; 4:123947. [PMID: 30626752 DOI: 10.1172/jci.insight.123947] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the skin, complex cellular networks maintain barrier function and immune homeostasis. Tightly regulated multicellular cascades are required to initiate innate and adaptive immune responses. Innate immune cells, particularly DCs and mast cells, are central to these networks. Early studies evaluated the function of these cells in isolation, but recent studies clearly demonstrate that cutaneous DCs (dermal DCs and Langerhans cells) physically interact with neighboring cells and are receptive to activation signals from surrounding cells, such as mast cells. These interactions amplify immune activation. In this review, we discuss the known functions of cutaneous DC populations and mast cells and recent studies highlighting their roles within cellular networks that determine cutaneous immune responses.
Collapse
Affiliation(s)
| | | | - Daniel H Kaplan
- Department of Dermatology and.,Department of Immunology, University of Pittsburgh School of Medicine,Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Salvatierra J, Diaz-Bustamante M, Meixiong J, Tierney E, Dong X, Bosmans F. A disease mutation reveals a role for NaV1.9 in acute itch. J Clin Invest 2018; 128:5434-5447. [PMID: 30395542 DOI: 10.1172/jci122481] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/20/2018] [Indexed: 02/02/2023] Open
Abstract
Itch (pruritis) and pain represent two distinct sensory modalities; yet both have evolved to alert us to potentially harmful external stimuli. Compared with pain, our understanding of itch is still nascent. Here, we report a new clinical case of debilitating itch and altered pain perception resulting from the heterozygous de novo p.L811P gain-of-function mutation in NaV1.9, a voltage-gated sodium (NaV) channel subtype that relays sensory information from the periphery to the spine. To investigate the role of NaV1.9 in itch, we developed a mouse line in which the channel is N-terminally tagged with a fluorescent protein, thereby enabling the reliable identification and biophysical characterization of NaV1.9-expressing neurons. We also assessed NaV1.9 involvement in itch by using a newly created NaV1.9-/- and NaV1.9L799P/WT mouse model. We found that NaV1.9 is expressed in a subset of nonmyelinated, nonpeptidergic small-diameter dorsal root ganglia (DRGs). In WT DRGs, but not those of NaV1.9-/- mice, pruritogens altered action potential parameters and NaV channel gating properties. Additionally, NaV1.9-/- mice exhibited a strong reduction in acute scratching behavior in response to pruritogens, whereas NaV1.9L799P/WT mice displayed increased spontaneous scratching. Altogether, our data suggest an important contribution of NaV1.9 to itch signaling.
Collapse
Affiliation(s)
| | | | | | | | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frank Bosmans
- Department of Physiology.,Solomon H. Snyder Department of Neuroscience.,Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Itch induced by peripheral mu opioid receptors is dependent on TRPV1-expressing neurons and alleviated by channel activation. Sci Rep 2018; 8:15551. [PMID: 30341332 PMCID: PMC6195532 DOI: 10.1038/s41598-018-33620-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
Opioids remain the gold standard for the treatment of moderate to severe pain. However, their analgesic properties come with important side effects, including pruritus, which occurs frequently after systemic or neuraxial administration. Although part of the opioid-induced itch is mediated centrally, recent evidence shows that the opioid receptor system in the skin also modulates itch. The goal of our study was to identify the peripherally located transducer mechanisms involved in opioid-induced pruritus. Scratching behaviors in response to an intradermal injection of the mu-opioid receptor (MOR) agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) was quantified in mast cell-, PAR2- and TRPV1-deficient mice or following ablation of TRPV1+ sensory neurons. We found that mast cells−/−, PAR-2−/−, or TRPV1−/− mice still exhibit DAMGO-induced itch responses. However, we show that ablation of TRPV1+ neurons or acute TRPV1 activation by capsaicin abolishes DAMGO-induced itch. Overall, our work shows that peripheral DAMGO-induced itch is dependent on the presence of TRPV1-expressing pruriceptors, but not the TRPV1 channel itself. Activation of these fibers by capsaicin prevents the opioid-induced itch.
Collapse
|
35
|
Carstens E, Carstens MI, Akiyama T, Davoodi A, Nagamine M. Opposing effects of cervical spinal cold block on spinal itch and pain transmission. ITCH (PHILADELPHIA, PA.) 2018; 3:e16. [PMID: 34136640 PMCID: PMC8204798 DOI: 10.1097/itx.0000000000000016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Inactivation of descending pathways enhanced responses of spinal dorsal horn neurons to noxious stimuli, but little is known regarding tonic descending modulation of spinal itch transmission. To study effects of cervical spinal cold block on responses of dorsal horn neurons to itch-evoking and pain-evoking stimuli, single-unit recordings were made from superficial dorsal horn wide dynamic range and nociceptive-specific-type neurons in pentobarbital-anesthetized mice. Intradermal histamine excited 17 units. Cold block starting 1 minute after intradermal injection of histamine caused a marked decrease in firing. The histamine-evoked response during and following cold block was significantly lower compared with control histamine-evoked responses in the absence of cold block. A similar but weaker depressant effect of cold block was observed for dorsal horn unit responses to chloroquine. Twenty-six units responded to mustard oil allyl isothiocyanate (AITC), with a further significant increase in firing during the 1-minute period of cold block beginning 1 minute after AITC application. Activity during cold block was significantly greater compared with the same time period of control responses to AITC in the absence of cold block. Ten units' responses to noxious heat were significantly enhanced during cold block, while 6 units' responses were reduced and 18 unaffected. Cold block had no effect on mechanically evoked responses. These results indicate that spinal chemonociceptive transmission is under tonic descending inhibitory modulation, while spinal pruriceptive transmission is under an opposing, tonic descending facilitatory modulation.
Collapse
Affiliation(s)
- Earl Carstens
- Department of Neurobiology, Physiology, University of California, Davis, CA
| | | | - Tasuku Akiyama
- Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, FL
| | - Auva Davoodi
- Department of Neurobiology, Physiology, University of California, Davis, CA
| | - Masaki Nagamine
- Department of Neurobiology, Physiology, University of California, Davis, CA
| |
Collapse
|
36
|
Matrine inhibits itching by lowering the activity of calcium channel. Sci Rep 2018; 8:11328. [PMID: 30054511 PMCID: PMC6063846 DOI: 10.1038/s41598-018-28661-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023] Open
Abstract
Sophorae Flavescentis Radix (SFR) is a medicinal herb with many functions that are involved in anti-inflammation, antinociception, and anticancer. SFR is also used to treat a variety of itching diseases. Matrine (MT) is one of the main constituents in SFR and also has the effect of relieving itching, but the antipruritic mechanism is still unclear. Here, we investigated the effect of MT on anti-pruritus. In acute and chronic itch models, MT significantly inhibited the scratching behavior not only in acute itching induced by histamine (His), chloroquine (CQ) and compound 48/80 with a dose-depended manner, but also in the chronic pruritus models of atopic dermatitis (AD) and acetone-ether-water (AEW) in mice. Furthermore, MT could be detected in the blood after intraperitoneal injection (i.p.) and subcutaneous injection (s.c.). Finally, electrophysiological and calcium imaging results showed that MT inhibited the excitatory synaptic transmission from dorsal root ganglion (DRG) to the dorsal horn of the spinal cord by suppressing the presynaptic N-type calcium channel. Taken together, we believe that MT is a novel drug candidate in treating pruritus diseases, especially for histamine-independent and chronic pruritus, which might be attributed to inhibition of the presynaptic N-type calcium channel.
Collapse
|
37
|
Abstract
Chronic itch is a clinically challenging yet scientifically remarkable and complex process. Increasing understanding of the pathophysiology of chronic itch is leading to targeted therapeutic approaches that are now dramatically improving quality of life. This improvement will accelerate as the tools of basic and clinical research continue to be applied to this previously intractable problem.
Collapse
Affiliation(s)
- Ethan A Lerner
- Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
38
|
Antipruritic Effects of Botulinum Neurotoxins. Toxins (Basel) 2018; 10:toxins10040143. [PMID: 29596343 PMCID: PMC5923309 DOI: 10.3390/toxins10040143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
This review explores current evidence to demonstrate that botulinum neurotoxins (BoNTs) exert antipruritic effects. Both experimental and clinical conditions in which botulinum neurotoxins have been applied for pruritus relief will be presented and significant findings will be highlighted. Potential mechanisms underlying antipruritic effects will also be discussed and ongoing challenges and unmet needs will be addressed.
Collapse
|
39
|
Saffari TM, Schüttenhelm BN, van Neck JW, Holstege JC. Nerve reinnervation and itch behavior in a rat burn wound model. Wound Repair Regen 2018; 26:16-26. [PMID: 29453855 DOI: 10.1111/wrr.12620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/05/2018] [Indexed: 11/28/2022]
Abstract
In this study, we investigated whether postburn itch in rats, after a full thickness burn, is correlated to the nervous reinnervation of the burn wound area. For this purpose, we determined scratching duration (expressed as second/hour) at 24 hours, 2, 4, 8, and 12 weeks postburn and combined this with immunohistochemistry for protein gene product 9.5 (PGP9.5) to identify all nerve fibers, calcitonin gene related peptide (CGRP) to identify peptidergic fibers, tyrosine hydroxylase (TH) for sympathetic fibers, and growth-associated protein 43 (GAP-43) for regrowing fibers. We found a modest, but highly significant, increase in scratching duration of all burn wound rats from 3 to 12 weeks postburn (maximally 63 ± 9.5 second/hour compared to sham 3.1 ± 1.4 second/hour at 9 weeks). At 24 hours postburn, all nerve fibers had disappeared from the burn area. Around 4 weeks postburn PGP 9.5- and CGRP-immunoreactive nerve fibers returned to control levels. TH- and GAP-43-IR nerve fibers, which we found to be almost completely colocalized, did not regrow. No correlation was found between scratching duration and nervous reinnervation of the skin. The present results suggest that in rat, like in human, burn wound healing will induce increased scratching, which is not correlated to the appearance of nervous reinnervation.
Collapse
Affiliation(s)
- Tiam M Saffari
- Department of Neuroscience, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Barthold N Schüttenhelm
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Johan W van Neck
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Jan C Holstege
- Department of Neuroscience, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Epigallocatechin-3-gallate attenuates acute and chronic psoriatic itch in mice: Involvement of antioxidant, anti-inflammatory effects and suppression of ERK and Akt signaling pathways. Biochem Biophys Res Commun 2018; 496:1062-1068. [PMID: 29402411 DOI: 10.1016/j.bbrc.2018.01.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/12/2023]
Abstract
Chronic itch is a distressing symptom of many skin diseases and negatively impacts quality of life. However, there is no medication for most forms of chronic itch, although antihistamines are often used for anti-itch treatment. Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, exhibits anti-oxidative and anti-inflammatory properties. Our previous studies highlighted a key role of oxidative stress and proinflammatory cytokines in acute and chronic itch. Here, we evaluated the effects of green tea polyphenon 60 and EGCG on acute and chronic itch in mouse models and explored its potential mechanisms. The effects of EGCG were determined by behavioral tests in mouse models of acute and chronic itch, which were induced by compound 48/80, chloroquine (CQ), and 5% imiquimod cream treatment, respectively. We found that systemic or local administration of green tea polyphenon 60 or EGCG significantly alleviated compound 48/80- and chloroquine-induced acute itch in a dose-dependent manner in mice. Incubation of EGCG significantly decreased the accumulation of intracellular reactive oxygen species (ROS) directly induced by compound 48/80 and CQ in cultured ND7-23 cells, a dorsal root ganglia derived cell line. EGCG also attenuated imiquimod-induced chronic psoriatic itch behaviors and skin epidermal hyperplasia in mice. In addition, EGCG inhibited the expression of IL-23 mRNA in skin and TRPV1 mRNA in dorsal root ganglia (DRG). Finally, EGCG remarkably inhibited compound 48/80-induced phosphorylation of extracellular signal-regulated kinase (ERK) and imiquimod-induced p-AKT in the spinal cord of mice, respectively. Collectively, these results indicated EGCG could be a promising strategy for anti-itch therapy.
Collapse
|
41
|
Lee YC, Lin CH, Hung SY, Chung HY, Luo ST, MacDonald I, Chu YT, Lin PL, Chen YH. Manual acupuncture relieves bile acid-induced itch in mice: the role of microglia and TNF-α. Int J Med Sci 2018; 15:953-960. [PMID: 30008609 PMCID: PMC6036097 DOI: 10.7150/ijms.24146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 05/27/2018] [Indexed: 12/14/2022] Open
Abstract
Pruritus, or itch, is a frequent complaint amongst patients with cholestatic hepatobiliary disease and is difficult to manage, with many patients refractory to currently available antipruritic treatments. In this study, we examined whether manual acupuncture (MA) at particular acupoints represses deoxycholic acid (DCA)-induced scratching behavior and microglial activation and compared these effects with those induced by another pruritogen, 5'-guanidinonaltrindole (GNTI, a kappa opioid receptor antagonist). MA at Hegu (LI4) and Quchi (LI11) acupoints significantly attenuated DCA- and GNTI-induced scratching, whereas no such effects were observed at the bilateral Zusanli acupoints (ST36). Interestingly, GNTI-induced scratching was reduced similarly by both MA and electroacupuncture (EA) at the LI4 and LI11 acupoints. MA at non-acupoints did not affect scratching behavior. Intraperitoneal injection of minocycline (a microglial inhibitor) reduced GNTI- and DCA-induced scratching behavior. In Western blot analysis, subcutaneous DCA injection to the back of the neck increased spinal cord expression of ionized calcium-binding adapter molecule 1 (Iba1) and tumor necrosis factor-alpha (TNF-α) as compared with saline injection, while MA at LI4 and LI11 reduced these DCA-induced changes. Immunofluorescence confocal microcopy revealed that DCA-induced Iba1-positive cells with thicker processes emanated from the enlarged cell bodies, while this effect was attenuated by pretreatment with MA. It is concluded that microglia and TNF-α play important roles in the itching sensation and MA reduces DCA-induced scratching behavior by alleviating spinal microglial activation. MA may be an effective treatment for cholestatic pruritus.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Department of Acupuncture, China Medical University Hospital, Taichung 40402, Taiwan.,Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| | - Chia-Hsien Lin
- Department of Health Industry Management, Kainan University, No. 1 Kainan Road, Taoyuan 33857, Taiwan
| | - Shih-Ya Hung
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Yi Chung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| | - Sih-Ting Luo
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| | - Iona MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| | - Yu-Ting Chu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| | - Pei-Lin Lin
- Department of Anesthesiology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan.,Department of Photonics and Communication Engineering, Asia University, Taiwan
| |
Collapse
|
42
|
Wu JS, Vyas P, Glowatzki E, Fuchs PA. Opposing expression gradients of calcitonin-related polypeptide alpha (Calca/Cgrpα) and tyrosine hydroxylase (Th) in type II afferent neurons of the mouse cochlea. J Comp Neurol 2017; 526:425-438. [PMID: 29055051 DOI: 10.1002/cne.24341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
Type II spiral ganglion neurons (SGNs) are small caliber, unmyelinated afferents that extend dendritic arbors hundreds of microns along the cochlear spiral, contacting many outer hair cells (OHCs). Despite these many contacts, type II afferents are insensitive to sound and only weakly depolarized by glutamate release from OHCs. Recent studies suggest that type II afferents may be cochlear nociceptors, and can be excited by ATP released during tissue damage, by analogy to somatic pain-sensing C-fibers. The present work compares the expression patterns among cochlear type II afferents of two genes found in C-fibers: calcitonin-related polypeptide alpha (Calca/Cgrpα), specific to pain-sensing C-fibers, and tyrosine hydroxylase (Th), specific to low-threshold mechanoreceptive C-fibers, which was shown previously to be a selective biomarker of type II versus type I cochlear afferents (Vyas et al., ). Whole-mount cochlear preparations from 3-week- to 2-month-old CGRPα-EGFP (GENSAT) mice showed expression of Cgrpα in a subset of SGNs with type II-like peripheral dendrites extending beneath OHCs. Double labeling with other molecular markers confirmed that the labeled SGNs were neither type I SGNs nor olivocochlear efferents. Cgrpα starts to express in type II SGNs before hearing onset, but the expression level declines in the adult. The expression patterns of Cgrpα and Th formed opposing gradients, with Th being preferentially expressed in apical and Cgrpα in basal type II afferent neurons, indicating heterogeneity among type II afferent neurons. The expression of Th and Cgrpα was not mutually exclusive and co-expression could be observed, most abundantly in the middle cochlear turn.
Collapse
Affiliation(s)
- Jingjing Sherry Wu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pankhuri Vyas
- The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elisabeth Glowatzki
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul Albert Fuchs
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
43
|
Astrocytes in the spinal dorsal horn and chronic itch. Neurosci Res 2017; 126:9-14. [PMID: 28870604 DOI: 10.1016/j.neures.2017.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/22/2022]
Abstract
Chronic itch is a hallmark symptom of inflammatory skin conditions, such as atopic dermatitis. Existing treatment for chronic itch is largely ineffective. Despite recent progress in our understanding of the neuronal basis for itch sensation in the peripheral and central nervous systems, the mechanisms underlying how itch turns into a pathological chronic state remain poorly understood. Recent studies have uncovered the causal role of astrocytes in the spinal dorsal horn using mouse models of chronic itch, including atopic dermatitis. Understanding the key roles of astrocytes may provide us with exciting insights into the mechanisms for the chronicity of itch sensation and clues to develop novel therapeutic agents for treating chronic itch.
Collapse
|
44
|
A Defensive Kicking Behavior in Response to Mechanical Stimuli Mediated by Drosophila Wing Margin Bristles. J Neurosci 2017; 36:11275-11282. [PMID: 27807168 DOI: 10.1523/jneurosci.1416-16.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/08/2016] [Indexed: 01/22/2023] Open
Abstract
Mechanosensation, one of the fastest sensory modalities, mediates diverse behaviors including those pertinent for survival. It is important to understand how mechanical stimuli trigger defensive behaviors. Here, we report that Drosophila melanogaster adult flies exhibit a kicking response against invading parasitic mites over their wing margin with ultrafast speed and high spatial precision. Mechanical stimuli that mimic the mites' movement evoke a similar kicking behavior. Further, we identified a TRPV channel, Nanchung, and a specific Nanchung-expressing neuron under each recurved bristle that forms an array along the wing margin as being essential sensory components for this behavior. Our electrophysiological recordings demonstrated that the mechanosensitivity of recurved bristles requires Nanchung and Nanchung-expressing neurons. Together, our results reveal a novel neural mechanism for innate defensive behavior through mechanosensation. SIGNIFICANCE STATEMENT We discovered a previously unknown function for recurved bristles on the Drosophila melanogaster wing. We found that when a mite (a parasitic pest for Drosophila) touches the wing margin, the fly initiates a swift and accurate kick to remove the mite. The fly head is dispensable for this behavior. Furthermore, we found that a TRPV channel, Nanchung, and a specific Nanchung-expressing neuron under each recurved bristle are essential for its mechanosensitivity and the kicking behavior. In addition, touching different regions of the wing margin elicits kicking directed precisely at the stimulated region. Our experiments suggest that recurved bristles allow the fly to sense the presence of objects by touch to initiate a defensive behavior (perhaps analogous to touch-evoked scratching; Akiyama et al., 2012).
Collapse
|
45
|
Lin SF, Wang B, Zhang FM, Fei YH, Gu JH, Li J, Bi LB, Liu XJ. T-type calcium channels, but not Cav3.2, in the peripheral sensory afferents are involved in acute itch in mice. Biochem Biophys Res Commun 2017; 487:801-806. [DOI: 10.1016/j.bbrc.2017.04.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/23/2017] [Indexed: 12/31/2022]
|
46
|
Mueller SM, Hogg S, Mueller JM, McKie S, Itin P, Reinhardt J, Griffiths CE, Kleyn CE. Functional magnetic resonance imaging in dermatology: The skin, the brain and the invisible. Exp Dermatol 2017; 26:845-853. [DOI: 10.1111/exd.13305] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Simon M. Mueller
- Department of Dermatology; University Hospital Basel; Basel Switzerland
- Dermatology Centre; The Manchester Academic Health Science Centre; The University of Manchester; Manchester UK
| | - Samuel Hogg
- Department of Dermatology; University Hospital Basel; Basel Switzerland
| | - Jannis M. Mueller
- Department of Neurology; Kantonsspital Muensterlingen; Muensterlingen Switzerland
| | - Shane McKie
- Neuroscience and Psychiatry Unit; The Manchester Academic Health Science Centre; The University of Manchester; Manchester UK
| | - Peter Itin
- Dermatology Centre; The Manchester Academic Health Science Centre; The University of Manchester; Manchester UK
| | - Julia Reinhardt
- Division of Diagnostic & Interventional Neuroradiology; University Hospital Basel; Basel Switzerland
| | | | | |
Collapse
|
47
|
Miao X, Huang Y, Liu TT, Guo R, Wang B, Wang XL, Chen LH, Zhou Y, Ji RR, Liu T. TNF-α/TNFR1 Signaling is Required for the Full Expression of Acute and Chronic Itch in Mice via Peripheral and Central Mechanisms. Neurosci Bull 2017; 34:42-53. [PMID: 28365861 DOI: 10.1007/s12264-017-0124-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/09/2017] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that cytokines and chemokines play crucial roles in chronic itch. In the present study, we evaluated the roles of tumor necrosis factor-alpha (TNF-α) and its receptors TNF receptor subtype-1 (TNFR1) and TNFR2 in acute and chronic itch in mice. Compared to wild-type (WT) mice, TNFR1-knockout (TNFR1-KO) and TNFR1/R2 double-KO (DKO), but not TNFR2-KO mice, exhibited reduced acute itch induced by compound 48/80 and chloroquine (CQ). Application of the TNF-synthesis inhibitor thalidomide and the TNF-α antagonist etanercept dose-dependently suppressed acute itch. Intradermal injection of TNF-α was not sufficient to evoke scratching, but potentiated itch induced by compound 48/80, but not CQ. In addition, compound 48/80 induced TNF-α mRNA expression in the skin, while CQ induced its expression in the dorsal root ganglia (DRG) and spinal cord. Furthermore, chronic itch induced by dry skin was reduced by administration of thalidomide and etanercept and in TNFR1/R2 DKO mice. Dry skin induced TNF-α expression in the skin, DRG, and spinal cord and TNFR1 expression only in the spinal cord. Thus, our findings suggest that TNF-α/TNFR1 signaling is required for the full expression of acute and chronic itch via peripheral and central mechanisms, and targeting TNFR1 may be beneficial for chronic itch treatment.
Collapse
MESH Headings
- Animals
- Chloroquine/toxicity
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Etanercept/therapeutic use
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Pruritus/chemically induced
- Pruritus/drug therapy
- Pruritus/metabolism
- Pruritus/pathology
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Signal Transduction/drug effects
- Skin/drug effects
- Skin/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Thalidomide/therapeutic use
- Time Factors
- Tumor Necrosis Factor-alpha/adverse effects
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- p-Methoxy-N-methylphenethylamine/toxicity
Collapse
Affiliation(s)
- Xiuhua Miao
- The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China
| | - Ya Huang
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Teng-Teng Liu
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Ran Guo
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Bing Wang
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Xue-Long Wang
- Capital Medical University Electric Power Teaching Hospital, Beijing, 100073, China
| | - Li-Hua Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Yan Zhou
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Tong Liu
- The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China.
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China.
| |
Collapse
|
48
|
Leceta A, Sologuren A, Valiente R, Campo C, Labeaga L. Bilastine in allergic rhinoconjunctivitis and urticaria: a practical approach to treatment decisions based on queries received by the medical information department. Drugs Context 2017; 6:212500. [PMID: 28210286 PMCID: PMC5299972 DOI: 10.7573/dic.212500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bilastine is a safe and effective commonly prescribed non-sedating H1-antihistamine approved for symptomatic treatment in patients with allergic disorders such as rhinoconjunctivitis and urticaria. It was evaluated in many patients throughout the clinical development required for its approval, but clinical trials generally exclude many patients who will benefit in everyday clinical practice (especially those with coexisting diseases and/or being treated with concomitant drugs). Following its introduction into clinical practice, the Medical Information Specialists at Faes Farma have received many practical queries regarding the optimal use of bilastine in different circumstances. DATA SOURCES AND METHODS Queries received by the Medical Information Department and the responses provided to senders of these queries. RESULTS The most frequent questions received by the Medical Information Department included the potential for drug-drug interactions with bilastine and commonly used agents such as anticoagulants (including the novel oral anticoagulants), antiretrovirals, antituberculosis regimens, corticosteroids, digoxin, oral contraceptives, and proton pump inhibitors. Most of these medicines are not usually allowed in clinical trials, and so advice needs to be based upon the pharmacological profiles of the drugs involved and expert opinion. The pharmacokinetic profile of bilastine appears favourable since it undergoes negligible metabolism and is almost exclusively eliminated via renal excretion, and it neither induces nor inhibits the activity of several isoenzymes from the CYP 450 system. Consequently, bilastine does not interact with cytochrome metabolic pathways. Other queries involved specific patient groups such as subjects with renal impairment, women who are breastfeeding or who are trying to become pregnant, and patients with other concomitant diseases. Interestingly, several questions related to topics that are well covered in the Summary of Product Characteristics (SmPC), which suggests that this resource is not being well used. CONCLUSIONS Overall, this analysis highlights gaps in our knowledge regarding the optimal use of bilastine. Expert opinion based upon an understanding of the science can help in the decision-making, but more research is needed to provide evidence-based answers in certain circumstances.
Collapse
Affiliation(s)
- Amalia Leceta
- Medical Department, Faes Farma SA, 48940-Leioa, Bizkaia, Spain
| | - Ander Sologuren
- Clinical Research Department, Faes Farma SA, 48940-Leioa, Bizkaia, Spain
| | - Román Valiente
- Clinical Research Department, Faes Farma SA, 48940-Leioa, Bizkaia, Spain
| | - Cristina Campo
- Clinical Research Department, Faes Farma SA, 48940-Leioa, Bizkaia, Spain
| | - Luis Labeaga
- Medical Department, Faes Farma SA, 48940-Leioa, Bizkaia, Spain
| |
Collapse
|
49
|
Abstract
Pain and itch are unpleasant sensations that often accompany infections caused by viral, bacterial, parasitic, and fungal pathogens. Recent studies show that sensory neurons are able to directly detect pathogens to mediate pain and itch. Nociceptor and pruriceptor neurons respond to pathogen-associated molecular patterns, including Toll-like receptor ligands, N-formyl peptides, and bacterial toxins. Other pathogens are able to silence neuronal activity to produce analgesia during infection. Pain and itch could lead to neuronal modulation of the immune system or behavioral avoidance of future pathogen exposure. Conversely, pathogens could modulate neuronal signaling to potentiate their pathogenesis and facilitate their spread to other hosts. Defining how pathogens modulate pain and itch has critical implications for sensory neurobiology and our understanding of host-microbe interactions.
Collapse
Affiliation(s)
- Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
50
|
Tian B, Wang XL, Huang Y, Chen LH, Cheng RX, Zhou FM, Guo R, Li JC, Liu T. Peripheral and spinal 5-HT receptors participate in cholestatic itch and antinociception induced by bile duct ligation in rats. Sci Rep 2016; 6:36286. [PMID: 27824106 PMCID: PMC5099756 DOI: 10.1038/srep36286] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
Although 5-HT has been implicated in cholestatic itch and antinociception, two common phenomena in patients with cholestatic disease, the roles of 5-HT receptor subtypes are unclear. Herein, we investigated the roles of 5-HT receptors in itch and antinociception associated with cholestasis, which was induced by common bile duct ligation (BDL) in rats. 5-HT-induced enhanced scratching and antinociception to mechanical and heat stimuli were demonstrated in BDL rats. 5-HT level in the skin and spinal cord was significantly increased in BDL rats. Quantitative RT-PCR analysis showed 5-HT1B, 5-HT1D, 5-HT2A, 5-HT3A, 5-HT5B, 5-HT6, and 5-HT7 were up-regulated in peripheral nervous system and 5-HT1A, 5-HT1F, 5-HT2B, and 5-HT3A were down-regulated in the spinal cord of BDL rats. Intradermal 5-HT2, 5-HT3, and 5-HT7 receptor agonists induced scratching in BDL rats, whereas 5-HT3 agonist did not induce scratching in sham rats. 5-HT1A, 5-HT2, 5-HT3, and 5-HT7 agonists or antagonists suppressed itch in BDL rats. 5-HT1A agonist attenuated, but 5-HT1A antagonist enhanced antinociception in BDL rats. 5-HT2 and 5-HT3 agonists or antagonists attenuated antinociception in BDL rats. Our data suggested peripheral and central 5-HT system dynamically participated in itch and antinociception under cholestasis condition and targeting 5-HT receptors may be an effective treatment for cholestatic itch.
Collapse
Affiliation(s)
- Bin Tian
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xue-Long Wang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ya Huang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Li-Hua Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Ruo-Xiao Cheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Feng-Ming Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ran Guo
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jun-Cheng Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Tong Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|