1
|
Dondi C, Garcia-Ruiz J, Hasan E, Rey S, Noble JE, Hoose A, Briones A, Kepiro IE, Faruqui N, Aggarwal P, Ghai P, Shaw M, Fry AT, Maxwell A, Hoogenboom BW, Lorenz CD, Ryadnov MG. A self-assembled protein β-helix as a self-contained biofunctional motif. Nat Commun 2025; 16:4535. [PMID: 40374664 DOI: 10.1038/s41467-025-59873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2025] [Indexed: 05/17/2025] Open
Abstract
Nature constructs matter by employing protein folding motifs, many of which have been synthetically reconstituted to exploit function. A less understood motif whose structure-function relationships remain unexploited is formed by parallel β-strands arranged in a helical repetitive pattern, termed a β-helix. Herein we reconstitute a protein β-helix by design and endow it with biological function. Unlike β-helical proteins, which are contiguous covalent structures, this β-helix self-assembles from an elementary sequence of 18 amino acids. Using a combination of experimental and computational methods, we demonstrate that the resulting assemblies are discrete cylindrical structures exhibiting conserved dimensions at the nanoscale. We provide evidence for the structures to form a carpet-like three-dimensional scaffold promoting and inhibiting the growth of human and bacterial cells, respectively, while being able to mediate intracellular gene delivery. The study introduces a self-assembled β-helix as a self-contained bio- and multi-functional motif for exploring and exploiting mechanistic biology.
Collapse
Affiliation(s)
- Camilla Dondi
- National Physical Laboratory, Teddington, UK
- London Centre for Nanotechnology, University College London, London, UK
| | - Javier Garcia-Ruiz
- National Physical Laboratory, Teddington, UK
- Department of Physics, King's College London, London, UK
| | - Erol Hasan
- National Physical Laboratory, Teddington, UK
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Alex Hoose
- National Physical Laboratory, Teddington, UK
| | | | | | | | | | - Poonam Ghai
- National Physical Laboratory, Teddington, UK
| | - Michael Shaw
- National Physical Laboratory, Teddington, UK
- Department of Computer Science, University College London, London, UK
| | | | | | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, UK
- Department of Physics & Astronomy, University College London, London, UK
| | | | - Maxim G Ryadnov
- National Physical Laboratory, Teddington, UK.
- Department of Physics, King's College London, London, UK.
| |
Collapse
|
2
|
Allan C, Chaudhuri O. Regulation of cell migration by extracellular matrix mechanics at a glance. J Cell Sci 2025; 138:jcs263574. [PMID: 40183462 PMCID: PMC11993253 DOI: 10.1242/jcs.263574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Cell migration occurs throughout development, tissue homeostasis and regeneration, as well as in diseases such as cancer. Cells migrate along two-dimensional (2D) surfaces or interfaces, within microtracks, or in confining three-dimensional (3D) extracellular matrices. Although the basic mechanisms of 2D migration are known, recent studies have elucidated unexpected migration behaviors associated with more complex substrates and have provided insights into their underlying molecular mechanisms. Studies using engineered biomaterials for 3D culture and microfabricated channels to replicate cell confinement observed in vivo have revealed distinct modes of migration. Across these contexts, the mechanical features of the surrounding microenvironment have emerged as major regulators of migration. In this Cell Science at a Glance article and the accompanying poster, we describe physiological contexts wherein 2D and 3D cell migration are essential, report how mechanical properties of the microenvironment regulate individual and collective cell migration, and review the mechanisms mediating these diverse modes of cell migration.
Collapse
Affiliation(s)
- Cole Allan
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Amitrano A, Choudhury D, Konstantopoulos K. Navigating confinement: Mechanotransduction and metabolic adaptation. Curr Opin Cell Biol 2025; 94:102487. [PMID: 39999674 DOI: 10.1016/j.ceb.2025.102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Cell migration through confined spaces is a critical process influenced by the complex three-dimensional (3D) architecture of the local microenvironment and the surrounding extracellular matrix (ECM). Cells in vivo experience diverse fluidic signals, such as extracellular fluid viscosity, hydraulic resistance, and shear forces, as well as solid cues, like ECM stiffness and viscoelasticity. These fluidic and solid stressors activate mechanotransduction processes and regulate cell migration. They also drive metabolic reprogramming, dynamically altering glycolysis and oxidative phosphorylation to meet the cell's energy demands in different microenvironments. This review discusses recent advances on the mechanisms of cell migration in confinement and how confinement-induced cellular behavior leads to metabolic reprogramming.
Collapse
Affiliation(s)
- Alice Amitrano
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Debanik Choudhury
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.
| |
Collapse
|
4
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
5
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Physical principles and mechanisms of cell migration. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:2. [PMID: 39829952 PMCID: PMC11738987 DOI: 10.1038/s44341-024-00008-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/19/2024] [Indexed: 01/22/2025]
Abstract
Cell migration is critical in processes such as developmental biology, wound healing, immune response, and cancer invasion/metastasis. Understanding its regulation is essential for developing targeted therapies in regenerative medicine, cancer treatment and immune modulation. This review examines cell migration mechanisms, highlighting fundamental physical principles, key molecular components, and cellular behaviors, identifying existing gaps in current knowledge, and suggesting potential directions for future research.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN USA
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
6
|
Forman J, Hine B, Kaonis S, Ghosh S. Inhibition of chromatin condensation disrupts planar cell migration. Nucleus 2024; 15:2325961. [PMID: 38465796 PMCID: PMC10936625 DOI: 10.1080/19491034.2024.2325961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Cell migration involves the actin cytoskeleton, and recently recognized nuclear involvement. In this study, we explore the impact of chromatin remodeling on cell migration using NIH 3T3 cells and a scratch wound assay subjected to pharmacological interventions. We inhibit histone deacetylases (HDACs) with Trichostatin A (TSA) and methyltransferase EZH2 with GSK126 to modulate chromatin compaction. Our results indicate that chromatin modifications impair wound closure efficiency, reduce individual cell migration speed, and disrupt migration persistence. Live-cell imaging reveals dynamic intranuclear chromatin remodeling and nuclear shape parameters during migration, influenced by both small- and large-scale chromatin remodeling. The altered nuclear shape is associated with disrupted cell and nuclear mechanics, suggesting a crucial interplay between chromatin remodeling, nuclear mechanics and migration. These findings shed light on the intricate connection between intranuclear chromatin dynamics, nuclear mechanics, and cell migration, providing a basis for further investigations into the molecular mechanisms governing these processes.
Collapse
Affiliation(s)
- Jack Forman
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
- Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - Briar Hine
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Samantha Kaonis
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - Soham Ghosh
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Mistriotis P, Wisniewski EO, Si BR, Kalab P, Konstantopoulos K. Coordinated in confined migration: crosstalk between the nucleus and ion channel-mediated mechanosensation. Trends Cell Biol 2024; 34:809-825. [PMID: 38290913 PMCID: PMC11284253 DOI: 10.1016/j.tcb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Cell surface and intracellular mechanosensors enable cells to perceive different geometric, topographical, and physical cues. Mechanosensitive ion channels (MICs) localized at the cell surface and on the nuclear envelope (NE) are among the first to sense and transduce these signals. Beyond compartmentalizing the genome of the cell and its transcription, the nucleus also serves as a mechanical gauge of different physical and topographical features of the tissue microenvironment. In this review, we delve into the intricate mechanisms by which the nucleus and different ion channels regulate cell migration in confinement. We review evidence suggesting an interplay between macromolecular nuclear-cytoplasmic transport (NCT) and ionic transport across the cell membrane during confined migration. We also discuss the roles of the nucleus and ion channel-mediated mechanosensation, whether acting independently or in tandem, in orchestrating migratory mechanoresponses. Understanding nuclear and ion channel sensing, and their crosstalk, is critical to advancing our knowledge of cell migration in health and disease.
Collapse
Affiliation(s)
| | - Emily O Wisniewski
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bishwa R Si
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Makwana P, Modi U, Dhimmar B, Vasita R. Design and development of in-vitro co-culture device for studying cellular crosstalk in varied tissue microenvironment. BIOMATERIALS ADVANCES 2024; 163:213952. [PMID: 38991495 DOI: 10.1016/j.bioadv.2024.213952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Despite of being in different microenvironment, breast cancer cells influence the bone cells and persuade cancer metastasis from breast to bone. Multiple co-culture approaches have been explored to study paracrine signaling between these cells and to study the progression of cancer. However, lack of native tissue microenvironment remains a major bottleneck in existing co-culture technologies. Therefore, in the present study, a tumorigenic and an osteogenic microenvironment have been sutured together to create a multi-cellular environment and has been appraised to study cancer progression in bone tissue. The PCL-polystyrene and PCL-collagen fibrous scaffolds were characterized for tumorigenic and osteogenic potential induction on MDA-MB-231 and MC3T3-E1 cells respectively. Diffusion ability of crystal violet, glucose, and bovine serum albumin across the membrane were used to access the potential paracrine interaction facilitated by device. While in co-cultured condition, MDA-MB-231 cells showed EMT phenotype along with secretion of TNFα and PTHrP which lower down the expression of osteogenic markers including alkaline phosphatase, RUNX2, Osteocalcin and Osteoprotegerin. The cancer progression in bone microenvironment demonstrated the role and necessity of creating multiple tissue microenvironment and its contribution in studying multicellular disease progression and therapeutics.
Collapse
Affiliation(s)
- Pooja Makwana
- Biomaterial and Biomimetic Laboratory, School of Life Sciences, Central University of Gujarat, India
| | - Unnati Modi
- Biomaterial and Biomimetic Laboratory, School of Life Sciences, Central University of Gujarat, India
| | - Bindiya Dhimmar
- Biomaterial and Biomimetic Laboratory, School of Life Sciences, Central University of Gujarat, India
| | - Rajesh Vasita
- Biomaterial and Biomimetic Laboratory, School of Life Sciences, Central University of Gujarat, India; Terasaki Institute of Biomedical Innovation, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Wu Y, Chen D, Luo Y, Wang J, Gong H, Li J, Jiang L. Expression and clinical significance of SYNE3 in non-small cell lung cancer. Am J Transl Res 2024; 16:4436-4449. [PMID: 39398556 PMCID: PMC11470357 DOI: 10.62347/zhbp7145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/08/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To detect the expression of Spectrin Repeat Containing Nuclear Envelope Family Member 3 (SYNE3) and Cluster of Differentiation 34 (CD34) in non-small cell lung cancer (NSCLC). It also aimed to explore the relationship between SYNE3 and NSCLC angiogenesis and clinicopathologic features to identify new biomarkers for NSCLC. METHODS Forty-five NSCLC stage IA-IVB tissue specimens from patients diagnosed at Bazhong Central Hospital were collected from January to September 2022, along with 45 para-cancerous normal lung tissues as controls. None of the NSCLC patients had received anti-tumor therapies, including radiotherapy, chemotherapy, targeted therapy, immunotherapy, or traditional Chinese medicine. All specimens were stained for SYNE3 and CD34 using the Streptavidin-Peroxidase (SP) method. The expression levels of SYNE3 and CD34 in NSCLC tissues and para-cancerous tissues were detected, and a correlation analysis between SYNE3 and clinicopathological features was performed. The number of CD34-labeled microvessels was counted using the Microvessel density (MVD) method. The relationship between SYNE3 and NSCLC angiogenesis was examined through the correlation between CD34-MVD and NSCLC clinicopathologic features. RESULTS The expression of SYNE3 in NSCLC was significantly lower than that in para-cancerous normal lung tissues, while the expression of CD34 in NSCLC was significantly higher than in para-cancerous normal lung tissues (P=0.037). SYNE3 expression in NSCLC was negatively correlated with tumor diameter and was lower in male patients with a smoking history compared to female patients without a smoking history. CD34 expression was positively correlated with Tumor, Node, Metastasis staging and lymph node metastasis. There was a significant correlation between the expression of SYNE3 and CD34 in NSCLC (r=0.450, P=0.000). CONCLUSION SYNE3 was lowly expressed and negatively correlated with tumor size in NSCLC, whereas CD34 was highly expressed and positively correlated with TNM stage and lymph node metastasis. The significant correlation between the expressions of SYNE3 and CD34 suggests that SYNE3 may play a key role in NSCLC angiogenesis and progression.
Collapse
Affiliation(s)
- Yunxi Wu
- Department of Respiratory and Critical Care Medicine, Bazhong Central HospitalBazhong 636000, Sichuan, China
| | - Dehe Chen
- Department of Respiratory and Critical Care Medicine, Bazhong Central HospitalBazhong 636000, Sichuan, China
| | - Yu Luo
- Department of Respiratory and Critical Care Medicine, Bazhong Central HospitalBazhong 636000, Sichuan, China
| | - Jun Wang
- Department of Respiratory and Critical Care Medicine, Bazhong Central HospitalBazhong 636000, Sichuan, China
| | - Haiying Gong
- Department of Respiratory and Critical Care Medicine, Guang’an Central HospitalGuang’an 638500, Sichuan, China
| | - Junhua Li
- Department of Respiratory and Critical Care Medicine, Bazhong Central HospitalBazhong 636000, Sichuan, China
| | - Li Jiang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000, Sichuan, China
| |
Collapse
|
10
|
Keys J, Cheung BCH, Elpers MA, Wu M, Lammerding J. Rear cortex contraction aids in nuclear transit during confined migration by increasing pressure in the cell posterior. J Cell Sci 2024; 137:jcs260623. [PMID: 38832512 PMCID: PMC11234373 DOI: 10.1242/jcs.260623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
As cells migrate through biological tissues, they must frequently squeeze through micron-sized constrictions in the form of interstitial pores between extracellular matrix fibers and/or other cells. Although it is now well recognized that such confined migration is limited by the nucleus, which is the largest and stiffest organelle, it remains incompletely understood how cells apply sufficient force to move their nucleus through small constrictions. Here, we report a mechanism by which contraction of the cell rear cortex pushes the nucleus forward to mediate nuclear transit through constrictions. Laser ablation of the rear cortex reveals that pushing forces behind the nucleus are the result of increased intracellular pressure in the rear compartment of the cell. The pushing forces behind the nucleus depend on accumulation of actomyosin in the rear cortex and require Rho kinase (ROCK) activity. Collectively, our results suggest a mechanism by which cells generate elevated intracellular pressure in the posterior compartment to facilitate nuclear transit through three-dimensional (3D) constrictions. This mechanism might supplement or even substitute for other mechanisms supporting nuclear transit, ensuring robust cell migrations in confined 3D environments.
Collapse
Affiliation(s)
- Jeremy Keys
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cellular and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brian C. H. Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Margaret A. Elpers
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cellular and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cellular and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Weiß MS, Trapani G, Long H, Trappmann B. Matrix Resistance Toward Proteolytic Cleavage Controls Contractility-Dependent Migration Modes During Angiogenic Sprouting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305947. [PMID: 38477409 PMCID: PMC11109655 DOI: 10.1002/advs.202305947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Tissue homeostasis and disease states rely on the formation of new blood vessels through angiogenic sprouting, which is tightly regulated by the properties of the surrounding extracellular matrix. While physical cues, such as matrix stiffness or degradability, have evolved as major regulators of cell function in tissue microenvironments, it remains unknown whether and how physical cues regulate endothelial cell migration during angiogenesis. To investigate this, a biomimetic model of angiogenic sprouting inside a tunable synthetic hydrogel is created. It is shown that endothelial cells sense the resistance of the surrounding matrix toward proteolytic cleavage and respond by adjusting their migration phenotype. The resistance cells encounter is impacted by the number of covalent matrix crosslinks, crosslink degradability, and the proteolytic activity of cells. When matrix resistance is high, cells switch from a collective to an actomyosin contractility-dependent single cellular migration mode. This switch in collectivity is accompanied by a major reorganization of the actin cytoskeleton, where stress fibers are no longer visible, and F-actin aggregates in large punctate clusters. Matrix resistance is identified as a previously unknown regulator of angiogenic sprouting and, thus, provides a mechanism by which the physical properties of the matrix impact cell migration modes through cytoskeletal remodeling.
Collapse
Affiliation(s)
- Martin S. Weiß
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 2048149MünsterGermany
| | - Giuseppe Trapani
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 2048149MünsterGermany
| | - Hongyan Long
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 2048149MünsterGermany
| | - Britta Trappmann
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 2048149MünsterGermany
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto‐Hahn‐Straße 644227DortmundGermany
| |
Collapse
|
12
|
Zholudeva AO, Potapov NS, Kozlova EA, Lomakina ME, Alexandrova AY. Impairment of Assembly of the Vimentin Intermediate Filaments Leads to Suppression of Formation and Maturation of Focal Contacts and Alteration of the Type of Cellular Protrusions. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:184-195. [PMID: 38467554 DOI: 10.1134/s0006297924010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 03/13/2024]
Abstract
Cell migration is largely determined by the type of protrusions formed by the cell. Mesenchymal migration is accomplished by formation of lamellipodia and/or filopodia, while amoeboid migration is based on bleb formation. Changing of migrational conditions can lead to alteration in the character of cell movement. For example, inhibition of the Arp2/3-dependent actin polymerization by the CK-666 inhibitor leads to transition from mesenchymal to amoeboid motility mode. Ability of the cells to switch from one type of motility to another is called migratory plasticity. Cellular mechanisms regulating migratory plasticity are poorly understood. One of the factors determining the possibility of migratory plasticity may be the presence and/or organization of vimentin intermediate filaments (VIFs). To investigate whether organization of the VIF network affects the ability of fibroblasts to form membrane blebs, we used rat embryo fibroblasts REF52 with normal VIF organization, fibroblasts with vimentin knockout (REF-/-), and fibroblasts with mutation inhibiting assembly of the full-length VIFs (REF117). Blebs formation was induced by treatment of cells with CK-666. Vimentin knockout did not lead to statistically significant increase in the number of cells with blebs. The fibroblasts with short fragments of vimentin demonstrate the significant increase in number of cells forming blebs both spontaneously and in the presence of CK-666. Disruption of the VIF organization did not lead to the significant changes in the microtubules network or the level of myosin light chain phosphorylation, but caused significant reduction in the focal contact system. The most pronounced and statistically significant decrease in both size and number of focal adhesions were observed in the REF117 cells. We believe that regulation of the membrane blebbing by VIFs is mediated by their effect on the focal adhesion system. Analysis of migration of fibroblasts with different organization of VIFs in a three-dimensional collagen gel showed that organization of VIFs determines the type of cell protrusions, which, in turn, determines the character of cell movement. A novel role of VIFs as a regulator of membrane blebbing, essential for manifestation of the migratory plasticity, is shown.
Collapse
Affiliation(s)
- Anna O Zholudeva
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Nikolay S Potapov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ekaterina A Kozlova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Maria E Lomakina
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Antonina Y Alexandrova
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
13
|
So WY, Wong CS, Azubuike UF, Paul CD, Sangsari PR, Gordon PB, Gong H, Maity TK, Lim P, Yang Z, Haryanto CA, Batchelor E, Jenkins LM, Morgan NY, Tanner K. YAP localization mediates mechanical adaptation of human cancer cells during extravasation in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567015. [PMID: 38076880 PMCID: PMC10705547 DOI: 10.1101/2023.11.14.567015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Biophysical profiling of primary tumors has revealed that individual tumor cells fall along a highly heterogeneous continuum of mechanical phenotypes. One idea is that a subset of tumor cells is "softer" to facilitate detachment and escape from the primary site, a step required to initiate metastasis. However, it has also been postulated that cells must be able to deform and generate sufficient force to exit into distant sites. Here, we aimed to dissect the mechanical changes that occur during extravasation and organ colonization. Using multiplexed methods of intravital microscopy and optical tweezer based active microrheology, we obtained longitudinal images and mechanical profiles of cells during organ colonization in vivo. We determined that cells were softer, more liquid like upon exit of the vasculature but stiffened and became more solid like once in the new organ microenvironment. We also determined that a YAP mediated mechanogenotype influenced the global dissemination in our in vivo and in vitro models and that reducing mechanical heterogeneity could reduce extravasation. Moreover, our high throughput analysis of mechanical phenotypes of patient samples revealed that this mechanics was in part regulated by the external hydrodynamic forces that the cancer cells experienced within capillary mimetics. Our findings indicate that disseminated cancer cells can keep mutating with a continuum landscape of mechano-phenotypes, governed by the YAP-mediated mechanosensing of hydrodynamic flow.
Collapse
Affiliation(s)
- Woong Young So
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Claudia S. Wong
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | | | - Colin D. Paul
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Paniz Rezvan Sangsari
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | | | - Hyeyeon Gong
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Tapan K. Maity
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Perry Lim
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Zhilin Yang
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | | | | | - Lisa M. Jenkins
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Nicole Y. Morgan
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | - Kandice Tanner
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| |
Collapse
|
14
|
Le HA, Mayor R. Cell-matrix and cell-cell interaction mechanics in guiding migration. Biochem Soc Trans 2023; 51:1733-1745. [PMID: 37610008 PMCID: PMC10586762 DOI: 10.1042/bst20230211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Physical properties of tissue are increasingly recognised as major regulatory cues affecting cell behaviours, particularly cell migration. While these properties of the extracellular matrix have been extensively discussed, the contribution from the cellular components that make up the tissue are still poorly appreciated. In this mini-review, we will discuss two major physical components: stiffness and topology with a stronger focus on cell-cell interactions and how these can impact cell migration.
Collapse
Affiliation(s)
- Hoang Anh Le
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
15
|
Saraswathibhatla A, Indana D, Chaudhuri O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol 2023; 24:495-516. [PMID: 36849594 PMCID: PMC10656994 DOI: 10.1038/s41580-023-00583-1] [Citation(s) in RCA: 249] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/01/2023]
Abstract
Mechanical properties of extracellular matrices (ECMs) regulate essential cell behaviours, including differentiation, migration and proliferation, through mechanotransduction. Studies of cell-ECM mechanotransduction have largely focused on cells cultured in 2D, on top of elastic substrates with a range of stiffnesses. However, cells often interact with ECMs in vivo in a 3D context, and cell-ECM interactions and mechanisms of mechanotransduction in 3D can differ from those in 2D. The ECM exhibits various structural features as well as complex mechanical properties. In 3D, mechanical confinement by the surrounding ECM restricts changes in cell volume and cell shape but allows cells to generate force on the matrix by extending protrusions and regulating cell volume as well as through actomyosin-based contractility. Furthermore, cell-matrix interactions are dynamic owing to matrix remodelling. Accordingly, ECM stiffness, viscoelasticity and degradability often play a critical role in regulating cell behaviours in 3D. Mechanisms of 3D mechanotransduction include traditional integrin-mediated pathways that sense mechanical properties and more recently described mechanosensitive ion channel-mediated pathways that sense 3D confinement, with both converging on the nucleus for downstream control of transcription and phenotype. Mechanotransduction is involved in tissues from development to cancer and is being increasingly harnessed towards mechanotherapy. Here we discuss recent progress in our understanding of cell-ECM mechanotransduction in 3D.
Collapse
Affiliation(s)
| | - Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Filali S, Noack M, Géloën A, Pirot F, Miossec P. Effects of pro-inflammatory cytokines and cell interactions on cell area and cytoskeleton of rheumatoid arthritis synoviocytes and immune cells. Eur J Cell Biol 2023; 102:151303. [PMID: 36907024 DOI: 10.1016/j.ejcb.2023.151303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/08/2023] Open
Abstract
Rheumatoid synovitis is infiltrated by immune cells that interact with synoviocytes, leading to the pannus formation. Inflammation or cell interaction effects are mainly evaluated with cytokine production, cell proliferation or migration. Few studies interest on cell morphology. Here, the purpose was to deepen some morphological changes of synoviocytes or immune cells under inflammatory conditions. Inflammatory cytokines, IL-17 and TNF that are largely involved in RA pathogenesis, induced a change in synoviocyte morphology, inducing a retracted cell with higher number of pseudopodia. Several morphological parameters decreased in inflammatory conditions: cell confluence, area and motility speed. The same impact on cell morphology was observed in co-culture of synoviocytes and immune cells in inflammatory/non-inflammatory conditions or with cell activation (miming the in vivo situation), affecting both cell types: synoviocytes were retracted and inversely immune cells proliferated, indicating that cell activation induced a morphological change of cells. In contrast, with RA but not control synoviocytes, cell interactions were not sufficient to affect PBMC and synoviocyte morphology. The morphological effect came only from the inflammatory environment. These findings reveal that the inflammatory environment or cell interactions induced massive changes in control synoviocytes, with cell retraction and increase of pseudopodia number, leading to better interactions with other cells. Except in the case of RA, the inflammatory environment was absolutely required for such changes.
Collapse
Affiliation(s)
- Samira Filali
- Immunogenomics and Inflammation Research Unit, Department of Immunology and Rheumatology, Edouard Herriot Hospital, Hospices Civils de Lyon, University of Lyon, Lyon, France; Laboratory of Research and Development of Industrial Galenic Pharmacy and laboratory of Tissue Biology and Therapeutic Engineering UMR-CNRS 5305, Pharmacy Department, FRIPHARM Plateform, Edouard Herriot Hospital, Hospices Civils de Lyon, University of Lyon, Lyon, France.
| | - Mélissa Noack
- Immunogenomics and Inflammation Research Unit, Department of Immunology and Rheumatology, Edouard Herriot Hospital, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Alain Géloën
- CarMeN laboratory, INRA UMR1397, INSERM U1060, INSA Lyon, University of Lyon, France
| | - Fabrice Pirot
- Laboratory of Research and Development of Industrial Galenic Pharmacy and laboratory of Tissue Biology and Therapeutic Engineering UMR-CNRS 5305, Pharmacy Department, FRIPHARM Plateform, Edouard Herriot Hospital, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, Department of Immunology and Rheumatology, Edouard Herriot Hospital, Hospices Civils de Lyon, University of Lyon, Lyon, France
| |
Collapse
|
17
|
Cowan JM, Duggan JJ, Hewitt BR, Petrie RJ. Non-muscle myosin II and the plasticity of 3D cell migration. Front Cell Dev Biol 2022; 10:1047256. [PMID: 36438570 PMCID: PMC9691290 DOI: 10.3389/fcell.2022.1047256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Confined cells migrating through 3D environments are also constrained by the laws of physics, meaning for every action there must be an equal and opposite reaction for cells to achieve motion. Fascinatingly, there are several distinct molecular mechanisms that cells can use to move, and this is reflected in the diverse ways non-muscle myosin II (NMII) can generate the mechanical forces necessary to sustain 3D cell migration. This review summarizes the unique modes of 3D migration, as well as how NMII activity is regulated and localized within each of these different modes. In addition, we highlight tropomyosins and septins as two protein families that likely have more secrets to reveal about how NMII activity is governed during 3D cell migration. Together, this information suggests that investigating the mechanisms controlling NMII activity will be helpful in understanding how a single cell transitions between distinct modes of 3D migration in response to the physical environment.
Collapse
Affiliation(s)
| | | | | | - Ryan J. Petrie
- Department of Biology, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
18
|
Yamada KM, Doyle AD, Lu J. Cell-3D matrix interactions: recent advances and opportunities. Trends Cell Biol 2022; 32:883-895. [PMID: 35410820 PMCID: PMC9464680 DOI: 10.1016/j.tcb.2022.03.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/03/2023]
Abstract
Tissues consist of cells and their surrounding extracellular matrix (ECM). Cell-ECM interactions play crucial roles in embryonic development, differentiation, tissue remodeling, and diseases including fibrosis and cancer. Recent research advances in characterizing cell-matrix interactions include detailed descriptions of hundreds of ECM and associated molecules, their complex intermolecular interactions in development and disease, identification of distinctive modes of cell migration in different 3D ECMs, and new insights into mechanisms of organ formation. Exploring the roles of the physical features of different ECM microenvironments and the bidirectional regulation of cell signaling and matrix organization emphasize the dynamic nature of these interactions, which can include feedback loops that exacerbate disease. Understanding mechanisms of cell-matrix interactions can potentially lead to targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Andrew D Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiaoyang Lu
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Marks PC, Hewitt BR, Baird MA, Wiche G, Petrie RJ. Plectin linkages are mechanosensitive and required for the nuclear piston mechanism of three-dimensional cell migration. Mol Biol Cell 2022; 33:ar104. [PMID: 35857713 DOI: 10.1091/mbc.e21-08-0414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cells migrating through physiologically relevant three-dimensional (3D) substrates such as cell-derived matrix (CDM) use actomyosin and vimentin intermediate filaments to pull the nucleus forward and pressurize the front of the cell as part of the nuclear piston mechanism of 3D migration. In this study, we tested the role of the cytoskeleton cross-linking protein plectin in facilitating the movement of the nucleus through 3D matrices. We find that the interaction of F-actin and vimentin filaments in cells on 2D glass and in 3D CDM requires actomyosin contractility. Plectin also facilitated these interactions and interacts with vimentin in response to NMII contractility and substrate stiffness, suggesting that the association of plectin and vimentin is mechanosensitive. We find that this mechanosensitive plectin complex slows down 2D migration but is critical for pulling the nucleus forward and generating compartmentalized intracellular pressure in 3D CDM, as well as low-pressure lamellipodial migration in 3D collagen. Finally, plectin expression helped to polarize NMII to in front of the nucleus and to localize the vimentin network around the nucleus. Together, our data suggest that plectin cross-links vimentin and actomyosin filaments, organizes the vimentin network, and polarizes NMII to facilitate the nuclear piston mechanism of 3D cell migration.
Collapse
Affiliation(s)
- Pragati C Marks
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Breanne R Hewitt
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Michelle A Baird
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Ryan J Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
20
|
Jones ML, Dahl KN, Lele TP, Conway DE, Shenoy V, Ghosh S, Szczesny SE. The Elephant in the Cell: Nuclear Mechanics and Mechanobiology. J Biomech Eng 2022; 144:080802. [PMID: 35147160 PMCID: PMC8990742 DOI: 10.1115/1.4053797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/28/2022] [Indexed: 11/08/2022]
Abstract
The 2021 Summer Biomechanics, Bioengineering, and Biotransport Conference (SB3C) featured a workshop titled "The Elephant in the Room: Nuclear Mechanics and Mechanobiology." The goal of this workshop was to provide a perspective from experts in the field on the current understanding of nuclear mechanics and its role in mechanobiology. This paper reviews the major themes and questions discussed during the workshop, including historical context on the initial methods of measuring the mechanical properties of the nucleus and classifying the primary structures dictating nuclear mechanics, physical plasticity of the nucleus, the emerging role of the linker of nucleoskeleton and cytoskeleton (LINC) complex in coupling the nucleus to the cytoplasm and driving the behavior of individual cells and multicellular assemblies, and the computational models currently in use to investigate the mechanisms of gene expression and cell signaling. Ongoing questions and controversies, along with promising future directions, are also discussed.
Collapse
Affiliation(s)
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Doherty Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213; Forensics Department, Thornton Tomasetti, 120 Broadway 15th Floor, New York City, NY 10271
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Chemical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Translational Medical Sciences, Texas A&M University, 101 Bizzell Street, College Station, TX 77840
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, P.O. Box 843068, Richmond, VA 23284
| | - Vivek Shenoy
- Materials Science and Engineering Bioengineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Center for Engineering Mechanobiology, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104
| | - Soham Ghosh
- Department of Mechanical Engineering, School of Biomedical Engineering, Translational Medicine Institute, Colorado State University, 400 Isotope Drive, Fort Collins, CO 80521
| | - Spencer E. Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802; Department of Orthopaedics and Rehabilitation, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
21
|
Nguyen DT, Ogando-Rivas E, Liu R, Wang T, Rubin J, Jin L, Tao H, Sawyer WW, Mendez-Gomez HR, Cascio M, Mitchell DA, Huang J, Sawyer WG, Sayour EJ, Castillo P. CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells 2022; 11:1974. [PMID: 35741103 PMCID: PMC9221866 DOI: 10.3390/cells11121974] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elizabeth Ogando-Rivas
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Ruixuan Liu
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Theodore Wang
- College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Jacob Rubin
- Warrington College of Business, University of Florida, Gainesville, FL 32610, USA;
| | - Linchun Jin
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Haipeng Tao
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - William W. Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Hector R. Mendez-Gomez
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Matthew Cascio
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Jianping Huang
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elias J. Sayour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
22
|
Laforgue L, Fertin A, Usson Y, Verdier C, Laurent VM. Efficient deformation mechanisms enable invasive cancer cells to migrate faster in 3D collagen networks. Sci Rep 2022; 12:7867. [PMID: 35550548 PMCID: PMC9098560 DOI: 10.1038/s41598-022-11581-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer cell migration is a widely studied topic but has been very often limited to two dimensional motion on various substrates. Indeed, less is known about cancer cell migration in 3D fibrous-extracellular matrix (ECM) including variations of the microenvironment. Here we used 3D time lapse imaging on a confocal microscope and a phase correlation method to follow fiber deformations, as well as cell morphology and live actin distribution during the migration of cancer cells. Different collagen concentrations together with three bladder cancer cell lines were used to investigate the role of the metastatic potential on 3D cell migration characteristics. We found that grade-3 cells (T24 and J82) are characterized by a great diversity of shapes in comparison with grade-2 cells (RT112). Moreover, grade-3 cells with the highest metastatic potential (J82) showed the highest values of migration speeds and diffusivities at low collagen concentration and the greatest sensitivity to collagen concentration. Our results also suggested that the small shape fluctuations of J82 cells are the signature of larger migration velocities. Moreover, the displacement fields generated by J82 cells showed significantly higher fiber displacements as compared to T24 and RT112 cells, regardless of collagen concentration. The analysis of cell movements enhanced the fact that bladder cancer cells were able to exhibit different phenotypes (mesenchymal, amoeboid). Furthermore, the analysis of spatio-temporal migration mechanisms showed that cancer cells are able to push or pull on collagen fibers, therefore producing efficient local collagen deformations in the vicinity of cells. Our results also revealed that dense actin regions are correlated with the largest displacement fields, and this correlation is enhanced for the most invasive J82 cancer cells. Therefore this work opens up new routes to understand cancer cell migration in soft biological networks.
Collapse
Affiliation(s)
- Laure Laforgue
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France.,Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, 38000, France
| | - Arnold Fertin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Yves Usson
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Claude Verdier
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France.
| | | |
Collapse
|
23
|
Moriarty RA, Mili S, Stroka KM. RNA localization in confined cells depends on cellular mechanical activity and contributes to confined migration. iScience 2022; 25:103845. [PMID: 35198898 PMCID: PMC8850802 DOI: 10.1016/j.isci.2022.103845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer cells experience mechanical confining forces during metastasis and, consequently, can alter their migratory mechanisms. Localization of numerous mRNAs to cell protrusions contributes to cell polarization and migration and is controlled by proteins that can bind RNA and/or cytoskeletal elements, such as the adenomatous polyposis coli (APC). Here, we demonstrate that peripheral localization of APC-dependent RNAs in cells within confined microchannels is cell type dependent. This varying phenotype is determined by the levels of a detyrosinated tubulin network. We show that this network is regulated by mechanoactivity and that cells with mechanosensitive ion channels and increased myosin II activity direct peripheral localization of the RAB13 APC-dependent RNA. Through specific mislocalization of the RAB13 RNA, we show that peripheral RNA localization contributes to confined cell migration. Our results indicate that a cell’s mechanical activity determines its ability to peripherally target RNAs and utilize them for movement in confinement. Peripheral localization of APC-dependent RNAs in confinement depends on cell type RNA localization in confined cells is controlled by the mechanoactivity of cells RNA localization phenotype is influenced by the detyrosinated tubulin network Peripheral RNA accumulation functionally contributes to confined cell migration
Collapse
Affiliation(s)
- Rebecca A. Moriarty
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Corresponding author
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA
- Maryland Biophysics Program, University of Maryland College Park, College Park, MD 20742, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland Baltimore, Baltimore, MD 21202, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21202, USA
- Corresponding author
| |
Collapse
|
24
|
Luo M, Cai G, Ho KKY, Wen K, Tong Z, Deng L, Liu AP. Compression enhances invasive phenotype and matrix degradation of breast Cancer cells via Piezo1 activation. BMC Mol Cell Biol 2022; 23:1. [PMID: 34979904 PMCID: PMC8722159 DOI: 10.1186/s12860-021-00401-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Uncontrolled growth in solid breast cancer generates mechanical compression that may drive the cancer cells into a more invasive phenotype, but little is known about how such compression affects the key events and corresponding regulatory mechanisms associated with invasion of breast cancer cells including cellular behaviors and matrix degradation. Results Here we show that compression enhanced invasion and matrix degradation of breast cancer cells. We also identified Piezo1 as the putative mechanosensitive cellular component that transmitted compression to not only enhance the invasive phenotype, but also induce calcium influx and downstream Src signaling. Furthermore, we demonstrated that Piezo1 was mainly localized in caveolae, and both Piezo1 expression and compression-enhanced invasive phenotype of the breast cancer cells were reduced when caveolar integrity was compromised by either knocking down caveolin1 expression or depleting cholesterol content. Conclusions Taken together, our data indicate that mechanical compression activates Piezo1 channels to mediate enhanced breast cancer cell invasion, which involves both cellular events and matrix degradation. This may be a critical mechanotransduction pathway during breast cancer metastasis, and thus potentially a novel therapeutic target for the disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00401-6.
Collapse
Affiliation(s)
- Mingzhi Luo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, People's Republic of China.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Present address: Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Kang Wen
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, People's Republic of China
| | - Zhaowen Tong
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, People's Republic of China.
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Applied Physics Program, University of Michigan, Ann Arbor, MI, USA. .,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Marks P, Petrie R. Push or pull: how cytoskeletal crosstalk facilitates nuclear movement through 3D environments. Phys Biol 2021; 19. [PMID: 34936999 DOI: 10.1088/1478-3975/ac45e3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
As cells move from two-dimensional (2D) surfaces into complex 3D environments, the nucleus becomes a barrier to movement due to its size and rigidity. Therefore, moving the nucleus is a key step in 3D cell migration. In this review, we discuss how coordination between cytoskeletal and nucleoskeletal networks is required to pull the nucleus forward through complex 3D spaces. We summarize recent migration models which utilize unique molecular crosstalk to drive nuclear migration through different 3D environments. In addition, we speculate about the role of proteins that indirectly crosslink cytoskeletal networks and the role of 3D focal adhesions and how these protein complexes may drive 3D nuclear migration.
Collapse
Affiliation(s)
- Pragati Marks
- Department of Biology, Drexel University, 3245 CHESTNUT ST, PISB 401M1, PHILADELPHIA, Philadelphia, 19104-2816, UNITED STATES
| | - Ryan Petrie
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 419, Philadelphia, Philadelphia, Pennsylvania, 19104-2816, UNITED STATES
| |
Collapse
|
26
|
Eddy CZ, Raposo H, Manchanda A, Wong R, Li F, Sun B. Morphodynamics facilitate cancer cells to navigate 3D extracellular matrix. Sci Rep 2021; 11:20434. [PMID: 34650167 PMCID: PMC8516896 DOI: 10.1038/s41598-021-99902-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Cell shape is linked to cell function. The significance of cell morphodynamics, namely the temporal fluctuation of cell shape, is much less understood. Here we study the morphodynamics of MDA-MB-231 cells in type I collagen extracellular matrix (ECM). We systematically vary ECM physical properties by tuning collagen concentrations, alignment, and gelation temperatures. We find that morphodynamics of 3D migrating cells are externally controlled by ECM mechanics and internally modulated by Rho/ROCK-signaling. We employ machine learning to classify cell shape into four different morphological phenotypes, each corresponding to a distinct migration mode. As a result, we map cell morphodynamics at mesoscale into the temporal evolution of morphological phenotypes. We characterize the mesoscale dynamics including occurrence probability, dwell time and transition matrix at varying ECM conditions, which demonstrate the complex phenotype landscape and optimal pathways for phenotype transitions. In light of the mesoscale dynamics, we show that 3D cancer cell motility is a hidden Markov process whereby the step size distributions of cell migration are coupled with simultaneous cell morphodynamics. Morphological phenotype transitions also facilitate cancer cells to navigate non-uniform ECM such as traversing the interface between matrices of two distinct microstructures. In conclusion, we demonstrate that 3D migrating cancer cells exhibit rich morphodynamics that is controlled by ECM mechanics, Rho/ROCK-signaling, and regulate cell motility. Our results pave the way to the functional understanding and mechanical programming of cell morphodynamics as a route to predict and control 3D cell motility.
Collapse
Affiliation(s)
- Christopher Z Eddy
- Department of Physics, Oregon State University, Corvallis, OR, 97331, USA
| | - Helena Raposo
- Department of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Aayushi Manchanda
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, 97331, USA
| | - Ryan Wong
- Department of Physics, Oregon State University, Corvallis, OR, 97331, USA
| | - Fuxin Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
27
|
Brain and Breast Cancer Cells with PTEN Loss of Function Reveal Enhanced Durotaxis and RHOB Dependent Amoeboid Migration Utilizing 3D Scaffolds and Aligned Microfiber Tracts. Cancers (Basel) 2021; 13:cancers13205144. [PMID: 34680293 PMCID: PMC8533830 DOI: 10.3390/cancers13205144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) and metastatic triple-negative breast cancer (TNBC) with PTEN mutations often lead to brain dissemination with poor patient outcome, thus new therapeutic targets are needed. To understand signaling, controlling the dynamics and mechanics of brain tumor cell migration, we implemented GBM and TNBC cell lines and designed 3D aligned microfibers and scaffolds mimicking brain structures. METHODS 3D microfibers and scaffolds were printed using melt electrowriting. GBM and TNBC cell lines with opposing PTEN genotypes were analyzed with RHO-ROCK-PTEN inhibitors and PTEN rescue using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while scanning electron microscopy and confocal microscopy addressed cell morphology. RESULTS In contrast to the PTEN wildtype, GBM and TNBC cells with PTEN loss of function yielded enhanced durotaxis, topotaxis, adhesion, amoeboid migration on 3D microfibers and significant high RHOB expression. Functional studies concerning RHOB-ROCK-PTEN signaling confirmed the essential role for the above cellular processes. CONCLUSIONS This study demonstrates a significant role of the PTEN genotype and RHOB expression for durotaxis, adhesion and migration dependent on 3D. GBM and TNBC cells with PTEN loss of function have an affinity for stiff brain structures promoting metastasis. 3D microfibers represent an important tool to model brain metastasizing tumor cells, where RHO-inhibitors could play an essential role for improved therapy.
Collapse
|
28
|
Garrido-Casado M, Asensio-Juárez G, Vicente-Manzanares M. Nonmuscle Myosin II Regulation Directs Its Multiple Roles in Cell Migration and Division. Annu Rev Cell Dev Biol 2021; 37:285-310. [PMID: 34314591 DOI: 10.1146/annurev-cellbio-042721-105528] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Gloria Asensio-Juárez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
29
|
Takino T, Suzuki T, Seiki M. Isolation of Highly Migratory and Invasive Cells in Three-Dimensional Gels. ACTA ACUST UNITED AC 2021; 86:e103. [PMID: 32022994 DOI: 10.1002/cpcb.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We developed a modified invasion assay in three-dimensional (3D) gels that permits isolation of invading cells as living cells, termed an invading cell-trapping (iCT) assay. A small cell strainer consisting of nylon mesh with pores of 40-µm square is used in this assay. A layer of gel composed of extracellular-matrix components is formed on each side of the nylon mesh, which permits cell migration or invasion from one gel layer to the other. At the end of the assay, the two gel layers are removed from the apparatus and easily separated from each other. Invading cells from the primary gel are trapped in the secondary gel, which maintains the morphology and other properties of the invasive cells in a 3D matrix. The cells that have invaded are observed and counted with a standard light microscope without cell staining. There is no need for a specialized microscope, imaging analysis software, or advanced cell-biological technical knowledge in this assay. This assay can also reduce measurement of nonspecific cell invasion by monitoring the upward invasion of cells. The viability of both invading and non-invading cells trapped in the gels can be assessed by typical colorimetric assays, if desired. This assessment characterizes the total number of cells (invading and non-invading cells) and the ratio of invading cells to total cells. By repeating the iCT assay, further enrichment of invasive and noninvasive cells can be attained. Thus, this assay improves comparative analyses between invasive and noninvasive cells. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Measuring upward cell invasion into collagen gel Basic Protocol 2: Measuring cell invasion from Matrigel into collagen gel Basic Protocol 3: Isolation and enrichment of highly invasive cells.
Collapse
Affiliation(s)
- Takahisa Takino
- Division of Education for Global Standard, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Motoharu Seiki
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
30
|
Fuentes-Chandía M, Vierling A, Kappelmann-Fenzl M, Monavari M, Letort G, Höne L, Parma B, Antara SK, Ertekin Ö, Palmisano R, Dong M, Böpple K, Boccaccini AR, Ceppi P, Bosserhoff AK, Leal-Egaña A. 3D Spheroids Versus 3D Tumor-Like Microcapsules: Confinement and Mechanical Stress May Lead to the Expression of Malignant Responses in Cancer Cells. Adv Biol (Weinh) 2021; 5:e2000349. [PMID: 33960743 DOI: 10.1002/adbi.202000349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/03/2021] [Indexed: 11/08/2022]
Abstract
As 2D surfaces fail to resemble the tumoral milieu, current discussions are focused on which 3D cell culture strategy may better lead the cells to express in vitro most of the malignant hints described in vivo. In this study, this question is assessed by analyzing the full genetic profile of MCF7 cells cultured either as 3D spheroids-considered as "gold standard" for in vitro cancer research- or immobilized in 3D tumor-like microcapsules, by RNA-Seq and transcriptomic methods, allowing to discriminate at big-data scale, which in vitro strategy can better resemble most of the malignant features described in neoplastic diseases. The results clearly show that mechanical stress, rather than 3D morphology only, stimulates most of the biological processes involved in cancer pathogenicity, such as cytoskeletal organization, migration, and stemness. Furthermore, cells entrapped in hydrogel-based scaffolds are likely expressing other physiological hints described in malignancy, such as the upregulated expression of metalloproteinases or the resistance to anticancer drugs, among others. According to the knowledge, this study represents the first attempt to answer which 3D experimental system can better mimic the neoplastic architecture in vitro, emphasizing the relevance of confinement in cancer pathogenicity, which can be easily achieved by using hydrogel-based matrices.
Collapse
Affiliation(s)
- Miguel Fuentes-Chandía
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Andreas Vierling
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Melanie Kappelmann-Fenzl
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany.,Faculty of Applied Informatics, University of Applied Science Deggendorf, 94469, Deggendorf, Germany
| | - Mahshid Monavari
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Gaelle Letort
- Center for Interdisciplinary Research in Biology, Collège de France UMR7241/U1050. 11, place Marcelin Berthelot, Paris Cedex 05, 75231, France
| | - Lucas Höne
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Beatrice Parma
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Glueckstraße 6, 91054, Erlangen, Germany
| | - Sharmin Khan Antara
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Özlem Ertekin
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Ralph Palmisano
- Optical Imaging Centre Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Meng Dong
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Auerbachstraße 112, 70376, Stuttgart, Germany
| | - Kathrin Böpple
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Auerbachstraße 112, 70376, Stuttgart, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Paolo Ceppi
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Glueckstraße 6, 91054, Erlangen, Germany.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark
| | - Anja K Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany
| | - Aldo Leal-Egaña
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, 91058, Erlangen, Germany.,Institute for Molecular Systems Engineering, Heidelberg University, In Neuenheimer Feld 253, 69120, Heidelberg, Germany
| |
Collapse
|
31
|
Morales X, Cortés-Domínguez I, Ortiz-de-Solorzano C. Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels. Gels 2021; 7:17. [PMID: 33673091 PMCID: PMC7930983 DOI: 10.3390/gels7010017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding how cancer cells migrate, and how this migration is affected by the mechanical and chemical composition of the extracellular matrix (ECM) is critical to investigate and possibly interfere with the metastatic process, which is responsible for most cancer-related deaths. In this article we review the state of the art about the use of hydrogel-based three-dimensional (3D) scaffolds as artificial platforms to model the mechanobiology of cancer cell migration. We start by briefly reviewing the concept and composition of the extracellular matrix (ECM) and the materials commonly used to recreate the cancerous ECM. Then we summarize the most relevant knowledge about the mechanobiology of cancer cell migration that has been obtained using 3D hydrogel scaffolds, and relate those discoveries to what has been observed in the clinical management of solid tumors. Finally, we review some recent methodological developments, specifically the use of novel bioprinting techniques and microfluidics to create realistic hydrogel-based models of the cancer ECM, and some of their applications in the context of the study of cancer cell migration.
Collapse
Affiliation(s)
| | | | - Carlos Ortiz-de-Solorzano
- IDISNA, Ciberonc and Solid Tumors and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; (X.M.); (I.C.-D.)
| |
Collapse
|
32
|
Patel S, McKeon D, Sao K, Yang C, Naranjo NM, Svitkina TM, Petrie RJ. Myosin II and Arp2/3 cross-talk governs intracellular hydraulic pressure and lamellipodia formation. Mol Biol Cell 2021; 32:579-589. [PMID: 33502904 PMCID: PMC8101460 DOI: 10.1091/mbc.e20-04-0227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human fibroblasts can switch between lamellipodia-dependent and -independent migration mechanisms on two-dimensional surfaces and in three-dimensional (3D) matrices. RhoA GTPase activity governs the switch from low-pressure lamellipodia to high-pressure lobopodia in response to the physical structure of the 3D matrix. Inhibiting actomyosin contractility in these cells reduces intracellular pressure and reverts lobopodia to lamellipodial protrusions via an unknown mechanism. To test the hypothesis that high pressure physically prevents lamellipodia formation, we manipulated pressure by activating RhoA or changing the osmolarity of the extracellular environment and imaged cell protrusions. We find RhoA activity inhibits Rac1-mediated lamellipodia formation through two distinct pathways. First, RhoA boosts intracellular pressure by increasing actomyosin contractility and water influx but acts upstream of Rac1 to inhibit lamellipodia formation. Increasing osmotic pressure revealed a second RhoA pathway, which acts through nonmuscle myosin II (NMII) to disrupt lamellipodia downstream from Rac1 and elevate pressure. Interestingly, Arp2/3 inhibition triggered a NMII-dependent increase in intracellular pressure, along with lamellipodia disruption. Together, these results suggest that actomyosin contractility and water influx are coordinated to increase intracellular pressure, and RhoA signaling can inhibit lamellipodia formation via two distinct pathways in high-pressure cells.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Donna McKeon
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Kimheak Sao
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Nicole M Naranjo
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan J Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
33
|
Lee HP, Alisafaei F, Adebawale K, Chang J, Shenoy VB, Chaudhuri O. The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. SCIENCE ADVANCES 2021; 7:7/2/eabd4058. [PMID: 33523987 PMCID: PMC7793582 DOI: 10.1126/sciadv.abd4058] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/18/2020] [Indexed: 05/24/2023]
Abstract
Cell migration in confining microenvironments is limited by the ability of the stiff nucleus to deform through pores when migration paths are preexisting and elastic, but how cells generate these paths remains unclear. Here, we reveal a mechanism by which the nucleus mechanically generates migration paths for mesenchymal stem cells (MSCs) in confining microenvironments. MSCs migrate robustly in nanoporous, confining hydrogels that are viscoelastic and plastic but not in hydrogels that are more elastic. To migrate, MSCs first extend thin protrusions that widen over time because of a nuclear piston, thus opening up a migration path in a confining matrix. Theoretical modeling and experiments indicate that the nucleus pushing into the protrusion activates mechanosensitive ion channels, leading to an influx of ions that increases osmotic pressure, which outcompetes hydrostatic pressure to drive protrusion expansion. Thus, instead of limiting migration, the nucleus powers migration by generating migration paths.
Collapse
Affiliation(s)
- Hong-Pyo Lee
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Farid Alisafaei
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kolade Adebawale
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Julie Chang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Vivek B Shenoy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Tien J, Ghani U, Dance YW, Seibel AJ, Karakan MÇ, Ekinci KL, Nelson CM. Matrix Pore Size Governs Escape of Human Breast Cancer Cells from a Microtumor to an Empty Cavity. iScience 2020; 23:101673. [PMID: 33163933 PMCID: PMC7599434 DOI: 10.1016/j.isci.2020.101673] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 02/03/2023] Open
Abstract
How the extracellular matrix (ECM) affects the progression of a localized tumor to invasion of the ECM and eventually to vascular dissemination remains unclear. Although many studies have examined the role of the ECM in early stages of tumor progression, few have considered the subsequent stages that culminate in intravasation. In the current study, we have developed a three-dimensional (3D) microfluidic culture system that captures the entire process of invasion from an engineered human micro-tumor of MDA-MB-231 breast cancer cells through a type I collagen matrix and escape into a lymphatic-like cavity. By varying the physical properties of the collagen, we have found that MDA-MB-231 tumor cells invade and escape faster in lower-density ECM. These effects are mediated by the ECM pore size, rather than by the elastic modulus or interstitial flow speed. Our results underscore the importance of ECM structure in the vascular escape of human breast cancer cells.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA
- Corresponding author
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yoseph W. Dance
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Alex J. Seibel
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - M. Çağatay Karakan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Kamil L. Ekinci
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Celeste M. Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08554, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08554, USA
- Corresponding author
| |
Collapse
|
35
|
Shinsato Y, Doyle AD, Li W, Yamada KM. Direct comparison of five different 3D extracellular matrix model systems for characterization of cancer cell migration. Cancer Rep (Hoboken) 2020; 3:e1257. [PMID: 33085847 PMCID: PMC7941507 DOI: 10.1002/cnr2.1257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) in vitro model systems can bridge the gap between regular two-dimensional cell culture and whole-animal studies. Analyses of cancer cell migration and invasion increasingly use differing 3D systems, which may produce conflicting findings. AIMS We directly compared different 3D extracellular matrix systems for studying cancer cell migration/invasion by analyzing cell morphologies and quantifying aspects of cell migration including speed and directional persistence using automated computer-based cell tracking. METHODS AND RESULTS We performed direct comparisons of five different 3D extracellular matrix cell culture systems using both HT1080 fibrosarcoma and MDA-MB-231 breast carcinoma cell lines. The reconstituted 3D systems included two types of collagen hydrogel and tissue matrix gel (TMG) vs cell-derived matrices extracted from cultured primary human or cancer-associated fibroblasts. The fibrillar matrix architecture of these systems differed. 3D rat tail collagen and TMG matrices had short, randomly oriented collagen fibrils; bovine collagen had long, larger fibril bundles; and the cell-derived matrices were strongly oriented. HT1080 cells displayed rounded morphologies in all three reconstituted 3D matrices but became spindle shaped in the two cell-derived matrices. MDA-MB-231 cell morphologies were elongated in all matrices. Quantitative measures of cell migration parameters differed markedly between the different types of 3D matrix. Comparing the reconstituted matrices, cells migrated the most rapidly and furthest in TMG. Comparing TMG with cell-derived matrices, cells migrated more efficiently in the cell-derived matrices. The most notable differences were in directional persistence of migration, which was greatest in the two cell-derived matrices. CONCLUSION The morphologies of matrix fibrils and cell shape, and particularly the efficiency and directionality of cell migration, differed substantially depending on the type of 3D matrix system. We suggest that it is important to employ the 3D model system that most closely resembles the matrix environment being studied for analyses of cancer cell migration and invasion.
Collapse
Affiliation(s)
- Yoshinari Shinsato
- Cell Biology Section, National Institute of Dental and Craniofacial ResearchNational Institutes of HealthBethesdaMarylandUSA
| | - Andrew D. Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial ResearchNational Institutes of HealthBethesdaMarylandUSA
| | - Weimin Li
- Department of Biomedical Sciences, Elson S. Floyd College of MedicineWashington State UniversitySpokaneWashingtonUSA
| | - Kenneth M. Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial ResearchNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
36
|
Liao L, Zhang L, Yang M, Wang X, Huang W, Wu X, Pan H, Yuan L, Huang W, Wu Y, Guan J. Expression profile of SYNE3 and bioinformatic analysis of its prognostic value and functions in tumors. J Transl Med 2020; 18:355. [PMID: 32948197 PMCID: PMC7501639 DOI: 10.1186/s12967-020-02521-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Background Spectrin repeat containing nuclear envelope family member 3 (SYNE3) encodes an essential component of the linker of the cytoskeleton and nucleoskeleton (LINC) complex, namely nesprin-3. In a tumor, invasiveness and metastasis rely on the integrity of the LINC complex, while the role of SYNE3/nesprin-3 in cancer is rarely studied. Methods Here, we explored the expression pattern, prognostic value, and related mechanisms of SYNE3 through both experimental and bioinformatic methods. We first detected SYNE3 in BALB/c mice, normal human tissues, and the paired tumor tissues, then used bioinformatics databases to verify our results. We further analyzed the prognostic value of SYNE3. Next, we predicted miRNA targeting SYNE3 and built a competing endogenous RNA (ceRNA) network and a transcriptional network by analyzing data from the cancer genome atlas (TCGA) database. Interacting genes of SYNE3 were predicted, and we further performed GO and KEGG enrichment analysis on these genes. Besides, the relationship between SYNE3 and immune infiltration was also investigated. Results SYNE3 exhibited various expressions in different tissues, mainly located on nuclear and in cytoplasm sometimes. SYNE3 expression level had prognostic value in tumors, possibly by stabilizing nucleus, promoting tumor cells apoptosis, and altering tumor microenvironment. Additionally, we constructed a RP11-2B6.2-miR-149-5p-/RP11-67L2.2-miR-330-3p-SYNE3 ceRNA network and a SATB1-miR-149-5p-SYNE3 transcriptional network in lung adenocarcinoma to support the tumor-suppressing role of SYNE3. Conclusions Our study explored novel anti-tumor functions and mechanisms of SYNE3, which might be useful for future cancer therapy.
Collapse
Affiliation(s)
- Liwei Liao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mi Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xixi Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Pan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Yuan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenqi Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuting Wu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Mierke CT. Mechanical Cues Affect Migration and Invasion of Cells From Three Different Directions. Front Cell Dev Biol 2020; 8:583226. [PMID: 33043017 PMCID: PMC7527720 DOI: 10.3389/fcell.2020.583226] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Cell migration and invasion is a key driving factor for providing essential cellular functions under physiological conditions or the malignant progression of tumors following downward the metastatic cascade. Although there has been plentiful of molecules identified to support the migration and invasion of cells, the mechanical aspects have not yet been explored in a combined and systematic manner. In addition, the cellular environment has been classically and frequently assumed to be homogeneous for reasons of simplicity. However, motility assays have led to various models for migration covering only some aspects and supporting factors that in some cases also include mechanical factors. Instead of specific models, in this review, a more or less holistic model for cell motility in 3D is envisioned covering all these different aspects with a special emphasis on the mechanical cues from a biophysical perspective. After introducing the mechanical aspects of cell migration and invasion and presenting the heterogeneity of extracellular matrices, the three distinct directions of cell motility focusing on the mechanical aspects are presented. These three different directions are as follows: firstly, the commonly used invasion tests using structural and structure-based mechanical environmental signals; secondly, the mechano-invasion assay, in which cells are studied by mechanical forces to migrate and invade; and thirdly, cell mechanics, including cytoskeletal and nuclear mechanics, to influence cell migration and invasion. Since the interaction between the cell and the microenvironment is bi-directional in these assays, these should be accounted in migration and invasion approaches focusing on the mechanical aspects. Beyond this, there is also the interaction between the cytoskeleton of the cell and its other compartments, such as the cell nucleus. In specific, a three-element approach is presented for addressing the effect of mechanics on cell migration and invasion by including the effect of the mechano-phenotype of the cytoskeleton, nucleus and the cell's microenvironment into the analysis. In precise terms, the combination of these three research approaches including experimental techniques seems to be promising for revealing bi-directional impacts of mechanical alterations of the cellular microenvironment on cells and internal mechanical fluctuations or changes of cells on the surroundings. Finally, different approaches are discussed and thereby a model for the broad impact of mechanics on cell migration and invasion is evolved.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
38
|
Seetharaman S, Etienne-Manneville S. Cytoskeletal Crosstalk in Cell Migration. Trends Cell Biol 2020; 30:720-735. [DOI: 10.1016/j.tcb.2020.06.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/15/2023]
|
39
|
Gerlitz G. The Emerging Roles of Heterochromatin in Cell Migration. Front Cell Dev Biol 2020; 8:394. [PMID: 32528959 PMCID: PMC7266953 DOI: 10.3389/fcell.2020.00394] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Cell migration is a key process in health and disease. In the last decade an increasing attention is given to chromatin organization in migrating cells. In various types of cells induction of migration leads to a global increase in heterochromatin levels. Heterochromatin is required for optimal cell migration capabilities, since various interventions with heterochromatin formation impeded the migration rate of numerous cell types. Heterochromatin supports the migration process by affecting both the mechanical properties of the nucleus as well as the genetic processes taking place within it. Increased heterochromatin levels elevate nuclear rigidity in a manner that allows faster cell migration in 3D environments. Condensed chromatin and a more rigid nucleus may increase nuclear durability to shear stress and prevent DNA damage during the migration process. In addition, heterochromatin reorganization in migrating cells is important for induction of migration-specific transcriptional plan together with inhibition of many other unnecessary transcriptional changes. Thus, chromatin organization appears to have a key role in the cellular migration process.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Department of Molecular Biology and Ariel Center for Applied Cancer Research, Faculty of Life Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
40
|
Cell matrix adhesion in cell migration. Essays Biochem 2020; 63:535-551. [PMID: 31444228 DOI: 10.1042/ebc20190012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance and wound healing. In order for cells to migrate, they must interact with their environment using adhesion receptors, such as integrins, and form specialized adhesion complexes that mediate responses to different extracellular cues. In this review, we discuss the role of integrin adhesion complexes (IACs) in cell migration, highlighting the layers of regulation that are involved, including intracellular signalling cascades, mechanosensing and reciprocal feedback to the extracellular environment. We also discuss the role of IACs in extracellular matrix remodeling and how they impact upon cell migration.
Collapse
|
41
|
Diverse roles of non-muscle myosin II contractility in 3D cell migration. Essays Biochem 2020; 63:497-508. [PMID: 31551323 DOI: 10.1042/ebc20190026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 01/13/2023]
Abstract
All is flux, nothing stays still. Heraclitus of Ephesus' characterization of the universe holds true for cells within animals and for proteins within cells. In this review, we examine the dynamics of actin and non-muscle myosin II within cells, and how their dynamics power the movement of cells within tissues. The 3D environment that migrating cells encounter along their path also changes over time, and cells can adopt various mechanisms of motility, depending on the topography, mechanics and chemical composition of their surroundings. We describe the differential spatio-temporal regulation of actin and myosin II-mediated contractility in mesenchymal, lobopodial, amoeboid, and swimming modes of cell migration. After briefly reviewing the biochemistry of myosin II, we discuss the role actomyosin contractility plays in the switch between modes of 3D migration that cells use to adapt to changing environments.
Collapse
|
42
|
Guzman A, Avard RC, Devanny AJ, Kweon OS, Kaufman LJ. Delineating the role of membrane blebs in a hybrid mode of cancer cell invasion in three-dimensional environments. J Cell Sci 2020; 133:jcs236778. [PMID: 32193332 PMCID: PMC7197870 DOI: 10.1242/jcs.236778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
The study of cancer cell invasion in 3D environments in vitro has revealed a variety of invasive modes, including amoeboid migration, characterized by primarily round cells that invade in a protease- and adhesion-independent manner. Here, we delineate a contractility-dependent migratory mode of primarily round breast cancer cells that is associated with extensive integrin-mediated extracellular matrix (ECM) reorganization that occurs at membrane blebs, with bleb necks sites of integrin clustering and integrin-dependent ECM alignment. We show that the spatiotemporal distribution of blebs and their utilization for ECM reorganization is mediated by functional β1 integrin receptors and other components of focal adhesions. Taken together, the work presented here characterizes a migratory mode of primarily round cancer cells in complex 3D environments and reveals a fundamentally new function for membrane blebs in cancer cell invasion.
Collapse
Affiliation(s)
- Asja Guzman
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Rachel C Avard
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | - Oh Sang Kweon
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
43
|
Doolin MT, Moriarty RA, Stroka KM. Mechanosensing of Mechanical Confinement by Mesenchymal-Like Cells. Front Physiol 2020; 11:365. [PMID: 32390868 PMCID: PMC7193100 DOI: 10.3389/fphys.2020.00365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) and tumor cells have the unique capability to migrate out of their native environment and either home or metastasize, respectively, through extremely heterogeneous environments to a distant location. Once there, they can either aid in tissue regrowth or impart an immunomodulatory effect in the case of MSCs, or form secondary tumors in the case of tumor cells. During these journeys, cells experience physically confining forces that impinge on the cell body and the nucleus, ultimately causing a multitude of cellular changes. Most drastically, confining individual MSCs within hydrogels or confining monolayers of MSCs within agarose wells can sway MSC lineage commitment, while applying a confining compressive stress to metastatic tumor cells can increase their invasiveness. In this review, we seek to understand the signaling cascades that occur as cells sense confining forces and how that translates to behavioral changes, including elongated and multinucleated cell morphologies, novel migrational mechanisms, and altered gene expression, leading to a unique MSC secretome that could hold great promise for anti-inflammatory treatments. Through comparison of these altered behaviors, we aim to discern how MSCs alter their lineage selection, while tumor cells may become more aggressive and invasive. Synthesizing this information can be useful for employing MSCs for therapeutic approaches through systemic injections or tissue engineered grafts, and developing improved strategies for metastatic cancer therapies.
Collapse
Affiliation(s)
- Mary T. Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Rebecca A. Moriarty
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Maryland Biophysics Program, University of Maryland, College Park, College Park, MD, United States
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
44
|
Leal-Egaña A, Balland M, Boccaccini AR. Re-engineering Artificial Neoplastic Milieus: Taking Lessons from Mechano- and Topobiology. Trends Biotechnol 2020; 38:142-153. [DOI: 10.1016/j.tibtech.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
|
45
|
Moure A, Gomez H. Dual role of the nucleus in cell migration on planar substrates. Biomech Model Mechanobiol 2020; 19:1491-1508. [PMID: 31907682 DOI: 10.1007/s10237-019-01283-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/21/2019] [Indexed: 01/09/2023]
Abstract
Cell migration is essential to sustain life. There have been significant advances in the understanding of the mechanisms that control cell crawling, but the role of the nucleus remains poorly understood. The nucleus exerts a tight control of cell migration in 3D environments, but its influence in 2D migration on planar substrates remains unclear. Here, we study the role of the cell nucleus in 2D cell migration using a computational model of fish keratocytes. Our results indicate that the apparently minor role played by the nucleus emerges from two antagonist effects: While the nucleus modifies the spatial distributions of actin and myosin in a way that reduces cell velocity (e.g., the nucleus displaces myosin to the sides and front of the cell), its mechanical connection with the cytoskeleton alters the intracellular stresses promoting cell migration. Overall, the favorable effect of the nucleus-cytoskeleton connection prevails, which may explain why regular cells usually move faster than enucleated cells.
Collapse
Affiliation(s)
- Adrian Moure
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
46
|
Sneider A, Hah J, Wirtz D, Kim DH. Recapitulation of molecular regulators of nuclear motion during cell migration. Cell Adh Migr 2019; 13:50-62. [PMID: 30261154 PMCID: PMC6527386 DOI: 10.1080/19336918.2018.1506654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 01/12/2023] Open
Abstract
Cell migration is a highly orchestrated cellular event that involves physical interactions of diverse subcellular components. The nucleus as the largest and stiffest organelle in the cell not only maintains genetic functionality, but also actively changes its morphology and translocates through dynamic formation of nucleus-bound contractile stress fibers. Nuclear motion is an active and essential process for successful cell migration and nucleus self-repairs in response to compression and extension forces in complex cell microenvironment. This review recapitulates molecular regulators that are crucial for nuclear motility during cell migration and highlights recent advances in nuclear deformation-mediated rupture and repair processes in a migrating cell.
Collapse
Affiliation(s)
- Alexandra Sneider
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jungwon Hah
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
47
|
A Glance at the Nuclear Envelope Spectrin Repeat Protein 3. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1651805. [PMID: 31828088 PMCID: PMC6886330 DOI: 10.1155/2019/1651805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/14/2019] [Indexed: 12/27/2022]
Abstract
Nuclear envelope spectrin repeat protein 3 (nesprin-3) is an evolutionarily-conserved structural protein, widely-expressed in vertebrate cells. Along with other nesprin family members, nesprin-3 acts as an essential component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Naturally, nesprin-3 shares many functions with LINC, including the localization of various cellular structures and bridging of the nucleoskeleton and cytoskeleton, observed in vitro. When nesprin-3 was knocked down in vivo, using zebrafish and mouse models, however, the animals were minimally affected. This paradoxical observation should not limit the physiological importance of nesprin-3, as recently, nesprin-3 has reignited the interest of the research community in studies on cancer cells migration. Moreover, nesprin-3 also plays an active role in certain developmental conditions such as adipogenesis and spermatogenesis, although more studies are needed. Meanwhile, the various protein binding partners of nesprin-3 should also be emphasized, as they are necessary for maintaining the structure of nesprin-3 and enabling it to carry out its various physiological and pathological functions. Nesprin-3 promises to further our understanding of these complex cellular events. Therefore, this review will focus on nesprin-3, examining it from a genetic, structural, and functional perspective. The final part of the review will in turn address the limitations of existing research and the future perspectives for the study of nesprin-3.
Collapse
|
48
|
De la Fuente IM, Bringas C, Malaina I, Regner B, Pérez-Samartín A, Boyano MD, Fedetz M, López JI, Pérez-Yarza G, Cortes JM, Sejnowski T. The nucleus does not significantly affect the migratory trajectories of amoeba in two-dimensional environments. Sci Rep 2019; 9:16369. [PMID: 31704992 PMCID: PMC6841717 DOI: 10.1038/s41598-019-52716-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
For a wide range of cells, from bacteria to mammals, locomotion movements are a crucial systemic behavior for cellular life. Despite its importance in a plethora of fundamental physiological processes and human pathologies, how unicellular organisms efficiently regulate their locomotion system is an unresolved question. Here, to understand the dynamic characteristics of the locomotion movements and to quantitatively study the role of the nucleus in the migration of Amoeba proteus we have analyzed the movement trajectories of enucleated and non-enucleated amoebas on flat two-dimensional (2D) surfaces using advanced non-linear physical-mathematical tools and computational methods. Our analysis shows that both non-enucleated and enucleated amoebas display the same kind of dynamic migration structure characterized by highly organized data sequences, super-diffusion, non-trivial long-range positive correlations, persistent dynamics with trend-reinforcing behavior, and move-step fluctuations with scale invariant properties. Our results suggest that the presence of the nucleus does not significantly affect the locomotion of amoeba in 2D environments.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, Murcia, 30100, Spain.
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Carlos Bringas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Iker Malaina
- Department of Applied Mathematics, Statistics and Operational Research, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | | | - Alberto Pérez-Samartín
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - María Fedetz
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18100, Spain
| | - José I López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, University of the Basque Country, UPV/EHU, Barakaldo, 48903, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, 48903, Spain
- IKERBASQUE: The Basque Foundation for Science, Bilbao, 48013, Spain
| | - Terrence Sejnowski
- Computational Neurobiology Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California, 92037, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, 92093, USA
| |
Collapse
|
49
|
Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Semin Cell Dev Biol 2019; 102:122-131. [PMID: 31630997 DOI: 10.1016/j.semcdb.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
The physiological function of actin filaments is challenging to dissect because of the pleiotropic impact of global disruption of the actin cytoskeleton. Tropomyosin isoforms have provided a unique opportunity to address this issue. A substantial fraction of actin filaments in animal cells consist of co-polymers of actin with specific tropomyosin isoforms which determine the functional capacity of the filament. Genetic manipulation of the tropomyosins has revealed isoform specific roles and identified the physiological function of the different actin filament types based on their tropomyosin isoform composition. Surprisingly, there is remarkably little redundancy between the tropomyosins resulting in highly penetrant impacts of both ectopic overexpression and knockout of isoforms. The physiological roles of the tropomyosins cover a broad range from development and morphogenesis to cell migration and specialised tissue function and human diseases.
Collapse
|
50
|
Abstract
Cell migration is essential for physiological processes as diverse as development, immune defence and wound healing. It is also a hallmark of cancer malignancy. Thousands of publications have elucidated detailed molecular and biophysical mechanisms of cultured cells migrating on flat, 2D substrates of glass and plastic. However, much less is known about how cells successfully navigate the complex 3D environments of living tissues. In these more complex, native environments, cells use multiple modes of migration, including mesenchymal, amoeboid, lobopodial and collective, and these are governed by the local extracellular microenvironment, specific modalities of Rho GTPase signalling and non-muscle myosin contractility. Migration through 3D environments is challenging because it requires the cell to squeeze through complex or dense extracellular structures. Doing so requires specific cellular adaptations to mechanical features of the extracellular matrix (ECM) or its remodelling. In addition, besides navigating through diverse ECM environments and overcoming extracellular barriers, cells often interact with neighbouring cells and tissues through physical and signalling interactions. Accordingly, cells need to call on an impressively wide diversity of mechanisms to meet these challenges. This Review examines how cells use both classical and novel mechanisms of locomotion as they traverse challenging 3D matrices and cellular environments. It focuses on principles rather than details of migratory mechanisms and draws comparisons between 1D, 2D and 3D migration.
Collapse
Affiliation(s)
- Kenneth M Yamada
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|