1
|
Fu Y, Rui X, Zhu S, Guo C, Li H, Pan Z, Wu X, He W. Research status of regenerative difficulties after central nervous system injury. Regen Ther 2025; 29:493-498. [PMID: 40390864 PMCID: PMC12088777 DOI: 10.1016/j.reth.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 05/21/2025] Open
Abstract
Multiple studies have shown that permanent functional disabilities caused after nerve damage are mainly due to the limited ability of damaged neurons in the central nervous system (CNS) to regenerate axons and re-establish functional connections. Most axons in the CNS of adult mammals cannot reactivate their intrinsic growth program after injury, making axonal regeneration difficult when damaged. This article provides a systematic review of the response processes following CNS injury and the factors affecting repair and regeneration, focusing on the molecular mechanisms that regulate the regeneration of damaged axons, in hopes of offering new insights for the repair of CNS injuries.
Collapse
Affiliation(s)
- Yunxia Fu
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Xi Rui
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Shumin Zhu
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Chenqu Guo
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Haoyang Li
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Zhenhao Pan
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Xuanhao Wu
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Wenpeng He
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Ding Y, Yang H, Gao J, Tang C, Peng YY, Ma XM, Li S, Wang HY, Lu XM, Wang YT. Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration. Mol Cell Biochem 2025; 480:3399-3411. [PMID: 39841406 DOI: 10.1007/s11010-025-05209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/04/2025] [Indexed: 01/23/2025]
Abstract
Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria. Mitochondrial transport proteins regulate the positioning and movement of mitochondria to maintain normal energy metabolism. Recent studies have shown a close relationship between mitochondrial transport proteins and synaptic plasticity, providing a new direction for the study of adaptive changes in the central nervous system and new targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huan Yang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xin-Mei Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
3
|
Fu H, Cheng J, Hu L, Heng BC, Zhang X, Deng X, Liu Y. Mitochondria-targeting materials and therapies for regenerative engineering. Biomaterials 2025; 316:123023. [PMID: 39708774 DOI: 10.1016/j.biomaterials.2024.123023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
The hemostatic, inflammatory, proliferative, and remodeling phases of healing require precise spatiotemporal coordination and orchestration of numerous biological processes. As the primary energy generators in the cell, mitochondria play multifunctional roles in regulating metabolism, stress reactions, immunity, and cell density during the process of tissue regeneration. Mitochondrial dynamics involves numerous crucial processes, fusion, fission, autophagy, and translocation, which are all necessary for preserving mitochondrial function, distributing energy throughout cells, and facilitating cellular signaling. Tissue regeneration is specifically associated with mitochondrial dynamics due to perturbations of Ca2+, H2O2 and ROS levels, which can result in mitochondrial malfunction. Increasing evidence from multiple models suggests that clinical interventions or medicinal drugs targeting mitochondrial dynamics could be a promising approach. This review highlights significant advances in the understanding of mitochondrial dynamics in tissue regeneration, with specific attention on mitochondria-targeting biomaterials that accelerate multiple tissues' regeneration by regulating mitochondrial metabolism. The innovations in nanomaterials and nanosystems enhance mitochondrial-targeting therapies are critically examined with the prospects of modulating mitochondrial dynamics for new therapies in regenerative engineering.
Collapse
Affiliation(s)
- Hongying Fu
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Jingrong Cheng
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Le Hu
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Xuliang Deng
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Yang Liu
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| |
Collapse
|
4
|
Zheng Y, Yang J, Li X, Qi L, Zheng Z, Kong J, Zhang G, Guo Y. Mitochondria at the crossroads: Quality control mechanisms in neuronal senescence and neurodegeneration. Neurobiol Dis 2025; 208:106862. [PMID: 40049539 DOI: 10.1016/j.nbd.2025.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 04/13/2025] Open
Abstract
Mitochondria play a central role in essential cellular processes, including energy metabolism, biosynthesis of metabolic substances, calcium ion storage, and regulation of cell death. Maintaining mitochondrial quality control is critical for preserving mitochondrial health and ensuring cellular function. Given their high energy demands, neurons depend on effective mitochondrial quality control to sustain their health and functionality. Neuronal senescence, characterized by a progressive decline in structural integrity and function, is a hallmark of neurodegenerative diseases. In senescent neurons, abnormal mitochondrial morphology, functional impairments, increased reactive oxygen species production and disrupted quality control mechanisms are frequently observed. Understanding the pathological changes in neuronal structure, exploring the intricate relationship between mitochondrial quality control and neuronal health, and leveraging mitochondrial quality control interventions provide a promising foundation for addressing age-related neurodegenerative diseases. This review highlights key mitochondrial quality control, including biogenesis, dynamics, the ubiquitin-proteasome system, autophagy pathways, mitochondria-derived vesicles, and inter-organelle communication, while discussing their roles in neuronal senescence and potential therapeutic strategies. These insights may pave the way for innovative treatments to mitigate neurodegenerative disorders.
Collapse
Affiliation(s)
- Yifei Zheng
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiahui Yang
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Xuanyao Li
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Linjie Qi
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Zhuo Zheng
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China.
| | - Ying Guo
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China; Department of Pathology, Hebei North University, Zhangjiakou, Hebei, China; Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, Hebei, China.
| |
Collapse
|
5
|
Ma Y, Song R, Duan C. Mitochondrial quality control and transfer communication in neurological disorders and neuroinflammation. Front Immunol 2025; 16:1542369. [PMID: 40356918 PMCID: PMC12066325 DOI: 10.3389/fimmu.2025.1542369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Mitochondria, as the primary energy factories of cells, play a pivotal role in maintaining nervous system function and regulating inflammatory responses. The balance of mitochondrial quality control is critical for neuronal health, and disruptions in this balance are often implicated in the pathogenesis of various neurological disorders. Mitochondrial dysfunction not only exacerbates energy deficits but also triggers neuroinflammation through the release of damage-associated molecular patterns (DAMPs), such as mitochondrial DNA (mtDNA) and reactive oxygen species (ROS). This review examines the mechanisms and recent advancements in mitochondrial quality control in neurological diseases, focusing on processes such as mitochondrial fusion and fission, mitophagy, biogenesis, and protein expression regulation. It further explores the role of mitochondrial dysfunction and subsequent inflammatory cascades in conditions such as ischemic and hemorrhagic stroke, neurodegenerative diseases and brain tumors. Additionally, emerging research highlights the significance of mitochondrial transfer mechanisms, particularly intercellular transfer between neurons and glial cells, as a potential strategy for mitigating inflammation and promoting cellular repair. This review provides insights into the molecular underpinnings of neuroinflammatory pathologies while underscoring the translational potential of targeting mitochondrial quality control for therapeutic development.
Collapse
Affiliation(s)
| | | | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Zhang K, Zhang W, Zhang L, Hou X, Tian R, Hu Z, Yin L, Hu Z. OPA1 mutations in dominant optic atrophy: domain-specific defects in mitochondrial fusion and apoptotic regulation. J Transl Med 2025; 23:471. [PMID: 40275276 PMCID: PMC12020257 DOI: 10.1186/s12967-025-06471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Autosomal dominant optic atrophy (ADOA), a leading common inherited optic neuropathy, arises from progressive retinal ganglion cell degeneration, often linked to OPA1 mutations. OPA1, a mitochondrial GTPase, regulates mitochondrial fusion, crista structure, and apoptosis. While GTPase-related dysfunction is well-studied, the role of other OPA1 domains in ADOA pathology remains unclear. METHODS To investigate ADOA-linked OPA1 mutations, we assessed mitochondrial morphology, membrane potential, cytochrome c release, and cell viability in primary cortical neurons and N2a cells expressing OPA1 wild-type or mutant constructs. RNA sequencing and structural predictions (SWISS-MODEL) provided insights into molecular pathways and structural impacts. RESULTS Two ADOA-associated mutations were characterized: V465F (GTPase β-fold) and V560F (BSE α-helix). Both mutations impaired mitochondrial fusion and cell survival under apoptotic stimuli. Notably, the BSE-located V560F mutation caused greater deficits in membrane potential maintenance, earlier apoptosis, and distinct molecular pathway changes compared to V465F. CONCLUSIONS This study highlights the domain-specific impacts of OPA1 mutations on mitochondrial function and ADOA pathology, revealing unique roles of the BSE domain in apoptosis regulation and mitochondrial integrity. These findings provide insights into ADOA mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Kexuan Zhang
- Department of Critical Care Medicine, Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, Hunan, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Wenqing Zhang
- Department of Critical Care Medicine, Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, Hunan, China
| | - Lin Zhang
- Department of Critical Care Medicine, Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, Hunan, China
| | - Xiaorong Hou
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Runyi Tian
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Lili Yin
- Department of Ophthalmology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
- Department of Ophthalmology, Shanghai First People's Hospital), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Department of Ophthalmology, Zunyi First People's Hospital, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Zhonghua Hu
- Department of Critical Care Medicine, Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, Hunan, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
7
|
Jiang Q, Xue S, Pan X, Yu T, Wei X, Li L, Qi C, Shi W, Ren Z, Hu D, Fu H. Differential changes in the microglial transcriptome between neonatal and adult mice after spinal cord injury. Sci Rep 2025; 15:13708. [PMID: 40258965 PMCID: PMC12012053 DOI: 10.1038/s41598-025-98429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/11/2025] [Indexed: 04/23/2025] Open
Abstract
Spinal cord injury (SCI) remains a significant therapeutic challenge, lacking effective treatment options. Related studies have found that neonatal microglia are more effective than adult microglia in promoting the recovery of SCI, but the reason why neonatal, not adult, microglia are more conducive to SCI recovery is not clear, the differences of gene expression and pathways between them are still worth exploring. Therefore, we examined changes in the microglial transcriptome after SCI in neonatal and adult mice. We identified hub genes or pathways that exhibited significant differential expression between the two groups. Four Gene sets were established for further analysis, named Gene set 1, Gene set 2, Gene set 3, Gene set 4, respectively. GO analysis revealed enrichment in categories critical for injury repair, including DNA metabolism, replication, recombination, meiotic cell cycle progression, regulation of cell-cell adhesion, megakaryocyte and endothelial development, modulation of the neuroinflammatory response, endocytosis, and regulation of cytokine production and cell migration. KEGG analysis revealed enrichment in pathways critical for various cellular processes, including the p53, TNF, PI3K-AKT, PPAR and B cell receptor signaling pathway, axon guidance, cytokine-cytokine receptor interaction. PPI and TF-hub gene-microRNA networks were constructed to elucidate the underlying gene regulatory mechanisms. Additionally, drug prediction was performed to identify potential therapeutic candidates. Finally, 11 hub genes (Chek1, RRM2, Lyve1, Mboat1, Clec4a3, Ccnd1, Cdk6, Zeb1, Igf1, Pparg, and Cd163) were selected from four Gene sets for further validation using qRT-PCR. We identified candidate genes and pathways involved in microglial transcriptome heterogeneity after SCI in neonatal and adult mice. These findings provide valuable insights into potential therapeutic targets for neonatal microglia in the treatment of SCI.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Qingdao Medical College of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Shiyuan Xue
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Qingdao Medical College of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Xiaojing Pan
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Xinyi Wei
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Qingdao Medical College of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Liping Li
- Department of Bone Surgery, Qingdao Central Hospital, Qingdao, 266000, China
| | - Chao Qi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Weipeng Shi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Qingdao Medical College of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zhongkai Ren
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Die Hu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China.
| | - Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
8
|
Kavyashree S, Harithpriya K, Ramkumar KM. Miro1- a key player in β-cell function and mitochondrial dynamics under diabetes mellitus. Mitochondrion 2025; 84:102039. [PMID: 40204078 DOI: 10.1016/j.mito.2025.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Mitochondrial health is crucial for the survival and function of β-cells, preserving glucose homeostasis and effective insulin production. Miro1, a mitochondrial Rho GTPase1 protein, plays an essential role in maintaining thequality of mitochondria by regulating calcium homeostasis and mitophagy. In this review, we aim to explore the dysfunction of Miro1 in type 2 diabetes mellitus (T2DM) and its contribution to impaired Ca2+ signaling, which increases oxidative stress in β-cells. This dysfunction is the hallmark of T2DM pathogenesis, leading to insufficient insulin production and poor glycemic control. Additionally, we discuss the role of Miro1 in modulating insulin secretion and inflammation, highlighting its effect on modulating key signaling cascades in β-cells. Altogether, enhancing Miro1 function and activity could alleviate mitochondrial dysfunction, reducing oxidative stress-mediated damage, and improving pancreatic β-cell survival. Targeting Miro1 with small molecules or gene-editing approaches could provide effective strategies for restoring cell function and insulin secretion in diabetic individuals. Exploring the deeper knowledge of Miro1 functions and interactions could lead to novel therapeutic advances in T2DM management.
Collapse
Affiliation(s)
- Srikanth Kavyashree
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 210 Tamil Nadu, India
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 210 Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 210 Tamil Nadu, India.
| |
Collapse
|
9
|
Pal-Ghosh S, Datta-Majumdar H, Datta S, Dimri S, Hally J, Wehmeyer H, Chen Z, Watsky M, Ma JX, Liang W, Stepp MA. Corneal epithelial cells upregulate macropinocytosis to engulf metabolically active axonal mitochondria released by injured axons. Ocul Surf 2025; 37:173-188. [PMID: 40180030 DOI: 10.1016/j.jtos.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE To determine the mechanisms used to internalize mitochondria by corneal epithelial cells after in vivo corneal trephine injury and in vitro in corneal epithelial cells. METHODS Male and female mice were subjected to trephine injury and euthanized immediately, 6, and 24 h after injury. Macropinocytosis was quantified in vivo using 70 kD fluorescent dextran. Mitochondrial content was assessed by immunofluorescence and metabolic activity quantified by Seahorse assay immediately and 6 h after injury. In vitro experiments using human corneal and limbal epithelial (HCLE) cells and isolated mitochondria were performed to assess mitochondrial transfer in the presence of the gap junction inhibitor 18α-glycyrrhetinc acid and the macropincytosis inhibitor ethylisopropylamiloride. RESULTS Mitochondria accumulate within apical epithelial cell layers within minutes of trephine injury. Macropinocytosis also increases within minutes of trephine injury. Oxygen Consumption Rates increase in the corneal epithelium 6 h after trephine injury in males and females. Inhibiting gap junctions increases mitochondrial engulfment while inhibiting macropinocytosis prevents engulfment of mitochondria by corneal epithelial cells in vitro. CONCLUSIONS Molecules released by injured cells and severed axons induce macropinocytosis in corneal epithelial cells within minutes of trephine injury. An increase in oxygen consumption rate in the corneal epithelium after trephine injury indicates that axonal mitochondria can evade lysosomal degradation for at least 6 h. In vitro studies using isolated labeled and unlabeled mitochondria and control and mechanically stressed human corneal epithelial cells confirm the involvement of macropinocytosis in the engulfment of free and vesicle bound mitochondria by corneal epithelial cells.
Collapse
Affiliation(s)
- Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Himani Datta-Majumdar
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Soneha Datta
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Shelly Dimri
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Jordan Hally
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Hugo Wehmeyer
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Zhong Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mitchell Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Wentao Liang
- Department of Biochemistry, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA; Department of Ophthalmology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA.
| |
Collapse
|
10
|
Wang XL, Wang ZY, Chen XH, Cai Y, Hu B. Reprogramming miR-146b-snphb Signaling Activates Axonal Mitochondrial Transport in the Zebrafish M-cell and Facilitates Axon Regeneration After Injury. Neurosci Bull 2025; 41:633-648. [PMID: 39645618 PMCID: PMC11978567 DOI: 10.1007/s12264-024-01329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/06/2024] [Indexed: 12/09/2024] Open
Abstract
Acute mitochondrial damage and the energy crisis following axonal injury highlight mitochondrial transport as an important target for axonal regeneration. Syntaphilin (Snph), known for its potent mitochondrial anchoring action, has emerged as a significant inhibitor of both mitochondrial transport and axonal regeneration. Therefore, investigating the molecular mechanisms that influence the expression levels of the snph gene can provide a viable strategy to regulate mitochondrial trafficking and enhance axonal regeneration. Here, we reveal the inhibitory effect of microRNA-146b (miR-146b) on the expression of the homologous zebrafish gene syntaphilin b (snphb). Through CRISPR/Cas9 and single-cell electroporation, we elucidated the positive regulatory effect of the miR-146b-snphb axis on Mauthner cell (M-cell) axon regeneration at the global and single-cell levels. Through escape response tests, we show that miR-146b-snphb signaling positively regulates functional recovery after M-cell axon injury. In addition, continuous dynamic imaging in vivo showed that reprogramming miR-146b significantly promotes axonal mitochondrial trafficking in the pre-injury and early stages of regeneration. Our study reveals an intrinsic axonal regeneration regulatory axis that promotes axonal regeneration by reprogramming mitochondrial transport and anchoring. This regulation involves noncoding RNA, and mitochondria-associated genes may provide a potential opportunity for the repair of central nervous system injury.
Collapse
Affiliation(s)
- Xin-Liang Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zong-Yi Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xing-Han Chen
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Cai
- First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Bing Hu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
11
|
Karnik A, Joshi A. SARM1: The Checkpoint of Axonal Degeneration in the Nervous System Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04835-3. [PMID: 40097763 DOI: 10.1007/s12035-025-04835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
Axons are metabolically active neuronal segments with well-controlled axonal degeneration and regeneration. External stress or injury displaces this equilibrium toward degeneration leading to axonal dysfunction observed in the pathology of several diseases. The demand and supply matrix of energy at the synapses are maintained by the axonal transport. Nicotinamide adenine dinucleotide (NAD+) is a major energy-driving coenzyme of cells that controls mitochondrial, cytoplasmic, and other organellar energy cycles generating high amounts of adenosine triphosphate (ATP). NAD+ participates in various cellular cycles and is consumed by several enzymes. One of the key enzymes targeting NAD+ is Sterile alpha and TIR motif-containing protein 1 (SARM1) which gets activated in response to external noxious stimuli. SARM1 is an octamer consisting of multiple domains of which the TIR domain governs NAD+ hydrolysis which eventually leads to axonal deficits. Besides its localization in neurons, SARM1 is also present in astrocytes, microglia, and macrophages in which it regulates inflammatory responses associated with disease pathology. SARM1 localization in the outer mitochondrial membrane is responsible for its association with mitochondrial dynamics. SARM1-mediated mitochondrial dysfunction further drives the axonal degeneration associated with peripheral and central nervous system disorders. Several genetic and pharmacological studies highlight the role of SARM1 in axonal degeneration. SARM1 is thus becoming a popular target for preventing axonal degeneration. Several small molecules consisting of isoquinoline, isothiazole, pyridine, and tryptoline acrylamide moieties have been tested for their activity against SARM1 with a promising foundation for drug discovery in targeting SARM1. In our review, we highlight the role of SARM1 in axonal degeneration associated with several disease pathologies focusing on genetic and pharmacological evaluation.
Collapse
Affiliation(s)
- Aaditi Karnik
- Department of Pharmacy, Birla Institute of Technology and Sciences-Pilani, Telangana State, Hyderabad Campus, Hyderabad City, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences-Pilani, Telangana State, Hyderabad Campus, Hyderabad City, India.
| |
Collapse
|
12
|
Feng Y, Guo M, You T, Zhang M, Li J, Xie J, Han S, Zhao H, Jiang Y, Zhao Y, Yu J, Dong Q, Cui M. Paranodal instability driven by axonal mitochondrial accumulation in ischemic demyelination and cognitive decline. Mol Psychiatry 2025:10.1038/s41380-025-02936-y. [PMID: 40033045 DOI: 10.1038/s41380-025-02936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/20/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Subcortical ischemic demyelination is the primary cause of vascular cognitive impairment in the elderly. However, its underlying mechanisms remain elusive. METHODS Using a bilateral common carotid artery stenosis (BACS) mouse model and an in vitro cerebellar slice model treated with low glucose-low oxygen (LGLO), we investigated a novel mechanism of vascular demyelination. RESULTS This work identified syntaphilin-mediated docking of mitochondria as the initial event preceding ischemic demyelination. This axonal insult drives paranodal retraction, myelin instability, and subsequent cognitive impairment through excessive oxidation of protein 4.1B by mitochondrial ROS. Syntaphilin knockdown reestablished the balance of mitochondrial axoplasmic transport, reduced axonal ROS burden, and consequently decreased the abnormal oxidation of protein 4.1B, an essential component that secures the Caspr1/contactin-1/NF155 complex tethered to the axonal cytoskeleton βII-Spectrin within paranodes. This ultimately protected the paranodal structure and myelin and improved cognitive function. CONCLUSIONS Our findings reveal a distinct pathological characteristic of ischemic demyelination and highlight the therapeutic potential of modulating axonal mitochondrial mobility to stabilize myelin structures and improve vascular cognitive impairment.
Collapse
Affiliation(s)
- Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tongyao You
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Minjie Zhang
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
| | - Jincheng Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Junchao Xie
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
| | - Sida Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongchen Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Yanxin Zhao
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China.
| | - Jintai Yu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Mei Cui
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Liu R, Zhou B. Harmine promotes axon regeneration through enhancing glucose metabolism. J Biol Chem 2025; 301:108254. [PMID: 39904483 PMCID: PMC11927705 DOI: 10.1016/j.jbc.2025.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/11/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Axon regeneration requires a substantial mitochondrial energy supply. However, injured mature neurons often fail to regenerate due to their inability to meet these elevated energy demands. Our findings indicate that harmine compensates for the energy deficit following axonal injury by enhancing the coupling between glucose metabolism and mitochondrial homeostasis, thereby promoting axon regeneration. Notably, harmine facilitates mitochondrial biogenesis and enhances mitophagy, ensuring efficient mitochondrial turnover, and energy supply. Thus, harmine plays a crucial role in enhancing glucose metabolism to maintain mitochondrial function, demonstrating significant potential in treating mature neuronal axon injuries and sciatic nerve injuries.
Collapse
Affiliation(s)
- Ruixuan Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China; Interdisciplinary Innovation Institute of Medicine and Engineering Interdisciplinary, Beihang University, Beijing, China.
| |
Collapse
|
14
|
Liu D, Webber HC, Bian F, Xu Y, Prakash M, Feng X, Yang M, Yang H, You IJ, Li L, Liu L, Liu P, Huang H, Chang CY, Liu L, Shah SH, La Torre A, Welsbie DS, Sun Y, Duan X, Goldberg JL, Braun M, Lansky Z, Hu Y. Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration. Nat Commun 2025; 16:1789. [PMID: 39979261 PMCID: PMC11842812 DOI: 10.1038/s41467-025-57135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We find that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a decrease of axonal mitochondria in mice. We discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Furthermore, overexpressing OPTN/TRAK1/KIF5B prevents not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes robust ON regeneration. Therefore, in addition to generating animal models for NTG and ALS, our results establish OPTN as a facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Dong Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hannah C Webber
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fuyun Bian
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yangfan Xu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, P.R. China
| | - Manjari Prakash
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Xue Feng
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ming Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hang Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - In-Jee You
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Liang Li
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Liping Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Pingting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Haoliang Huang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chien-Yi Chang
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Liang Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sahil H Shah
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Derek S Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA, USA
| | - Yang Sun
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey Louis Goldberg
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia.
| | - Yang Hu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
15
|
Yang X, Zhou B. Unleashing metabolic power for axonal regeneration. Trends Endocrinol Metab 2025; 36:161-175. [PMID: 39069446 DOI: 10.1016/j.tem.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Axon regeneration requires the mobilization of intracellular resources, including proteins, lipids, and nucleotides. After injury, neurons need to adapt their metabolism to meet the biosynthetic demands needed to achieve axonal regeneration. However, the exact contribution of cellular metabolism to this process remains elusive. Insights into the metabolic characteristics of proliferative cells may illuminate similar mechanisms operating in axon regeneration; therefore, unraveling previously unappreciated roles of metabolic adaptation is critical to achieving neuron regrowth, which is connected to the therapeutic strategies for neurological conditions necessitating nerve repairs, such as spinal cord injury and stroke. Here, we outline the metabolic role in axon regeneration and discuss factors enhancing nerve regrowth, highlighting potential novel metabolic treatments for restoring nerve function.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China.
| |
Collapse
|
16
|
Gong Z, Wu T, Zhao Y, Guo J, Zhang Y, Li B, Li Y. Intercellular Tunneling Nanotubes as Natural Biophotonic Conveyors. ACS NANO 2025; 19:1036-1043. [PMID: 39630614 DOI: 10.1021/acsnano.4c12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Tunneling nanotubes (TNTs), submicrometer membranous channels that bridge and connect distant cells, play a pivotal role in intercellular communication. Organelle transfer within TNTs is crucial in regulating cell growth, signal transmission, and disease progression. However, precise control over individual organelle transport within TNTs remains elusive. In this study, we introduce an optical technique that harnesses TNTs as biophotonic conveyors for the directional transport of individual organelles between cells. By utilizing near-infrared light propagating along the TNTs, optical forces were exerted on the organelles, enabling their active transport in a predetermined direction and at a controlled velocity. As a potential application, TNT conveyors were employed to inhibit mitochondrial hijacking from immune cells to cancer cells, thereby activating immune cells and suppressing cancer cell growth. Furthermore, neural modulation was achieved by transporting mitochondria and neurotransmitter-containing vesicles between neurons via TNT conveyors and axonal conveyors, respectively. This study presents a robust and precise approach to immune activation and neural regulation through the manipulation of organelle transfer at the subcellular level.
Collapse
Affiliation(s)
- Zhiyong Gong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tianli Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Yanan Zhao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| |
Collapse
|
17
|
Cui Y, Chu Q, Jin X, Li Y, Guo K, Zhang G, Zhao Z, Zhang J. Inhibition of KIF5b-mediated Nav1.8 transport by ropivacaine contributes to axonal regeneration following sciatic nerve injury in rats. Neuropharmacology 2024; 261:110169. [PMID: 39332671 DOI: 10.1016/j.neuropharm.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Peripheral nerve injury (PNI), typically caused by traumatic accidents or medical events, is currently one of the most common diseases that leads to limb disability. After PNI, tetrodotoxin-resistant voltage-gated sodium channel Nav1.8 is upregulated at the lesion site. Our earlier study suggested that ropivacaine promotes axon regrowth by regulating Nav1.8-mediated macrophage signaling. Nevertheless, the mechanism of ropivacaine in regulation of Nav1.8 expression remains incompletely understood. Kinesin family 5b (KIF5b) was reported to mediate the Nav1.8 axonal transport from dorsal root ganglia (DRGs) to lesion site. Herein, we investigated whether ropivacaine promotes axon regeneration through inhibition of KIF5b-mediated Nav1.8 transport. Reduced levels of KIF5b and Nav1.8 in DRGs coincide with their increase at the lesion site. Nav1.8 mRNA was significantly increased at the lesion site but not in DRGs. Surprisingly, ropivacaine reversed the alterations of Nav1.8 and KIF5b protein expression without affecting Nav1.8 mRNA level. Due to KIF5b overexpression in DRGs, Nav1.8 protein level was significantly decreased in DRGs and increased at the lesion site. We also found KIF5b overexpression significantly impaired behavioral functions, reduced the recovery index of compound muscle action potential (CMAP) amplitude, inhibited axonal regrowth, slowed M1 macrophage infiltration and shift to M2 phenotype, and delayed myelin debris clearance. Notably, all aforementioned results caused by KIF5b overexpression were alleviated by ropivacaine. Furthermore, we demonstrated that inhibition of Nav1.8 transport by A-803467 produced mitigating effects on the impairment of regenerative capacity induced by KIF5b overexpression similar to ropivacaine. These results suggest that ropivacaine promotes axonal regeneration at least partially by inhibiting KIF5b-mediated Nav1.8 forward transport.
Collapse
Affiliation(s)
- Yongchen Cui
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinjun Chu
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaogao Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yong Li
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyuan Guo
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Zhao
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Masin L, Bergmans S, Van Dyck A, Farrow K, De Groef L, Moons L. Local glycolysis supports injury-induced axonal regeneration. J Cell Biol 2024; 223:e202402133. [PMID: 39352499 PMCID: PMC11451009 DOI: 10.1083/jcb.202402133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Successful axonal regeneration following injury requires the effective allocation of energy. How axons withstand the initial disruption in mitochondrial energy production caused by the injury and subsequently initiate regrowth is poorly understood. Transcriptomic data showed increased expression of glycolytic genes after optic nerve crush in retinal ganglion cells with the co-deletion of Pten and Socs3. Using retinal cultures in a multicompartment microfluidic device, we observed increased regrowth and enhanced mitochondrial trafficking in the axons of Pten and Socs3 co-deleted neurons. While wild-type axons relied on mitochondrial metabolism, after injury, in the absence of Pten and Socs3, energy production was supported by local glycolysis. Specific inhibition of lactate production hindered injury survival and the initiation of regrowth while slowing down glycolysis upstream impaired regrowth initiation, axonal elongation, and energy production. Together, these observations reveal that glycolytic ATP, combined with sustained mitochondrial transport, is essential for injury-induced axonal regrowth, providing new insights into the metabolic underpinnings of axonal regeneration.
Collapse
Affiliation(s)
- Luca Masin
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Steven Bergmans
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Annelies Van Dyck
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Karl Farrow
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
- Neuro-Electronics Research Flanders, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- imec, Leuven, Belgium
| | - Lies De Groef
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Lieve Moons
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
19
|
Wang Q, Wang X, Shang Z, Zhao L. Mechanism and prospects of mitochondrial transplantation for spinal cord injury treatment. Stem Cell Res Ther 2024; 15:457. [PMID: 39609871 PMCID: PMC11606159 DOI: 10.1186/s13287-024-04077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
Spinal cord injury (SCI) involves a continuous and dynamic cascade of complex reactions, with mitochondrial damage and dysfunction-induced energy metabolism disorders playing a central role throughout the process. These disorders not only determine the severity of secondary injuries but also influence the potential for axonal regeneration. Given the critical role of energy metabolism disturbances in the pathology of SCI, strategies such as enhancing mitochondrial transport within axons to alleviate local energy deficits, or transplanting autologous or allogeneic mitochondria to restore energy supply to damaged tissues, have emerged as potential approaches for SCI repair. These strategies also aim to modulate local inflammatory responses and apoptosis. Preclinical studies have initially demonstrated that mitochondrial transplantation (MT) significantly reduces neuronal death and promotes axonal regeneration following spinal cord injury. MT achieves this by regulating signaling pathways such as MAPK/ERK and PI3K/Akt, promoting the expression of growth-associated protein-43 (GAP-43) in neurons, and inhibiting the expression of apoptosis-related proteins like Grp78, Chop, and P-Akt, thereby enhancing the survival and regeneration of damaged neurons. Additionally, MT plays a role in promoting the expression of vascular endothelial growth factor, facilitating tissue repair, and reducing the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Furthermore, MT modulates neuronal apoptosis and inflammatory responses by decreasing the expression of p-JNK, a member of the MAPK family. In summary, by reviewing the detailed mechanisms underlying the cascade of pathological processes in SCI, we emphasize the changes in endogenous mitochondria post-SCI and the potential of exogenous MT in SCI repair. This review aims to provide insights and a basis for developing more effective clinical treatments for SCI.
Collapse
Affiliation(s)
- Qin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Zhizhong Shang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Long Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
20
|
Lou H, Yao J, Zhang Y, Wu X, Sun L, Wang Y, Cong D. Potential effect of acupuncture on mitochondrial biogenesis, energy metabolism and oxidation stress in MCAO rat via PGC-1α/NRF1/TFAM pathway. J Stroke Cerebrovasc Dis 2024; 33:107636. [PMID: 38346661 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 09/08/2024] Open
Abstract
PURPOSE To explore possible mechanism(s) underlying beneficial effects of acupuncture treatment for alleviating focal cerebral infarction-induced neuronal injury, mitochondrial biogenesis, energy metabolism, oxidative stress and dendrite regeneration were evaluated in rats with experimentally induced cerebral ischemia and dendron reperfusion. MATERIALS AND METHODS Rats were randomly assigned to three groups (sham-operated, operated group without acupuncture, operated group with acupuncture). RT-PCR and Western blotting were used to assess variations of hippocampal cell mitochondrial DNA (mtDNA) copy number and mRNA and protein expression levels associated with key mitochondrial biogenesis proteins, namely peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), nuclear respiration factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). To evaluate mitochondrial oxidative phosphorylation and respiratory function in ischemic tissues, oxidative phosphorylation protein complex expression levels were assessed via Western blot analysis, mitochondrial membrane potential (MMP) was assessed via confocal microscopy and flow cytometry and adenosine triphosphate (ATP) concentration was assessed using an enzymatic fluorescence-based assay. Immunofluorescence staining was used to evaluate the expression of the neuronal dendron formation marker-Microtubule Associated Protein 2 (MAP2). Additionally, oxidative stress levels were assessed based on superoxide dismutase (SOD) activity, lipid oxidation levels (malondialdehyde, MDA) and glutathione (GSH) levels. Meanwhile, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Nissl staining, transmission electron microscopy observation and neuro behavioral status were used to determine cerebral infarction volume and extent of brain injury. RESULTS Acupuncture treatment effectively stimulated mRNA-level and protein-level expression associated with PGC-1α, NRF-1 and TFAM and increased levels of electron transport chain complexes I, IV and V, thereby increasing the ATP concentration, maintaining mitochondrial membrane potential, and promoting dendron regeneration levels. Meanwhile, in hippocampal neurons SOD activity and the glutathione/glutathione disulfide (GSH/GSSG) ratio increased and MDA level decreased. CONCLUSION Acupuncture treatment after ischemic injury promoted mitochondrial biogenesis, as reflected by beneficially increased mitochondrial oxidative phosphorylation complex protein levels and brain tissue energy supply, while preventing oxidative stress injury. These results should guide future explorations to elucidate acupuncture-based mechanisms for alleviating neuronal injury triggered by acute cerebral ischemia.
Collapse
Affiliation(s)
- Huijuan Lou
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Junjie Yao
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun, Jilin Province 130117, PR China
| | - Yuxin Zhang
- Research center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Xingquan Wu
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Liwei Sun
- Research center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Yufeng Wang
- Department of Science and Technology, Changchun University of Chinese Medicine,1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Deyu Cong
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China.
| |
Collapse
|
21
|
Tomé D, Almeida RD. The injured axon: intrinsic mechanisms driving axonal regeneration. Trends Neurosci 2024; 47:875-891. [PMID: 39438216 DOI: 10.1016/j.tins.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Injury to the central nervous system (CNS) often results in permanent neurological impairments because axons fail to regenerate and re-establish lost synaptic contacts. By contrast, peripheral neurons can activate a pro-regenerative program and regenerate following a nerve lesion. This relies on an intricate intracellular communication system between the severed axon and the cell body. Locally activated signaling molecules are retrogradely transported to the soma to promote the epigenetic and transcriptional changes required for the injured neuron to regain growth competence. These signaling events rely heavily on intra-axonal translation and mitochondrial trafficking into the severed axon. Here, we discuss the interplay between these mechanisms and the main intrinsic barriers to axonal regeneration. We also examine the potential of manipulating these processes for driving CNS repair.
Collapse
Affiliation(s)
- Diogo Tomé
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Ramiro D Almeida
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
22
|
Zheng Y, Zhou Z, Liu M, Chen Z. Targeting selective autophagy in CNS disorders by small-molecule compounds. Pharmacol Ther 2024; 263:108729. [PMID: 39401531 DOI: 10.1016/j.pharmthera.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024]
Abstract
Autophagy functions as the primary cellular mechanism for clearing unwanted intracellular contents. Emerging evidence suggests that the selective elimination of intracellular organelles through autophagy, compared to the increased bulk autophagic flux, is crucial for the pathological progression of central nervous system (CNS) disorders. Notably, autophagic removal of mitochondria, known as mitophagy, is well-understood in an unhealthy brain. Accumulated data indicate that selective autophagy of other substrates, including protein aggregates, liposomes, and endoplasmic reticulum, plays distinctive roles in various pathological stages. Despite variations in substrates, the molecular mechanisms governing selective autophagy can be broadly categorized into two types: ubiquitin-dependent and -independent pathways, both of which can be subjected to regulation by small-molecule compounds. Notably, natural products provide the remarkable possibility for future structural optimization to regulate the highly selective autophagic clearance of diverse substrates. In this context, we emphasize the selectivity of autophagy in regulating CNS disorders and provide an overview of chemical compounds capable of modulating selective autophagy in these disorders, along with the underlying mechanisms. Further exploration of the functions of these compounds will in turn advance our understanding of autophagic contributions to brain disorders and illuminate precise therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
23
|
Hintermayer MA, Juźwik CA, Morquette B, Hua E, Zhang J, Drake S, Shi SS, Rambaldi I, Vangoor V, Pasterkamp J, Moore C, Fournier AE. A miR-383-5p Signaling Hub Coordinates the Axon Regeneration Response to Inflammation. J Neurosci 2024; 44:e1822232024. [PMID: 39266301 PMCID: PMC11529811 DOI: 10.1523/jneurosci.1822-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
Neuroinflammation can positively influence axon regeneration following injury in the central nervous system. Inflammation promotes the release of neurotrophic molecules and stimulates intrinsic proregenerative molecular machinery in neurons, but the detailed mechanisms driving this effect are not fully understood. We evaluated how microRNAs are regulated in retinal neurons in response to intraocular inflammation to identify their potential role in axon regeneration. We found that miR-383-5p is downregulated in retinal ganglion cells in response to zymosan-induced intraocular inflammation. MiR-383-5p downregulation in neurons is sufficient to promote axon growth in vitro, and the intravitreal injection of a miR-383-5p inhibitor into the eye promotes axon regeneration following optic nerve crush. MiR-383-5p directly targets ciliary neurotrophic factor (CNTF) receptor components, and miR-383-5p inhibition sensitizes adult retinal neurons to the outgrowth-promoting effects of CNTF. Interestingly, we also demonstrate that CNTF treatment is sufficient to reduce miR-383-5p levels in neurons, constituting a positive-feedback module, whereby initial CNTF treatment reduces miR-383-5p levels, which then disinhibits CNTF receptor components to sensitize neurons to the ligand. Additionally, miR-383-5p inhibition derepresses the mitochondrial antioxidant protein peroxiredoxin-3 (PRDX3) which was required for the proregenerative effects associated with miR-383-5p loss-of-function in vitro. We have thus identified a positive-feedback mechanism that facilitates neuronal CNTF sensitivity in neurons and a new molecular signaling module that promotes inflammation-induced axon regeneration.
Collapse
Affiliation(s)
- Matthew A Hintermayer
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Camille A Juźwik
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Barbara Morquette
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Elizabeth Hua
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Julia Zhang
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Sienna Drake
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Shan Shan Shi
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Isabel Rambaldi
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Vamshi Vangoor
- Department of Translation Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht 3584 CG, Netherlands
| | - Jeroen Pasterkamp
- Department of Translation Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht 3584 CG, Netherlands
| | - Craig Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Alyson E Fournier
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
24
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
25
|
Wu W, Zhang J, Chen Y, Chen Q, Liu Q, Zhang F, Li S, Wang X. Genes in Axonal Regeneration. Mol Neurobiol 2024; 61:7431-7447. [PMID: 38388774 DOI: 10.1007/s12035-024-04049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
This review explores the molecular and genetic underpinnings of axonal regeneration and functional recovery post-nerve injury, emphasizing its significance in reversing neurological deficits. It presents a systematic exploration of the roles of various genes in axonal regrowth across peripheral and central nerve injuries. Initially, it highlights genes and gene families critical for axonal growth and guidance, delving into their roles in regeneration. It then examines the regenerative microenvironment, focusing on the role of glial cells in neural repair through dedifferentiation, proliferation, and migration. The concept of "traumatic microenvironments" within the central nervous system (CNS) and peripheral nervous system (PNS) is discussed, noting their impact on regenerative capacities and their importance in therapeutic strategy development. Additionally, the review delves into axonal transport mechanisms essential for accurate growth and reinnervation, integrating insights from proteomics, genome-wide screenings, and gene editing advancements. Conclusively, it synthesizes these insights to offer a comprehensive understanding of axonal regeneration's molecular orchestration, aiming to inform effective nerve injury therapies and contribute to regenerative neuroscience.
Collapse
Affiliation(s)
- Wenshuang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fuchao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
26
|
Masahiro Hirai, Suzuki K, Kassai Y, Konishi Y. 3-Nitrotyrosine shortens axons of non-dopaminergic neurons by inhibiting mitochondrial motility. Neurochem Int 2024; 179:105832. [PMID: 39154836 DOI: 10.1016/j.neuint.2024.105832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
3-Nitrotyrosine (3-NT), a byproduct of oxidative and nitrosative stress, is implicated in age-related neurodegenerative disorders. Current literature suggests that free 3-NT becomes integrated into the carboxy-terminal domain of α-tubulin via the tyrosination/detyrosination cycle. Independently of this integration, 3-NT has been associated with the cell death of dopaminergic neurons. Given the critical role of tyrosination/detyrosination in governing axonal morphology and function, the substitution of tyrosine with 3-NT in this process may potentially disrupt axonal homeostasis, although this aspect remains underexplored. In this study, we examined the impact of 3-NT on the axons of cerebellar granule neurons, which is used as a model for non-dopaminergic neurons. Our observations revealed axonal shortening, which correlated with the incorporation of 3-NT into α-tubulin. Importantly, this axonal effect was observed prior to the onset of cellular death. Furthermore, 3-NT was found to diminish mitochondrial motility within the axon, leading to a subsequent reduction in mitochondrial membrane potential. The suppression of syntaphilin, a protein responsible for anchoring mitochondria to microtubules, restored the mitochondrial motility and axonal elongation that were inhibited by 3-NT. These findings underscore the inhibitory role of 3-NT in axonal elongation by impeding mitochondrial movement, suggesting its potential involvement in axonal dysfunction within non-dopaminergic neurons.
Collapse
Affiliation(s)
- Masahiro Hirai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Kohei Suzuki
- Department of Industrial Innovation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yusuke Kassai
- Department of Human and Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui, Japan
| | - Yoshiyuki Konishi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan; Department of Industrial Innovation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan; Department of Human and Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui, Japan; Department of Applied Chemistry and Biotechnology, Faculty of Engineering, University of Fukui, Fukui, Japan; Life Science Innovation Center, University of Fukui, Fukui, Japan.
| |
Collapse
|
27
|
Chen X, Shen Y, Song Z, Wang X, Yao H, Cai Y, Zhao ZA, Hu B. microRNA-2184 orchestrates Mauthner-cell axon regeneration in zebrafish via syt3 modulation. J Genet Genomics 2024; 51:911-921. [PMID: 38582297 DOI: 10.1016/j.jgg.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
MicroRNAs (miRNAs) play a significant role in axon regeneration following spinal cord injury. However, the functions of numerous miRNAs in axon regeneration within the central nervous system (CNS) remain largely unexplored. Here, we elucidate the positive role of microRNA-2184 (miR-2184) in axon regeneration within zebrafish Mauthner cells (M-cells). The upregulation of miR-2184 in a single M-cell can facilitate axon regeneration, while the specific sponge-induced silencing of miR-2184 leads to impeded regeneration. We show that syt3, a downstream target of miR-2184, negatively regulates axon regeneration, and the regeneration suppression modulated by syt3 depends on its binding to Ca2+. Furthermore, pharmacological stimulation of the cAMP/PKA pathway suggests that changes in the readily releasable pool may affect axon regeneration. Our data indicate that miR-2184 promotes axon regeneration of M-cells within the CNS by modulating the downstream target syt3, providing valuable insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Xinghan Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueru Shen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zheng Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinliang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huaitong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Cai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Ang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
28
|
Bai H, Zhang S, Yang H, Wang J, Chen H, Li J, Li L, Yang Q, Peng B, Zhu Z, Ni S, Liu K, Lei W, Tao TH, Feng Y. Advanced nerve regeneration enabled by neural conformal electronic stimulators enhancing mitochondrial transport. Bioact Mater 2024; 39:287-301. [PMID: 38827170 PMCID: PMC11143791 DOI: 10.1016/j.bioactmat.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Addressing peripheral nerve defects remains a significant challenge in regenerative neurobiology. Autografts emerged as the gold-standard management, however, are hindered by limited availability and potential neuroma formation. Numerous recent studies report the potential of wireless electronic system for nerve defects repair. Unfortunately, few has met clinical needs for inadequate electrode precision, poor nerve entrapment and insufficient bioactivity of the matrix material. Herein, we present an advanced wireless electrical nerve stimulator, based on water-responsive self-curling silk membrane with excellent bioabsorbable and biocompatible properties. We constructed a unique bilayer structure with an oriented pre-stretched inner layer and a general silk membrane as outer layer. After wetting, the simultaneous contraction of inner layer and expansion of outer layer achieved controllable super-contraction from 2D flat surface to 3D structural reconfiguration. It enables shape-adaptive wrapping to cover around nerves, overcomes the technical obstacle of preparing electrodes on the inner wall of the conduit, and prevents electrode breakage caused by material expansion in water. The use of fork capacitor-like metal interface increases the contact points between the metal and the regenerating nerve, solving the challenge of inefficient and rough electrical stimulation methods in the past. Newly developed electronic stimulator is effective in restoring 10 mm rat sciatic nerve defects comparable to autologous grafts. The underlying mechanism involves that electric stimulation enhances anterograde mitochondrial transport to match energy demands. This newly introduced device thereby demonstrated the potential as a viable and efficacious alternative to autografts for enhancing peripheral nerve repair and functional recovery.
Collapse
Affiliation(s)
- Hao Bai
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Siqi Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Huiran Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jing Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hongli Chen
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, Fujian, China
| | - Qian Yang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Ziyi Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Siyuan Ni
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Tiger H. Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China
| | - Yafei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
29
|
Bame X, Hill RA. Mitochondrial network reorganization and transient expansion during oligodendrocyte generation. Nat Commun 2024; 15:6979. [PMID: 39143079 PMCID: PMC11324877 DOI: 10.1038/s41467-024-51016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) give rise to myelinating oligodendrocytes of the brain. This process persists throughout life and is essential for recovery from neurodegeneration. To better understand the cellular checkpoints that occur during oligodendrogenesis, we determined the mitochondrial distribution and morphometrics across the oligodendrocyte lineage in mouse and human cerebral cortex. During oligodendrocyte generation, mitochondrial content expands concurrently with a change in subcellular partitioning towards the distal processes. These changes are followed by an abrupt loss of mitochondria in the oligodendrocyte processes and myelin, coinciding with sheath compaction. This reorganization and extensive expansion and depletion take 3 days. Oligodendrocyte mitochondria are stationary over days while OPC mitochondrial motility is modulated by animal arousal state within minutes. Aged OPCs also display decreased mitochondrial size, volume fraction, and motility. Thus, mitochondrial dynamics are linked to oligodendrocyte generation, dynamically modified by their local microenvironment, and altered in the aging brain.
Collapse
Affiliation(s)
- Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
30
|
Nheu D, Petratos S. How does Nogo-A signalling influence mitochondrial function during multiple sclerosis pathogenesis? Neurosci Biobehav Rev 2024; 163:105767. [PMID: 38885889 DOI: 10.1016/j.neubiorev.2024.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is a severe neurological disorder that involves inflammation in the brain, spinal cord and optic nerve with key disabling neuropathological outcomes being axonal damage and demyelination. When degeneration of the axo-glial union occurs, a consequence of inflammatory damage to central nervous system (CNS) myelin, dystrophy and death can lead to large membranous structures from dead oligodendrocytes and degenerative myelin deposited in the extracellular milieu. For the first time, this review covers mitochondrial mechanisms that may be operative during MS-related neurodegenerative changes directly activated during accumulating extracellular deposits of myelin associated inhibitory factors (MAIFs), that include the potent inhibitor of neurite outgrowth, Nogo-A. Axonal damage may occur when Nogo-A binds to and signals through its cognate receptor, NgR1, a multimeric complex, to initially stall axonal transport and limit the delivery of important growth-dependent cargo and subcellular organelles such as mitochondria for metabolic efficiency at sites of axo-glial disintegration as a consequence of inflammation. Metabolic efficiency in axons fails during active demyelination and progressive neurodegeneration, preceded by stalled transport of functional mitochondria to fuel axo-glial integrity.
Collapse
Affiliation(s)
- Danica Nheu
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia
| | - Steven Petratos
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia.
| |
Collapse
|
31
|
Jenkins JE, Fazli M, Evans CS. Mitochondrial motility modulators coordinate quality control dynamics to promote neuronal health. Curr Opin Cell Biol 2024; 89:102383. [PMID: 38908094 DOI: 10.1016/j.ceb.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
Dysfunction in mitochondrial maintenance and trafficking is commonly correlated with the development of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Thus, biomedical research has been dedicated to understanding how architecturally complex neurons maintain and transport their mitochondria. However, the systems that coordinate mitochondrial QC (quality control) dynamics and trafficking in response to neuronal activity and stress are less understood. Additionally, the degree of integration between the processes of mitochondrial trafficking and QC is unclear. Recent work indicates that mitochondrial motility modulators (i.e., anchors and tethers) help coordinate mitochondrial health by mediating distinct, stress-level-appropriate QC pathways following mitochondrial damage. This review summarizes current evidence supporting the role of two mitochondrial motility modulators, Syntaphilin and Mitofusin 2, in coordinating mitochondrial QC to promote neuronal health. Exploring motility modulators' intricate regulatory molecular landscape may reveal new therapeutic targets for delaying disease progression and enhancing neuronal survival post-insult.
Collapse
Affiliation(s)
- Jennifer E Jenkins
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mohammad Fazli
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chantell S Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
32
|
Liang Y, Li Y, Jiao Q, Wei M, Wang Y, Cui A, Li Z, Li G. Axonal mitophagy in retinal ganglion cells. Cell Commun Signal 2024; 22:382. [PMID: 39075570 PMCID: PMC11285280 DOI: 10.1186/s12964-024-01761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Neurons, exhibiting unique polarized structures, rely primarily on the mitochondrial production of ATP to maintain their hypermetabolic energy requirements. To maintain a normal energy supply, mitochondria are transported to the distal end of the axon. When mitochondria within the axon are critically damaged beyond their compensatory capacity, they are cleared via autophagosomal phagocytosis, and the degradation products are recycled to replenish energy. When the mitochondria are dysfunctional or their transport processes are blocked, axons become susceptible to degeneration triggered by energy depletion, resulting in neurodegenerative diseases. As the final checkpoint for mitochondrial quality control, axonal mitophagy is vital for neuronal growth, development, injury, and regeneration. Furthermore, abnormal axonal mitophagy is crucial in the pathogenesis of optic nerve-related diseases such as glaucoma. We review recent studies on axonal mitophagy and summarize the progress of research on axonal mitophagy in optic nerve-related diseases to provide insights into diseases associated with axonal damage in optic ganglion cells.
Collapse
Affiliation(s)
- Yang Liang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yulin Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Qing Jiao
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Muyang Wei
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yan Wang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Aoteng Cui
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihui Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
33
|
Vaillant-Beuchot L, Eysert F, Duval B, Kinoshita PF, Pardossi-Piquard R, Bauer C, Eddarkaoui S, Buée L, Checler F, Chami M. The amyloid precursor protein and its derived fragments concomitantly contribute to the alterations of mitochondrial transport machinery in Alzheimer's disease. Cell Death Dis 2024; 15:367. [PMID: 38806484 PMCID: PMC11133367 DOI: 10.1038/s41419-024-06742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Mitochondria dysfunctions and mitophagy failure have been associated with several Alzheimer's disease (AD) related molecular actors including amyloid beta (Aβ) and recently the amyloid precursor protein-C terminal fragments (APP-CTFs). The efficacy of the mitophagy process in neurons relies on regulated mitochondrial transport along axons involving a complex molecular machinery. The contribution of the amyloid precursor protein (APP) and its derived fragments to the mitochondrial transport machinery alterations in AD have not been investigated before. We report herein a change of the expression of mitochondrial transport proteins (SNPH and Miro1), motor adapters (TRANK1 and TRAK2), and components of the dynein and kinesin motors (i.e., IC1,2 and Kif5 (A, B, C) isoforms) by endogenous APP and by overexpression of APP carrying the familial Swedish mutation (APPswe). We show that APP-CTFs and Aβ concomitantly regulate the expression of a set of transport proteins as demonstrated in APPswe cells treated with β- and γ-secretase inhibitors and in cells Knock-down for presenilin 1 and 2. We further report the impact of APP-CTFs on the expression of transport proteins in AAV-injected C99 mice brains. Our data also indicate that both Aβ oligomers (Aβo) and APP-CTFs impair the colocalization of mitochondria and transport proteins. This has been demonstrated in differentiated SH-SY5Y naive cells treated with Aβo and in differentiated SH-SY5Y and murine primary neurons expressing APPswe and treated with the γ-secretase inhibitor. Importantly, we uncover that the expression of a set of transport proteins is modulated in a disease-dependent manner in 3xTgAD mice and in human sporadic AD brains. This study highlights molecular mechanisms underlying mitochondrial transport defects in AD that likely contribute to mitophagy failure and disease progression.
Collapse
Affiliation(s)
- Loan Vaillant-Beuchot
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
| | - Fanny Eysert
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
| | - Blandine Duval
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
| | - Paula Fernanda Kinoshita
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
- Instituto de Ciências Biomédicas Department of Pharmacology, Universidade de São Paulo, São Paulo, Brazil
| | - Raphaëlle Pardossi-Piquard
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
| | - Charlotte Bauer
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Place de Verdun, 59045, Lille, France
- Inserm UMR-S 1172, Laboratory of excellence DistALZ, 'Alzheimer and Tauopathies', Bâtiment Biserte, rue Polonovski, 59045, Lille, Cedex, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Place de Verdun, 59045, Lille, France
- Inserm UMR-S 1172, Laboratory of excellence DistALZ, 'Alzheimer and Tauopathies', Bâtiment Biserte, rue Polonovski, 59045, Lille, Cedex, France
| | - Frédéric Checler
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
| | - Mounia Chami
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France.
| |
Collapse
|
34
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
35
|
Rommelspacher H, Bera S, Brommer B, Ward R, Kwiatkowska M, Zygmunt T, Theden F, Üsekes B, Eren N, Nieratschker M, Arnoldner C, Plontke SK, Hellmann-Regen J, Schlingensiepen R. A single dose of AC102 restores hearing in a guinea pig model of noise-induced hearing loss to almost prenoise levels. Proc Natl Acad Sci U S A 2024; 121:e2314763121. [PMID: 38557194 PMCID: PMC11009624 DOI: 10.1073/pnas.2314763121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024] Open
Abstract
Although sudden sensorineural hearing loss (SSNHL) is a serious condition, there are currently no approved drugs for its treatment. Nevertheless, there is a growing understanding that the cochlear pathologies that underlie SSNHL include apoptotic death of sensory outer hair cells (OHCs) as well as loss of ribbon synapses connecting sensory inner hair cells (IHCs) and neurites of the auditory nerve, designated synaptopathy. Noise-induced hearing loss (NIHL) is a common subtype of SSNHL and is widely used to model hearing loss preclinically. Here, we demonstrate that a single interventive application of a small pyridoindole molecule (AC102) into the middle ear restored auditory function almost to prenoise levels in a guinea pig model of NIHL. AC102 prevented noise-triggered loss of OHCs and reduced IHC synaptopathy suggesting a role of AC102 in reconnecting auditory neurons to their sensory target cells. Notably, AC102 exerted its therapeutic properties over a wide frequency range. Such strong improvements in hearing have not previously been demonstrated for other therapeutic agents. In vitro experiments of a neuronal damage model revealed that AC102 protected cells from apoptosis and promoted neurite growth. These effects may be explained by increased production of adenosine triphosphate, indicating improved mitochondrial function, and reduced levels of reactive-oxygen species which prevents the apoptotic processes responsible for OHC death. This action profile of AC102 might be causal for the observed hearing recovery in in vivo models.
Collapse
Affiliation(s)
| | - Sujoy Bera
- AudioCure Pharma GmbH, Berlin10115, Germany
| | | | | | | | | | | | - Berk Üsekes
- AudioCure Pharma GmbH, Berlin10115, Germany
- Department of Psychiatry and Psychotherapy, Section Clinical Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
| | - Neriman Eren
- AudioCure Pharma GmbH, Berlin10115, Germany
- Department of Psychiatry and Psychotherapy, Section Clinical Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
| | - Michael Nieratschker
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna1090, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna1090, Austria
| | - Stefan K. Plontke
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle06120, Germany
| | - Julian Hellmann-Regen
- Department of Psychiatry and Psychotherapy, Section Clinical Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
| | | |
Collapse
|
36
|
Liu D, Webber HC, Bian F, Xu Y, Prakash M, Feng X, Yang M, Yang H, You IJ, Li L, Liu L, Liu P, Huang H, Chang CY, Liu L, Shah SH, Torre AL, Welsbie DS, Sun Y, Duan X, Goldberg JL, Braun M, Lansky Z, Hu Y. Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587832. [PMID: 38617277 PMCID: PMC11014509 DOI: 10.1101/2024.04.02.587832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We found that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a striking decrease of axonal mitochondria. Surprisingly, we discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Encouragingly, overexpressing OPTN/TRAK1/KIF5B reverses not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes striking ON regeneration. Therefore, in addition to generating new animal models for NTG and ALS, our results establish OPTN as a novel facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Dong Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Hannah C. Webber
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Fuyun Bian
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yangfan Xu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Manjari Prakash
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Xue Feng
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Ming Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Hang Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - In-Jee You
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liang Li
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liping Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Pingting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haoliang Huang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Chien-Yi Chang
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Liang Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sahil H Shah
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA; USA
| | - Derek S. Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA; USA
| | - Yang Sun
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA; USA
| | - Jeffrey Louis Goldberg
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Yang Hu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
37
|
Dithmar S, Zare A, Salehi S, Briese M, Sendtner M. hnRNP R regulates mitochondrial movement and membrane potential in axons of motoneurons. Neurobiol Dis 2024; 193:106454. [PMID: 38408684 DOI: 10.1016/j.nbd.2024.106454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Axonal mitochondria defects are early events in the pathogenesis of motoneuron disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. The RNA-binding protein hnRNP R interacts with different motoneuron disease-related proteins such as SMN and TDP-43 and has important roles in axons of motoneurons, including axonal mRNA transport. However, whether hnRNP R also modulates axonal mitochondria is currently unknown. Here, we show that axonal mitochondria exhibit altered function and motility in hnRNP R-deficient motoneurons. Motoneurons lacking hnRNP R show decreased anterograde and increased retrograde transport of mitochondria in axons. Furthermore, hnRNP R-deficiency leads to mitochondrial hyperpolarization, caused by decreased complex I and reversed complex V activity within the respiratory chain. Taken together, our data indicate a role for hnRNP R in regulating transport and maintaining functionality of axonal mitochondria in motoneurons.
Collapse
Affiliation(s)
- Sophia Dithmar
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Saeede Salehi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
38
|
Tripathi K, Ben-Shachar D. Mitochondria in the Central Nervous System in Health and Disease: The Puzzle of the Therapeutic Potential of Mitochondrial Transplantation. Cells 2024; 13:410. [PMID: 38474374 PMCID: PMC10930936 DOI: 10.3390/cells13050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondria, the energy suppliers of the cells, play a central role in a variety of cellular processes essential for survival or leading to cell death. Consequently, mitochondrial dysfunction is implicated in numerous general and CNS disorders. The clinical manifestations of mitochondrial dysfunction include metabolic disorders, dysfunction of the immune system, tumorigenesis, and neuronal and behavioral abnormalities. In this review, we focus on the mitochondrial role in the CNS, which has unique characteristics and is therefore highly dependent on the mitochondria. First, we review the role of mitochondria in neuronal development, synaptogenesis, plasticity, and behavior as well as their adaptation to the intricate connections between the different cell types in the brain. Then, we review the sparse knowledge of the mechanisms of exogenous mitochondrial uptake and describe attempts to determine their half-life and transplantation long-term effects on neuronal sprouting, cellular proteome, and behavior. We further discuss the potential of mitochondrial transplantation to serve as a tool to study the causal link between mitochondria and neuronal activity and behavior. Next, we describe mitochondrial transplantation's therapeutic potential in various CNS disorders. Finally, we discuss the basic and reverse-translation challenges of this approach that currently hinder the clinical use of mitochondrial transplantation.
Collapse
Affiliation(s)
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel;
| |
Collapse
|
39
|
Lukomska A, Theune WC, Frost MP, Xing J, Kearney A, Trakhtenberg EF. Upregulation of developmentally-downregulated miR-1247-5p promotes neuroprotection and axon regeneration in vivo. Neurosci Lett 2024; 823:137662. [PMID: 38286398 PMCID: PMC10923146 DOI: 10.1016/j.neulet.2024.137662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Numerous micro-RNAs (miRNAs) affect neurodevelopment and neuroprotection, but potential roles of many miRNAs in regulating these processes are still unknown. Here, we used the retinal ganglion cell (RGC) central nervous system (CNS) projection neuron and optic nerve crush (ONC) injury model, to optimize a mature miRNA arm-specific quantification method for characterizing the developmental regulation of miR-1247-5p in RGCs, investigated whether injury affects its expression, and tested whether upregulating miR-1247-5p-mimic in RGCs promotes neuroprotection and axon regeneration. We found that, miR-1247-5p is developmentally-downregulated in RGCs, and is further downregulated after ONC. Importantly, RGC-specific upregulation of miR-1247-5p promoted neuroprotection and axon regeneration after injury in vivo. To gain insight into the underlying mechanisms, we analyzed by bulk-mRNA-seq embryonic and adult RGCs, along with adult RGCs transduced by miR-1247-5p-expressing viral vector, and identified developmentally-regulated cilial and mitochondrial biological processes, which were reinstated to their embryonic levels in adult RGCs by upregulation of miR-1247-5p. Since axon growth is also a developmentally-regulated process, in which mitochondrial dynamics play important roles, it is possible that miR-1247-5p promoted neuroprotection and axon regeneration through regulating mitochondrial functions.
Collapse
Affiliation(s)
- Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Anja Kearney
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA.
| |
Collapse
|
40
|
André-Lévigne D, Pignel R, Boet S, Jaquet V, Kalbermatten DF, Madduri S. Role of Oxygen and Its Radicals in Peripheral Nerve Regeneration: From Hypoxia to Physoxia to Hyperoxia. Int J Mol Sci 2024; 25:2030. [PMID: 38396709 PMCID: PMC10888612 DOI: 10.3390/ijms25042030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Oxygen is compulsory for mitochondrial function and energy supply, but it has numerous more nuanced roles. The different roles of oxygen in peripheral nerve regeneration range from energy supply, inflammation, phagocytosis, and oxidative cell destruction in the context of reperfusion injury to crucial redox signaling cascades that are necessary for effective axonal outgrowth. A fine balance between reactive oxygen species production and antioxidant activity draws the line between physiological and pathological nerve regeneration. There is compelling evidence that redox signaling mediated by the Nox family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases plays an important role in peripheral nerve regeneration. Further research is needed to better characterize the role of Nox in physiological and pathological circumstances, but the available data suggest that the modulation of Nox activity fosters great therapeutic potential. One of the promising approaches to enhance nerve regeneration by modulating the redox environment is hyperbaric oxygen therapy. In this review, we highlight the influence of various oxygenation states, i.e., hypoxia, physoxia, and hyperoxia, on peripheral nerve repair and regeneration. We summarize the currently available data and knowledge on the effectiveness of using hyperbaric oxygen therapy to treat nerve injuries and discuss future directions.
Collapse
Affiliation(s)
- Dominik André-Lévigne
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Rodrigue Pignel
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sylvain Boet
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Ottawa Hospital Research Institute, Clinical Epidemiology Program, Department of Innovation in Medical Education, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
| | - Vincent Jaquet
- Department of Cell Physiology and Metabolism, University of Geneva, 1205 Geneva, Switzerland
- READS Unit, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Daniel F. Kalbermatten
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| | - Srinivas Madduri
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
41
|
Zhu Y, Hui Q, Zhang Z, Fu H, Qin Y, Zhao Q, Li Q, Zhang J, Guo L, He W, Han C. Advancements in the study of synaptic plasticity and mitochondrial autophagy relationship. J Neurosci Res 2024; 102:e25309. [PMID: 38400573 DOI: 10.1002/jnr.25309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Synapses serve as the points of communication between neurons, consisting primarily of three components: the presynaptic membrane, synaptic cleft, and postsynaptic membrane. They transmit signals through the release and reception of neurotransmitters. Synaptic plasticity, the ability of synapses to undergo structural and functional changes, is influenced by proteins such as growth-associated proteins, synaptic vesicle proteins, postsynaptic density proteins, and neurotrophic growth factors. Furthermore, maintaining synaptic plasticity consumes more than half of the brain's energy, with a significant portion of this energy originating from ATP generated through mitochondrial energy metabolism. Consequently, the quantity, distribution, transport, and function of mitochondria impact the stability of brain energy metabolism, thereby participating in the regulation of fundamental processes in synaptic plasticity, including neuronal differentiation, neurite outgrowth, synapse formation, and neurotransmitter release. This article provides a comprehensive overview of the proteins associated with presynaptic plasticity, postsynaptic plasticity, and common factors between the two, as well as the relationship between mitochondrial energy metabolism and synaptic plasticity.
Collapse
Affiliation(s)
- Yousong Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinlong Hui
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zheng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Hao Fu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yali Qin
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qiong Zhao
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinqing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Junlong Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Lei Guo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Cheng Han
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
42
|
Yang S, Niou ZX, Enriquez A, LaMar J, Huang JY, Ling K, Jafar-Nejad P, Gilley J, Coleman MP, Tennessen JM, Rangaraju V, Lu HC. NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport. Mol Neurodegener 2024; 19:13. [PMID: 38282024 PMCID: PMC10823734 DOI: 10.1186/s13024-023-00690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Zhen-Xian Niou
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Andrea Enriquez
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jacob LaMar
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Present address: Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Jui-Yen Huang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Karen Ling
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Inc., 2855, Gazelle Court, Carlsbad, CA, 92010, USA
| | - Paymaan Jafar-Nejad
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Inc., 2855, Gazelle Court, Carlsbad, CA, 92010, USA
| | - Jonathan Gilley
- Department of Clinical Neuroscience, Cambridge University, Cambridge, UK
| | - Michael P Coleman
- Department of Clinical Neuroscience, Cambridge University, Cambridge, UK
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Vidhya Rangaraju
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
43
|
Li D, Liu H, Li C, Guan Y, Xiong X, He R, Jia Z, Liang L, Zhao J, Miao X, Wang Y, Peng J. Exogenous Mitochondrial Transplantation Facilitates the Recovery of Autologous Nerve Grafting in Repairing Nerve Defects. Cell Transplant 2024; 33:9636897241291278. [PMID: 39471108 PMCID: PMC11528789 DOI: 10.1177/09636897241291278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 11/01/2024] Open
Abstract
Autologous nerve transplantation (ANT) remains the gold standard for treating nerve defects. However, its efficacy in nerve repair still requires improvement. Mitochondrial dysfunction resulting from nerve injury may be a significant factor limiting nerve function restoration. This study investigated the impact of supplementing exogenous mitochondria (EM) in ANT and explored its effect on the efficacy of ANT in nerve repair. SD rats were used to prepare a model of a 10 mm sciatic nerve defect repaired by ANT (Auto group) and a model of ANT supplemented with EM (Mito group). At 12 weeks post-operation, functional, neurophysiological, and histological evaluations of the target organ revealed that the Mito group exhibited significantly better outcomes compared with the Auto group, with statistically significant differences (P < 0.05). In vitro experiments demonstrated that EM could be endocytosed by Schwann cells (SCs) and dorsal root ganglion neurons (DRGs) when co-cultured. After endocytosis by SCs, immunofluorescence staining of autophagy marker LC3II and mitochondrial marker Tomm20, as well as adenoviral fluorescence labeling of lysosomes and mitochondria, revealed that EM could promote autophagy in SCs. CCK8 and EDU assays also indicated that EM significantly promoted SCs proliferation and viability. After endocytosis by DRGs, EM could accelerate axonal growth rate. A sciatic nerve defect repair model prepared using Thy1-YFP-16 mice also revealed that EM could accelerate axonal growth in vivo, with statistically significant results (P < 0.05). This study suggests that EM enhances autophagy in SCs, promotes SCs proliferation and viability, and increases the axonal growth rate, thereby improving the efficacy of ANT. This research provides a novel therapeutic strategy for enhancing the efficacy of ANT in nerve repair.
Collapse
Affiliation(s)
- Dongdong Li
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Orthopedics, The Ninth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haolin Liu
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Chaochao Li
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Yanjun Guan
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Xing Xiong
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Ruichao He
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Zhibo Jia
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Lijing Liang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Jinjuan Zhao
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Xinyu Miao
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiang Peng
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| |
Collapse
|
44
|
Hori I, Harashima H, Yamada Y. Development of Liposomes That Target Axon Terminals Encapsulating Berberine in Cultured Primary Neurons. Pharmaceutics 2023; 16:49. [PMID: 38258060 PMCID: PMC10821366 DOI: 10.3390/pharmaceutics16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Most of the energy in neurons is produced in mitochondria. Mitochondria generate the ATP that is essential for neuronal growth, function, and regeneration. Mitochondrial axonal transport plays a crucial role in maintaining neuronal homeostasis and biological activity. Decreased mitochondrial axonal transport at axon terminals, where the metabolism of substances is likely to be delayed, may contribute to neurological dysfunction. Therefore, regulation of mitochondrial dynamics at axon terminals has attracted considerable interest as a strategy to modulate neuronal function. Nanoparticles may be useful in controlling local mitochondrial dynamics. Nevertheless, there are few reports on the influence of drug delivery that nanoparticles impart on the mitochondrial dynamics in neurons. This paper reports the results of a study using liposomes (LPs) to examine local drug delivery and pharmacological actions on neurons. We tested berberine (BBR), which is an activator of AMP-activated protein kinase (AMPK), to examine the utility of this drug as a cellular energy sensor. Axon terminals targeting LPs were prepared. The amount of axon terminals targeting LPs was increased compared with treatment using cationic LPs. Moreover, axon terminal-targeting LPs increased anterograde transport by about 40% compared with that of either naked BBR or cationic LPs and suppressed axonal retraction. Our findings suggest that local drug delivery to neurons is important for enhancing pharmacological activity in axon terminals.
Collapse
Affiliation(s)
- Ikuma Hori
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan;
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan;
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan;
| |
Collapse
|
45
|
Bame X, Hill RA. Mitochondrial network reorganization and transient expansion during oligodendrocyte generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570104. [PMID: 38106204 PMCID: PMC10723275 DOI: 10.1101/2023.12.05.570104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) give rise to myelinating oligodendrocytes of the central nervous system. This process persists throughout life and is essential for recovery from neurodegeneration. To better understand the cellular checkpoints that occur during oligodendrogenesis, we determined the mitochondrial distribution and morphometrics across the oligodendrocyte lineage in mouse and human cerebral cortex. During oligodendrocyte generation, mitochondrial content expanded concurrently with a change in subcellular partitioning towards the distal processes. These changes were followed by an abrupt loss of mitochondria in the oligodendrocyte processes and myelin, coinciding with sheath compaction. This reorganization and extensive expansion and depletion took 3 days. Oligodendrocyte mitochondria were stationary over days while OPC mitochondrial motility was modulated by animal arousal state within minutes. Aged OPCs also displayed decreased mitochondrial size, content, and motility. Thus, mitochondrial dynamics are linked to oligodendrocyte generation, dynamically modified by their local microenvironment, and altered in the aging brain.
Collapse
Affiliation(s)
- Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
46
|
Cui Y, Wang X, Xu Y, Cao Y, Luo G, Zhao Z, Zhang J. Ropivacaine Promotes Axon Regeneration by Regulating Nav1.8-mediated Macrophage Signaling after Sciatic Nerve Injury in Rats. Anesthesiology 2023; 139:782-800. [PMID: 37669448 PMCID: PMC10723771 DOI: 10.1097/aln.0000000000004761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/08/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Continuous nerve block with ropivacaine is commonly performed after repair surgery for traumatic peripheral nerve injuries. After peripheral nerve injury, tetrodotoxin-resistant voltage-gated sodium channel Nav1.8 is upregulated and contributes to macrophage inflammation. This study investigated whether ropivacaine promotes peripheral nerve regeneration through Nav1.8-mediated macrophage signaling. METHODS A sciatic nerve transection-repair (SNT) model was established in adult Sprague-Dawley rats of both sexes. The rats received 0.2% ropivacaine or 10 μM Nav1.8-selective inhibitor A-803467 around the injured site or near the sacrum for 3 days. Nerve regeneration was evaluated using behavioral, electrophysiologic, and morphological examinations. Moreover, myelin debris removal, macrophage phenotype, Nav1.8 expression, and neuropeptide expression were assessed using immunostaining, enzyme-linked immunosorbent assay, and Western blotting. RESULTS Compared to the SNT-plus-vehicle group, the sensory, motor, and sensory-motor coordination functions of the two ropivacaine groups were significantly improved. Electrophysiologic (mean ± SD: recovery index of amplitude, vehicle 0.43 ± 0.17 vs. ropivacaine 0.83 ± 0.25, n = 11, P < 0.001) and histological analysis collectively indicated that ropivacaine significantly promoted axonal regrowth (percentage of neurofilament 200 [NF-200]-positive area: vehicle 19.88 ± 2.81 vs. ropivacaine 31.07 ± 2.62, n = 6, P < 0.001). The authors also found that, compared to the SNT-plus-vehicle group, the SNT-plus-ropivacaine group showed faster clearance of myelin debris, accompanied by significantly increased macrophage infiltration and transition from the M1 to M2 phenotype. Moreover, ropivacaine significantly attenuated Nav1.8 upregulation at 9 days after sciatic nerve transection (vehicle 4.12 ± 0.30-fold vs. ropivacaine 2.75 ± 0.36-fold, n = 5, P < 0.001), which coincided with the increased expression of chemokine ligand 2 and substance P. Similar changes were observed when using the selective Nav1.8 channel inhibitor A-803467. CONCLUSIONS Continuous nerve block with ropivacaine promotes the structural and functional recovery of injured sciatic nerves, possibly by regulating Nav1.8-mediated macrophage signaling. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yongchen Cui
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaofeng Wang
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Xu
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yue Cao
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gang Luo
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Zhao
- Department of Geriatrics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Lu Q, Zhang Y, Botchway BOA, Huang M, Liu X. Syntaphilin Inactivation Can Enhance Axonal Mitochondrial Transport to Improve Spinal Cord Injury. Mol Neurobiol 2023; 60:6556-6565. [PMID: 37458986 DOI: 10.1007/s12035-023-03494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/08/2023] [Indexed: 09/28/2023]
Abstract
Mitochondria are important organelle of eukaryotic cells. They consists of a large number of different proteins that provide most of the ATP and supply power for the growth, function, and regeneration of neurons. Therefore, smitochondrial transport ensures that adequate ATP is supplied for metabolic activities. Spinal cord injury (SCI), a detrimental condition, has high morbidity and mortality rates. Currently, the available treatments only provide symptomatic relief for long-term disabilities. Studies have implicated mitochondrial transport as a critical factor in axonal regeneration. Hence, enhancing mitochondrial transports could be beneficial for ameliorating SCI. Syntaphilin (Snph) is a mitochondrial docking protein that acts as a "static anchor," and its inhibition enhances mitochondrial transports. Therefore, Snph as a key mediator of mitochondrial transports, may contribute to improving axonal regeneration following SCI. Herein, we examine Snph's biological effects and its relation to mitochondrial pathway. Then, we elaborate on mitochondrial transports after SCI, the possible role of Snph in SCI, and some possible therapeutic approaches by Snph.
Collapse
Affiliation(s)
- Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- Bupa Cromwell Hospital, London, UK
| | - Min Huang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
48
|
Verma H, Gangwar P, Yadav A, Yadav B, Rao R, Kaur S, Kumar P, Dhiman M, Taglialatela G, Mantha AK. Understanding the neuronal synapse and challenges associated with the mitochondrial dysfunction in mild cognitive impairment and Alzheimer's disease. Mitochondrion 2023; 73:19-29. [PMID: 37708950 DOI: 10.1016/j.mito.2023.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Synaptic mitochondria are crucial for maintaining synaptic activity due to their high energy requirements, substantial calcium (Ca2+) fluctuation, and neurotransmitter release at the synapse. To provide a continuous energy supply, neurons use special mechanisms to transport and distribute healthy mitochondria to the synapse while eliminating the damaged mitochondria from the synapse. Along the neuron, mitochondrial membrane potential (ψ) gradient exists and is highest in the somal region. Lower ψ in the synaptic region renders mitochondria more vulnerable to oxidative stress-mediated damage. Secondly, mitochondria become susceptible to the release of cytochrome c, and mitochondrial DNA (mtDNA) is not shielded from the reactive oxygen species (ROS) by the histone proteins (unlike nuclear DNA), leading to activation of caspases and pronounced oxidative DNA base damage, which ultimately causes synaptic loss. Both synaptic mitochondrial dysfunction and synaptic failure are crucial factors responsible for Alzheimer's disease (AD). Furthermore, amyloid beta (Aβ) and hyper-phosphorylated Tau, the two leading players of AD, exaggerate the disease-like pathological conditions by reducing the mitochondrial trafficking, blocking the bi-directional transport at the synapse, enhancing the mitochondrial fission via activating the mitochondrial fission proteins, enhancing the swelling of mitochondria by increasing the influx of water through mitochondrial permeability transition pore (mPTP) opening, as well as reduced ATP production by blocking the activity of complex I and complex IV. Mild cognitive impairment (MCI) is also associated with decline in cognitive ability caused by synaptic degradation. This review summarizes the challenges associated with the synaptic mitochondrial dysfunction linked to AD and MCI and the role of phytochemicals in restoring the synaptic activity and rendering neuroprotection in AD.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Bharti Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Rashmi Rao
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Giulio Taglialatela
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India.
| |
Collapse
|
49
|
Lu D, Feng Y, Liu G, Yang Y, Ren Y, Chen Z, Sun X, Guan Y, Wang Z. Mitochondrial transport in neurons and evidence for its involvement in acute neurological disorders. Front Neurosci 2023; 17:1268883. [PMID: 37901436 PMCID: PMC10600463 DOI: 10.3389/fnins.2023.1268883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Ensuring mitochondrial quality is essential for maintaining neuronal homeostasis, and mitochondrial transport plays a vital role in mitochondrial quality control. In this review, we first provide an overview of neuronal mitochondrial transport, followed by a detailed description of the various motors and adaptors associated with the anterograde and retrograde transport of mitochondria. Subsequently, we review the modest evidence involving mitochondrial transport mechanisms that has surfaced in acute neurological disorders, including traumatic brain injury, spinal cord injury, spontaneous intracerebral hemorrhage, and ischemic stroke. An in-depth study of this area will help deepen our understanding of the mechanisms underlying the development of various acute neurological disorders and ultimately improve therapeutic options.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Feng
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yayi Yang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yixiang Guan
- Department of Neurosurgery, Hai'an People's Hospital Affiliated of Nantong University, Nantong, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
50
|
Sharif NA. Electrical, Electromagnetic, Ultrasound Wave Therapies, and Electronic Implants for Neuronal Rejuvenation, Neuroprotection, Axonal Regeneration, and IOP Reduction. J Ocul Pharmacol Ther 2023; 39:477-498. [PMID: 36126293 DOI: 10.1089/jop.2022.0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The peripheral nervous system (PNS) of mammals and nervous systems of lower organisms possess significant regenerative potential. In contrast, although neural plasticity can provide some compensation, the central nervous system (CNS) neurons and nerves of adult mammals generally fail to regenerate after an injury or damage. However, use of diverse electrical, electromagnetic and sonographic energy waves are illuminating novel ways to stimulate neuronal differentiation, proliferation, neurite growth, and axonal elongation/regeneration leading to various levels of functional recovery in animals and humans afflicted with disorders of the CNS, PNS, retina, and optic nerve. Tools such as acupuncture, electroacupuncture, electroshock therapy, electrical stimulation, transcranial magnetic stimulation, red light therapy, and low-intensity pulsed ultrasound therapy are demonstrating efficacy in treating many different maladies. These include wound healing, partial recovery from motor dysfunctions, recovery from ischemic/reperfusion insults and CNS and ocular remyelination, retinal ganglion cell (RGC) rejuvenation, and RGC axonal regeneration. Neural rejuvenation and axonal growth/regeneration processes involve activation or intensifying of the intrinsic bioelectric waves (action potentials) that exist in every neuronal circuit of the body. In addition, reparative factors released at the nerve terminals and via neuronal dendrites (transmitter substances), extracellular vesicles containing microRNAs and neurotrophins, and intercellular communication occurring via nanotubes aid in reestablishing lost or damaged connections between the traumatized tissues and the PNS and CNS. Many other beneficial effects of the aforementioned treatment paradigms are mediated via gene expression alterations such as downregulation of inflammatory and death-signal genes and upregulation of neuroprotective and cytoprotective genes. These varied techniques and technologies will be described and discussed covering cell-based and animal model-based studies. Data from clinical applications and linkage to human ocular diseases will also be discussed where relevant translational research has been reported.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, California, USA
- Singapore Eye Research Institute (SERI), Singapore
- SingHealth Duke-NUS Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
- Department of Surgery and Cancer, Imperial College of Science and Technology, London, United Kingdom
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, Nebraska, USA
- Insitute of Ophthalmology, University College London (UCL), London, United Kingdom
| |
Collapse
|