1
|
Lolicato F, Kaur M, Knez AM, Saleppico R, Nickel W. Does plasma membrane transbilayer asymmetry coupled to lipid nanodomains drive fast kinetics of FGF2 membrane translocation into the extracellular space? Faraday Discuss 2025. [PMID: 40375669 DOI: 10.1039/d4fd00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Fibroblast Growth Factor 2 (FGF2) is a potent mitogen secreted from mammalian cells through an unconventional secretory pathway. This process is mediated by direct translocation of FGF2 across the plasma membrane into the extracellular space. It requires several components that are asymmetrically distributed between the two leaflets of the plasma membrane. At the inner plasma membrane leaflet, FGF2 undergoes sequential interactions with the Na,K-ATPase, Tec kinase, and the phosphoinositide PI(4,5)P2. While the Na,K-ATPase, and Tec kinase are auxiliary factors, interactions of FGF2 with PI(4,5)P2 trigger the core mechanism of FGF2 membrane translocation, inducing FGF2-oligomerization-dependent formation of lipidic membrane pores. At the outer plasma membrane leaflet, membrane-inserted FGF2 oligomers are captured and disassembled by Glypican-1 (GPC1), resulting in translocation of FGF2 to the cell surface. In a cellular context, a single FGF2 membrane translocation event occurs within 200 milliseconds. In contrast, in an in vitro system, which uses a fully reconstituted liposomal inside-out system with FGF2 added from the outside and luminal encapsulation of high-affinity heparin molecules, FGF2 membrane translocation takes several minutes. Here, we hypothesize that the observed difference is, at least in part, due to the asymmetrical membrane lipid distribution and the spatial organization of the FGF2 translocation machinery in native plasma membranes. We suggest that the molecular machinery mediating FGF2 membrane translocation assembles in ordered nanodomains, characterized by sphingomyelin (SM), cholesterol and phosphoinositide PI(4,5)P2 coupled together. The transbilayer asymmetry of these lipids likely plays a crucial role in regulating the thermodynamics and kinetics of FGF2-induced membrane pore formation. Therefore, succeeding in reconstituting the FGF2 translocation machinery in artificial membranes with an asymmetric transbilayer distribution of SM, PI(4,5)P2 and other membrane lipids may reveal a direct impact on pore-opening kinetics. Similarly, disrupting lipid asymmetry in cells may significantly impact FGF2 secretion rates, a finding that would underscore the importance of the spatial organization of lipids in membrane dynamics. Testing this hypothesis may advance our understanding of how membrane asymmetry and ordered lipid nanodomains regulate critical biological processes, such as the unconventional secretion of FGF2.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Manpreet Kaur
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
| | - Ana Marija Knez
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
| | | | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
| |
Collapse
|
2
|
Schultheis N, Connell A, Kapral A, Becker RJ, Mueller R, Shah S, O'Donnell M, Roseman M, Swanson L, DeGuara S, Wang W, Yin F, Saini T, Weiss RJ, Selleck SB. Altering heparan sulfate suppresses cell abnormalities and neuron loss in Drosophila presenilin model of Alzheimer Disease. iScience 2024; 27:110256. [PMID: 39109174 PMCID: PMC11302002 DOI: 10.1016/j.isci.2024.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
We examined the function of heparan-sulfate-modified proteoglycans (HSPGs) in pathways affecting Alzheimer disease (AD)-related cell pathology in human cell lines and mouse astrocytes. Mechanisms of HSPG influences on presenilin-dependent cell loss were evaluated in Drosophila using knockdown of the presenilin homolog, Psn, together with partial loss-of-function of sulfateless (sfl), a gene specifically affecting HS sulfation. HSPG modulation of autophagy, mitochondrial function, and lipid metabolism were shown to be conserved in human cell lines, Drosophila, and mouse astrocytes. RNA interference (RNAi) of Ndst1 reduced intracellular lipid levels in wild-type mouse astrocytes or those expressing humanized variants of APOE, APOE3, and APOE4. Neuron-directed knockdown of Psn in Drosophila produced apoptosis and cell loss in the brain, phenotypes suppressed by reductions in sfl expression. Abnormalities in mitochondria, liposomes, and autophagosome-derived structures in animals with Psn knockdown were also rescued by reduction of sfl. These findings support the direct involvement of HSPGs in AD pathogenesis.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Alyssa Connell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander Kapral
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Robert J. Becker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Richard Mueller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Shalini Shah
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie O'Donnell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Roseman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey Swanson
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sophia DeGuara
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Weihua Wang
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Fei Yin
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Tripti Saini
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ryan J. Weiss
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Scott B. Selleck
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Sadeghi M, Rosenberger D. Dynamic framework for large-scale modeling of membranes and peripheral proteins. Methods Enzymol 2024; 701:457-514. [PMID: 39025579 DOI: 10.1016/bs.mie.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this chapter, we present a novel computational framework to study the dynamic behavior of extensive membrane systems, potentially in interaction with peripheral proteins, as an alternative to conventional simulation methods. The framework effectively describes the complex dynamics in protein-membrane systems in a mesoscopic particle-based setup. Furthermore, leveraging the hydrodynamic coupling between the membrane and its surrounding solvent, the coarse-grained model grounds its dynamics in macroscopic kinetic properties such as viscosity and diffusion coefficients, marrying the advantages of continuum- and particle-based approaches. We introduce the theoretical background and the parameter-space optimization method in a step-by-step fashion, present the hydrodynamic coupling method in detail, and demonstrate the application of the model at each stage through illuminating examples. We believe this modeling framework to hold great potential for simulating membrane and protein systems at biological spatiotemporal scales, and offer substantial flexibility for further development and parametrization.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
| | | |
Collapse
|
4
|
Kashyap P, Bertelli S, Cao F, Kostritskaia Y, Blank F, Srikanth NA, Schlack-Leigers C, Saleppico R, Bierhuizen D, Lu X, Nickel W, Campbell RE, Plested AJR, Stauber T, Taylor MJ, Ewers H. An optogenetic method for the controlled release of single molecules. Nat Methods 2024; 21:666-672. [PMID: 38459384 PMCID: PMC11009104 DOI: 10.1038/s41592-024-02204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
We developed a system for optogenetic release of single molecules in cells. We confined soluble and transmembrane proteins to the Golgi apparatus via a photocleavable protein and released them by short pulses of light. Our method allows for a light dose-dependent delivery of functional proteins to the cytosol and plasma membrane in amounts compatible with single-molecule imaging, greatly simplifying access to single-molecule microscopy of any protein in live cells. We were able to reconstitute ion conductance by delivering BK and LRRC8/volume-regulated anion channels to the plasma membrane. Finally we were able to induce NF-kB signaling in T lymphoblasts stimulated by interleukin-1 by controlled release of a signaling protein that had been knocked out. We observed light-induced formation of functional inflammatory signaling complexes that triggered phosphorylation of the inhibitor of nuclear factor kappa-B kinase only in activated cells. We thus developed an optogenetic method for the reconstitution and investigation of cellular function at the single-molecule level.
Collapse
Affiliation(s)
- Purba Kashyap
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Sara Bertelli
- Humboldt-Universität zu Berlin and Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Fakun Cao
- Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Yulia Kostritskaia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Fenja Blank
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Niranjan A Srikanth
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
- Max-Planck-Institute for Infection Biology, Berlin, Germany
| | | | | | - Dolf Bierhuizen
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Xiaocen Lu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Andrew J R Plested
- Humboldt-Universität zu Berlin and Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | | | - Helge Ewers
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Denus M, Fargues W, Filaquier A, Néel É, Marin P, Parmentier ML, Villeneuve J. [Unconventional protein secretion - new perspectives in protein trafficking]. Med Sci (Paris) 2024; 40:267-274. [PMID: 38520102 DOI: 10.1051/medsci/2024013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Abstract
The characterization of the structural and functional organization of eukaryotic cells has revealed the membrane compartments and machinery required for vesicular protein transport. Most proteins essential for intercellular communication contain an N-terminal signal sequence enabling them to be incorporated into the biosynthetic or conventional secretory pathway, in which proteins are sequentially transported through the endoplasmic reticulum (ER) and the Golgi apparatus. However, major research studies have shown the existence of alternative secretory routes that are independent of the ER-Golgi and designated as unconventional secretory pathways. These pathways involve a large number of players that may divert specific compartments from their primary function in favor of secretory roles. The comprehensive description of these processes is therefore of utmost importance to unveil how proteins secreted through these alternative pathways control cell homeostasis or contribute to disease development.
Collapse
Affiliation(s)
- Morgane Denus
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| | - William Fargues
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| | - Aurore Filaquier
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| | - Éloïse Néel
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| | - Philippe Marin
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| | - Marie-Laure Parmentier
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| | - Julien Villeneuve
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| |
Collapse
|
6
|
Lolicato F, Nickel W, Haucke V, Ebner M. Phosphoinositide switches in cell physiology - From molecular mechanisms to disease. J Biol Chem 2024; 300:105757. [PMID: 38364889 PMCID: PMC10944118 DOI: 10.1016/j.jbc.2024.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Phosphoinositides are amphipathic lipid molecules derived from phosphatidylinositol that represent low abundance components of biological membranes. Rather than serving as mere structural elements of lipid bilayers, they represent molecular switches for a broad range of biological processes, including cell signaling, membrane dynamics and remodeling, and many other functions. Here, we focus on the molecular mechanisms that turn phosphoinositides into molecular switches and how the dysregulation of these processes can lead to disease.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| |
Collapse
|
7
|
Schultheis N, Connell A, Kapral A, Becker RJ, Mueller R, Shah S, O'Donnell M, Roseman M, Wang W, Yin F, Weiss R, Selleck SB. Heparan sulfate modified proteins affect cellular processes central to neurodegeneration and modulate presenilin function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576895. [PMID: 38328107 PMCID: PMC10849577 DOI: 10.1101/2024.01.23.576895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mutations in presenilin-1 (PSEN1) are the most common cause of familial, early-onset Alzheimer's disease (AD), typically producing cognitive deficits in the fourth decade. A variant of APOE, APOE3 Christchurch (APOE3ch) , was found associated with protection from both cognitive decline and Tau accumulation in a 70-year-old bearing the disease-causing PSEN1-E280A mutation. The amino acid change in ApoE3ch is within the heparan sulfate (HS) binding domain of APOE, and purified APOEch showed dramatically reduced affinity for heparin, a highly sulfated form of HS. The physiological significance of ApoE3ch is supported by studies of a mouse bearing a knock-in of this human variant and its effects on microglia reactivity and Aβ-induced Tau deposition. The studies reported here examine the function of heparan sulfate-modified proteoglycans (HSPGs) in cellular and molecular pathways affecting AD-related cell pathology in human cell lines and mouse astrocytes. The mechanisms of HSPG influences on presenilin- dependent cell loss and pathology were evaluated in Drosophila using knockdown of the presenilin homolog, Psn , together with partial loss of function of sulfateless (sfl) , a homolog of NDST1 , a gene specifically affecting HS sulfation. HSPG modulation of autophagy, mitochondrial function, and lipid metabolism were shown to be conserved in cultured human cell lines, Drosophila , and mouse astrocytes. RNAi of Ndst1 reduced intracellular lipid levels in wild-type mouse astrocytes or those expressing humanized variants of APOE, APOE3 , and APOE4 . RNA-sequence analysis of human cells deficient in HS synthesis demonstrated effects on the transcriptome governing lipid metabolism, autophagy, and mitochondrial biogenesis and showed significant enrichment in AD susceptibility genes identified by GWAS. Neuron-directed knockdown of Psn in Drosophila produced cell loss in the brain and behavioral phenotypes, both suppressed by simultaneous reductions in sfl mRNA levels. Abnormalities in mitochondria, liposome morphology, and autophagosome-derived structures in animals with Psn knockdown were also rescued by simultaneous reduction of sfl. sfl knockdown reversed Psn- dependent transcript changes in genes affecting lipid transport, metabolism, and monocarboxylate carriers. These findings support the direct involvement of HSPGs in AD pathogenesis.
Collapse
|
8
|
Lolicato F, Steringer JP, Saleppico R, Beyer D, Fernandez-Sobaberas J, Unger S, Klein S, Riegerová P, Wegehingel S, Müller HM, Schmitt XJ, Kaptan S, Freund C, Hof M, Šachl R, Chlanda P, Vattulainen I, Nickel W. Disulfide bridge-dependent dimerization triggers FGF2 membrane translocation into the extracellular space. eLife 2024; 12:RP88579. [PMID: 38252473 PMCID: PMC10945597 DOI: 10.7554/elife.88579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry CenterHeidelbergGermany
- Department of Physics, University of HelsinkiHelsinkiFinland
| | | | | | - Daniel Beyer
- Heidelberg University Biochemistry CenterHeidelbergGermany
| | | | | | - Steffen Klein
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | - Petra Riegerová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | | | | | - Xiao J Schmitt
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Shreyas Kaptan
- Department of Physics, University of HelsinkiHelsinkiFinland
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | | | - Walter Nickel
- Heidelberg University Biochemistry CenterHeidelbergGermany
| |
Collapse
|
9
|
Biadun M, Sochacka M, Karelus R, Baran K, Czyrek A, Otlewski J, Krowarsch D, Opalinski L, Zakrzewska M. FGF homologous factors are secreted from cells to induce FGFR-mediated anti-apoptotic response. FASEB J 2023; 37:e23043. [PMID: 37342898 DOI: 10.1096/fj.202300324r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
FGF homologous factors (FHFs) are the least described group of fibroblast growth factors (FGFs). The FHF subfamily consists of four proteins: FGF11, FGF12, FGF13, and FGF14. Until recently, FHFs were thought to be intracellular, non-signaling molecules, despite sharing structural and sequence similarities with other members of FGF family that can be secreted and activate cell signaling by interacting with surface receptors. Here, we show that despite lacking a canonical signal peptide for secretion, FHFs are exported to the extracellular space. Furthermore, we propose that their secretion mechanism is similar to the unconventional secretion of FGF2. The secreted FHFs are biologically active and trigger signaling in cells expressing FGF receptors (FGFRs). Using recombinant proteins, we demonstrated their direct binding to FGFR1, resulting in the activation of downstream signaling and the internalization of the FHF-FGFR1 complex. The effect of receptor activation by FHF proteins is an anti-apoptotic response of the cell.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Karolina Baran
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Czyrek
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
10
|
Singh V, Macharová S, Riegerová P, Steringer JP, Müller HM, Lolicato F, Nickel W, Hof M, Šachl R. Determining the Functional Oligomeric State of Membrane-Associated Protein Oligomers Forming Membrane Pores on Giant Lipid Vesicles. Anal Chem 2023. [PMID: 37148264 DOI: 10.1021/acs.analchem.2c05692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Several peripheral membrane proteins are known to form membrane pores through multimerization. In many cases, in biochemical reconstitution experiments, a complex distribution of oligomeric states has been observed that may, in part, be irrelevant to their physiological functions. This phenomenon makes it difficult to identify the functional oligomeric states of membrane lipid interacting proteins, for example, during the formation of transient membrane pores. Using fibroblast growth factor 2 (FGF2) as an example, we present a methodology applicable to giant lipid vesicles by which functional oligomers can be distinguished from nonspecifically aggregated proteins without functionality. Two distinct populations of fibroblast growth factor 2 were identified with (i) dimers to hexamers and (ii) a broad population of higher oligomeric states of membrane-associated FGF2 oligomers significantly distorting the original unfiltered histogram of all detectable oligomeric species of FGF2. The presented statistical approach is relevant for various techniques for characterizing membrane-dependent protein oligomerization.
Collapse
Affiliation(s)
- Vandana Singh
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu, 2027/3, 121 16 Prague, Czech Republic
| | - Sabína Macharová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Petra Riegerová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Julia P Steringer
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Hans-Michael Müller
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| |
Collapse
|
11
|
Improved interface packing and design opportunities revealed by CryoEM analysis of a designed protein nanocage. Heliyon 2022; 8:e12280. [PMID: 36590526 PMCID: PMC9801105 DOI: 10.1016/j.heliyon.2022.e12280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Symmetric protein assemblies play important roles in nature which makes them an attractive target for engineering. De novo symmetric protein complexes can be created through computational protein design to tailor their properties from first principles, and recently several protein nanocages have been created by bringing together protein components through hydrophobic interactions. Accurate experimental structures of newly-developed proteins are essential to validate their design, improve assembly stability, and tailor downstream applications. We describe the CryoEM structure of the nanocage I3-01, at an overall resolution of 3.5 Å. I3-01, comprising 60 aldolase subunits arranged with icosahedral symmetry, has resisted high-resolution characterization. Some key differences between the refined structure and the original design are identified, such as improved packing of hydrophobic sidechains, providing insight to the resistance of I3-01 to high-resolution averaging. Based on our analysis, we suggest factors important in the design and structural processing of new assemblies.
Collapse
|
12
|
Lolicato F, Saleppico R, Griffo A, Meyer A, Scollo F, Pokrandt B, Müller HM, Ewers H, Hähl H, Fleury JB, Seemann R, Hof M, Brügger B, Jacobs K, Vattulainen I, Nickel W. Cholesterol promotes clustering of PI(4,5)P2 driving unconventional secretion of FGF2. J Biophys Biochem Cytol 2022; 221:213511. [PMID: 36173379 PMCID: PMC9526255 DOI: 10.1083/jcb.202106123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
FGF2 is a cell survival factor involved in tumor-induced angiogenesis that is secreted through an unconventional secretory pathway based upon direct protein translocation across the plasma membrane. Here, we demonstrate that both PI(4,5)P2-dependent FGF2 recruitment at the inner plasma membrane leaflet and FGF2 membrane translocation into the extracellular space are positively modulated by cholesterol in living cells. We further revealed cholesterol to enhance FGF2 binding to PI(4,5)P2-containing lipid bilayers. Based on extensive atomistic molecular dynamics (MD) simulations and membrane tension experiments, we proposed cholesterol to modulate FGF2 binding to PI(4,5)P2 by (i) increasing head group visibility of PI(4,5)P2 on the membrane surface, (ii) increasing avidity by cholesterol-induced clustering of PI(4,5)P2 molecules triggering FGF2 oligomerization, and (iii) increasing membrane tension facilitating the formation of lipidic membrane pores. Our findings have general implications for phosphoinositide-dependent protein recruitment to membranes and explain the highly selective targeting of FGF2 toward the plasma membrane, the subcellular site of FGF2 membrane translocation during unconventional secretion of FGF2.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany.,Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Alessandra Griffo
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Annalena Meyer
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Federica Scollo
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Bianca Pokrandt
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | | | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Hendrik Hähl
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | | | - Ralf Seemann
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Karin Jacobs
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Max Planck School Matter to Life, Heidelberg, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
13
|
Pei D, Dalbey RE. Membrane Translocation of Folded Proteins. J Biol Chem 2022; 298:102107. [PMID: 35671825 PMCID: PMC9251779 DOI: 10.1016/j.jbc.2022.102107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
An ever-increasing number of proteins have been shown to translocate across various membranes of bacterial as well as eukaryotic cells in their folded states as a part of physiological and/or pathophysiological processes. Herein we provide an overview of the systems/processes that are established or likely to involve the membrane translocation of folded proteins, such as protein export by the twin-arginine translocation (TAT) system in bacteria and chloroplasts, unconventional protein secretion (UPS) and protein import into the peroxisome in eukaryotes, and the cytosolic entry of proteins (e.g., bacterial toxins) and viruses into eukaryotes. We also discuss the various mechanistic models that have previously been proposed for the membrane translocation of folded proteins including pore/channel formation, local membrane disruption, membrane thinning, and transport by membrane vesicles. Finally, we introduce a newly discovered vesicular transport mechanism, vesicle budding and collapse (VBC), and present evidence that VBC may represent a unifying mechanism that drives some (and potentially all) of folded protein translocation processes.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| |
Collapse
|
14
|
Sadeghi M. Investigating the entropic nature of membrane-mediated interactions driving the aggregation of peripheral proteins. SOFT MATTER 2022; 18:3917-3927. [PMID: 35543220 DOI: 10.1039/d2sm00118g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peripheral membrane-associated proteins are known to accumulate on the surface of biomembranes as a result of membrane-mediated interactions. For a pair of rotationally-symmetric curvature-inducing proteins, membrane mechanics at the low-temperature limit predicts pure repulsion. On the other hand, temperature-dependent entropic forces arise between pairs of stiff-binding proteins suppressing membrane fluctuations. These Casimir-like interactions have thus been suggested as candidates for attractive forces leading to aggregation. With dense assemblies of peripheral proteins on the membrane, both these abstractions encounter short-range and multi-body complications. Here, we make use of a particle-based membrane model augmented with flexible peripheral proteins to quantify purely membrane-mediated interactions and investigate their underlying nature. We introduce a continuous reaction coordinate corresponding to the progression of protein aggregation. We obtain free energy and entropy landscapes for different surface concentrations along this reaction coordinate. In parallel, we investigate time-dependent estimates of membrane entropy corresponding to membrane undulations and coarse-grained director field and how they change dynamically with protein aggregation. Congruent outcomes of the two approaches point to the conclusion that for low surface concentrations, interactions with an entropic nature may drive the aggregation. But at high concentrations, enthalpic contributions due to concerted membrane deformation by protein clusters are dominant.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany.
| |
Collapse
|
15
|
Unconventional secretion mediated by direct protein self-translocation across the plasma membranes of mammalian cells. Trends Biochem Sci 2022; 47:699-709. [PMID: 35490075 DOI: 10.1016/j.tibs.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022]
Abstract
In recent years, a surprisingly complex picture emerged about endoplasmic reticulum (ER)/Golgi-independent secretory pathways, and several routes have been discovered that differ with regard to their molecular mechanisms and machineries. Fibroblast growth factor 2 (FGF2) is secreted by a pathway of unconventional protein secretion (UPS) that is based on direct self-translocation across the plasma membrane. Building on previous research, a component of this process has been identified to be glypican-1 (GPC1), a GPI-anchored heparan sulfate proteoglycan located on cell surfaces. These findings not only shed light on the molecular mechanism underlying this process but also reveal an intimate relationship between FGF2 and GPC1 that might be of critical relevance for the prominent roles they both have in tumor progression and metastasis.
Collapse
|
16
|
Li DY, Liang S, Wen JH, Tang JX, Deng SL, Liu YX. Extracellular HSPs: The Potential Target for Human Disease Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072361. [PMID: 35408755 PMCID: PMC9000741 DOI: 10.3390/molecules27072361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Heat shock proteins (HSPs) are highly conserved stress proteins known as molecular chaperones, which are considered to be cytoplasmic proteins with functions restricted to the intracellular compartment, such as the cytoplasm or cellular organelles. However, an increasing number of observations have shown that HSPs can also be released into the extracellular matrix and can play important roles in the modulation of inflammation and immune responses. Recent studies have demonstrated that extracellular HSPs (eHSPs) were involved in many human diseases, such as cancers, neurodegenerative diseases, and kidney diseases, which are all diseases that are closely linked to inflammation and immunity. In this review, we describe the types of eHSPs, discuss the mechanisms of eHSPs secretion, and then highlight their functions in the modulation of inflammation and immune responses. Finally, we take cancer as an example and discuss the possibility of targeting eHSPs for human disease therapy. A broader understanding of the function of eHSPs in development and progression of human disease is essential for developing new strategies to treat many human diseases that are critically related to inflammation and immunity.
Collapse
Affiliation(s)
- Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Jun-Hao Wen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| |
Collapse
|
17
|
Lolicato F, Nickel W. A Role for Liquid-Ordered Plasma Membrane Nanodomains Coordinating the Unconventional Secretory Pathway of Fibroblast Growth Factor 2? Front Cell Dev Biol 2022; 10:864257. [PMID: 35433697 PMCID: PMC9010882 DOI: 10.3389/fcell.2022.864257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a tumor cell survival factor that belongs to a subgroup of extracellular proteins lacking N-terminal signal peptides. Whereas this phenomenon was already recognized in the early 1990s, detailed insights into the molecular mechanisms underlying alternative pathways of protein secretion from eukaryotic cells were obtained only recently. Today, we know about a number of alternative secretory mechanisms, collectively termed unconventional protein secretion (UPS). FGF2 belongs to a subgroup of cargo proteins secreted by direct translocation across the plasma membrane. This feature has been classified as type I UPS and is shared with other unconventionally secreted proteins, such as HIV-Tat and Tau. FGF2 translocation across the membrane is initiated through sequential interactions with the Na,K-ATPase, Tec kinase, and phosphoinositide PI(4,5)P2 at the inner plasma membrane leaflet. Whereas the first two are auxiliary factors of this pathway, the interaction of FGF2 with PI(4,5)P2 triggers the core mechanism of FGF2 membrane translocation. It is based on a lipidic membrane pore that is formed by PI(4,5)P2-induced oligomerization of FGF2. Membrane-inserted FGF2 oligomers are recognized as translocation intermediates that are resolved at the outer plasma membrane leaflet by glypican-1, a heparan sulfate proteoglycan that captures and disassembles FGF2 oligomers on cell surfaces. Here, we discuss recent findings suggesting the molecular machinery mediating FGF2 membrane translocation to be highly organized in liquid-ordered plasma membrane nanodomains, the core process underlying this unusual pathway of protein secretion.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
18
|
Sparn C, Dimou E, Meyer A, Saleppico R, Wegehingel S, Gerstner M, Klaus S, Ewers H, Nickel W. Glypican-1 drives unconventional secretion of Fibroblast Growth Factor 2. eLife 2022; 11:75545. [PMID: 35348113 PMCID: PMC8986318 DOI: 10.7554/elife.75545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fibroblast Growth Factor 2 (FGF2) is a tumor cell survival factor that is transported into the extracellular space by an unconventional secretory mechanism. Cell surface heparan sulfate proteoglycans are known to play an essential role in this process. Unexpectedly, we found that among the diverse sub-classes consisting of syndecans, perlecans, glypicans and others, Glypican-1 (GPC1) is the principle and rate-limiting factor that drives unconventional secretion of FGF2. By contrast, we demonstrate GPC1 to be dispensable for FGF2 signaling into cells. We provide first insights into the structural basis for GPC1-dependent FGF2 secretion, identifying disaccharides with N-linked sulfate groups to be enriched in the heparan sulfate chains of GPC1 to which FGF2 binds with high affinity. Our findings have broad implications for the role of GPC1 as a key molecule in tumor progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Helge Ewers
- Institut für Chemie und Biochemie, Freie Universität Berlin
| | | |
Collapse
|
19
|
Filaquier A, Marin P, Parmentier ML, Villeneuve J. Roads and hubs of unconventional protein secretion. Curr Opin Cell Biol 2022; 75:102072. [PMID: 35305454 DOI: 10.1016/j.ceb.2022.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
In eukaryotes, there is now compelling evidence that in addition to the conventional endoplasmic reticulum-Golgi secretory pathway, there are additional routes for the export of cytoplasmic proteins with a critical role in numerous physio-pathological conditions. These alternative secretory pathways or unconventional protein secretion (UPS) start now to be molecularly dissected, and while UPS landscape appears to be governed by a striking diversity and heterogeneity of mechanisms, common principles are emerging. We review here the role of key molecular determinants as well as the role of central hubs for UPS, highlighting the plasticity and dynamic properties of membrane-bound compartments. We also describe recent findings that position UPS as an integral component of adaptive responses to cope with particular cellular needs and stresses.
Collapse
Affiliation(s)
- Aurore Filaquier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Marie-Laure Parmentier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Villeneuve
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
20
|
Bock FJ, Sedov E, Koren E, Koessinger AL, Cloix C, Zerbst D, Athineos D, Anand J, Campbell KJ, Blyth K, Fuchs Y, Tait SWG. Apoptotic stress-induced FGF signalling promotes non-cell autonomous resistance to cell death. Nat Commun 2021; 12:6572. [PMID: 34772930 PMCID: PMC8590049 DOI: 10.1038/s41467-021-26613-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Damaged or superfluous cells are typically eliminated by apoptosis. Although apoptosis is a cell-autonomous process, apoptotic cells communicate with their environment in different ways. Here we describe a mechanism whereby cells under apoptotic stress can promote survival of neighbouring cells. We find that upon apoptotic stress, cells release the growth factor FGF2, leading to MEK-ERK-dependent transcriptional upregulation of pro-survival BCL-2 proteins in a non-cell autonomous manner. This transient upregulation of pro-survival BCL-2 proteins protects neighbouring cells from apoptosis. Accordingly, we find in certain cancer types a correlation between FGF-signalling, BCL-2 expression and worse prognosis. In vivo, upregulation of MCL-1 occurs in an FGF-dependent manner during skin repair, which regulates healing dynamics. Importantly, either co-treatment with FGF-receptor inhibitors or removal of apoptotic stress restores apoptotic sensitivity to cytotoxic therapy and delays wound healing. These data reveal a pathway by which cells under apoptotic stress can increase resistance to cell death in surrounding cells. Beyond mediating cytotoxic drug resistance, this process also provides a potential link between tissue damage and repair.
Collapse
Affiliation(s)
- Florian J Bock
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ER, Maastricht, The Netherlands.
| | - Egor Sedov
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elle Koren
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Anna L Koessinger
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Catherine Cloix
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Désirée Zerbst
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Dimitris Athineos
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jayanthi Anand
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
21
|
Sadeghi M, Noé F. Hydrodynamic coupling for particle-based solvent-free membrane models. J Chem Phys 2021; 155:114108. [PMID: 34551532 DOI: 10.1063/5.0061623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The great challenge with biological membrane systems is the wide range of scales involved, from nanometers and picoseconds for individual lipids to the micrometers and beyond millisecond for cellular signaling processes. While solvent-free coarse-grained membrane models are convenient for large-scale simulations and promising to provide insight into slow processes involving membranes, these models usually have unrealistic kinetics. One major obstacle is the lack of an equally convenient way of introducing hydrodynamic coupling without significantly increasing the computational cost of the model. To address this, we introduce a framework based on anisotropic Langevin dynamics, for which major in-plane and out-of-plane hydrodynamic effects are modeled via friction and diffusion tensors from analytical or semi-analytical solutions to Stokes hydrodynamic equations. Using this framework, in conjunction with our recently developed membrane model, we obtain accurate dispersion relations for planar membrane patches, both free-standing and in the vicinity of a wall. We briefly discuss how non-equilibrium dynamics is affected by hydrodynamic interactions. We also measure the surface viscosity of the model membrane and discuss the affecting dissipative mechanisms.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| |
Collapse
|
22
|
Membrane interaction and disulphide-bridge formation in the unconventional secretion of Tau. Biosci Rep 2021; 41:229358. [PMID: 34308969 PMCID: PMC8350431 DOI: 10.1042/bsr20210148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/04/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Misfolded, pathological tau protein propagates from cell to cell causing neuronal degeneration in Alzheimer's disease and other tauopathies. The molecular mechanisms of this process have remained elusive. Unconventional secretion of tau takes place via several different routes, including direct penetration through the plasma membrane. Here, we show that tau secretion requires membrane interaction via disulphide bridge formation. Mutating residues that reduce tau interaction with membranes or formation of disulphide bridges decrease both tau secretion from cells, and penetration through artificial lipid membranes. Our results demonstrate that tau is indeed able to penetrate protein-free membranes in a process independent of active cellular processes and that both membrane interaction and disulphide bridge formation are needed for this process. QUARK-based de novo modelling of the second and third microtubule-binding repeat domains (MTBDs), in which the two cysteine residues of 4R isoforms of tau are located, supports the concept that this region of tau could form transient amphipathic helices for membrane interaction.
Collapse
|
23
|
Identification of cis-acting determinants mediating the unconventional secretion of tau. Sci Rep 2021; 11:12946. [PMID: 34155306 PMCID: PMC8217235 DOI: 10.1038/s41598-021-92433-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
The deposition of tau aggregates throughout the brain is a pathological characteristic within a group of neurodegenerative diseases collectively termed tauopathies, which includes Alzheimer’s disease. While recent findings suggest the involvement of unconventional secretory pathways driving tau into the extracellular space and mediating the propagation of the disease-associated pathology, many of the mechanistic details governing this process remain elusive. In the current study, we provide an in-depth characterization of the unconventional secretory pathway of tau and identify novel molecular determinants that are required for this process. Here, using Drosophila models of tauopathy, we correlate the hyperphosphorylation and aggregation state of tau with the disease-related neurotoxicity. These newly established systems recapitulate all the previously identified hallmarks of tau secretion, including the contribution of tau hyperphosphorylation as well as the requirement for PI(4,5)P2 triggering the direct translocation of tau. Using a series of cellular assays, we demonstrate that both the sulfated proteoglycans on the cell surface and the correct orientation of the protein at the inner plasma membrane leaflet are critical determinants of this process. Finally, we identify two cysteine residues within the microtubule binding repeat domain as novel cis-elements that are important for both unconventional secretion and trans-cellular propagation of tau.
Collapse
|
24
|
Flores‐Romero H, Ros U, Garcia‐Saez AJ. Pore formation in regulated cell death. EMBO J 2020; 39:e105753. [PMID: 33124082 PMCID: PMC7705454 DOI: 10.15252/embj.2020105753] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
The discovery of alternative signaling pathways that regulate cell death has revealed multiple strategies for promoting cell death with diverse consequences at the tissue and organism level. Despite the divergence in the molecular components involved, membrane permeabilization is a common theme in the execution of regulated cell death. In apoptosis, the permeabilization of the outer mitochondrial membrane by BAX and BAK releases apoptotic factors that initiate the caspase cascade and is considered the point of no return in cell death commitment. Pyroptosis and necroptosis also require the perforation of the plasma membrane at the execution step, which involves Gasdermins in pyroptosis, and MLKL in the case of necroptosis. Although BAX/BAK, Gasdermins and MLKL share certain molecular features like oligomerization, they form pores in different cellular membranes via distinct mechanisms. Here, we compare and contrast how BAX/BAK, Gasdermins, and MLKL alter membrane permeability from a structural and biophysical perspective and discuss the general principles of membrane permeabilization in the execution of regulated cell death.
Collapse
Affiliation(s)
- Hector Flores‐Romero
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Ana J Garcia‐Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
25
|
Pallotta MT, Nickel W. FGF2 and IL-1β – explorers of unconventional secretory pathways at a glance. J Cell Sci 2020; 133:133/21/jcs250449. [DOI: 10.1242/jcs.250449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT
Fibroblast growth factor 2 (FGF2) and interleukin 1β (IL-1β) were among the earliest examples of a subclass of proteins with extracellular functions that were found to lack N-terminal secretory signal peptides and were shown to be secreted in an ER- and Golgi-independent manner. Many years later, a number of alternative secretory pathways have been discovered, processes collectively termed unconventional protein secretion (UPS). In the course of these studies, unconventional secretion of FGF2 and IL-1β were found to be based upon distinct pathways, mechanisms and molecular machineries. Following a concise introduction into various pathways mediating unconventional secretion and transcellular spreading of proteins, this Cell Science at a Glance poster article aims at a focused analysis of recent key discoveries providing unprecedented detail about the molecular mechanisms and machineries driving FGF2 and IL-1β secretion. These findings are also highly relevant for other unconventionally secreted cargoes that, like FGF2 and IL1β, exert fundamental biological functions in biomedically relevant processes, such as tumor-induced angiogenesis and inflammation.
Collapse
Affiliation(s)
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg 69120, Germany
| |
Collapse
|
26
|
Liao J, Lu X, Shao X, Zhu L, Fan X. Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics. Trends Biotechnol 2020; 39:43-58. [PMID: 32505359 DOI: 10.1016/j.tibtech.2020.05.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023]
Abstract
Revealing fine-scale cellular heterogeneity among spatial context and the functional and structural foundations of tissue architecture is fundamental within biological research and pharmacology. Unlike traditional approaches involving single molecules or bulk omics, cutting-edge, spatially resolved transcriptomics techniques offer near-single-cell or even subcellular resolution within tissues. Massive information across higher dimensions along with position-coordinating labels can better map the whole 3D transcriptional landscape of tissues. In this review, we focus on developments and strategies in spatially resolved transcriptomics, compare the cell and gene throughput and spatial resolution in detail for existing methods, and highlight the enormous potential in biomedical research.
Collapse
Affiliation(s)
- Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ling Zhu
- The Save Sight Institute, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW 2000, Australia
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; The Save Sight Institute, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW 2000, Australia.
| |
Collapse
|
27
|
Hara T, Yabushita S, Yamamoto C, Kaji T. Cell Density-Dependent Fibroblast Growth Factor-2 Signaling Regulates Syndecan-4 Expression in Cultured Vascular Endothelial Cells. Int J Mol Sci 2020; 21:ijms21103698. [PMID: 32456321 PMCID: PMC7279341 DOI: 10.3390/ijms21103698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Syndecan-4 is a member of the syndecan family of transmembrane heparan sulfate proteoglycans, and is involved in cell protection, proliferation, and the blood coagulation-fibrinolytic system in vascular endothelial cells. Heparan sulfate chains enable fibroblast growth factor-2 (FGF-2) to form a complex with its receptor and to transduce the cell growth signal. In the present study, bovine aortic endothelial cells were cultured, and the intracellular signal pathways that mediate the regulation of syndecan-4 expression in dense and sparse cultures by FGF-2 were analyzed. We demonstrated the cell density-dependent differential regulation of syndecan-4 expression. Specifically, we found that FGF-2 upregulated the synthesis of syndecan-4 in vascular endothelial cells via the MEK1/2-ERK1/2 pathway in dense cell cultures, with only a transcriptional induction of syndecan-4 at a low cell density via the Akt pathway. This study highlights a critical mechanism underlying the regulation of endothelial cell functions by proteoglycans.
Collapse
Affiliation(s)
- Takato Hara
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, Funabashi 274-8510, Japan; (T.H.); (C.Y.)
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan;
| | - Shiori Yabushita
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan;
| | - Chika Yamamoto
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, Funabashi 274-8510, Japan; (T.H.); (C.Y.)
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan;
- Correspondence: ; Tel.: +81-4-7121-3621
| |
Collapse
|
28
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
29
|
Sochacka M, Opalinski L, Szymczyk J, Zimoch MB, Czyrek A, Krowarsch D, Otlewski J, Zakrzewska M. FHF1 is a bona fide fibroblast growth factor that activates cellular signaling in FGFR-dependent manner. Cell Commun Signal 2020; 18:69. [PMID: 32357892 PMCID: PMC7193404 DOI: 10.1186/s12964-020-00573-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Abstract Fibroblast growth factors (FGFs) via their receptors (FGFRs) transduce signals from the extracellular space to the cell interior, modulating pivotal cellular processes such as cell proliferation, motility, metabolism and death. FGF superfamily includes a group of fibroblast growth factor homologous factors (FHFs), proteins whose function is still largely unknown. Since FHFs lack the signal sequence for secretion and are unable to induce FGFR-dependent cell proliferation, these proteins were considered as intracellular proteins that are not involved in signal transduction via FGFRs. Here we demonstrate for the first time that FHF1 directly interacts with all four major FGFRs. FHF1 binding causes efficient FGFR activation and initiation of receptor-dependent signaling cascades. However, the biological effect of FHF1 differs from the one elicited by canonical FGFs, as extracellular FHF1 protects cells from apoptosis, but is unable to stimulate cell division. Our data define FHF1 as a FGFR ligand, emphasizing much greater similarity between FHFs and canonical FGFs than previously indicated. Video Abstract. (MP4 38460 kb)
Graphical abstract ![]()
Collapse
Affiliation(s)
- Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jakub Szymczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta B Zimoch
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Czyrek
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
30
|
Eguchi R, Wakabayashi I. HDGF enhances VEGF‑dependent angiogenesis and FGF‑2 is a VEGF‑independent angiogenic factor in non‑small cell lung cancer. Oncol Rep 2020; 44:14-28. [PMID: 32319650 PMCID: PMC7251661 DOI: 10.3892/or.2020.7580] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for over 80% of all diagnosed lung cancer cases. Lung cancer is the leading cause of cancer-related deaths worldwide. Most NSCLC cells overexpress vascular endothelial growth factor-A (VEGF-A) which plays a pivotal role in tumour angiogenesis. Anti-angiogenic therapies including VEGF-A neutralisation have significantly improved the response rates, progression-free survival and overall survival of patients with NSCLC. However, the median survival of these patients is shorter than 18 months, suggesting that NSCLC cells secrete VEGF-independent angiogenic factors, which remain unknown. We aimed to explore these factors in human NSCLC cell lines, A549, Lu99 and EBC-1 using serum-free culture, to which only EBC-1 cells could adapt. By mass spectrometry, we identified 1,007 proteins in the culture supernatant derived from EBC-1 cells. Among the identified proteins, interleukin-8 (IL-8), macrophage migration inhibitory factor (MIF), galectin-1, midkine (MK), IL-18, galectin-3, VEGF-A, hepatoma-derived growth factor (HDGF), osteopontin (OPN), connective tissue growth factor (CTGF) and granulin (GRN) are known to be involved in angiogenesis. Tube formation, neutralisation and RNA interference assays revealed that VEGF-A and HDGF function as angiogenic factors in EBC-1 cells. To confirm whether VEGF-A and HDGF also regulate angiogenesis in the other NSCLC cell lines, we established a novel culture method. NSCLC cells were embedded in collagen gel and cultured three-dimensionally. Tube formation, neutralisation and RNA interference assays using the three-dimensional (3D) culture supernatant showed that VEGF-A and HDGF were not angiogenic factors in Lu99 cells. By gene microarray in EBC-1 and Lu99 cells, we identified 61 mRNAs expressed only in Lu99 cells. Among these mRNAs, brain-derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF-2) and FGF-5 are known to be involved in angiogenesis. Tube formation and neutralisation assays clarified that FGF-2 functions as an angiogenic factor in Lu99 cells. These results indicate that HDGF enhances VEGF-dependent angiogenesis and that FGF-2 is a VEGF-independent angiogenic factor in human NSCLC cells.
Collapse
Affiliation(s)
- Ryoji Eguchi
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Ichiro Wakabayashi
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| |
Collapse
|
31
|
Legrand C, Saleppico R, Sticht J, Lolicato F, Müller HM, Wegehingel S, Dimou E, Steringer JP, Ewers H, Vattulainen I, Freund C, Nickel W. The Na,K-ATPase acts upstream of phosphoinositide PI(4,5)P 2 facilitating unconventional secretion of Fibroblast Growth Factor 2. Commun Biol 2020; 3:141. [PMID: 32214225 PMCID: PMC7096399 DOI: 10.1038/s42003-020-0871-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
FGF2 is a tumor cell survival factor that is exported from cells by an ER/Golgi-independent secretory pathway. This unconventional mechanism of protein secretion is based on direct translocation of FGF2 across the plasma membrane. The Na,K-ATPase has previously been shown to play a role in this process, however, the underlying mechanism has remained elusive. Here, we define structural elements that are critical for a direct physical interaction between FGF2 and the α1 subunit of the Na,K-ATPase. In intact cells, corresponding FGF2 mutant forms were impaired regarding both recruitment at the inner plasma membrane leaflet and secretion. Ouabain, a drug that inhibits both the Na,K-ATPase and FGF2 secretion, was found to impair the interaction of FGF2 with the Na,K-ATPase in cells. Our findings reveal the Na,K-ATPase as the initial recruitment factor for FGF2 at the inner plasma membrane leaflet being required for efficient membrane translocation of FGF2 to cell surfaces. Legrand et al. identify two lysine residues on molecular surface of Fibroblast Growth Factor 2 (FGF2) essential for its interaction with α1 subunit of the Na,K-ATPase. They further conclude that this interaction precedes interaction of the FGF2 with PI(4,5)P2 and facilitates its unconventional secretion across the membrane, which is impaired by Ouabain, an Na,K-ATPase inhibitor.
Collapse
Affiliation(s)
- Cyril Legrand
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Roberto Saleppico
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Jana Sticht
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.,Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.,Department of Physics, University of Helsinki, FL-00014, Helsinki, Finland.,Computational Physics Laboratory, Tampere University, Fl-33100, Tampere, Finland
| | - Hans-Michael Müller
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Sabine Wegehingel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Eleni Dimou
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Julia P Steringer
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, FL-00014, Helsinki, Finland.,Computational Physics Laboratory, Tampere University, Fl-33100, Tampere, Finland
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Li SN, Li P, Liu WH, Shang JJ, Qiu SL, Zhou MX, Liu HX. Danhong injection enhances angiogenesis after myocardial infarction by activating MiR-126/ERK/VEGF pathway. Biomed Pharmacother 2019; 120:109538. [PMID: 31629250 DOI: 10.1016/j.biopha.2019.109538] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Danhong injection (DHI) is a Chinese drug used for relieving cardiovascular diseases. This study aimed to identify the effect and mechanism of action of DHI on post-infarct angiogenesis, especially the epigenetic regulation of angiogenesis. METHODS A myocardial infarction (MI) mouse model was induced by ligating the left anterior descending coronary artery. A 4-week daily treatment with or without DHI via intraperitoneal injection was started immediately following MI. The changes in cardiac function, pathology, and angiogenesis following MI were measured by echocardiography and immunostaining. Matrigel tube formation and scratch wound assays were used to evaluate the effect of DHI on the proliferation and migration of hypoxic human umbilical vein endothelial cells (HUVECs). The expression of miR-126, Spred-1, and angiogenesis-related mRNAs was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of related proteins and the phosphorylated levels of extracellular signal-regulated kinase (ERK) and protein kinase B were detected by Western blot analysis. The loss-of-function study was performed using antagomir-126. RESULTS The DHI-treated mice had significantly reduced infarct area, improved ejection fraction, and increased capillary density 4 weeks after MI. Also, DHI promoted the proliferation and migration of hypoxic HUVECs. The qRT-PCR and Western blot analysis revealed that DHI intervention upregulated miR-126, suppressed Spred-1 expression, and activated the ERK pathway, but not the Akt pathway. The loss-of-function study showed the blockade of the pro-angiogenic effect of DHI by antagomir-126 involving the ERK/vascular endothelial growth factor (VEGF) pathway. CONCLUSION DHI enhanced post-infarct angiogenesis after MI by activating the miR-126/ERK/VEGF pathway.
Collapse
Affiliation(s)
- Si-Nai Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Wei-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Ju-Ju Shang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Sheng-Lei Qiu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Ming-Xue Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China.
| | - Hong-Xu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|