1
|
Cioccarelli L, Lenihan JA, Erwin LG, Young PW. Differential neuronal functions of LNX1 and LNX2 revealed by behavioural analysis in single and double knockout mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:13. [PMID: 40269869 PMCID: PMC12020136 DOI: 10.1186/s12993-025-00276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Ligand of NUMB protein-X 1 (LNX1) and LNX2 proteins are closely related PDZ domain-containing E3 ubiquitin ligases that interact with and potentially modulate numerous synaptic and neurodevelopmentally important proteins. While both LNX1 and LNX2 are expressed in neurons, it is noteworthy that neuronal LNX1 isoforms lack the catalytic domain responsible for ubiquitination of substrates. Thus, the shared interaction partners of LNX1 and LNX2 might be differentially regulated by these proteins, with LNX1 acting as a stabilizing scaffold while LNX2 may promote their ubiquitination and degradation. Despite the identification of many LNX interacting proteins and substrates, our understanding of the distinct in vivo functions of LNX1 and LNX2 remains very incomplete. RESULTS We previously reported that mice lacking both LNX1 in the central nervous system and LNX2 globally exhibit decreased anxiety-related behaviour. Here we significantly extend this work by examining anxiety-related and risk-taking behaviours in Lnx1-/- and Lnx2-/- single knockout animals for the first time and by analysing previously unexplored aspects of behaviour in both single and double knockout animals. While the absence of both LNX1 and LNX2 contributes to the decreased anxiety-related behaviour of double knockout animals in the open field and elevated plus maze tests, the elimination of LNX2 plays a more prominent role in altered behaviour in the dark-light emergence test and wire beam bridge risk-taking paradigms. By contrast, Lnx knockout mice of all genotypes were indistinguishable from wildtype animals in the marble burying, stress-induced hyperthermia and novel object recognition tests. Analysis of the ultrasonic vocalizations of pups following maternal separation revealed significant differences in call properties and vocal repertoire for Lnx1-/- and Lnx1-/-;Lnx2-/- double knockout animals. Finally, decreased body weight previously noted in double knockout animals could be attributed largely to Lnx1 gene knockout. CONCLUSIONS These results identify specific roles of LNX1 and LNX2 proteins in modulating distinct aspects of anxiety and risk-taking behaviour and social communication in mice. They also reveal an unexpected role for neuronally expressed LNX1 isoforms in determining body weight. These novel insights into the differential neuronal functions of LNX1 and LNX2 proteins provide a foundation for mechanistic studies of these phenomena.
Collapse
Affiliation(s)
- Laura Cioccarelli
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Joan A Lenihan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Leah G Erwin
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Paul W Young
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Liu Y, Gao Q, Zhang Q, Li C, Liu S, Su M, Song D, Zhao G, Li Q. Identification of potential substrates of LNX1 in chicken cells. Poult Sci 2025; 104:104633. [PMID: 39693965 PMCID: PMC11719366 DOI: 10.1016/j.psj.2024.104633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Ubiquitination of proteins is involved in numerous life activities. In poultry, several ubiquitin ligases tightly control the innate immune response, imbalance of which may result in autoimmune diseases and seriously impair poultry growth, development, and productivity. LNX1, an E3 ubiquitin ligase, catalyzes the ubiquitination and subsequent degradation of specific substrate proteins. A cell line with stable knockdown of the LNX1 gene was developed using chicken macrophages (HD11) as the model. The relative quantitative values of each protein were analyzed using 4D-FastDIA quantitative proteomics. This identified 319 proteins with up-regulated expression, a majority of which relate to the immune system. Overall, this study uncovered potential substrate proteins targeted by LNX1 and their associated biological pathways. The findings suggest that LNX1 could be implicated in the regulation of the chicken innate immune system by mediating protein ubiquitination.
Collapse
Affiliation(s)
- Yuhong Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Qianmei Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Qi Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Chen Li
- Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sha Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Meng Su
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Danli Song
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Guiping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Qinghe Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
3
|
Luo W, Egger M, Cruz-Ochoa N, Tse A, Maloveczky G, Tamás B, Lukacsovich D, Seng C, Amrein I, Lukacsovich T, Wolfer D, Földy C. Activation of feedforward wiring in adult hippocampal neurons by the basic-helix-loop-helix transcription factor Ascl4. PNAS NEXUS 2024; 3:pgae174. [PMID: 38711810 PMCID: PMC11071515 DOI: 10.1093/pnasnexus/pgae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
Although evidence indicates that the adult brain retains a considerable capacity for circuit formation, adult wiring has not been broadly considered and remains poorly understood. In this study, we investigate wiring activation in adult neurons. We show that the basic-helix-loop-helix transcription factor Ascl4 can induce wiring in different types of hippocampal neurons of adult mice. The new axons are mainly feedforward and reconfigure synaptic weights in the circuit. Mice with the Ascl4-induced circuits do not display signs of pathology and solve spatial problems equally well as controls. Our results demonstrate reprogrammed connectivity by a single transcriptional factor and provide insights into the regulation of brain wiring in adults.
Collapse
Affiliation(s)
- Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Matteo Egger
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| | - Natalia Cruz-Ochoa
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| | - Alice Tse
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Gyula Maloveczky
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Bálint Tamás
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Irmgard Amrein
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich 8057, Switzerland
| | - Tamás Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - David Wolfer
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich 8057, Switzerland
- Institute of Human Movement Sciences and Sport, D-HEST, ETH Zürich, Zürich 8057, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
4
|
Zhu J, Qiu W, Wei F, Wang Y, Wang Q, Ma W, Xiong H, Cui Y, Li X, Xu R, Lin Y. Reactive A1 Astrocyte-Targeted Nucleic Acid Nanoantiepileptic Drug Downregulating Adenosine Kinase to Rescue Endogenous Antiepileptic Pathway. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37334941 DOI: 10.1021/acsami.3c03455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Resistance to traditional antiepileptic drugs is a major challenge in chronic epilepsy treatment. MicroRNA-based gene therapy is a promising alternative but has demonstrated limited efficacy due to poor blood-brain barrier permeability, cellular uptake, and targeting efficiency. Adenosine is an endogenous antiseizure agent deficient in the epileptic brain due to elevated adenosine kinase (ADK) activity in reactive A1 astrocytes. We designed a nucleic acid nanoantiepileptic drug (tFNA-ADKASO@AS1) based on a tetrahedral framework nucleic acid (tFNA), carrying an antisense oligonucleotide targeting ADK (ADKASO) and A1 astrocyte-targeted peptide (AS1). This tFNA-ADKASO@AS1 construct effectively reduced brain ADK, increased brain adenosine, mitigated aberrant mossy fiber sprouting, and reduced the recurrent spontaneous epileptic spike frequency in a mouse model of chronic temporal lobe epilepsy. Further, the treatment did not induce any neurotoxicity or major organ damage. This work provides proof-of-concept for a novel antiepileptic drug delivery strategy and for endogenous adenosine as a promising target for gene-based modulation.
Collapse
Affiliation(s)
- Jianwei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenqiao Qiu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Wei
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yangyang Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiguang Wang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Cui
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xinda Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Washburn HR, Chander P, Srikanth KD, Dalva MB. Transsynaptic Signaling of Ephs in Synaptic Development, Plasticity, and Disease. Neuroscience 2023; 508:137-152. [PMID: 36460219 DOI: 10.1016/j.neuroscience.2022.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Synapse formation between neurons is critical for proper circuit and brain function. Prior to activity-dependent refinement of connections between neurons, activity-independent cues regulate the contact and recognition of potential synaptic partners. Formation of a synapse results in molecular recognition events that initiate the process of synaptogenesis. Synaptogenesis requires contact between axon and dendrite, selection of correct and rejection of incorrect partners, and recruitment of appropriate pre- and postsynaptic proteins needed for the establishment of functional synaptic contact. Key regulators of these events are families of transsynaptic proteins, where one protein is found on the presynaptic neuron and the other is found on the postsynaptic neuron. Of these families, the EphBs and ephrin-Bs are required during each phase of synaptic development from target selection, recruitment of synaptic proteins, and formation of spines to regulation of synaptic plasticity at glutamatergic spine synapses in the mature brain. These roles also place EphBs and ephrin-Bs as important regulators of human neurological diseases. This review will focus on the role of EphBs and ephrin-Bs at synapses.
Collapse
Affiliation(s)
- Halley R Washburn
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Praveen Chander
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Kolluru D Srikanth
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Matthew B Dalva
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA.
| |
Collapse
|
6
|
Luo W, Cruz-Ochoa NA, Seng C, Egger M, Lukacsovich D, Lukacsovich T, Földy C. Pcdh11x controls target specification of mossy fiber sprouting. Front Neurosci 2022; 16:888362. [PMID: 36117624 PMCID: PMC9475199 DOI: 10.3389/fnins.2022.888362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Circuit formation is a defining characteristic of the developing brain. However, multiple lines of evidence suggest that circuit formation can also take place in adults, the mechanisms of which remain poorly understood. Here, we investigated the epilepsy-associated mossy fiber (MF) sprouting in the adult hippocampus and asked which cell surface molecules define its target specificity. Using single-cell RNAseq data, we found lack and expression of Pcdh11x in non-sprouting and sprouting neurons respectively. Subsequently, we used CRISPR/Cas9 genome editing to disrupt the Pcdh11x gene and characterized its consequences on sprouting. Although MF sprouting still developed, its target specificity was altered. New synapses were frequently formed on granule cell somata in addition to dendrites. Our findings shed light onto a key molecular determinant of target specificity in MF sprouting and contribute to understanding the molecular mechanism of adult brain rewiring.
Collapse
|
7
|
Li N, Chen S, Xu NJ, Sun S, Chen JJ, Liu XD. Scaffold Protein Lnx1 Stabilizes EphB Receptor Kinases for Synaptogenesis. Front Mol Neurosci 2022; 15:861873. [PMID: 35531068 PMCID: PMC9070102 DOI: 10.3389/fnmol.2022.861873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
Postsynaptic structure assembly and remodeling are crucial for functional synapse formation during the establishment of neural circuits. However, how the specific scaffold proteins regulate this process during the development of the postnatal period is poorly understood. In this study, we find that the deficiency of ligand of Numb protein X 1 (Lnx1) leads to abnormal development of dendritic spines to impair functional synaptic formation. We further demonstrate that loss of Lnx1 promotes the internalization of EphB receptors from the cell surface. Constitutively active EphB2 intracellular signaling rescues synaptogenesis in Lnx1 mutant mice. Our data thus reveal a molecular mechanism whereby the Lnx1-EphB complex controls postsynaptic structure for synapse maturation during the adolescent period.
Collapse
Affiliation(s)
- Na Li
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si Chen
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan-Jie Xu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suya Sun
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Jin Chen
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian-Dong Liu
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Méndez-Salcido FA, Torres-Flores MI, Ordaz B, Peña-Ortega F. Abnormal innate and learned behavior induced by neuron-microglia miscommunication is related to CA3 reconfiguration. Glia 2022; 70:1630-1651. [PMID: 35535571 DOI: 10.1002/glia.24185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
Abstract
Neuron-microglia communication through the Cx3cr1-Cx3cl1 axis is essential for the development and refinement of neural circuits, which determine their function into adulthood. In the present work we set out to extend the behavioral characterization of Cx3cr1-/- mice evaluating innate behaviors and spatial navigation, both dependent on hippocampal function. Our results show that Cx3cr1-deficient mice, which show some changes in microglial and synaptic terminals morphology and density, exhibit alterations in activities of daily living and in the rapid encoding of novel spatial information that, nonetheless, improves with training. A neural substrate for these cognitive deficiencies was found in the form of synaptic dysfunction in the CA3 region of the hippocampus, with a marked impact on the mossy fiber (MF) pathway. A network analysis of the CA3 microcircuit reveals the effect of these synaptic alterations on the functional connectivity among CA3 neurons with diminished strength and topological reorganization in Cx3cr1-deficient mice. Neonatal population activity of the CA3 region in Cx3cr1-deficient mice shows a marked reorganization around the giant depolarizing potentials, the first form of network-driven activity of the hippocampus, suggesting that alterations found in adult subjects arise early on in postnatal development, a critical period of microglia-dependent neural circuit refinement. Our results show that interruption of the Cx3cr1-Cx3cl1/neuron-microglia axis leads to changes in CA3 configuration that affect innate and learned behaviors.
Collapse
Affiliation(s)
- Felipe Antonio Méndez-Salcido
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Mayra Itzel Torres-Flores
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| |
Collapse
|
9
|
Nakanishi Y, Akinaga S, Osawa K, Suzuki N, Sugeno A, Kolattukudy P, Goshima Y, Ohshima T. Regulation of axon pruning of mossy fiber projection in hippocampus by CRMP2 and CRMP4. Dev Neurobiol 2021; 82:138-146. [PMID: 34932871 DOI: 10.1002/dneu.22865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Axon pruning facilitates the removal of ectopic and misguided axons and plays an important role in neural circuit formation during brain development. Sema3F and its receptor neuropilin-2 (Nrp2) have been shown to be involved in the stereotyped pruning of the infrapyramidal bundle (IPB) of mossy fibers of the dentate gyrus (DG) in the developing hippocampus. Collapsin response mediator proteins (CRMPs) were originally identified as an intracellular mediator of semaphorin signaling, and the defective pruning of IPB was recently reported in CRMP2-/- and CRMP3-/- mice. CRMP1 and CRMP4 have high homology to CRMP2 and CRMP3, and their expression in the developing mouse brain overlaps; however, their role in IPB pruning has not yet been examined. In this study, we report that CRMP4, but not CRMP1, is involved in IPB pruning during neural circuit formation in the hippocampus. Our genetic interaction analyses indicated that CRMP2 and CRMP4 have distinct functions and that CRMP2 mediates IPB pruning via Nrp2. We also observed the altered synaptic terminals of mossy fibers in CRMP2 and CRMP4 mutant mice. These results suggest that CRMP family members have a distinct function in the axon pruning and targeting of mossy fibers of the hippocampal DG in the developing mouse brain.
Collapse
Affiliation(s)
- Yurika Nakanishi
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Satoshi Akinaga
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Koki Osawa
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Natusmi Suzuki
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Ayaka Sugeno
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | | | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| |
Collapse
|
10
|
Hayashi S, Hoerder-Suabedissen A, Kiyokage E, Maclachlan C, Toida K, Knott G, Molnár Z. Maturation of Complex Synaptic Connections of Layer 5 Cortical Axons in the Posterior Thalamic Nucleus Requires SNAP25. Cereb Cortex 2021; 31:2625-2638. [PMID: 33367517 PMCID: PMC8023812 DOI: 10.1093/cercor/bhaa379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Synapses are able to form in the absence of neuronal activity, but how is their subsequent maturation affected in the absence of regulated vesicular release? We explored this question using 3D electron microscopy and immunoelectron microscopy analyses in the large, complex synapses formed between cortical sensory efferent axons and dendrites in the posterior thalamic nucleus. Using a Synaptosome-associated protein 25 conditional knockout (Snap25 cKO), we found that during the first 2 postnatal weeks the axonal boutons emerge and increase in the size similar to the control animals. However, by P18, when an adult-like architecture should normally be established, axons were significantly smaller with 3D reconstructions, showing that each Snap25 cKO bouton only forms a single synapse with the connecting dendritic shaft. No excrescences from the dendrites were formed, and none of the normally large glomerular axon endings were seen. These results show that activity mediated through regulated vesicular release from the presynaptic terminal is not necessary for the formation of synapses, but it is required for the maturation of the specialized synaptic structures between layer 5 corticothalamic projections in the posterior thalamic nucleus.
Collapse
Affiliation(s)
- Shuichi Hayashi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Emi Kiyokage
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama 701-0193, Japan
| | - Catherine Maclachlan
- BioEM Facility, School of Life Sciences, EPFL, Lausanne 1015, Switzerland
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Graham Knott
- BioEM Facility, School of Life Sciences, EPFL, Lausanne 1015, Switzerland
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
11
|
Hippocampal Lnx1-NMDAR multiprotein complex mediates initial social memory. Mol Psychiatry 2021; 26:3956-3969. [PMID: 31772302 PMCID: PMC8550978 DOI: 10.1038/s41380-019-0606-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/08/2022]
Abstract
Social interaction and communication are evolutionary conserved behaviours that are developed in mammals to establish partner cognition. Deficit in sociability has been represented in human patients and animal models of neurodevelopmental disorders, which are connected with genetic variants of synaptic glutamate receptors and associated PDZ-binding proteins. However, it remains elusive how these key proteins are specialized in the cellular level for the initial social behaviour during postnatal developmental stage. Here we identify a hippocampal CA3 specifically expressed PDZ scaffold protein Lnx1 required for initial social behaviour. Through gene targeting we find that Lnx1 deficiency led to a hippocampal subregional disorder in neuronal activity and social memory impairments for partner discrimination observed in juvenile mice which also show cognitive defects in adult stage. We further demonstrate that Lnx1 deletion causes NMDA receptor (NMDAR) hypofunction and this is attributable to decreased GluN2B expression in PSD compartment and disruption of the Lnx1-NMDAR-EphB2 complex. Specific restoration of Lnx1 or EphB2 protein in the CA3 area of Lnx1-/- mice rescues the defective synaptic function and social memory. These findings thus reveal crucial roles of postsynaptic NMDAR multiprotein complex that regulates the formation of initial social memory during the adolescent period.
Collapse
|
12
|
Hong J, Won M, Ro H. The Molecular and Pathophysiological Functions of Members of the LNX/PDZRN E3 Ubiquitin Ligase Family. Molecules 2020; 25:E5938. [PMID: 33333989 PMCID: PMC7765395 DOI: 10.3390/molecules25245938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
The ligand of Numb protein-X (LNX) family, also known as the PDZRN family, is composed of four discrete RING-type E3 ubiquitin ligases (LNX1, LNX2, LNX3, and LNX4), and LNX5 which may not act as an E3 ubiquitin ligase owing to the lack of the RING domain. As the name implies, LNX1 and LNX2 were initially studied for exerting E3 ubiquitin ligase activity on their substrate Numb protein, whose stability was negatively regulated by LNX1 and LNX2 via the ubiquitin-proteasome pathway. LNX proteins may have versatile molecular, cellular, and developmental functions, considering the fact that besides these proteins, none of the E3 ubiquitin ligases have multiple PDZ (PSD95, DLGA, ZO-1) domains, which are regarded as important protein-interacting modules. Thus far, various proteins have been isolated as LNX-interacting proteins. Evidence from studies performed over the last two decades have suggested that members of the LNX family play various pathophysiological roles primarily by modulating the function of substrate proteins involved in several different intracellular or intercellular signaling cascades. As the binding partners of RING-type E3s, a large number of substrates of LNX proteins undergo degradation through ubiquitin-proteasome system (UPS) dependent or lysosomal pathways, potentially altering key signaling pathways. In this review, we highlight recent and relevant findings on the molecular and cellular functions of the members of the LNX family and discuss the role of the erroneous regulation of these proteins in disease progression.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| | - Minho Won
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju 28116, Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| |
Collapse
|
13
|
Wu XR, Zhang Y, Liu XD, Han WB, Xu NJ, Sun S. EphB2 mediates social isolation-induced memory forgetting. Transl Psychiatry 2020; 10:389. [PMID: 33168800 PMCID: PMC7653962 DOI: 10.1038/s41398-020-01051-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 01/05/2023] Open
Abstract
Social isolation in adolescence leads to lasting deficits, including emotional and cognitive dysregulation. It remains unclear, however, how social isolation affects certain processes of memory and what molecular mechanisms are involved. In this study, we found that social isolation during the post-weaning period resulted in forgetting of the long-term fear memory, which was attributable to the downregulation of synaptic function in the hippocampal CA1 region mediated by EphB2, a receptor tyrosine kinase which involves in the glutamate receptor multiprotein complex. Viral-mediated EphB2 knockdown in CA1 mimicked the memory defects in group-housed mice, whereas restoration of EphB2 by either viral overexpression or resocialization reversed the memory decline in isolated mice. Taken together, our finding indicates that social isolation gives rise to memory forgetting by disrupting EphB2-mediated synaptic plasticity, which may provide a potential target for preventing memory loss caused by social isolation or loneliness.
Collapse
Affiliation(s)
- Xin-Rong Wu
- grid.16821.3c0000 0004 0368 8293Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Yu Zhang
- grid.16821.3c0000 0004 0368 8293Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Xian-Dong Liu
- grid.16821.3c0000 0004 0368 8293Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China ,grid.16821.3c0000 0004 0368 8293Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Wu-Bo Han
- grid.16821.3c0000 0004 0368 8293Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Nan-Jie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China. .,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China. .,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Suya Sun
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
14
|
Simon R, Wiegreffe C, Britsch S. Bcl11 Transcription Factors Regulate Cortical Development and Function. Front Mol Neurosci 2020; 13:51. [PMID: 32322190 PMCID: PMC7158892 DOI: 10.3389/fnmol.2020.00051] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor family Bcl11 are mainly expressed in the hematopoietic and central nervous systems regulating the expression of numerous genes involved in a wide range of pathways. In the brain Bcl11 proteins are required to regulate progenitor cell proliferation as well as differentiation, migration, and functional integration of neural cells. Mutations of the human Bcl11 genes lead to anomalies in multiple systems including neurodevelopmental impairments like intellectual disabilities and autism spectrum disorders.
Collapse
Affiliation(s)
- Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| | | | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| |
Collapse
|
15
|
Lewis V, Laberge F, Heyland A. Temporal Profile of Brain Gene Expression After Prey Catching Conditioning in an Anuran Amphibian. Front Neurosci 2020; 13:1407. [PMID: 31992968 PMCID: PMC6971186 DOI: 10.3389/fnins.2019.01407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
A key goal in modern neurobiology is to understand the mechanisms underlying learning and memory. To that end, it is essential to identify the patterns of gene expression and the temporal sequence of molecular events associated with learning and memory processes. It is also important to ascertain if and how these molecular events vary between organisms. In vertebrates, learning and memory processes are characterized by distinct phases of molecular activity involving gene transcription, structural change, and long-term maintenance of such structural change in the nervous system. Utilizing next generation sequencing techniques, we profiled the temporal expression patterns of genes in the brain of the fire-bellied toad Bombina orientalis after prey catching conditioning. The fire-bellied toad is a basal tetrapod whose neural architecture and molecular pathways may help us understand the ancestral state of learning and memory mechanisms in tetrapods. Differential gene expression following conditioning revealed activity in molecular pathways related to immediate early genes (IEG), cytoskeletal modification, axon guidance activity, and apoptotic processes. Conditioning induced early IEG activity coinciding with transcriptional activity and neuron structural modification, followed by axon guidance and cell adhesion activity, and late neuronal pruning. While some of these gene expression patterns are similar to those found in mammals submitted to conditioning, some interesting divergent expression profiles were seen, and differential expression of some well-known learning-related mammalian genes is missing altogether. These results highlight the importance of using a comparative approach in the study of the mechanisms of leaning and memory and provide molecular resources for a novel vertebrate model in the relatively poorly studied Amphibia.
Collapse
Affiliation(s)
- Vern Lewis
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | | - Andreas Heyland
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
16
|
de la Rocha-Muñoz A, Núñez E, Arribas-González E, López-Corcuera B, Aragón C, de Juan-Sanz J. E3 ubiquitin ligases LNX1 and LNX2 are major regulators of the presynaptic glycine transporter GlyT2. Sci Rep 2019; 9:14944. [PMID: 31628376 PMCID: PMC6802383 DOI: 10.1038/s41598-019-51301-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
The neuronal glycine transporter GlyT2 is an essential regulator of glycinergic neurotransmission that recaptures glycine in presynaptic terminals to facilitate transmitter packaging in synaptic vesicles. Alterations in GlyT2 expression or activity result in lower cytosolic glycine levels, emptying glycinergic synaptic vesicles and impairing neurotransmission. Lack of glycinergic neurotransmission caused by GlyT2 loss-of-function mutations results in Hyperekplexia, a rare neurological disease characterized by generalized stiffness and motor alterations that may cause sudden infant death. Although the importance of GlyT2 in pathology is known, how this transporter is regulated at the molecular level is poorly understood, limiting current therapeutic strategies. Guided by an unbiased screening, we discovered that E3 ubiquitin ligase Ligand of Numb proteins X1/2 (LNX1/2) modulate the ubiquitination status of GlyT2. The N-terminal RING-finger domain of LNX1/2 ubiquitinates a cytoplasmic C-terminal lysine cluster in GlyT2 (K751, K773, K787 and K791), and this process regulates the expression levels and transport activity of GlyT2. The genetic deletion of endogenous LNX2 in spinal cord primary neurons causes an increase in GlyT2 expression and we find that LNX2 is required for PKC-mediated control of GlyT2 transport. This work identifies, to our knowledge, the first E3 ubiquitin-ligases acting on GlyT2, revealing a novel molecular mechanism that controls presynaptic glycine availability. Providing a better understanding of the molecular regulation of GlyT2 may help future investigations into the molecular basis of human disease states caused by dysfunctional glycinergic neurotransmission, such as hyperekplexia and chronic pain.
Collapse
Affiliation(s)
- A de la Rocha-Muñoz
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - E Núñez
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - E Arribas-González
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, 28002, Madrid, Spain
| | - B López-Corcuera
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - C Aragón
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain.
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.
| | - J de Juan-Sanz
- Sorbonne Université and Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Inserm, CNRS, Paris, France.
| |
Collapse
|
17
|
Lynn BD, Li X, Hormuzdi SG, Griffiths EK, McGlade CJ, Nagy JI. E3 ubiquitin ligases LNX1 and LNX2 localize at neuronal gap junctions formed by connexin36 in rodent brain and molecularly interact with connexin36. Eur J Neurosci 2018; 48:3062-3081. [PMID: 30295974 DOI: 10.1111/ejn.14198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
Abstract
Electrical synapses in the mammalian central nervous system (CNS) are increasingly recognized as highly complex structures for mediation of neuronal communication, both with respect to their capacity for dynamic short- and long-term modification in efficacy of synaptic transmission and their multimolecular regulatory and structural components. These two characteristics are inextricably linked, such that understanding of mechanisms that contribute to electrical synaptic plasticity requires knowledge of the molecular composition of electrical synapses and the functions of proteins associated with these synapses. Here, we provide evidence that the key component of gap junctions that form the majority of electrical synapses in the mammalian CNS, namely connexin36 (Cx36), directly interacts with the related E3 ubiquitin ligase proteins Ligand of NUMB protein X1 (LNX1) and Ligand of NUMB protein X2 (LNX2). This is based on immunofluorescence colocalization of LNX1 and LNX2 with Cx36-containing gap junctions in adult mouse brain versus lack of such coassociation in LNX null mice, coimmunoprecipitation of LNX proteins with Cx36, and pull-down of Cx36 with the second PDZ domain of LNX1 and LNX2. Furthermore, cotransfection of cultured cells with Cx36 and E3 ubiquitin ligase-competent LNX1 and LNX2 isoforms led to loss of Cx36-containing gap junctions between cells, whereas these junctions persisted following transfection with isoforms of these proteins that lack ligase activity. Our results suggest that a LNX protein mediates ubiquitination of Cx36 at neuronal gap junctions, with consequent Cx36 internalization, and may thereby contribute to intracellular mechanisms that govern the recently identified modifiability of synaptic transmission at electrical synapses.
Collapse
Affiliation(s)
- Bruce D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xinbo Li
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Sheriar G Hormuzdi
- D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emily K Griffiths
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|