1
|
Troyanovsky RB, Indra I, Troyanovsky SM. Actin-dependent α-catenin oligomerization contributes to adherens junction assembly. Nat Commun 2025; 16:1801. [PMID: 39979305 PMCID: PMC11842732 DOI: 10.1038/s41467-025-57079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Classic cadherins, specifically E-cadherin in most epithelial cells, are transmembrane adhesion receptors, whose intracellular region interacts with proteins, termed catenins, forming the cadherin-catenin complex (CCC). The cadherin ectodomain generates 2D adhesive clusters (E-clusters) through cooperative trans and cis interactions, while catenins anchor the E-clusters to the actin cytoskeleton. How these two types of interactions are coordinated in the formation of specialized cell-cell adhesions, adherens junctions (AJ), remains unclear. Here, we focus on the role of the actin-binding domain of α-catenin (αABD) by showing that the interaction of the αABD with actin generates actin-bound linear CCC oligomers (CCC/actin strands) incorporating up to six CCCs. This actin-driven CCC oligomerization, which is cadherin ectodomain independent, preferentially occurs along the actin cortex enriched with key basolateral proteins, myosin-1c, scribble, and DLG1. In cell-cell contacts, the CCC/actin strands integrate with the E-clusters giving rise to the composite oligomers, E/actin clusters. Targeted inactivation of strand formation by point mutations emphasizes the importance of this oligomerization process for blocking intercellular protrusive membrane activity and for coupling AJs with the actomyosin-derived tensional forces.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Rabino A, Awadia S, Ali N, Edson A, Garcia-Mata R. The Scribble-SGEF-Dlg1 complex regulates E-cadherin and ZO-1 stability, turnover and transcription in epithelial cells. J Cell Sci 2024; 137:jcs262181. [PMID: 39350674 PMCID: PMC11529605 DOI: 10.1242/jcs.262181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
SGEF (also known as ARHGEF26), a RhoG specific GEF, can form a ternary complex with the Scribble polarity complex proteins Scribble and Dlg1, which regulates the formation and maintenance of adherens junctions and barrier function of epithelial cells. Notably, silencing SGEF results in a dramatic downregulation of both E-cadherin and ZO-1 (also known as TJP1) protein levels. However, the molecular mechanisms involved in the regulation of this pathway are not known. Here, we describe a novel signaling pathway governed by the Scribble-SGEF-Dlg1 complex. Our results show that the three members of the ternary complex are required to maintain the stability of the apical junctions, ZO-1 protein levels and tight junction (TJ) permeability. In contrast, only SGEF is necessary to regulate E-cadherin levels. The absence of SGEF destabilizes the E-cadherin-catenin complex at the membrane, triggering a positive feedback loop that exacerbates the phenotype through the repression of E-cadherin transcription in a process that involves the internalization of E-cadherin by endocytosis, β-catenin signaling and the transcriptional repressor Slug (also known as SNAI2).
Collapse
Affiliation(s)
- Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Nabaa Ali
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Amber Edson
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
3
|
Willim J, Woike D, Greene D, Das S, Pfeifer K, Yuan W, Lindsey A, Itani O, Böhme AL, Tibbe D, Hönck HH, Hassani Nia F, Zech M, Brunet T, Faivre L, Sorlin A, Vitobello A, Smol T, Colson C, Baranano K, Schatz K, Bayat A, Schoch K, Spillmann R, Davis EE, Conboy E, Vetrini F, Platzer K, Neuser S, Gburek-Augustat J, Grace AN, Mitchell B, Stegmann A, Sinnema M, Meeks N, Saunders C, Cadieux-Dion M, Hoyer J, Van-Gils J, de Sainte-Agathe JM, Thompson ML, Bebin EM, Weisz-Hubshman M, Tabet AC, Verloes A, Levy J, Latypova X, Harder S, Silverman GA, Pak SC, Schedl T, Freson K, Mumford A, Turro E, Schlein C, Shashi V, Kreienkamp HJ. Variants in LRRC7 lead to intellectual disability, autism, aggression and abnormal eating behaviors. Nat Commun 2024; 15:7909. [PMID: 39256359 PMCID: PMC11387733 DOI: 10.1038/s41467-024-52095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Members of the leucine rich repeat (LRR) and PDZ domain (LAP) protein family are essential for animal development and histogenesis. Densin-180, encoded by LRRC7, is the only LAP protein selectively expressed in neurons. Densin-180 is a postsynaptic scaffold at glutamatergic synapses, linking cytoskeletal elements with signalling proteins such as the α-subunit of Ca2+/calmodulin-dependent protein kinase II. We have previously observed an association between high impact variants in LRRC7 and Intellectual Disability; also three individual cases with variants in LRRC7 had been described. We identify here 33 individuals (one of them previously described) with a dominant neurodevelopmental disorder due to heterozygous missense or loss-of-function variants in LRRC7. The clinical spectrum involves intellectual disability, autism, ADHD, aggression and, in several cases, hyperphagia-associated obesity. A PDZ domain variant interferes with synaptic targeting of Densin-180 in primary cultured neurons. Using in vitro systems (two hybrid, BioID, coimmunoprecipitation of tagged proteins from 293T cells) we identified new candidate interaction partners for the LRR domain, including protein phosphatase 1 (PP1), and observed that variants in the LRR reduced binding to these proteins. We conclude that LRRC7 encodes a major determinant of intellectual development and behaviour.
Collapse
Affiliation(s)
- Jana Willim
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Woike
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Greene
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarada Das
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kevin Pfeifer
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Weimin Yuan
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Anika Lindsey
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Omar Itani
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Amber L Böhme
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Debora Tibbe
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Hinrich Hönck
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Zech
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Theresa Brunet
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon-Bourgogne, Dijon, France
- INSERM-Université de Bourgogne-UMR1231 GAD, Dijon, France
| | - Arthur Sorlin
- INSERM-Université de Bourgogne-UMR1231 GAD, Dijon, France
- Laboratoire de Génomique médicale, Centre NEOMICS, CHU Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- INSERM-Université de Bourgogne-UMR1231 GAD, Dijon, France
- Laboratoire de Génomique médicale, Centre NEOMICS, CHU Dijon Bourgogne, Dijon, France
| | - Thomas Smol
- Univ. Lille, CHU Lille, ULR7364 - RADEME, Lille, France
| | - Cindy Colson
- Univ. Lille, CHU Lille, ULR7364 - RADEME, Lille, France
| | - Kristin Baranano
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Krista Schatz
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Department for Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Rebecca Spillmann
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Erin Conboy
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sonja Neuser
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Janina Gburek-Augustat
- Division of Neuropaediatrics, Hospital for Children and Adolescents, University of Leipzig Medical Center, Leipzig, Germany
| | - Alexandra Noel Grace
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
| | - Bailey Mitchell
- Baylor College of Medicine in San Antonio, San Antonio, TX, USA
| | - Alexander Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Naomi Meeks
- Children's Hospital Colorado, Division of Clinical Genetics & Metabolism, Aurora, CO, USA
| | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Maxime Cadieux-Dion
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julien Van-Gils
- Genetics Lab, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | | | | | | | - Monika Weisz-Hubshman
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, Tx, USA
| | - Anne-Claude Tabet
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Alain Verloes
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Jonathan Levy
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Xenia Latypova
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Sönke Harder
- Mass spectrometry and Proteome Analytics, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gary A Silverman
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Stephen C Pak
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Tim Schedl
- Department of Genetics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ernest Turro
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Schlein
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Hans-Jürgen Kreienkamp
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Boëda B, Michel V, Etournay R, England P, Rigaud S, Mary H, Gobaa S, Etienne-Manneville S. SCRIB controls apical contractility during epithelial differentiation. J Cell Biol 2023; 222:e202211113. [PMID: 37930352 PMCID: PMC10626209 DOI: 10.1083/jcb.202211113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 07/25/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Although mutations in the SCRIB gene lead to multiple morphological organ defects in vertebrates, the molecular pathway linking SCRIB to organ shape anomalies remains elusive. Here, we study the impact of SCRIB-targeted gene mutations during the formation of the gut epithelium in an organ-on-chip model. We show that SCRIB KO gut-like epithelia are flatter with reduced exposed surface area. Cell differentiation on filters further shows that SCRIB plays a critical role in the control of apical cell shape, as well as in the basoapical polarization of myosin light chain localization and activity. Finally, we show that SCRIB serves as a molecular scaffold for SHROOM2/4 and ROCK1 and identify an evolutionary conserved SHROOM binding site in the SCRIB carboxy-terminal that is required for SCRIB function in the control of apical cell shape. Our results demonstrate that SCRIB plays a key role in epithelial morphogenesis by controlling the epithelial apical contractility during cell differentiation.
Collapse
Affiliation(s)
- Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Université Paris Cité, UMR3691 CNRS, Institut Pasteur, Paris, France
| | - Vincent Michel
- Institut de l’Audition, Inserm UMRS 1120, Université Paris Cité, Institut Pasteur, Paris, France
| | - Raphael Etournay
- Plasticity of Central Auditory Circuit Unit, Institut de l’Audition, Université Paris Cité, Institut Pasteur, Paris, France
| | - Patrick England
- Molecular Biophysics Core Facility, Université Paris Cité, UMR3528 CNRS, Institut Pasteur, Paris, France
| | - Stéphane Rigaud
- Image Analysis Hub, Université Paris Cité, Institut Pasteur, Paris, France
| | - Héloïse Mary
- Biomaterials and Microfluidics Core Facility, Université Paris Cité, Institut Pasteur, Paris, France
| | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Université Paris Cité, Institut Pasteur, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Université Paris Cité, UMR3691 CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
5
|
Shaha S, Patel K, Riddell M. Cell polarity signaling in the regulation of syncytiotrophoblast homeostasis and inflammatory response. Placenta 2023; 141:26-34. [PMID: 36443107 DOI: 10.1016/j.placenta.2022.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Maintenance of cell polarity and the structure of the apical surface of epithelial cells is a tightly regulated process necessary for tissue homeostasis. The syncytiotrophoblast of the human placenta is an entirely unique epithelial layer. It is a single giant multinucleate syncytial layer that comprises the maternal-facing surface of the human placenta. Like other epithelia, the syncytiotrophoblast is highly polarized with the apical surface dominated by microvillar membrane protrusions. Syncytiotrophoblast dysfunction is a key feature of pregnancy complications like preeclampsia. Preeclampsia is commonly associated with a heightened maternal immune response and pro-inflammatory environment. Importantly, reports have observed disruption of syncytiotrophoblast apical microvilli in placentas from preeclamptic pregnancies, indicating a loss of apical polarity, but little is known about how the syncytiotrophoblast regulates polarity. Here, we review the evolutionarily conserved mechanisms that regulate apical-basal polarization in epithelial cells, and the emerging evidence that PAR polarity complex components are critical regulators of syncytiotrophoblast homeostasis and apical membrane structure. Pro-inflammatory cytokines have been shown to disrupt the expression of polarity regulating proteins. We also discuss initial data showing that syncytiotrophoblast apical polarity can be disrupted by the addition of the pro-inflammatory cytokine tumor necrosis factor-α, revealing that physiologically relevant signals can modulate syncytiotrophoblast polarization. Since disrupted polarity is a feature of preeclampsia, further elucidation of the syncytiotrophoblast-specific polarity signaling network and testing whether the disruption of polarity-factor signaling networks may contribute to the development of preeclampsia is warranted.
Collapse
Affiliation(s)
- Sumaiyah Shaha
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Khushali Patel
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Meghan Riddell
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada.
| |
Collapse
|
6
|
Tsitsikov EN, Phan KP, Liu Y, Tsytsykova AV, Kinter M, Selland L, Garman L, Griffin C, Dunn IF. TRAF7 is an essential regulator of blood vessel integrity during mouse embryonic and neonatal development. iScience 2023; 26:107474. [PMID: 37583551 PMCID: PMC10424150 DOI: 10.1016/j.isci.2023.107474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Targeted deletion of TRAF7 revealed that it is a crucial part of shear stress-responsive MEKK3-MEK5-ERK5 signaling pathway induced in endothelial cells by blood flow. Similar to Mekk3-, Mek5- or Erk5-deficient mice, Traf7-deficient embryos died in utero around midgestation due to impaired endothelium integrity. They displayed significantly lower expression of transcription factor Klf2, an essential regulator of vascular hemodynamic forces downstream of the MEKK3-MEK-ERK5 signaling pathway. In addition, deletion of Traf7 in endothelial cells of postnatal mice was associated with severe cerebral hemorrhage. Here, we show that besides MEKK3 and MEK5, TRAF7 associates with a planar cell polarity protein SCRIB. SCRIB binds with an N-terminal region of TRAF7, while MEKK3 associates with the C-terminal WD40 domain. Downregulation of TRAF7 as well as SCRIB inhibited fluid shear stress-induced phosphorylation of ERK5 in cultured endothelial cells. These findings suggest that TRAF7 and SCRIB may comprise an upstream part of the MEKK3-MEK5-ERK5 signaling pathway.
Collapse
Affiliation(s)
- Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Khanh P. Phan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yufeng Liu
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mike Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lauren Selland
- Histology, Immunohistochemistry, Microscopy Core-COBRE Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lori Garman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Courtney Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
7
|
Thüring EM, Hartmann C, Maddumage JC, Javorsky A, Michels BE, Gerke V, Banks L, Humbert PO, Kvansakul M, Ebnet K. Membrane recruitment of the polarity protein Scribble by the cell adhesion receptor TMIGD1. Commun Biol 2023; 6:702. [PMID: 37430142 DOI: 10.1038/s42003-023-05088-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Scribble (Scrib) is a multidomain polarity protein and member of the leucine-rich repeat and PDZ domain (LAP) protein family. A loss of Scrib expression is associated with disturbed apical-basal polarity and tumor formation. The tumor-suppressive activity of Scrib correlates with its membrane localization. Despite the identification of numerous Scrib-interacting proteins, the mechanisms regulating its membrane recruitment are not fully understood. Here, we identify the cell adhesion receptor TMIGD1 as a membrane anchor of Scrib. TMIGD1 directly interacts with Scrib through a PDZ domain-mediated interaction and recruits Scrib to the lateral membrane domain in epithelial cells. We characterize the association of TMIGD1 with each Scrib PDZ domain and describe the crystal structure of the TMIGD1 C-terminal peptide complexed with PDZ domain 1 of Scrib. Our findings describe a mechanism of Scrib membrane localization and contribute to the understanding of the tumor-suppressive activity of Scrib.
Collapse
Affiliation(s)
- Eva-Maria Thüring
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Janesha C Maddumage
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Birgitta E Michels
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany.
| |
Collapse
|
8
|
Troyanovsky SM. Adherens junction: the ensemble of specialized cadherin clusters. Trends Cell Biol 2023; 33:374-387. [PMID: 36127186 PMCID: PMC10020127 DOI: 10.1016/j.tcb.2022.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
The cell-cell connections in adherens junctions (AJs) are mediated by transmembrane receptors, type I cadherins (referred to here as cadherins). These cadherin-based connections (or trans bonds) are weak. To upregulate their strength, cadherins exploit avidity, the increased affinity of binding between cadherin clusters compared with isolated monomers. Formation of such clusters is a unique molecular process that is driven by a synergy of direct and indirect cis interactions between cadherins located at the same cell. In addition to their role in adhesion, cadherin clusters provide structural scaffolds for cytosolic proteins, which implicate cadherin into different cellular activities and signaling pathways. The cluster lifetime, which depends on the actin cytoskeleton, and on the mechanical forces it generates, determines the strength of AJs and their plasticity. The key aspects of cadherin adhesion, therefore, cannot be understood at the level of isolated cadherin molecules, but should be discussed in the context of cadherin clusters.
Collapse
Affiliation(s)
- Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Cell and Molecular Biology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
9
|
Bii VM, Rudoy D, Klezovitch O, Vasioukhin V. Lethal giant larvae gene family ( Llgl1 and Llgl2 ) functions as a tumor suppressor in mouse skin epidermis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531408. [PMID: 36945368 PMCID: PMC10028895 DOI: 10.1101/2023.03.06.531408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Loss of cell polarity and tissue disorganization occurs in majority of epithelial cancers. Studies in simple model organisms identified molecular mechanisms responsible for the establishment and maintenance of cellular polarity, which play a pivotal role in establishing proper tissue architecture. The exact role of these cell polarity pathways in mammalian cancer is not completely understood. Here we analyzed the mammalian orthologs of drosophila apical-basal polarity gene lethal giant larvae ( lgl ), which regulates asymmetric stem cell division and functions as a tumor suppressor in flies. There are two mammalian orthologs of lgl ( Llgl1 and Llgl2 ). To determine the role of the entire lgl signaling pathway in mammals we generated mice with ablation of both Llgl1 and Llgl2 in skin epidermis using K14-Cre ( Llgl1/2 -/- cKO mice). Surprisingly, we found that ablation of Llgl1/2 genes does not impact epidermal polarity in adult mice. However, old Llgl1/2 cKO mice present with focal skin lesions which are missing epidermal layer and ripe with inflammation. To determine the role of lgl signaling pathway in cancer we generated Trp53 -/- /Llgl1/2 -/- cKO and Trp53 -/+ /Llgl1/2 -/- cKO mice. Loss of Llgl1/2 promoted squamous cell carcinoma (SCC) development in Trp53 -/- cKO and caused SCC in Trp53 -/+ cKO mice, while no cancer was observed in Trp53 -/+ cKO controls. Mechanistically, we show that ablation of Llgl1/2 causes activation of aPKC and upregulation of NF-kB signaling pathway, which may be necessary for SCC in Trp53 -/+ /Llgl1/2 -/- cKO mice. We conclude that Lgl signaling pathway functions as a tumor suppressor in mammalian skin epidermis.
Collapse
|
10
|
Chann AS, Chen Y, Kinwel T, Humbert PO, Russell SM. Scribble and E-cadherin cooperate to control symmetric daughter cell positioning by multiple mechanisms. J Cell Sci 2023; 136:286705. [PMID: 36661138 DOI: 10.1242/jcs.260547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023] Open
Abstract
The fate of the two daughter cells is intimately connected to their positioning, which is in turn regulated by cell junction remodelling and orientation of the mitotic spindle. How multiple cues are integrated to dictate the ultimate positioning of daughters is not clear. Here, we identify novel mechanisms of regulation of daughter positioning in single MCF10A cells. The polarity protein, Scribble cooperates with E-cadherin for sequential roles in daughter positioning. First Scribble stabilises E-cadherin at the mitotic cortex as well as the retraction fibres, to mediate spindle orientation. Second, Scribble re-locates to the junction between the two daughters to allow a new E-cadherin-based-interface to form between them, influencing the width of the nascent daughter-daughter junction and subsequent cell positioning. Thus, E-cadherin and Scribble dynamically relocate to different intracellular sites during cell division to orient the mitotic spindle and control placement of the daughter cells after cell division. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anchi S Chann
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Ye Chen
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Tanja Kinwel
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.,Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
11
|
Nakashima Y, Yoshida S, Tsukahara M. Semi-3D cultures using Laminin 221 as a coating material for human induced pluripotent stem cells. Regen Biomater 2022; 9:rbac060. [PMID: 36176714 PMCID: PMC9514851 DOI: 10.1093/rb/rbac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/09/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022] Open
Abstract
It was previously believed that human induced pluripotent stem cells (hiPSCs) did not show adhesion to the coating material Laminin 221, which is known to have specific affinity for cardiomyocytes. In this study, we report that human mononuclear cell-derived hiPSCs, established with Sendai virus vector, form peninsular-like colonies rather than embryonic stem cell-like colonies; these peninsular-like colonies can be passaged more than 10 times after establishment. Additionally, initialization-deficient cells with residual Sendai virus vector adhered to the coating material Laminin 511 but not to Laminin 221. Therefore, the expression of undifferentiated markers tended to be higher in hiPSCs established on Laminin 221 than on Laminin 511. On Laminin 221, hiPSCs15M66 showed a semi-floating colony morphology. The expression of various markers of cell polarity was significantly lower in hiPSCs cultured on Laminin 221 than in hiPSCs cultured on Laminin 511. Furthermore, 201B7 and 15M66 hiPSCs showed 3D cardiomyocyte differentiation on Laminin 221. Thus, the coating material Laminin 221 provides semi-floating culture conditions for the establishment, culture and induced differentiation of hiPSCs.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), Kyoto 606-8397, Japan
| | - Shinsuke Yoshida
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), Kyoto 606-8397, Japan
| | - Masayoshi Tsukahara
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), Kyoto 606-8397, Japan
| |
Collapse
|
12
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
13
|
Khoury MJ, Bilder D. Minimal functional domains of the core polarity regulator Dlg. Biol Open 2022; 11:276053. [PMID: 35722710 PMCID: PMC9346270 DOI: 10.1242/bio.059408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
The compartmentalized domains of polarized epithelial cells arise from mutually antagonistic actions between the apical Par complex and the basolateral Scrib module. In Drosophila, the Scrib module proteins Scribble (Scrib) and Discs-large (Dlg) are required to limit Lgl phosphorylation at the basolateral cortex, but how Scrib and Dlg could carry out such a ‘protection’ activity is not clear. We tested Protein Phosphatase 1α (PP1) as a potential mediator of this activity, but demonstrate that a significant component of Scrib and Dlg regulation of Lgl is PP1 independent, and found no evidence for a Scrib-Dlg-PP1 protein complex. However, the Dlg SH3 domain plays a role in Lgl protection and, in combination with the N-terminal region of the Dlg HOOK domain, in recruitment of Scrib to the membrane. We identify a ‘minimal Dlg’ comprised of the SH3 and HOOK domains that is both necessary and sufficient for Scrib localization and epithelial polarity function in vivo. This article has an associated First Person interview with the first author of the paper. Summary: A minimal SH3-HOOK fragment of Dlg is sufficient to support epithelial polarity through mechanisms independent of the PP1 phosphatase.
Collapse
Affiliation(s)
- Mark J Khoury
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720, USA
| |
Collapse
|
14
|
Ezan J, Moreau MM, Mamo TM, Shimbo M, Decroo M, Sans N, Montcouquiol M. Neuron-Specific Deletion of Scrib in Mice Leads to Neuroanatomical and Locomotor Deficits. Front Genet 2022; 13:872700. [PMID: 35692812 PMCID: PMC9174639 DOI: 10.3389/fgene.2022.872700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Scribble (Scrib) is a conserved polarity protein acting as a scaffold involved in multiple cellular and developmental processes. Recent evidence from our group indicates that Scrib is also essential for brain development as early global deletion of Scrib in the dorsal telencephalon induced cortical thickness reduction and alteration of interhemispheric connectivity. In addition, Scrib conditional knockout (cKO) mice have behavioral deficits such as locomotor activity impairment and memory alterations. Given Scrib broad expression in multiple cell types in the brain, we decided to determine the neuronal contribution of Scrib for these phenotypes. In the present study, we further investigate the function of Scrib specifically in excitatory neurons on the forebrain formation and the control of locomotor behavior. To do so, we generated a novel neuronal glutamatergic specific Scrib cKO mouse line called Nex-Scrib−/− cKO. Remarkably, cortical layering and commissures were impaired in these mice and reproduced to some extent the previously described phenotype in global Scrib cKO. In addition and in contrast to our previous results using Emx1-Scrib−/− cKO, the Nex-Scrib−/− cKO mutant mice exhibited significantly reduced locomotion. Altogether, the novel cKO model described in this study further highlights an essential role for Scrib in forebrain development and locomotor behavior.
Collapse
Affiliation(s)
- Jerome Ezan
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
- *Correspondence: Jerome Ezan,
| | - Maité M. Moreau
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Tamrat M. Mamo
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Miki Shimbo
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Maureen Decroo
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Nathalie Sans
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Mireille Montcouquiol
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| |
Collapse
|
15
|
Ma R, Gong D, You H, Xu C, Lu Y, Bergers G, Werb Z, Klein OD, Petritsch CK, Lu P. LGL1 binds to Integrin β1 and inhibits downstream signaling to promote epithelial branching in the mammary gland. Cell Rep 2022; 38:110375. [PMID: 35172155 PMCID: PMC9113222 DOI: 10.1016/j.celrep.2022.110375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/08/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Branching morphogenesis is a fundamental process by which organs in invertebrates and vertebrates form branches to expand their surface areas. The current dogma holds that directional cell migration determines where a new branch forms and thus patterns branching. Here, we asked whether mouse Lgl1, a homolog of the Drosophila tumor suppressor Lgl, regulates epithelial polarity in the mammary gland. Surprisingly, mammary glands lacking Lgl1 have normal epithelial polarity, but they form fewer branches. Moreover, we find that Lgl1 null epithelium is unable to directionally migrate, suggesting that migration is not essential for mammary epithelial branching as expected. We show that LGL1 binds to Integrin β1 and inhibits its downstream signaling, and Integrin β1 overexpression blocks epithelial migration, thus recapitulating the Lgl1 null phenotype. Altogether, we demonstrate that Lgl1 modulation of Integrin β1 signaling is essential for directional migration and that epithelial branching in invertebrates and the mammary gland is fundamentally distinct. Ma et al. show that Lgl1 is essential for mammary gland branching morphogenesis but not epithelial polarity. Lgl1 is required for directional migration by regulating Integrin β1 signaling levels and focal adhesion strengths. Finally, branching mechanisms are distinct between mammary gland and Drosophila systems where directional migration is indispensable.
Collapse
Affiliation(s)
- Rongze Ma
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Difei Gong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huanyang You
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chongshen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gabriele Bergers
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Zena Werb
- Department of Anatomy and Program in Developmental and Stem Cell Biology, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, UCSF Box 0422, 513 Parnassus Avenue, HSE1508, San Francisco, CA 94143-0422, USA
| | - Claudia K Petritsch
- Department of Neurological Surgery, Stanford University, Palo Alto, CA 94305, USA
| | - Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
16
|
Kroll JR, Remmelzwaal S, Boxem M. CeLINC, a fluorescence-based protein-protein interaction assay in Caenorhabditis elegans. Genetics 2021; 219:6380436. [PMID: 34849800 PMCID: PMC8664570 DOI: 10.1093/genetics/iyab163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Interactions among proteins are fundamental for life and determining whether two particular proteins physically interact can be essential for fully understanding a protein’s function. We present Caenorhabditis elegans light-induced coclustering (CeLINC), an optical binary protein–protein interaction assay to determine whether two proteins interact in vivo. Based on CRY2/CIB1 light-dependent oligomerization, CeLINC can rapidly and unambiguously identify protein–protein interactions between pairs of fluorescently tagged proteins. A fluorescently tagged bait protein is captured using a nanobody directed against the fluorescent protein (GFP or mCherry) and brought into artificial clusters within the cell. Colocalization of a fluorescently tagged prey protein in the cluster indicates a protein interaction. We tested the system with an array of positive and negative reference protein pairs. Assay performance was extremely robust with no false positives detected in the negative reference pairs. We then used the system to test for interactions among apical and basolateral polarity regulators. We confirmed interactions seen between PAR-6, PKC-3, and PAR-3, but observed no physical interactions among the basolateral Scribble module proteins LET-413, DLG-1, and LGL-1. We have generated a plasmid toolkit that allows use of custom promoters or CRY2 variants to promote flexibility of the system. The CeLINC assay is a powerful and rapid technique that can be widely applied in C. elegans due to the universal plasmids that can be used with existing fluorescently tagged strains without need for additional cloning or genetic modification of the genome.
Collapse
Affiliation(s)
- Jason R Kroll
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Sanne Remmelzwaal
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
17
|
Rust K, Wodarz A. Transcriptional Control of Apical-Basal Polarity Regulators. Int J Mol Sci 2021; 22:ijms222212340. [PMID: 34830224 PMCID: PMC8624420 DOI: 10.3390/ijms222212340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Cell polarity is essential for many functions of cells and tissues including the initial establishment and subsequent maintenance of epithelial tissues, asymmetric cell division, and morphogenetic movements. Cell polarity along the apical-basal axis is controlled by three protein complexes that interact with and co-regulate each other: The Par-, Crumbs-, and Scrib-complexes. The localization and activity of the components of these complexes is predominantly controlled by protein-protein interactions and protein phosphorylation status. Increasing evidence accumulates that, besides the regulation at the protein level, the precise expression control of polarity determinants contributes substantially to cell polarity regulation. Here we review how gene expression regulation influences processes that depend on the induction, maintenance, or abolishment of cell polarity with a special focus on epithelial to mesenchymal transition and asymmetric stem cell division. We conclude that gene expression control is an important and often neglected mechanism in the control of cell polarity.
Collapse
Affiliation(s)
- Katja Rust
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University, 35037 Marburg, Germany
- Correspondence: (K.R.); (A.W.)
| | - Andreas Wodarz
- Department of Molecular Cell Biology, Institute I for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cluster of Excellence—Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Correspondence: (K.R.); (A.W.)
| |
Collapse
|
18
|
Troyanovsky RB, Indra I, Kato R, Mitchell BJ, Troyanovsky SM. Basolateral protein Scribble binds phosphatase PP1 to establish a signaling network maintaining apicobasal polarity. J Biol Chem 2021; 297:101289. [PMID: 34634305 PMCID: PMC8569552 DOI: 10.1016/j.jbc.2021.101289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/25/2023] Open
Abstract
Scribble, a member of the LAP protein family, contributes to the apicobasal polarity (ABP) of epithelial cells. The LAP-unique region of these proteins, which is essential and sufficient for ABP, includes a conserved Leucine-Rich Repeat (LRR) domain. The major binding partners of this region that could regulate ABP remain unknown. Here, using proteomics, native gel electrophoresis, and site-directed mutagenesis, we show that the concave surface of LRR domain in Scribble participates in three types of mutually exclusive interactions-(i) homodimerization, serving as an auto-inhibitory mechanism; (ii) interactions with a diverse set of polarity proteins, such as Llgl1, Llgl2, EPB41L2, and EPB41L5, which produce distinct multiprotein complexes; and (iii) a direct interaction with the protein phosphatase, PP1. Analogy with the complex between PP1 and LRR domain of SDS22, a well-studied PP1 regulator, suggests that the Scibble-PP1 complex stores a latent form of PP1 in the basolateral cell cortex. Such organization may generate a dynamic signaling network wherein PP1 could be dispatched from the complex with Scribble to particular protein ligands, achieving fast dephosphorylation kinetics.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Indrajyoti Indra
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rei Kato
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Brian J Mitchell
- Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergey M Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
19
|
Sharp KA, Khoury MJ, Wirtz-Peitz F, Bilder D. Evidence for a nuclear role for Drosophila Dlg as a regulator of the NURF complex. Mol Biol Cell 2021; 32:ar23. [PMID: 34495684 PMCID: PMC8693970 DOI: 10.1091/mbc.e21-04-0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Scribble (Scrib), Discs-large (Dlg), and Lethal giant larvae (Lgl) are basolateral regulators of epithelial polarity and tumor suppressors whose molecular mechanisms of action remain unclear. We used proximity biotinylation to identify proteins localized near Dlg in the Drosophila wing imaginal disc epithelium. In addition to expected membrane- and cytoskeleton-associated protein classes, nuclear proteins were prevalent in the resulting mass spectrometry dataset, including all four members of the nucleosome remodeling factor (NURF) chromatin remodeling complex. Subcellular fractionation demonstrated a nuclear pool of Dlg and proximity ligation confirmed its position near the NURF complex. Genetic analysis showed that NURF activity is also required for the overgrowth of dlg tumors, and this growth suppression correlated with a reduction in Hippo pathway gene expression. Together, these data suggest a nuclear role for Dlg in regulating chromatin and transcription through a more direct mechanism than previously thought.
Collapse
Affiliation(s)
- Katherine A. Sharp
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| | - Mark J. Khoury
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| | | | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| |
Collapse
|
20
|
Vasquez CG, de la Serna EL, Dunn AR. How cells tell up from down and stick together to construct multicellular tissues - interplay between apicobasal polarity and cell-cell adhesion. J Cell Sci 2021; 134:272658. [PMID: 34714332 DOI: 10.1242/jcs.248757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top-bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell-cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell-cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.
Collapse
Affiliation(s)
- Claudia G Vasquez
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Tocan V, Hayase J, Kamakura S, Kohda A, Ohga S, Kohjima M, Sumimoto H. Hepatocyte polarity establishment and apical lumen formation are organized by Par3, Cdc42, and aPKC in conjunction with Lgl. J Biol Chem 2021; 297:101354. [PMID: 34717957 PMCID: PMC8637150 DOI: 10.1016/j.jbc.2021.101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023] Open
Abstract
Hepatocytes differ from columnar epithelial cells by their multipolar organization, which follows the initial formation of central lumen-sharing clusters of polarized cells as observed during liver development and regeneration. The molecular mechanism for hepatocyte polarity establishment, however, has been comparatively less studied than those for other epithelial cell types. Here, we show that the tight junction protein Par3 organizes hepatocyte polarization via cooperating with the small GTPase Cdc42 to target atypical protein kinase C (aPKC) to a cortical site near the center of cell-cell contacts. In 3D Matrigel culture of human hepatocytic HepG2 cells, which mimics a process of liver development and regeneration, depletion of Par3, Cdc42, or aPKC results in an impaired establishment of apicobasolateral polarity and a loss of subsequent apical lumen formation. The aPKC activity is also required for bile canalicular (apical) elongation in mouse primary hepatocytes. The lateral membrane-associated proteins Lgl1 and Lgl2, major substrates of aPKC, seem to be dispensable for hepatocyte polarity establishment because Lgl-depleted HepG2 cells are able to form a single apical lumen in 3D culture. On the other hand, Lgl depletion leads to lateral invasion of aPKC, and overexpression of Lgl1 or Lgl2 prevents apical lumen formation, indicating that they maintain proper lateral integrity. Thus, hepatocyte polarity establishment and apical lumen formation are organized by Par3, Cdc42, and aPKC; Par3 cooperates with Cdc42 to recruit aPKC, which plays a crucial role in apical membrane development and regulation of the lateral maintainer Lgl.
Collapse
Affiliation(s)
- Vlad Tocan
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akira Kohda
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Motoyuki Kohjima
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; Department of Medicine and Regulatory Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
22
|
Lu P, Lu Y. Born to Run? Diverse Modes of Epithelial Migration. Front Cell Dev Biol 2021; 9:704939. [PMID: 34540829 PMCID: PMC8448196 DOI: 10.3389/fcell.2021.704939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bundled with various kinds of adhesion molecules and anchored to the basement membrane, the epithelium has historically been considered as an immotile tissue and, to migrate, it first needs to undergo epithelial-mesenchymal transition (EMT). Since its initial description more than half a century ago, the EMT process has fascinated generations of developmental biologists and, more recently, cancer biologists as it is believed to be essential for not only embryonic development, organ formation, but cancer metastasis. However, recent progress shows that epithelium is much more motile than previously realized. Here, we examine the emerging themes in epithelial collective migration and how this has impacted our understanding of EMT.
Collapse
Affiliation(s)
- Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
23
|
Baskaran Y, Tay FPL, Ng EYW, Swa CLF, Wee S, Gunaratne J, Manser E. Proximity proteomics identifies PAK4 as a component of Afadin-Nectin junctions. Nat Commun 2021; 12:5315. [PMID: 34493720 PMCID: PMC8423818 DOI: 10.1038/s41467-021-25011-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Human PAK4 is an ubiquitously expressed p21-activated kinase which acts downstream of Cdc42. Since PAK4 is enriched in cell-cell junctions, we probed the local protein environment around the kinase with a view to understanding its location and substrates. We report that U2OS cells expressing PAK4-BirA-GFP identify a subset of 27 PAK4-proximal proteins that are primarily cell-cell junction components. Afadin/AF6 showed the highest relative biotin labelling and links to the nectin family of homophilic junctional proteins. Reciprocally >50% of the PAK4-proximal proteins were identified by Afadin BioID. Co-precipitation experiments failed to identify junctional proteins, emphasizing the advantage of the BioID method. Mechanistically PAK4 depended on Afadin for its junctional localization, which is similar to the situation in Drosophila. A highly ranked PAK4-proximal protein LZTS2 was immuno-localized with Afadin at cell-cell junctions. Though PAK4 and Cdc42 are junctional, BioID analysis did not yield conventional cadherins, indicating their spatial segregation. To identify cellular PAK4 substrates we then assessed rapid changes (12') in phospho-proteome after treatment with two PAK inhibitors. Among the PAK4-proximal junctional proteins seventeen PAK4 sites were identified. We anticipate mammalian group II PAKs are selective for the Afadin/nectin sub-compartment, with a demonstrably distinct localization from tight and cadherin junctions.
Collapse
Affiliation(s)
- Yohendran Baskaran
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Felicia Pei-Ling Tay
- FB Laboratory, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Elsa Yuen Wai Ng
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Claire Lee Foon Swa
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Sheena Wee
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Edward Manser
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore.
- Department of Pharmacology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
24
|
Dillard C, Reis JGT, Rusten TE. RasV12; scrib-/- Tumors: A Cooperative Oncogenesis Model Fueled by Tumor/Host Interactions. Int J Mol Sci 2021; 22:ijms22168873. [PMID: 34445578 PMCID: PMC8396170 DOI: 10.3390/ijms22168873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The phenomenon of how oncogenes and tumor-suppressor mutations can synergize to promote tumor fitness and cancer progression can be studied in relatively simple animal model systems such as Drosophila melanogaster. Almost two decades after the landmark discovery of cooperative oncogenesis between oncogenic RasV12 and the loss of the tumor suppressor scribble in flies, this and other tumor models have provided new concepts and findings in cancer biology that has remarkable parallels and relevance to human cancer. Here we review findings using the RasV12; scrib-/- tumor model and how it has contributed to our understanding of how these initial simple genetic insults cooperate within the tumor cell to set in motion the malignant transformation program leading to tumor growth through cell growth, cell survival and proliferation, dismantling of cell-cell interactions, degradation of basement membrane and spreading to other organs. Recent findings have demonstrated that cooperativity goes beyond cell intrinsic mechanisms as the tumor interacts with the immediate cells of the microenvironment, the immune system and systemic organs to eventually facilitate malignant progression.
Collapse
Affiliation(s)
- Caroline Dillard
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Correspondence: (C.D.); (T.E.R.)
| | - José Gerardo Teles Reis
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Correspondence: (C.D.); (T.E.R.)
| |
Collapse
|
25
|
Troyanovsky RB, Sergeeva AP, Indra I, Chen CS, Kato R, Shapiro L, Honig B, Troyanovsky SM. Sorting of cadherin-catenin-associated proteins into individual clusters. Proc Natl Acad Sci U S A 2021; 118:e2105550118. [PMID: 34272290 PMCID: PMC8307379 DOI: 10.1073/pnas.2105550118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cytoplasmic tails of classical cadherins form a multiprotein cadherin-catenin complex (CCC) that constitutes the major structural unit of adherens junctions (AJs). The CCC in AJs forms junctional clusters, "E clusters," driven by cis and trans interactions in the cadherin ectodomain and stabilized by α-catenin-actin interactions. Additional proteins are known to bind to the cytoplasmic region of the CCC. Here, we analyze how these CCC-associated proteins (CAPs) integrate into cadherin clusters and how they affect the clustering process. Using a cross-linking approach coupled with mass spectrometry, we found that the majority of CAPs, including the force-sensing protein vinculin, interact with CCCs outside of AJs. Accordingly, structural modeling shows that there is not enough space for CAPs the size of vinculin to integrate into E clusters. Using two CAPs, scribble and erbin, as examples, we provide evidence that these proteins form separate clusters, which we term "C clusters." As proof of principle, we show, by using cadherin ectodomain monoclonal antibodies (mAbs), that mAb-bound E-cadherin forms separate clusters that undergo trans interactions. Taken together, our data suggest that, in addition to its role in cell-cell adhesion, CAP-driven CCC clustering serves to organize cytoplasmic proteins into distinct domains that may synchronize signaling networks of neighboring cells within tissues.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Alina P Sergeeva
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
| | - Indrajyoti Indra
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Chi-Shuo Chen
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Rei Kato
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032;
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
- Department of Medicine, Columbia University, New York, NY 10032
| | - Sergey M Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
- Department of Cell and Developmental Biology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
26
|
Indra I, Troyanovsky RB, Green KJ, Troyanovsky SM. Plakophilin 3 and Par3 facilitate desmosomes' association with the apical junctional complex. Mol Biol Cell 2021; 32:1824-1837. [PMID: 34260281 PMCID: PMC8684708 DOI: 10.1091/mbc.e21-01-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Desmosomes (DSMs), together with adherens junctions (AJs) and tight junctions (TJs), constitute the apical cell junctional complex (AJC). While the importance of the apical and basolateral polarity machinery in the organization of AJs and TJs is well established, how DSMs are positioned within the AJC is not understood. Here we use highly polarized DLD1 cells as a model to address how DSMs integrate into the AJC. We found that knockout (KO) of the desmosomal ARM protein Pkp3, but not other major DSM proteins, uncouples DSMs from the AJC without blocking DSM assembly. DLD1 cells also exhibit a prominent extraDSM pool of Pkp3, concentrated in tricellular (tC) contacts. Probing distinct apicobasal polarity pathways revealed that neither the DSM’s association with AJC nor the extraDSM pool of Pkp3 are abolished in cells with defects in Scrib module proteins responsible for basolateral membrane development. However, a loss of the apical polarity protein, Par3, completely eliminates the extraDSM pool of Pkp3 and disrupts AJC localization of desmosomes, dispersing these junctions along the entire length of cell–cell contacts. Our data are consistent with a model whereby Par3 facilitates DSM assembly within the AJC, controlling the availability of an assembly competent pool of Pkp3 stored in tC contacts.
Collapse
Affiliation(s)
| | | | - Kathleen J Green
- Departments of Pathology and Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | | |
Collapse
|
27
|
Abstract
Mechanical forces have emerged as essential regulators of cell organization, proliferation, migration, and polarity to regulate cellular and tissue homeostasis. Changes in forces or loss of the cellular response to them can result in abnormal embryonic development and diseases. Over the past two decades, many efforts have been put in deciphering the molecular mechanisms that convert forces into biochemical signals, allowing for the identification of many mechanotransducer proteins. Here we discuss how PDZ proteins are emerging as new mechanotransducer proteins by altering their conformations or localizations upon force loads, leading to the formation of macromolecular modules tethering the cell membrane to the actin cytoskeleton.
Collapse
|
28
|
Mysh M, Poulton JS. The Basolateral Polarity Module Promotes Slit Diaphragm Formation in Drosophila Nephrocytes, a Model of Vertebrate Podocytes. J Am Soc Nephrol 2021; 32:1409-1424. [PMID: 33795424 PMCID: PMC8259641 DOI: 10.1681/asn.2020071050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/12/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocyte slit diaphragms (SDs) are intercellular junctions that function as size-selective filters, excluding most proteins from urine. Abnormalities in SDs cause proteinuria and nephrotic syndrome. Podocytes exhibit apicobasal polarity, which can affect fundamental aspects of cell biology, including morphology, intercellular junction formation, and asymmetric protein distribution along the plasma membrane. Apical polarity protein mutations cause nephrotic syndrome, and data suggest apical polarity proteins regulate SD formation. However, there is no evidence that basolateral polarity proteins regulate SDs. Thus, the role of apicobasal polarity in podocytes remains unclear. METHODS Genetic manipulations and transgenic reporters determined the effects of disrupting apicobasal polarity proteins in Drosophila nephrocytes, which have SDs similar to those of mammalian podocytes. Confocal and electron microscopy were used to characterize SD integrity after loss of basolateral polarity proteins, and genetic-interaction studies illuminated relationships among apicobasal polarity proteins. RESULTS The study identified four novel regulators of nephrocyte SDs: Dlg, Lgl, Scrib, and Par-1. These proteins comprise the basolateral polarity module and its effector kinase. The data suggest these proteins work together, with apical polarity proteins, to regulate SDs by promoting normal endocytosis and trafficking of SD proteins. CONCLUSIONS Given the recognized importance of apical polarity proteins and SD protein trafficking in podocytopathies, the findings connecting basolateral polarity proteins to these processes significantly advance our understanding of SD regulation.
Collapse
Affiliation(s)
- Michael Mysh
- Department of Biology, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John S. Poulton
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
29
|
Nakajima YI. Scrib module proteins: Control of epithelial architecture and planar spindle orientation. Int J Biochem Cell Biol 2021; 136:106001. [PMID: 33962021 DOI: 10.1016/j.biocel.2021.106001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/15/2023]
Abstract
The Scrib module proteins, Scrib, Dlg, and Lgl, are conserved regulators of cell polarity in diverse biological contexts. Originally discovered as neoplastic tumor suppressors in the fruit fly Drosophila melanogaster, disruption of Scrib module components leads to tumorigenesis in mammalian epithelia and is associated with human cancers. With multiple protein interacting domains, Scrib module proteins function as determinants of basolateral identity in epithelial cells with apical-basal polarity while acting as signaling platform scaffold proteins. Recent studies have further revealed novel roles of the Scrib module in the control of epithelial architecture, ranging from polarity establishment and tricellular junction formation to planar spindle orientation during cell division. This review updates the current understanding of the molecular nature and physiological functions of the Scrib module with a focus on in vivo studies, providing a framework for how these protein dynamics affect the processes of epithelial organization.
Collapse
Affiliation(s)
- Yu-Ichiro Nakajima
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
30
|
A Leucine-Rich Repeat Protein Provides a SHOC2 the RAS Circuit: a Structure-Function Perspective. Mol Cell Biol 2021; 41:MCB.00627-20. [PMID: 33526449 DOI: 10.1128/mcb.00627-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SHOC2 is a prototypical leucine-rich repeat protein that promotes downstream receptor tyrosine kinase (RTK)/RAS signaling and plays important roles in several cellular and developmental processes. Gain-of-function germ line mutations of SHOC2 drive the RASopathy Noonan-like syndrome, and SHOC2 mediates adaptive resistance to mitogen-activated protein kinase (MAPK) inhibitors. Similar to many scaffolding proteins, SHOC2 facilitates signal transduction by enabling proximal protein interactions and regulating the subcellular localization of its binding partners. Here, we review the structural features of SHOC2 that mediate its known functions, discuss these elements in the context of various binding partners and signaling pathways, and highlight areas of SHOC2 biology where a consensus view has not yet emerged.
Collapse
|
31
|
Indra I, Troyanovsky RB, Shapiro L, Honig B, Troyanovsky SM. Sensing Actin Dynamics through Adherens Junctions. Cell Rep 2021; 30:2820-2833.e3. [PMID: 32101754 DOI: 10.1016/j.celrep.2020.01.106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/23/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022] Open
Abstract
We study punctate adherens junctions (pAJs) to determine how short-lived cadherin clusters and relatively stable actin bundles interact despite differences in dynamics. We show that pAJ-linked bundles consist of two distinct regions-the bundle stalk (AJ-BS) and a tip (AJ-BT) positioned between cadherin clusters and the stalk. The tip differs from the stalk in a number of ways: it is devoid of the actin-bundling protein calponin, and exhibits a much faster F-actin turnover rate. While F-actin in the stalk displays centripetal movement, the F-actin in the tip is immobile. The F-actin turnover in both the tip and stalk is dependent on cadherin cluster stability, which in turn is regulated by F-actin. The close bidirectional coupling between the stability of cadherin and associated F-actin shows how pAJs, and perhaps other AJs, allow cells to sense and coordinate the dynamics of the actin cytoskeleton in neighboring cells-a mechanism we term "dynasensing."
Collapse
Affiliation(s)
- Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA.
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA.
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
32
|
Polarity scaffolds signaling in epithelial cell permeability. Inflamm Res 2021; 70:525-538. [PMID: 33721031 DOI: 10.1007/s00011-021-01454-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/20/2021] [Accepted: 03/06/2021] [Indexed: 01/14/2023] Open
Abstract
As an integral part of the innate immune system, the epithelial membrane is exposed to an array of insults that may trigger an immune response. One of the immune system's main functions is to regulate the level of communications between the mucosa and the lumen of various tissues. While it is clear that inhaled or ingested substances, or microorganisms may induce changes that affect the epithelial barrier in various ways, the proteins involved in the signaling cascades and physiological events leading to the regulation and maintenance of the barrier are not always well characterized. We review here some of the signaling components involved in regulating the barrier's paracellular permeability, and their potential effects on the activation of an immune response. While an effective immune response must be launched against pathogenic insults, tolerance must also be maintained for non-pathogenic antigens such as those in the commensal flora or for endogenous metabolites. Along with other members of the innate and adaptive immunity, the endocannabinoid system also plays an instrumental role in maintaining the balance between inflammation and tolerance. We discuss the potential effects of endo- and phytocannabinoids on epithelial permeability and how the dysregulation of this system could be involved in diseases and targeted for therapy.
Collapse
|
33
|
Jang H, Stevens P, Gao T, Galperin E. The leucine-rich repeat signaling scaffolds Shoc2 and Erbin: cellular mechanism and role in disease. FEBS J 2021; 288:721-739. [PMID: 32558243 PMCID: PMC7958993 DOI: 10.1111/febs.15450] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
Leucine-rich repeat-containing proteins (LRR proteins) are involved in supporting a large number of cellular functions. In this review, we summarize recent advancements in understanding functions of the LRR proteins as signaling scaffolds. In particular, we explore what we have learned about the mechanisms of action of the LRR scaffolds Shoc2 and Erbin and their roles in normal development and disease. We discuss Shoc2 and Erbin in the context of their multiple known interacting partners in various cellular processes and summarize often unexpected functions of these proteins through analysis of their roles in human pathologies. We also review these LRR scaffold proteins as promising therapeutic targets and biomarkers with potential application across various pathologies.
Collapse
Affiliation(s)
- HyeIn Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Payton Stevens
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
34
|
Ventura G, Moreira S, Barros-Carvalho A, Osswald M, Morais-de-Sá E. Lgl cortical dynamics are independent of binding to the Scrib-Dlg complex but require Dlg-dependent restriction of aPKC. Development 2020; 147:dev.186593. [PMID: 32665243 DOI: 10.1242/dev.186593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/02/2020] [Indexed: 01/06/2023]
Abstract
Apical-basal polarity underpins the formation of epithelial barriers that are crucial for metazoan physiology. Although apical-basal polarity is long known to require the basolateral determinants Lethal Giant Larvae (Lgl), Discs Large (Dlg) and Scribble (Scrib), mechanistic understanding of their function is limited. Lgl plays a role as an aPKC inhibitor, but it remains unclear whether Lgl also forms complexes with Dlg or Scrib. Using fluorescence recovery after photobleaching, we show that Lgl does not form immobile complexes at the lateral domain of Drosophila follicle cells. Optogenetic depletion of plasma membrane PIP2 or dlg mutants accelerate Lgl cortical dynamics. However, Dlg and Scrib are required only for Lgl localization and dynamic behavior in the presence of aPKC function. Furthermore, light-induced oligomerization of basolateral proteins indicates that Lgl is not part of the Scrib-Dlg complex in the follicular epithelium. Thus, Scrib and Dlg are necessary to repress aPKC activity in the lateral domain but do not provide cortical binding sites for Lgl. Our work therefore highlights that Lgl does not act in a complex but in parallel with Scrib-Dlg to antagonize apical determinants.
Collapse
Affiliation(s)
- Guilherme Ventura
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Sofia Moreira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - André Barros-Carvalho
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mariana Osswald
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Eurico Morais-de-Sá
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
35
|
Schmidt A, Peifer M. Scribble and Dlg organize a protection racket to ensure apical-basal polarity. Proc Natl Acad Sci U S A 2020; 117:13188-13190. [PMID: 32471949 PMCID: PMC7306729 DOI: 10.1073/pnas.2007739117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anja Schmidt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
36
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
37
|
Khoury MJ, Bilder D. Distinct activities of Scrib module proteins organize epithelial polarity. Proc Natl Acad Sci U S A 2020; 117:11531-11540. [PMID: 32414916 PMCID: PMC7260944 DOI: 10.1073/pnas.1918462117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A polarized architecture is central to both epithelial structure and function. In many cells, polarity involves mutual antagonism between the Par complex and the Scribble (Scrib) module. While molecular mechanisms underlying Par-mediated apical determination are well-understood, how Scrib module proteins specify the basolateral domain remains unknown. Here, we demonstrate dependent and independent activities of Scrib, Discs-large (Dlg), and Lethal giant larvae (Lgl) using the Drosophila follicle epithelium. Our data support a linear hierarchy for localization, but rule out previously proposed protein-protein interactions as essential for polarization. Cortical recruitment of Scrib does not require palmitoylation or polar phospholipid binding but instead an independent cortically stabilizing activity of Dlg. Scrib and Dlg do not directly antagonize atypical protein kinase C (aPKC), but may instead restrict aPKC localization by enabling the aPKC-inhibiting activity of Lgl. Importantly, while Scrib, Dlg, and Lgl are each required, all three together are not sufficient to antagonize the Par complex. Our data demonstrate previously unappreciated diversity of function within the Scrib module and begin to define the elusive molecular functions of Scrib and Dlg.
Collapse
Affiliation(s)
- Mark J Khoury
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
38
|
Santoni MJ, Kashyap R, Camoin L, Borg JP. The Scribble family in cancer: twentieth anniversary. Oncogene 2020; 39:7019-7033. [PMID: 32999444 PMCID: PMC7527152 DOI: 10.1038/s41388-020-01478-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Among the more than 160 PDZ containing proteins described in humans, the cytoplasmic scaffold Scribble stands out because of its essential role in many steps of cancer development and dissemination. Its fame has somehow blurred the importance of homologous proteins, Erbin and Lano, all belonging to the LRR and PDZ (LAP) protein family first described twenty years ago. In this review, we will retrace the history of LAP family protein research and draw attention to their contribution in cancer by detailing the features of its members at the structural and functional levels, and highlighting their shared-but also different-implication in the tumoral process.
Collapse
Affiliation(s)
- Marie-Josée Santoni
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Rudra Kashyap
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France ,grid.5596.f0000 0001 0668 7884Cellular and Molecular Medicine, Katholisch University of Leuven, Leuven, Belgium
| | - Luc Camoin
- grid.463833.90000 0004 0572 0656Aix Marseille Université, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Jean-Paul Borg
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France ,grid.463833.90000 0004 0572 0656Aix Marseille Université, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
39
|
Bonello TT, Choi W, Peifer M. Scribble and Discs-large direct initial assembly and positioning of adherens junctions during the establishment of apical-basal polarity. Development 2019; 146:dev.180976. [PMID: 31628110 DOI: 10.1242/dev.180976] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/14/2019] [Indexed: 01/05/2023]
Abstract
Apical-basal polarity is a fundamental property of animal tissues. Drosophila embryos provide an outstanding model for defining mechanisms that initiate and maintain polarity. Polarity is initiated during cellularization, when cell-cell adherens junctions are positioned at the future boundary of apical and basolateral domains. Polarity maintenance then involves complementary and antagonistic interplay between apical and basal polarity complexes. The Scribble/Dlg module is well-known for promoting basolateral identity during polarity maintenance. Here, we report a surprising role for Scribble/Dlg in polarity initiation, placing it near the top of the network-positioning adherens junctions. Scribble and Dlg are enriched in nascent adherens junctions, are essential for adherens junction positioning and supermolecular assembly, and also play a role in basal junction assembly. We test the hypotheses for the underlying mechanisms, exploring potential effects on protein trafficking, cytoskeletal polarity or Par-1 localization/function. Our data suggest that the Scribble/Dlg module plays multiple roles in polarity initiation. Different domains of Scribble contribute to these distinct roles. Together, these data reveal novel roles for Scribble/Dlg as master scaffolds regulating assembly of distinct junctional complexes at different times and places.
Collapse
Affiliation(s)
- Teresa T Bonello
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Wangsun Choi
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA .,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|