1
|
Sharma S, Rodems BJ, Baker CD, Kaszuba CM, Franco EI, Smith BR, Ito T, Swovick K, Welle K, Zhang Y, Rock P, Chaves FA, Ghaemmaghami S, Calvi LM, Ganguly A, Burack WR, Becker MW, Liesveld JL, Brookes PS, Munger JC, Jordan CT, Ashton JM, Bajaj J. Taurine from tumour niche drives glycolysis to promote leukaemogenesis. Nature 2025:10.1038/s41586-025-09018-7. [PMID: 40369079 DOI: 10.1038/s41586-025-09018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/14/2025] [Indexed: 05/16/2025]
Abstract
Signals from the microenvironment are known to be critical for development, stem cell self-renewal and oncogenic progression. Although some niche-driven signals that promote cancer progression have been identified1-5, concerted efforts to map disease-relevant microenvironmental ligands of cancer stem cell receptors have been lacking. Here, we use temporal single-cell RNA-sequencing (scRNA-seq) to identify molecular cues from the bone marrow stromal niche that engage leukaemia stem-enriched cells (LSCs) during oncogenic progression. We integrate these data with our human LSC RNA-seq and in vivo CRISPR screen of LSC dependencies6 to identify LSC-niche interactions that are essential for leukaemogenesis. These analyses identify the taurine-taurine transporter (TAUT) axis as a critical dependency of aggressive myeloid leukaemias. We find that cysteine dioxygenase type 1 (CDO1)-driven taurine biosynthesis is restricted to osteolineage cells, and increases during myeloid disease progression. Blocking CDO1 expression in osteolineage cells impairs LSC growth and improves survival outcomes. Using TAUT genetic loss-of-function mouse models and patient-derived acute myeloid leukaemia (AML) cells, we show that TAUT inhibition significantly impairs in vivo myeloid leukaemia progression. Consistent with elevated TAUT expression in venetoclax-resistant AML, TAUT inhibition synergizes with venetoclax to block the growth of primary human AML cells. Mechanistically, our multiomic approaches indicate that the loss of taurine uptake inhibits RAG-GTP dependent mTOR activation and downstream glycolysis. Collectively, our work establishes the temporal landscape of stromal signals during leukaemia progression and identifies taurine as a key regulator of myeloid malignancies.
Collapse
Affiliation(s)
- Sonali Sharma
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin J Rodems
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Cameron D Baker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Christina M Kaszuba
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Edgardo I Franco
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Bradley R Smith
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Takashi Ito
- Department of Bioscience and Technology, Graduate School of Bioscience and Technology, Fukui Prefectural University, Fukui, Japan
| | - Kyle Swovick
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Kevin Welle
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Philip Rock
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Francisco A Chaves
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Laura M Calvi
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Archan Ganguly
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - W Richard Burack
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael W Becker
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jane L Liesveld
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joshua C Munger
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Craig T Jordan
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John M Ashton
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeevisha Bajaj
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
2
|
Siew ZY, Ong GK, Wong ST, Leong PP, Tan BS, Leong CO, Chupri JB, Fang CM, Voon K. Safety profile of sikamat virus and its oncolytic potential in leukemic cells and cancer stem cells. Sci Rep 2025; 15:13817. [PMID: 40258869 PMCID: PMC12012088 DOI: 10.1038/s41598-025-96061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Leukaemia remains a global health concern. The oncotherapy resistance of leukaemia might be due to the existence of cancer stem cell populations. This study investigated the therapeutic potential of Sikamat virus (PRV7S), a Pteropine orthoreovirus, as an oncolytic virus against acute myeloid leukaemia (AML) and chronic myeloid leukaemia (CML). Using AML and CML cell lines (THP-1 and K562), as well as an AML-M5-derived cancer stem cell (CSC) model, PRV7S was shown to infect these leukaemic cells, replicate within them, and reduce their viability. PRV7S-induced cell death was associated with caspase-mediated apoptosis without significant cell cycle arrest. Transcriptomic and proteomic analyses revealed that PRV7S infection altered several cell death pathways, including apoptosis and necroptosis, highlighting its complex cell death mechanisms. PRV7S replicated efficiently in infected cells, though it did not cause persistent infection. An in vivo safety evaluation in immunocompetent mice demonstrated that PRV7S was well-tolerated, showing no adverse effects on survival, body weight, or histopathology, and no evidence of viral persistence. These findings suggest PRV7S as a promising oncolytic candidate for myeloid leukaemia, with potential efficacy against CSCs and a favourable safety profile. In conclusion, the study provides new insights into the cellular pathways involved in PRV7S-mediated oncolysis and supports further exploration of PRV7S's potential against resistant leukaemic and solid tumours.
Collapse
MESH Headings
- Animals
- Neoplastic Stem Cells/virology
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Humans
- Oncolytic Virotherapy/methods
- Oncolytic Viruses/physiology
- Mice
- Cell Line, Tumor
- Apoptosis
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Cell Survival
Collapse
Affiliation(s)
- Zhen Yun Siew
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| | - Ghee Khang Ong
- School of Medicine, IMU University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Siew Tung Wong
- School of Medicine, IMU University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Pooi Pooi Leong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Boon Shing Tan
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Juita Binti Chupri
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee-Mun Fang
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Kenny Voon
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
- School of Medicine, IMU University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Ferrando-Marco M, Barkoulas M. EFL-3/E2F7 modulates Wnt signalling by repressing the Nemo-like kinase LIT-1 during asymmetric epidermal cell division in Caenorhabditis elegans. Development 2025; 152:DEV204546. [PMID: 40026193 PMCID: PMC11925398 DOI: 10.1242/dev.204546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025]
Abstract
The E2F family of transcription factors is conserved in higher eukaryotes and plays pivotal roles in controlling gene expression during the cell cycle. Most canonical E2Fs associate with members of the Dimerisation Partner (DP) family to activate or repress target genes. However, atypical repressors, such as E2F7 and E2F8, lack DP interaction domains and their functions are less understood. We report here that EFL-3, the E2F7 homologue of Caenorhabditis elegans, regulates epidermal stem cell differentiation. We show that phenotypic defects in efl-3 mutants depend on the Nemo-like kinase LIT-1. EFL-3 represses lit-1 expression through direct binding to a lit-1 intronic element. Increased LIT-1 expression in efl-3 mutants reduces POP-1/TCF nuclear distribution, and consequently alters Wnt pathway activation. Our findings provide a mechanistic link between an atypical E2F family member and NLK during C. elegans asymmetric cell division, which may be conserved in other animals.
Collapse
|
4
|
Saeed BI, Kumar A, Oghenemaro EF, Almutairi LA, M RM, Kumawat R, Uthirapathy S, Hulail HM, Sharma S, Ravi Kumar M. Interactions between lncRNAs and cyclins/CDKs complexes; key players in determining cancer cell response to CDKs inhibitors. Exp Cell Res 2025; 445:114406. [PMID: 39761840 DOI: 10.1016/j.yexcr.2025.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025]
Abstract
Transcription takes place over a significant portion of the human genome. However, only a small portion of the transcriptome, roughly 1.2 %, consists of RNAs translated into proteins; the majority of transcripts, on the other hand, comprise a variety of RNA families with varying sizes and functions. A substantial portion of this diverse RNA universe consists of sequences longer than 200 bases, called the long non-coding RNA (lncRNA). The control of gene transcription, changes to DNA topology, nucleosome organization and structure, paraspeckle creation, and assistance for developing cellular organelles are only a few of the numerous tasks performed by lncRNA. The main focus of this study is on the function of lncRNA in controlling the levels and actions of cyclin-dependent kinase inhibitors (CDKIs). The enzymes required for the mitotic cycle's regulated progression are called cyclin-dependent kinases (CDKs). They have many degrees of regulation over their activities and interact with CDKIs as their crucial mechanisms. Interestingly, culminating evidence has clarified that lncRNAs are associated with several illnesses and use CDKI regulation to control cellular function. Nonetheless, despite the abundance of solid evidence in the literature, it still seems unlikely that lncRNA will have much of an impact on controlling cell proliferation or modulating CDKIs.
Collapse
Affiliation(s)
- Bahaa Ibrahim Saeed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India.
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, PMB 1, Abraka, Delta State, Nigeria.
| | - Layla A Almutairi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Rohit Kumawat
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Subasini Uthirapathy
- Faculty of Pharmacy, Pharmacology Department, Tishk International University, Erbil, Kurdistan Region of Iraq, Iraq.
| | - Hanen Mahmod Hulail
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq.
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India.
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India.
| |
Collapse
|
5
|
Phuong DJ, Pirtz MG, Ralston CQ, Cosgrove BD, Schimenti JC, Flesken-Nikitin A, Nikitin AY. Aggressive Serous Carcinomas of the Female Reproductive Tract: Cancer-Prone Cell States and Genetic Drivers. Cancers (Basel) 2025; 17:604. [PMID: 40002199 PMCID: PMC11852459 DOI: 10.3390/cancers17040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
In 2025, gynecological cancers are projected to account for approximately 10% of cancer-related deaths in women. High-grade serous ovarian carcinoma (HGSC) and serous endometrial carcinoma (SEC) are the most lethal gynecological cancer subtypes. Both malignancies commonly have TP53 mutations, alterations of the RB1 pathway, and numerous secondary mutations. Both carcinoma types consist of poorly differentiated and highly heterogeneous cell populations at the time of detection. Latent development and rapid progression of HGSC and SEC impede the identification of definitive cells of origin and genetic drivers. Here, we review our current knowledge about cancer-prone cell states and genetic drivers. We also discuss how emerging transcriptomic and genetic tools applied to contemporary model systems may facilitate the identification of novel targets for timely detection and therapeutic intervention.
Collapse
Affiliation(s)
- Daryl J. Phuong
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA; (D.J.P.); (M.G.P.); (C.Q.R.); (J.C.S.)
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Matalin G. Pirtz
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA; (D.J.P.); (M.G.P.); (C.Q.R.); (J.C.S.)
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Coulter Q. Ralston
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA; (D.J.P.); (M.G.P.); (C.Q.R.); (J.C.S.)
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Benjamin D. Cosgrove
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - John C. Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA; (D.J.P.); (M.G.P.); (C.Q.R.); (J.C.S.)
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrea Flesken-Nikitin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA; (D.J.P.); (M.G.P.); (C.Q.R.); (J.C.S.)
| | - Alexander Yu. Nikitin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA; (D.J.P.); (M.G.P.); (C.Q.R.); (J.C.S.)
| |
Collapse
|
6
|
Butcher K, Wang Z, Kurusamy S, Zhang Z, Morris MR, Najlah M, McConville C, Kannappan V, Wang W. PLGA-Nano-Encapsulated Disulfiram Inhibits Cancer Stem Cells and Targets Non-Small Cell Lung Cancer In Vitro and In Vivo. Biomolecules 2024; 14:1651. [PMID: 39766358 PMCID: PMC11674892 DOI: 10.3390/biom14121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer stem cells (CSCs) play a key role in non-small cell lung cancer (NSCLC) chemoresistance and metastasis. In this study, we used two NSCLC cell lines to investigate the regulating effect of hypoxia in the induction and maintenance of CSC traits. Our study demonstrated hypoxia-induced stemness and chemoresistance at levels comparable to those in typical CSC sphere culture. Activation of the NF-κB pathway (by transfection of NF-κB-p65) plays a key role in NSCLC CSCs and chemoresistance. Disulfiram (DS), an anti-alcoholism drug, showed a strong in vitro anti-CSC effect. It blocked cancer cell sphere reformation and clonogenicity, synergistically enhanced the cytotoxicity of four anti-NSCLC drugs (doxorubicin, gemcitabine, oxaliplatin and paclitaxel) and reversed hypoxia-induced resistance. The effect of DS on CSCs is copper-dependent. A very short half-life in the bloodstream is the major limitation for the translation of DS into a cancer treatment. Our team previously developed a poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated DS (DS-PLGA) with a long half-life in the bloodstream. Intra venous injection of DS-PLGA in combination with the oral application of copper gluconate has strong anticancer efficacy in a metastatic NSCLC mouse model. Further study may be able to translate DS-PLGA into cancer applications.
Collapse
Affiliation(s)
- Kate Butcher
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Disulfican Ltd., Wolverhampton WV9 5HD, UK
| | - Zhipeng Wang
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Sathishkumar Kurusamy
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NZ, UK
| | - Zaixing Zhang
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China
| | - Mark R. Morris
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Mohammad Najlah
- Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | | | - Vinodh Kannappan
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Disulfican Ltd., Wolverhampton WV9 5HD, UK
| | - Weiguang Wang
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Disulfican Ltd., Wolverhampton WV9 5HD, UK
| |
Collapse
|
7
|
Yamaguchi N, Horio E, Sonoda J, Yamagishi M, Miyakawa S, Murakami F, Hasegawa H, Katahira Y, Mizoguchi I, Fujii Y, Chikazu D, Yoshimoto T. Immortalization of Mesenchymal Stem Cells for Application in Regenerative Medicine and Their Potential Risks of Tumorigenesis. Int J Mol Sci 2024; 25:13562. [PMID: 39769322 PMCID: PMC11676347 DOI: 10.3390/ijms252413562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Regenerative medicine utilizes stem cells to repair damaged tissues by replacing them with their differentiated cells and activating the body's inherent regenerative abilities. Mesenchymal stem cells (MSCs) are adult stem cells that possess tissue repair and regenerative capabilities and immunomodulatory properties with a much lower risk of tumorigenicity, making them a focus of numerous clinical trials worldwide. MSCs primarily exert their therapeutic effects through paracrine effects via secreted factors, such as cytokines and exosomes. This has led to increasing interest in cell-free therapy, where only the conditioned medium (also called secretome) from MSC cultures is used for regenerative applications. However, MSCs face certain limitations, including cellular senescence, scarcity, donor heterogeneity, complexity, short survival post-implantation, and regulatory and ethics hurdles. To address these challenges, various types of immortalized MSCs (ImMSCs) capable of indefinite expansion have been developed. These cells offer significant promise and essential tools as a reliable source for both cell-based and cell-free therapies with the aim of translating them into practical medicine. However, the process of immortalization, often involving the transduction of immortalizing genes, poses potential risks of genetic instability and resultant malignant transformation. Cell-free therapy is particularly attractive, as it circumvents the risks of tumorigenicity and ethical concerns associated with live cell therapies. Rigorous safety tests, such as monitoring chromosomal abnormalities, are critical to ensure safety. Technologies like inducible or suicide genes may allow for the controlled proliferation of MSCs and induce apoptosis after their therapeutic task is completed. This review highlights recent advancements in the immortalization of MSCs and the associated risks of tumorigenesis.
Collapse
Affiliation(s)
- Natsuki Yamaguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Eri Horio
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Jukito Sonoda
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Miu Yamagishi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Fumihiro Murakami
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yasuyuki Fujii
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
8
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
9
|
Verhagen MP, Schmitt M, Fodde R. Western lifestyle, metaflammation and the cell of origin of colon cancer. Nat Rev Gastroenterol Hepatol 2024; 21:603-604. [PMID: 39048736 DOI: 10.1038/s41575-024-00964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Affiliation(s)
- Mathijs P Verhagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mark Schmitt
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Tayanloo-Beik A, Eslami A, Sarvari M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezaei-Tavirani M, Mafi AR, Larijani B, Arjmand B. Extracellular vesicles and cancer stem cells: a deadly duo in tumor progression. Oncol Rev 2024; 18:1411736. [PMID: 39091989 PMCID: PMC11291337 DOI: 10.3389/or.2024.1411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
The global incidence of cancer is increasing, with estimates suggesting that there will be 26 million new cases and 17 million deaths per year by 2030. Cancer stem cells (CSCs) and extracellular vesicles (EVs) are key to the resistance and advancement of cancer. They play a crucial role in tumor dynamics and resistance to therapy. CSCs, initially discovered in acute myeloid leukemia, are well-known for their involvement in tumor initiation, progression, and relapse, mostly because of their distinct characteristics, such as resistance to drugs and the ability to self-renew. EVs, which include exosomes, microvesicles, and apoptotic bodies, play a vital role in facilitating communication between cells within the tumor microenvironment (TME). They have a significant impact on cellular behaviors and contribute to genetic and epigenetic changes. This paper analyzes the mutually beneficial association between CSCs and EVs, emphasizing their role in promoting tumor spread and developing resistance mechanisms. This review aims to investigate the interaction between these entities in order to discover new approaches for attacking the complex machinery of cancer cells. It highlights the significance of CSCs and EVs as crucial targets in the advancement of novel cancer treatments, which helps stimulate additional research, promote progress in ideas for cancer treatment, and provide renewed optimism in the effort to reduce the burden of cancer.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Eslami
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, Aja University of medical sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Taskiran A, Oktem G, Demir A, Oltulu F, Ozcinar E, Duzagac F, Guven U, Karakoc E, Cakir A, Ayla S, Guven S, Acikgoz E. Embryonic microenvironment suppresses YY1 and YY1-related genes in prostate cancer stem cells. Pathol Res Pract 2024; 260:155467. [PMID: 39047662 DOI: 10.1016/j.prp.2024.155467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Yin yang 1 (YY1), a transcription factor, plays crucial roles in cell fate specification, differentiation, and pluripotency during embryonic development. It is also involved in tumorigenesis, drug resistance, metastasis, and relapse caused by cancer stem cells (CSCs), particularly in prostate cancer (PCa). Targeting YY1 could potentially eliminate prostate CSCs (PCSCs) and provide novel therapeutic approaches. PCa tissues often exhibit elevated YY1 expression levels, especially in high-grade cases. Notably, high-grade PCa tissues from 58 PCa patients and CD133high/CD44high PCSCs isolated from DU145 PCa cell line by FACS both showed significantly increased YY1 expression as observed through immunofluorescence staining, respectively. To investigate the embryonic microenvironment impact on YY1 expression in CSC populations, firstly PCSCs were microinjected into the inner cell mass of blastocysts and then PCSCs were co-cultured with blastocysts. Next Generation Sequencing was used to analyze alterations in YY1 and related gene expressions. Interestingly, exposure to the embryonic microenvironment significantly reduced the expressions of YY1, YY2, and other relevant genes in PCSCs. These findings emphasize the tumor-suppressing effects of the embryonic environment by downregulating YY1 and YY1-related genes in PCSCs, thus providing promising strategies for PCa therapy. Through elucidating the mechanisms involved in embryonic reprogramming and its effects on YY1 expression, this research offers opportunities for further investigation into focused therapies directed against PCSCs, therefore enhancing the outcomes of PCa therapy. As a result, PCa tumors may benefit from YY1 and associated genes as a novel therapeutic target.
Collapse
Affiliation(s)
- Aysegul Taskiran
- Ege University Faculty of Medicine Department of Histology and Embryology, İzmir 35100, Turkey
| | - Gulperi Oktem
- Ege University Faculty of Medicine Department of Histology and Embryology, İzmir 35100, Turkey; Ege University Institute of Health Sciences Department of Stem Cell, İzmir 35100, Turkey
| | - Aleyna Demir
- Ege University Faculty of Medicine Department of Histology and Embryology, İzmir 35100, Turkey
| | - Fatih Oltulu
- Ege University Faculty of Medicine Department of Histology and Embryology, İzmir 35100, Turkey
| | - Emine Ozcinar
- İzmir Tinaztepe University Department of Histology and Embryology, İzmir 35400, Turkey
| | - Fahriye Duzagac
- University of Texas MD Anderson Cancer Center, Department of Clinical Cancer Prevention, Texas, Houston, TX 77030, USA
| | - Ummu Guven
- Università degli Studi di Milano Department of Biosciences, Milan 20122, Italy
| | - Emre Karakoc
- Wellcome Sanger Institute Translational Cancer Genomics, Hinxton, Cambridge CB10 1SA, UK
| | - Asli Cakir
- Istanbul Medipol University Faculty of Medicine Department of Pathology, İstanbul 34810, Turkey
| | - Sule Ayla
- Istanbul Medeniyet University Faculty of Medicine Department of Histology and Embryology, İstanbul 34700, Turkey
| | - Selcuk Guven
- Necmettin Erbakan University Meram Medical Faculty Department of Urology, Konya 42090, Turkey
| | - Eda Acikgoz
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Histology and Embryology, Van 65090, Turkey.
| |
Collapse
|
12
|
Verhagen MP, Joosten R, Schmitt M, Välimäki N, Sacchetti A, Rajamäki K, Choi J, Procopio P, Silva S, van der Steen B, van den Bosch TPP, Seinstra D, de Vries AC, Doukas M, Augenlicht LH, Aaltonen LA, Fodde R. Non-stem cell lineages as an alternative origin of intestinal tumorigenesis in the context of inflammation. Nat Genet 2024; 56:1456-1467. [PMID: 38902475 PMCID: PMC11250264 DOI: 10.1038/s41588-024-01801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
According to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, has been shown to suppress intestinal stemness. Here, we used Paneth cells as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation in mice. Upon inflammation, Paneth cell-specific Apc mutations led to intestinal tumors reminiscent not only of those arising in patients with inflammatory bowel disease, but also of a larger fraction of human sporadic colon cancers. The latter is possibly because of the inflammatory consequences of western-style dietary habits, a major colon cancer risk factor. Machine learning methods designed to predict the cell-of-origin of cancer from patient-derived tumor samples confirmed that, in a substantial fraction of sporadic cases, the origins of colon cancer reside in secretory lineages and not in stem cells.
Collapse
Affiliation(s)
- Mathijs P Verhagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rosalie Joosten
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark Schmitt
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Andrea Sacchetti
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jiahn Choi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Paola Procopio
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Sara Silva
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Berdine van der Steen
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Danielle Seinstra
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annemarie C de Vries
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Leonard H Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Li T, Liu L, Li L, Yao X, Hu X, Cheng J, Chen Z, Guo J, Li R, Ge C, Lin MCM, Yao H. HGFK1 Enhances the Anti-Tumor Effects of Angiogenesis Inhibitors via Inhibition of CD90+ CSCs in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2024; 17:645. [PMID: 38794215 PMCID: PMC11125149 DOI: 10.3390/ph17050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The combination of anti-angiogenesis agents with immune-checkpoint inhibitors is a promising treatment for patients with advanced hepatocellular carcinoma (HCC); however, therapeutic resistance caused by cancer stem cells present in tumor microenvironments remains to be overcome. In this study, we report for the first time that the Kringle 1 domain of human hepatocyte growth-factor α chain (HGFK1), a previously described anti-angiogenesis peptide, repressed the sub-population of CD90+ cancer stem cells (CSCs) and promoted their differentiation and chemotherapy sensitivity mainly through downregulation of pre-Met protein expression and inhibition of Wnt/β-catenin and Notch pathways. Furthermore, we showed that the i.p. injection of PH1 (a tumor-targeted and biodegradable co-polymer), medicated plasmids encoding Endostatin (pEndo), HGFK1 genes (pEndo), and a combination of 50% pEndo + 50% pHGFK1 all significantly suppressed tumor growth and prolonged the survival of the HCC-bearing mice. Importantly, the combined treatment produced a potent synergistic effect, with 25% of the mice showing the complete clearance of the tumor via a reduction in the microvessel density (MVD) and the number of CD90+ CSCs in the tumor tissues. These results suggest for the first time that HGFK1 inhibits the CSCs of HCC. Furthermore, the combination of two broad-spectrum anti-angiogenic factors, Endo and HGFK1, is the optimal strategy for the development of effective anti-HCC drugs.
Collapse
Affiliation(s)
- Tao Li
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Ling Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Li Li
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Xiaoxuan Yao
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Xiaoyuan Hu
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Jiaxing Cheng
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Zhenpu Chen
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Jiyin Guo
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Ruilei Li
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Chunlei Ge
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Marie Chia-Mi Lin
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Hong Yao
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
14
|
Rodems BJ, Sharma S, Baker CD, Kaszuba CM, Ito T, Liesveld JL, Calvi LM, Becker MW, Jordan CT, Ashton JM, Bajaj J. Temporal Single Cell Analysis of Leukemia Microenvironment Identifies Taurine-Taurine Transporter Axis as a Key Regulator of Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593633. [PMID: 38798540 PMCID: PMC11118281 DOI: 10.1101/2024.05.11.593633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Signals from the microenvironment are known to be critical for development, sustaining adult stem cells, and for oncogenic progression. While candidate niche-driven signals that can promote cancer progression have been identified1-6, concerted efforts to comprehensively map microenvironmental ligands for cancer stem cell specific surface receptors have been lacking. Here, we use temporal single cell RNA-sequencing to identify molecular cues from the bone marrow stromal niche that engage leukemia stem cells (LSC) during oncogenic progression. We integrate these data with our RNA-seq analysis of human LSCs from distinct aggressive myeloid cancer subtypes and our CRISPR based in vivo LSC dependency map7 to develop a temporal receptor-ligand interactome essential for disease progression. These analyses identify the taurine transporter (TauT)-taurine axis as a critical dependency of myeloid malignancies. We show that taurine production is restricted to the osteolineage population during cancer initiation and expansion. Inhibiting taurine synthesis in osteolineage cells impairs LSC growth and survival. Our experiments with the TauT genetic loss of function murine model indicate that its loss significantly impairs the progression of aggressive myeloid leukemias in vivo by downregulating glycolysis. Further, TauT inhibition using a small molecule strongly impairs the growth and survival of patient derived myeloid leukemia cells. Finally, we show that TauT inhibition can synergize with the clinically approved oxidative phosphorylation inhibitor venetoclax8, 9 to block the growth of primary human leukemia cells. Given that aggressive myeloid leukemias continue to be refractory to current therapies and have poor prognosis, our work indicates targeting the taurine transporter may be of therapeutic significance. Collectively, our data establishes a temporal landscape of stromal signals during cancer progression and identifies taurine-taurine transporter signaling as an important new regulator of myeloid malignancies.
Collapse
Affiliation(s)
- Benjamin J. Rodems
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sonali Sharma
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cameron D. Baker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christina M. Kaszuba
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Takashi Ito
- Department of Bioscience and Technology, Graduate School of Bioscience and Technology, Fukui Prefectural University, Fukui, Japan
| | - Jane L. Liesveld
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Division of Hematology and Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laura M. Calvi
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael W. Becker
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Division of Hematology and Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Craig T. Jordan
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John M. Ashton
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeevisha Bajaj
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
15
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Wu C, Weis SM, Cheresh DA. Tumor-initiating cells establish a niche to overcome isolation stress. Trends Cell Biol 2024; 34:380-387. [PMID: 37640611 DOI: 10.1016/j.tcb.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
While the tumor microenvironment is a critical contributor to cancer progression, early steps of tumor initiation and metastasis also rely on the ability of individual tumor cells to survive and thrive at locations where tumor stroma or immune infiltration has yet to be established. In this opinion article, we use the term 'isolation stress' to broadly describe the challenges that individual tumor cells must overcome during the initiation and expansion of the primary tumor beyond permissive boundaries and metastatic spread into distant sites, including a lack of cell-cell contact, adhesion to protumor extracellular matrix proteins, and access to nutrients, oxygen, and soluble factors that support growth. In particular, we highlight the ability of solitary tumor cells to autonomously generate a specialized fibronectin-enriched extracellular matrix to create their own pericellular niche that supports tumor initiation. Cancer cells that can creatively evade the effects of isolation stress not only become more broadly stress tolerant, they also tend to show enhanced stemness, drug resistance, tumor initiation, and metastasis.
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Pathology, Moores Cancer Center, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Sara M Weis
- Department of Pathology, Moores Cancer Center, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - David A Cheresh
- Department of Pathology, Moores Cancer Center, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Lee JS, Lee HY. Ginseng-derived compounds as potential anticancer agents targeting cancer stem cells. J Ginseng Res 2024; 48:266-275. [PMID: 38707642 PMCID: PMC11068999 DOI: 10.1016/j.jgr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 05/07/2024] Open
Abstract
Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that exhibit stem cell-like characteristics, including self-renewal and differentiation in a multi-stage lineage state via symmetric or asymmetric division, causing tumor initiation, heterogeneity, progression, and recurrence and posing a major challenge to current anticancer therapy. Despite the importance of CSCs in carcinogenesis and cancer progression, currently available anticancer therapeutics have limitations for eradicating CSCs. Moreover, the efficacy and therapeutic windows of currently available anti-CSC agents are limited, suggesting the necessity to optimize and develop a novel anticancer agent targeting CSCs. Ginseng has been traditionally used for enhancing immunity and relieving fatigue. As ginseng's long history of use has demonstrated its safety, it has gained attention for its potential pharmacological properties, including anticancer effects. Several studies have identified the bioactive principles of ginseng, such as ginseng saponin (ginsenosides) and non-saponin compounds (e.g., polysaccharides, polyacetylenes, and phenolic compounds), and their pharmacological activities, including antioxidant, anticancer, antidiabetic, antifatigue, and neuroprotective effects. Notably, recent reports have shown the potential of ginseng-derived compounds as anti-CSC agents. This review investigates the biology of CSCs and efforts to utilize ginseng-derived components for cancer treatment targeting CSCs, highlighting their role in overcoming current therapeutic limitations.
Collapse
Affiliation(s)
- Ji-Sun Lee
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ho-Young Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Rivera M, Zhang H, Pham J, Isquith J, Zhou QJ, Balaian L, Sasik R, Enlund S, Mark A, Ma W, Holm F, Fisch KM, Kuo DJ, Jamieson C, Jiang Q. Malignant A-to-I RNA editing by ADAR1 drives T cell acute lymphoblastic leukemia relapse via attenuating dsRNA sensing. Cell Rep 2024; 43:113704. [PMID: 38265938 PMCID: PMC10962356 DOI: 10.1016/j.celrep.2024.113704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/24/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
Leukemia-initiating cells (LICs) are regarded as the origin of leukemia relapse and therapeutic resistance. Identifying direct stemness determinants that fuel LIC self-renewal is critical for developing targeted approaches. Here, we show that the RNA-editing enzyme ADAR1 is a crucial stemness factor that promotes LIC self-renewal by attenuating aberrant double-stranded RNA (dsRNA) sensing. Elevated adenosine-to-inosine editing is a common attribute of relapsed T cell acute lymphoblastic leukemia (T-ALL) regardless of molecular subtype. Consequently, knockdown of ADAR1 severely inhibits LIC self-renewal capacity and prolongs survival in T-ALL patient-derived xenograft models. Mechanistically, ADAR1 directs hyper-editing of immunogenic dsRNA to avoid detection by the innate immune sensor melanoma differentiation-associated protein 5 (MDA5). Moreover, we uncover that the cell-intrinsic level of MDA5 dictates the dependency on the ADAR1-MDA5 axis in T-ALL. Collectively, our results show that ADAR1 functions as a self-renewal factor that limits the sensing of endogenous dsRNA. Thus, targeting ADAR1 presents an effective therapeutic strategy for eliminating T-ALL LICs.
Collapse
Affiliation(s)
- Maria Rivera
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, La Jolla, CA 92037, USA
| | - Haoran Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, La Jolla, CA 92037, USA
| | - Jessica Pham
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jane Isquith
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qingchen Jenny Zhou
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, La Jolla, CA 92037, USA
| | - Larisa Balaian
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Roman Sasik
- Center for Computational Biology & Bioinformatics (CCBB), University of California, San Diego, La Jolla, CA 92093-0681, USA
| | - Sabina Enlund
- Department of Women's and Children's Health, Division of Pediatric Oncology and Pediatric Surgery, Karolinska Institutet, Solna, Sweden
| | - Adam Mark
- Center for Computational Biology & Bioinformatics (CCBB), University of California, San Diego, La Jolla, CA 92093-0681, USA
| | - Wenxue Ma
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Frida Holm
- Department of Women's and Children's Health, Division of Pediatric Oncology and Pediatric Surgery, Karolinska Institutet, Solna, Sweden
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics (CCBB), University of California, San Diego, La Jolla, CA 92093-0681, USA; Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Dennis John Kuo
- Moores Cancer Center, La Jolla, CA 92037, USA; Division of Pediatric Hematology-Oncology, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA 92123, USA
| | - Catriona Jamieson
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, La Jolla, CA 92037, USA
| | - Qingfei Jiang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, La Jolla, CA 92037, USA.
| |
Collapse
|
19
|
Muchtaridi M, Az-Zahra F, Wongso H, Setyawati LU, Novitasari D, Ikram EHK. Molecular Mechanism of Natural Food Antioxidants to Regulate ROS in Treating Cancer: A Review. Antioxidants (Basel) 2024; 13:207. [PMID: 38397805 PMCID: PMC10885946 DOI: 10.3390/antiox13020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is the second-highest mortality rate disease worldwide, and it has been estimated that cancer will increase by up to 20 million cases yearly by 2030. There are various options of treatment for cancer, including surgery, radiotherapy, and chemotherapy. All of these options have damaging adverse effects that can reduce the patient's quality of life. Cancer itself arises from a series of mutations in normal cells that generate the ability to divide uncontrollably. This cell mutation can happen as a result of DNA damage induced by the high concentration of ROS in normal cells. High levels of reactive oxygen species (ROS) can cause oxidative stress, which can initiate cancer cell proliferation. On the other hand, the cytotoxic effect from elevated ROS levels can be utilized as anticancer therapy. Some bioactive compounds from natural foods such as fruit, vegetables, herbs, honey, and many more have been identified as a promising source of natural antioxidants that can prevent oxidative stress by regulating the level of ROS in the body. In this review, we have highlighted and discussed the benefits of various natural antioxidant compounds from natural foods that can regulate reactive oxygen species through various pathways.
Collapse
Affiliation(s)
- Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Jatinangor 45363, Indonesia;
| | - Farhah Az-Zahra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
| | - Hendris Wongso
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Jatinangor 45363, Indonesia;
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), Jl. Puspiptek, Kota Tangerang 15314, Indonesia
| | - Luthfi Utami Setyawati
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Jatinangor 45363, Indonesia;
| | - Dhania Novitasari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
| | - Emmy Hainida Khairul Ikram
- Integrated Nutrition Science and Therapy Research Group (INSPIRE), Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia;
| |
Collapse
|
20
|
Serritella AV, Saenz-Lopez Larrocha P, Dhar P, Liu S, Medd MM, Jia S, Cao Q, Wu JD. The Human Soluble NKG2D Ligand Differentially Impacts Tumorigenicity and Progression in Temporal and Model-Dependent Modes. Biomedicines 2024; 12:196. [PMID: 38255301 PMCID: PMC10812945 DOI: 10.3390/biomedicines12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
NKG2D is an activating receptor expressed by all human NK cells and CD8 T cells. Harnessing the NKG2D/NKG2D ligand axis has emerged as a viable avenue for cancer immunotherapy. However, there is a long-standing controversy over whether soluble NKG2D ligands are immunosuppressive or immunostimulatory, originating from conflicting data generated from different scopes of pre-clinical investigations. Using multiple pre-clinical tumor models, we demonstrated that the impact of the most characterized human solid tumor-associated soluble NKG2D ligand, the soluble MHC I chain-related molecule (sMIC), on tumorigenesis depended on the tumor model being studied and whether the tumor cells possessed stemness-like properties. We demonstrated that the potential of tumor formation or establishment depended upon tumor cell stem-like properties irrespective of tumor cells secreting the soluble NKG2D ligand sMIC. Specifically, tumor formation was delayed or failed if sMIC-expressing tumor cells expressed low stem-cell markers; tumor formation was rapid if sMIC-expressing tumor cells expressed high stem-like cell markers. However, once tumors were formed, overexpression of sMIC unequivocally suppressed tumoral NK and CD8 T cell immunity and facilitated tumor growth. Our study distinguished the differential impacts of soluble NKG2D ligands in tumor formation and tumor progression, cleared the outstanding controversy over soluble NKG2D ligands in modulating tumor immunity, and re-enforced the viability of targeting soluble NKG2D ligands for cancer immunotherapy for established tumors.
Collapse
Affiliation(s)
- Anthony V. Serritella
- Department of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Pablo Saenz-Lopez Larrocha
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Sizhe Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Milan M. Medd
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Shengxian Jia
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Jennifer D. Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Maleki EH, Bahrami AR, Matin MM. Cancer cell cycle heterogeneity as a critical determinant of therapeutic resistance. Genes Dis 2024; 11:189-204. [PMID: 37588236 PMCID: PMC10425754 DOI: 10.1016/j.gendis.2022.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 01/15/2023] Open
Abstract
Intra-tumor heterogeneity is now arguably one of the most-studied topics in tumor biology, as it represents a major obstacle to effective cancer treatment. Since tumor cells are highly diverse at genetic, epigenetic, and phenotypic levels, intra-tumor heterogeneity can be assumed as an important contributing factor to the nullification of chemotherapeutic effects, and recurrence of the tumor. Based on the role of heterogeneous subpopulations of cancer cells with varying cell-cycle dynamics and behavior during cancer progression and treatment; herein, we aim to establish a comprehensive definition for adaptation of neoplastic cells against therapy. We discuss two parallel and yet distinct subpopulations of tumor cells that play pivotal roles in reducing the effects of chemotherapy: "resistant" and "tolerant" populations. Furthermore, this review also highlights the impact of the quiescent phase of the cell cycle as a survival mechanism for cancer cells. Beyond understanding the mechanisms underlying the quiescence, it provides an insightful perspective on cancer stem cells (CSCs) and their dual and intertwined functions based on their cell cycle state in response to treatment. Moreover, CSCs, epithelial-mesenchymal transformed cells, circulating tumor cells (CTCs), and disseminated tumor cells (DTCs), which are mostly in a quiescent state of the cell cycle are proved to have multiple biological links and can be implicated in our viewpoint of cell cycle heterogeneity in tumors. Overall, increasing our knowledge of cell cycle heterogeneity is a key to identifying new therapeutic solutions, and this emerging concept may provide us with new opportunities to prevent the dreadful cancer recurrence.
Collapse
Affiliation(s)
- Ebrahim H. Maleki
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 31-007 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, 917751376 Mashhad, Iran
| |
Collapse
|
22
|
Su CC, Yu CC, Shih YW, Liu KL, Chen HW, Wu CC, Yang YC, Yeh EL, Li CC. Protective Effect of Alpha-Linolenic Acid on Human Oral Squamous Cell Carcinoma Metastasis and Apoptotic Cell Death. Nutrients 2023; 15:4992. [PMID: 38068849 PMCID: PMC10708481 DOI: 10.3390/nu15234992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Oral cancer ranks sixth among Taiwan's top 10 cancers and most patients with poor prognosis acquire metastases. The essential fatty acid alpha-linolenic acid (ALA) has been found to diminish many cancer properties. However, the anti-cancer activity of ALA in oral cancer has yet to be determined. We examined the mechanisms underlying ALA inhibition of metastasis and induction of apoptotic cell death in oral squamous cell carcinoma (OSCC). Migration and invasion assays confirmed the cancer cells' EMT capabilities, whereas flow cytometry and Western blotting identified molecular pathways in OSCC. ALA dramatically reduced cell growth in a concentration-dependent manner according to the findings. Low concentrations of ALA (100 or 200 μM) inhibit colony formation, the expression of Twist and EMT-related proteins, the expression of MMP2/-9 proteins, and enzyme activity, as well as cell migration and invasion. Treatment with high concentrations of ALA (200 or 400 μM) greatly increases JNK phosphorylation and c-jun nuclear accumulation and then upregulates the FasL/caspase8/caspase3 and Bid/cytochrome c/caspase9/caspase3 pathways, leading to cell death. Low concentrations of ALA inhibit SAS and GNM cell migration and invasion by suppressing Twist and downregulating EMT-related proteins or by decreasing the protein expression and enzyme activity of MMP-2/-9, whereas high concentrations of ALA promote apoptosis by activating the JNK/FasL/caspase 8/caspase 3-extrinsic pathway and the Bid/cytochrome c/caspase 9 pathway. ALA demonstrates potential as a treatment for OSCC patients.
Collapse
Affiliation(s)
- Ching-Chyuan Su
- Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan;
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yi-Wen Shih
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung 40678, Taiwan
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan
| | - En-Ling Yeh
- Department of Nutrition, College of Medical and Health Care, Hung-Kuang University, Taichung 43302, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
23
|
Liu Z, Sun L, Peng X, Liu S, Zhu Z, Huang C. An immunogenic cell death-related signature predicts prognosis and immunotherapy response in stomach adenocarcinoma. Apoptosis 2023; 28:1564-1583. [PMID: 37580435 DOI: 10.1007/s10495-023-01879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 08/16/2023]
Abstract
The immunogenic cell death (ICD) is a specific type of regulatory cell death (RCD), which induces adaptive immunity against antigens of dead cells. ICDs have received increasing attention for their potential role in tumor microenvironment reprogramming and immunotherapy. However, the relationship between ICD-related features and stomach adenocarcinoma (STAD) prognosis, immune cell infiltration and immunotherapy remains unclear. Patients were divided into different ICD-related subtypes by consensus clustering. The differences in prognosis, Tumor microenvironment (TME), and immune checkpoint expression between different ICD-related subtypes were systematically assessed. Additionally, we constructed an ICD-related gene risk score (ICDRS). We systematically analyzed the correlation between ICDRS and prognosis, TME, immunotherapy response and drug sensitivity of gastric cancer. In addition, we explored the role of TGM2 in promoting gastric cancer progression through in vitro experiments. We identified three ICD-associated subtypes by consensus clustering. The ICD gene was highly expressed in Cluster B. Compared with the other two subtypes, Cluster B had better prognosis, higher immune response signaling activity, massive immune cell infiltration and lower tumor purity. Immune checkpoint (ICP) and human leukocyte antigen (HLA) related genes were also highly expressed in Cluster B. In addition, we found that ICDRS is an effective indicator for predicting the prognosis and immune efficacy of STAD. The low ICDRS group has the characteristics of good prognosis, high tumor mutation burden (TMB), high microsatellite instability (MSI), and sensitivity to immunotherapy, while the high ICDRS group is prone to immune escape and immunotherapy resistance. In addition, we found that down-regulating TGM2 gene can inhibit the proliferation and migration of gastric cancer cells through in vitro experiments. Our study found that the model based on ICD features is helpful to clarify the TME characteristics of STAD, and has important clinical significance for evaluating the prognosis and immunotherapy response of STAD patients. TGM2 plays an important role in the progression of STAD, suggesting that TGM2 can be used as a new target for the treatment of STAD.
Collapse
Affiliation(s)
- Zitao Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Liang Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Sicheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhengming Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Chao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
24
|
Kaszuba CM, Rodems BJ, Sharma S, Franco EI, Ashton JM, Calvi LM, Bajaj J. Identifying Bone Marrow Microenvironmental Populations in Myelodysplastic Syndrome and Acute Myeloid Leukemia. J Vis Exp 2023:10.3791/66093. [PMID: 38009736 PMCID: PMC10849042 DOI: 10.3791/66093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
The bone marrow microenvironment consists of distinct cell populations, such as mesenchymal stromal cells, endothelial cells, osteolineage cells, and fibroblasts, which provide support for hematopoietic stem cells (HSCs). In addition to supporting normal HSCs, the bone marrow microenvironment also plays a role in the development of hematopoietic stem cell disorders, such as myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). MDS-associated mutations in HSCs lead to a block in differentiation and progressive bone marrow failure, especially in the elderly. MDS can often progress to therapy-resistant AML, a disease characterized by a rapid accumulation of immature myeloid blasts. The bone marrow microenvironment is known to be altered in patients with these myeloid neoplasms. Here, a comprehensive protocol to isolate and phenotypically characterize bone marrow microenvironmental cells from murine models of myelodysplastic syndrome and acute myeloid leukemia is described. Isolating and characterizing changes in the bone marrow niche populations can help determine their role in disease initiation and progression and may lead to the development of novel therapeutics targeting cancer-promoting alterations in the bone marrow stromal populations.
Collapse
Affiliation(s)
- Christina M Kaszuba
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Engineering, University of Rochester
| | - Benjamin J Rodems
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Genetics, University of Rochester Medical Center
| | - Sonali Sharma
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Genetics, University of Rochester Medical Center
| | - Edgardo I Franco
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Engineering, University of Rochester
| | - John M Ashton
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Genetics, University of Rochester Medical Center; Genomics Research Center, University of Rochester Medical Center
| | - Laura M Calvi
- Wilmot Cancer Institute, University of Rochester Medical Center; Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center
| | - Jeevisha Bajaj
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Genetics, University of Rochester Medical Center;
| |
Collapse
|
25
|
Wang L, Zhang Y, Song Z, Liu Q, Fan D, Song X. Ginsenosides: a potential natural medicine to protect the lungs from lung cancer and inflammatory lung disease. Food Funct 2023; 14:9137-9166. [PMID: 37801293 DOI: 10.1039/d3fo02482b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Lung cancer is the malignancy with the highest morbidity and mortality. Additionally, pulmonary inflammatory diseases, such as pneumonia, acute lung injury, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis (PF), also have high mortality rates and can promote the development and progression of lung cancer. Unfortunately, available treatments for them are limited, so it is critical to search for effective drugs and treatment strategies to protect the lungs. Ginsenosides, the main active components of ginseng, have been shown to have anti-cancer and anti-inflammatory activities. In this paper, we focus on the beneficial effects of ginsenosides on lung diseases and their molecular mechanisms. Firstly, the molecular mechanism of ginsenosides against lung cancer was summarized in detail, mainly from the points of view of proliferation, apoptosis, autophagy, angiogenesis, metastasis, drug resistance and immunity. In in vivo and in vitro lung cancer models, ginsenosides Rg3, Rh2 and CK were reported to have strong anti-lung cancer effects. Then, in the models of pneumonia and acute lung injury, the protective effect of Rb1 was particularly remarkable, followed by Rg3 and Rg1, and its molecular mechanism was mainly associated with targeting NF-κB, Nrf2, MAPK and PI3K/Akt pathways to alleviate inflammation, oxidative stress and apoptosis. Additionally, ginsenosides may also have a potential health-promoting effect in the improvement of COPD, asthma and PF. Furthermore, to overcome the low bioavailability of CK and Rh2, the development of nanoparticles, micelles, liposomes and other nanomedicine delivery systems can significantly improve the efficacy of targeted lung cancer treatment. To conclude, ginsenosides can be used as both anti-lung cancer and lung protective agents or adjuvants and have great potential for future clinical applications.
Collapse
Affiliation(s)
- Lina Wang
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Yanxin Zhang
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Zhimin Song
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Biotechnology & Biomedicine Research Institute, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaoping Song
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
26
|
Olmedo I, Martínez D, Carrasco-Rojas J, Jara JA. Mitochondria in oral cancer stem cells: Unraveling the potential drug targets for new and old drugs. Life Sci 2023; 331:122065. [PMID: 37659591 DOI: 10.1016/j.lfs.2023.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Head and neck cancer is a major health problem worldwide, with most cases arising in the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, accounting for over 90% of all cases. Compared to other types of cancer, OSCC, has the worse prognosis, with a 5-year survival rate of 50%. Additionally, OSCC is characterized by a high rate of resistance to chemotherapy treatment, which may be partly explained by the presence of cancer stem cells (CSC) subpopulation. CSC can adapt to harmful environmental condition and are highly resistant to both chemotherapy and radiotherapy treatments, thus contributing to tumor relapse. The aim of this review is to highlight the role of mitochondria in oral CSC as a potential target for oral cancer treatment. For this purpose, we reviewed some fundamental aspects of the most validated protein markers of stemness, autophagy, the mitochondrial function and energy metabolism in oral CSC. Moreover, a discussion will be made on why energy metabolism, especially oxidative phosphorylation in CSC, may offer such a diverse source of original pharmacological target for new drugs. Finally, we will describe some drugs able to disturb mitochondrial function, with emphasis on those aimed to interrupt the electron transport chain function, as novel therapeutic strategies in multidrug-resistant oral CSC. The reutilization of old drugs approved for clinical use as new antineoplastics, in cancer treatment, is also matter of revision.
Collapse
Affiliation(s)
- Ivonne Olmedo
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Martínez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Javiera Carrasco-Rojas
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Toxicological and Pharmacological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
27
|
ZHANG RUI, ZHOU PENG, OU XIA, ZHAO PEIZHU, GUO XIJING, XI MIAN, QING CHEN. The DMRTA1-SOX2 positive feedback loop promotes progression and chemotherapy resistance of esophageal squamous cell carcinoma. Oncol Res 2023; 31:887-897. [PMID: 37744275 PMCID: PMC10513955 DOI: 10.32604/or.2023.030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 09/26/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most prevalent causes of cancer-related death in patients worldwide. Resistance to immunotherapy and chemotherapy results in worse survival outcomes in ESCC. It is urgent to explore the underlying molecular mechanism of immune evasion and chemoresistance in ESCC. Here, we conducted RNA-sequencing analysis in ten ESCC tissues from cisplatin-based neoadjuvant chemotherapy patients. We found that DMRTA1 was extremely upregulated in the non-pathologic complete response (non-pCR) group. The proliferation rate of esophageal squamous carcinoma cells was markedly decreased after knockdown of DMRTA1 expression, which could increase cisplatin sensitivity in ESCC. Additionally, suppression of DMRTA1 could decrease the immune escape of esophageal squamous carcinoma cells. Further mechanistic studies suggest that DMRTA1 can promote its expression by binding to the promoter of SOX2, which plays important roles in the progression and chemoresistance of ESCC in the form of positive feedback. Therefore, DMRTA1 could be a potential target to suppress immune escape and overcome chemoresistance in ESCC.
Collapse
Affiliation(s)
- RUI ZHANG
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - PENG ZHOU
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
- Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - XIA OU
- Medical School, Kunming University of Science and Technology, Kunming, 650504, China
| | - PEIZHU ZHAO
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - XIJING GUO
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - MIAN XI
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - CHEN QING
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
28
|
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther 2023; 8:315. [PMID: 37596267 PMCID: PMC10439210 DOI: 10.1038/s41392-023-01559-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer.
Collapse
Affiliation(s)
- Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
29
|
Hammond T, Sage J. Monitoring the Cell Cycle of Tumor Cells in Mouse Models of Human Cancer. Cold Spring Harb Perspect Med 2023; 13:a041383. [PMID: 37460156 PMCID: PMC10691483 DOI: 10.1101/cshperspect.a041383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cell division is obligatory to tumor growth. However, both cancer cells and noncancer cells in tumors can be found in distinct stages of the cell cycle, which may inform the growth potential of these tumors, their propensity to metastasize, and their response to therapy. Hence, it is of utmost importance to monitor the cell cycle of tumor cells. Here we discuss well-established methods and new genetic advances to track the cell cycle of tumor cells in mouse models of human cancer. We also review recent genetic studies investigating the role of the cell-cycle machinery in the growth of tumors in vivo, with a focus on the machinery regulating the G1/S transition of the cell cycle.
Collapse
Affiliation(s)
- Taylar Hammond
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
- Department of Biology, and Stanford University, Stanford, California 94305, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
30
|
Galindo-Vega A, Maldonado-Lagunas V, Mitre-Aguilar IB, Melendez-Zajgla J. Tumor Microenvironment Role in Pancreatic Cancer Stem Cells. Cells 2023; 12:1560. [PMID: 37371030 DOI: 10.3390/cells12121560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a majority of patients presenting with unresectable or metastatic disease, resulting in a poor 5-year survival rate. This, in turn, is due to a highly complex tumor microenvironment and the presence of cancer stem cells, both of which induce therapy resistance and tumor relapse. Therefore, understanding and targeting the tumor microenvironment and cancer stem cells may be key strategies for designing effective PDAC therapies. In the present review, we summarized recent advances in the role of tumor microenvironment in pancreatic neoplastic progression.
Collapse
Affiliation(s)
- Aaron Galindo-Vega
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| | | | - Irma B Mitre-Aguilar
- Biochemistry Unit, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City 14080, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| |
Collapse
|
31
|
Yang J, Teng Y. Harnessing cancer stem cell-derived exosomes to improve cancer therapy. J Exp Clin Cancer Res 2023; 42:131. [PMID: 37217932 DOI: 10.1186/s13046-023-02717-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer stem cells (CSCs) are the key "seeds" for tumor initiation and development, metastasis, and recurrence. Because of the function of CSCs in tumor development and progression, research in this field has intensified and CSCs are viewed as a new therapeutic target. Exosomes carrying a wide range of DNA, RNA, lipids, metabolites, and cytosolic and cell-surface proteins are released outside of the originating cells through the fusion of multivesicular endosomes or multivesicular bodies with the plasma membrane. It has become evident that CSC-derived exosomes play a significant role in almost all "hallmarks" of cancer. For example, exosomes from CSCs can maintain a steady state of self-renewal in the tumor microenvironment and regulate microenvironmental cells or distant cells to help cancer cells escape immune surveillance and induce immune tolerance. However, the function and therapeutic value of CSC-derived exosomes and the underlying molecular mechanisms are still largely undefined. To provide an overview of the possible role of CSC-derived exosomes and targeting strategies, we summarize relevant research progress, highlight the potential impact of detecting or targeting CSC-derived exosomes on cancer treatment, and discuss opportunities and challenges based on our experience and insights in this research area. A more thorough understanding of the characteristics and function of CSC-derived exosomes may open new avenues to the development of new clinical diagnostic/prognostic tools and therapies to prevent tumor resistance and relapse.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
32
|
Hatami M, Kouchak M, Kheirollah A, Khorsandi L, Rashidi M. Effective inhibition of breast cancer stem cell properties by quercetin-loaded solid lipid nanoparticles via reduction of Smad2/Smad3 phosphorylation and β-catenin signaling pathway in triple-negative breast cancer. Biochem Biophys Res Commun 2023; 664:69-76. [PMID: 37141640 DOI: 10.1016/j.bbrc.2023.03.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND The presence of cancer stem cells (CSCs) is a major cause of resistance to cancer therapy and recurrence. Triple-negative breast cancer (TNBC) is a subtype that responds poorly to therapy, making it a significant global health issue. Quercetin (QC) has been shown to affect CSC viability, but its low bioavailability limits its clinical use. This study aims to increase the effectiveness of QC in inhibiting CSC generation by using solid lipid nanoparticles (SLNs) in MDA-MB231 cells. MATERIALS AND METHODS After treating MCF-7 and MDA-MB231 cells with 18.9 μM and 13.4 μM of QC and QC-SLN for 48 h, respectively, cell viability, migration, sphere formation, protein expression of β-catenin, p-Smad 2 and 3, and gene expression of EMT and CSC markers were evaluated. RESULTS The QC-SLN with particle size of 154 nm, zeta potential of -27.7 mV, and encapsulation efficacy of 99.6% was found to be the most effective. Compared to QC, QC-SLN significantly reduced cell viability, migration, sphere formation, protein expression of β-catenin and p-Smad 2 and 3, and gene expression of CD44, zinc finger E-box binding homeobox 1 (ZEB1), vimentin, while increasing the gene expression of E-cadherin. CONCLUSIONS Our findings demonstrate that SLNs improve the cytotoxic effect of QC in MDA-MB231 cells by increasing its bioavailability and inhibiting epithelial-mesenchymal transition (EMT), thereby effectively inhibiting CSC generation. Therefore, SLNs could be a promising new treatment for TNBC, but more in vivo studies are needed to confirm their efficacy.
Collapse
Affiliation(s)
- Mahdi Hatami
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institution, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institution, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institution, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
33
|
Cheng Z, Ma J, Yin L, Yu L, Yuan Z, Zhang B, Tian J, Du Y. Non-invasive molecular imaging for precision diagnosis of metastatic lymph nodes: opportunities from preclinical to clinical applications. Eur J Nucl Med Mol Imaging 2023; 50:1111-1133. [PMID: 36443568 DOI: 10.1007/s00259-022-06056-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
Lymph node metastasis is an indicator of the invasiveness and aggressiveness of cancer. It is a vital prognostic factor in clinical staging of the disease and therapeutic decision-making. Patients with positive metastatic lymph nodes are likely to develop recurrent disease, distant metastasis, and succumb to death in the coming few years. Lymph node dissection and histological analysis are needed to detect whether regional lymph nodes have been infiltrated by cancer cells and determine the likely outcome of treatment and the patient's chances of survival. However, these procedures are invasive, and tissue biopsies are prone to sampling error. In recent years, advanced molecular imaging with novel imaging probes has provided new technologies that are contributing to comprehensive management of cancer, including non-invasive investigation of lymphatic drainage from tumors, identifying metastatic lymph nodes, and guiding surgeons to operate efficiently in patients with complex lesions. In this review, first, we outline the current status of different molecular imaging modalities applied for lymph node metastasis management. Second, we summarize the multi-functional imaging probes applied with the different imaging modalities as well as applications of cancer lymph node metastasis from preclinical studies to clinical translations. Third, we describe the limitations that must be considered in the field of molecular imaging for improved detection of lymph node metastasis. Finally, we propose future directions for molecular imaging technology that will allow more personalized treatment plans for patients with lymph node metastasis.
Collapse
Affiliation(s)
- Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaojiao Ma
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China
| | - Lin Yin
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Leyi Yu
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.
| | - Bo Zhang
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
34
|
Tu X, Li C, Sun W, Tian X, Li Q, Wang S, Ding X, Huang Z. Suppression of Cancer Cell Stemness and Drug Resistance via MYC Destabilization by Deubiquitinase USP45 Inhibition with a Natural Small Molecule. Cancers (Basel) 2023; 15:cancers15030930. [PMID: 36765885 PMCID: PMC9913288 DOI: 10.3390/cancers15030930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) play significant roles in cancer development, drug resistance and cancer recurrence. In cancer treatments based on the CSC characteristics and inducing factors, MYC is a promising target for therapeutic molecules. Although it has been regarded as an undrugable target, its stability tightly regulated by the ubiquitin-proteasome system offers a new direction for molecule targeting and cancer treatment. Herein we report our discoveries in this research area, and we have found that deubiquitinase USP45 can directly bind with MYC, resulting in its deubiquitination and stabilization. Further, USP45 overexpressing can upregulate MYC, and this overexpressing can significantly enhance cancer development, cancer cell stemness and drug resistance. Interestingly, without enhancing cancer development, MYC silencing with shRNA can only suppress USP45-induced stemness and drug resistance. Moreover, we have identified that USP45 can be specifically bound and inhibited by a natural small molecule (α-mangostin), in turn significantly suppressing USP45-induced stemness and drug resistance. Since USP45 is significantly expressed in cervical tumors, we have discovered that the combination of α-mangostin and doxorubicin can significantly inhibit USP45-induced cervical tumorigenesis in an animal model. In general, on the basis of our USP45 discoveries on its MYC deubiquitination and α-mangostin inhibition, suppressing USP45 has opened a new window for suppressing cancer development, stemness and drug resistance.
Collapse
Affiliation(s)
- Xiao Tu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Chuncheng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Wen Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Xi Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Qiufu Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Shaoxin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Xiaoling Ding
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu 610000, China
- Correspondence: ; Fax: +86-028-8550-2629
| |
Collapse
|
35
|
Izycka N, Rucinski M, Andrzejewska M, Szubert S, Nowak-Markwitz E, Sterzynska K. The Prognostic Value of Cancer Stem Cell Markers (CSCs) Expression-ALDH1A1, CD133, CD44-For Survival and Long-Term Follow-Up of Ovarian Cancer Patients. Int J Mol Sci 2023; 24:ijms24032400. [PMID: 36768723 PMCID: PMC9916537 DOI: 10.3390/ijms24032400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Recurrent disease and treatment-associated chemoresistance are the two main factors accounting for poor clinical outcomes of ovarian cancer (OC) patients. Both can be associated with cancer stem cells (CSCs), which contribute to cancer formation, progression, chemoresistance, and recurrence. Hence, this study investigated whether the expression of known CSC-associated markers ALDH1A, CD44, and CD133 may predict OC patient prognosis. We analyzed their expression in primary epithelial ovarian cancer (EOC) patients using immunohistochemistry and related them to clinicopathological data, including overall survival (OS) and progression-free survival (PFS). Expression of ALDH1A1 was detected in 32%, CD133 in 28%, and CD44 in 33% of cases. While Kaplan-Meier analysis revealed no association of the expression of CD133 and CD44 with PFS and OS, ALDH1A1-positive patients were characterized with both significantly shorter OS (p = 0.00022) and PFS (p = 0.027). Multivariate analysis demonstrated that the expression of ALDH1A1, FIGO stage III-IV, and residual disease after suboptimal debulking or neoadjuvant chemotherapy correlated with shorter OS. The results of this study identify ALDH1A1 as a potential independent prognostic factor of shorter OS and PFS in EOC patients. Therefore, targeting ALDH1A1-positive cancer cells may be a promising therapeutic strategy to influence the disease course and treatment response.
Collapse
Affiliation(s)
- Natalia Izycka
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Malgorzata Andrzejewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Sebastian Szubert
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland
| | - Ewa Nowak-Markwitz
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland
| | - Karolina Sterzynska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
- Correspondence: ; Tel.: +48-61-8546455
| |
Collapse
|
36
|
Polverini PJ, Nör F, Nör JE. Crosstalk between cancer stem cells and the tumor microenvironment drives progression of premalignant oral epithelium. FRONTIERS IN ORAL HEALTH 2023; 3:1095842. [PMID: 36704239 PMCID: PMC9872128 DOI: 10.3389/froh.2022.1095842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Cancer stem cells (CSC) are a subpopulation of cancer cells that exhibit properties of self-renewal and differentiation and have been implicated in metastasis and treatment failures. There is mounting evidence that carcinogen-initiated mucosal epithelial stem cells acquire the CSC phenotype following exposure to environmental or infectious mutagens and are responsible for promoting the malignant transformation of premalignant (dysplastic) epithelium. CSC further contribute to the progression of dysplasia by activating signaling pathways through crosstalk with various cell populations in the tumor microenvironment. Two cell types, tumor-associated macrophages (TAM) and vascular endothelial cells (EC) nurture CSC development, support CSC stemness, and contribute to tumor progression. Despite mounting evidence implicating CSC in the initiation and progression of dysplastic oral epithelium to squamous cell carcinoma (SCC), the molecular mechanisms underlying these synergistic biological processes remain unclear. This review will examine the mechanisms that underlie the transformation of normal epithelial stem cells into CSC and the mechanistic link between CSC, TAM, and EC in the growth and the malignant conversation of dysplastic oral epithelium.
Collapse
Affiliation(s)
- Peter J. Polverini
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States,Correspondence: Peter J. Polverini
| | - Felipe Nör
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
37
|
Zhang R, Peng Y, Gao Z, Qian J, Yang K, Wang X, Lu W, Zhu Y, Qiu D, Jin T, Wang G, He J, Liu N. Oncogenic role and drug sensitivity of ETV4 in human tumors: a pan-cancer analysis. Front Oncol 2023; 13:1121258. [PMID: 37205199 PMCID: PMC10185867 DOI: 10.3389/fonc.2023.1121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
Background Increasing evidence supports a relationship between E twenty-six variant transcription factor 4 (ETV4) and several cancers, but no pan-cancer analysis has been reported. Methods The present study surveyed the effects of ETV4 on cancer using RNA sequencing data obtained from The Cancer Genome Atlas and GTEx, and further explored its role in drug sensitivity using data from Cellminer. Differential expression analyses were conducted for multiple cancers using R software. Cox regression and survival analysis were employed to calculate correlations between ETV4 levels and survival outcomes in multiple cancers using the online tool Sangerbox. ETV4 expression was also compared with immunity, heterogeneity, stemness, mismatch repair genes, and DNA methylation among different cancers. Results ETV4 was found to be significantly upregulated in 28 tumors. Upregulation of ETV4 was associated with poor overall survival, progression free interval, disease-free-interval, and disease specific survival in several cancer types. Expression of ETV4 was also remarkably correlated with immune cell infiltration, tumor heterogeneity, mismatch repair gene expression, DNA methylation, and tumor stemness. Furthermore, ETV4 expression seemed to affect sensitivity to a number of anticancer drugs. Conclusions These results suggest that ETV4 may be useful as a prognostic factor and therapeutic target.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanfang Peng
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhe Gao
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Qian
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kang Yang
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinfa Wang
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjing Lu
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongjie Zhu
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dezhi Qiu
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tong Jin
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gang Wang
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junping He
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Junping He, ; Ning Liu,
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Junping He, ; Ning Liu,
| |
Collapse
|
38
|
Costoya JA, Arce VM. Cancer cells escape the immune system by increasing stemness through epigenetic reprogramming. Cell Mol Immunol 2023; 20:6-7. [PMID: 36380095 PMCID: PMC9794797 DOI: 10.1038/s41423-022-00953-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jose A Costoya
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS), Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain.
| | - Victor M Arce
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS), Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain.
| |
Collapse
|
39
|
Adebayo AK, Nakshatri H. Modeling Preclinical Cancer Studies under Physioxia to Enhance Clinical Translation. Cancer Res 2022; 82:4313-4321. [PMID: 36169928 PMCID: PMC9722631 DOI: 10.1158/0008-5472.can-22-2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Oxygen (O2) plays a key role in cellular homeostasis. O2 levels are tightly regulated in vivo such that each tissue receives an optimal amount to maintain physiologic status. Physiologic O2 levels in various organs range between 2% and 9% in vivo, with the highest levels of 9% in the kidneys and the lowest of 0.5% in parts of the brain. This physiologic range of O2 tensions is disrupted in pathologic conditions such as cancer, where it can reach as low as 0.5%. Regardless of the state, O2 tension in vivo is maintained at significantly lower levels than ambient O2, which is approximately 21%. Yet, routine in vitro cellular manipulations are carried out in ambient air, regardless of whether or not they are eventually transferred to hypoxic conditions for subsequent studies. Even brief exposure of hematopoietic stem cells to ambient air can cause detrimental effects through a mechanism termed extraphysiologic oxygen shock/stress (EPHOSS), leading to reduced engraftment capabilities. Here, we provide an overview of the effects of ambient air exposure on stem and non-stem cell subtypes, with a focus on recent findings that reveal the impact of EPHOSS on cancer cells.
Collapse
Affiliation(s)
- Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
40
|
Zhang J, Lv X, Wei B, Gong X, Chen L. CHD4 mediates SOX2 transcription through TRPS1 in luminal breast cancer. Cell Signal 2022; 100:110464. [PMID: 36075559 DOI: 10.1016/j.cellsig.2022.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
Abstract
Chromodomain helicase DNA binding protein 4 (CHD4), as a core component of the nucleosome remodeling and deactetylase (NuRD) complex, participated in the inititation and development of myriad cancers. However, little is known about the linkage between CHD4 and breast cancer stemness. Here, we found that CHD4 repress the expression of SOX2, a key regulator of cancer stem cells (CSCs), to suppress cancer stemness in breast cancer. Mechanistically, CHD4 binds to the promoter of SOX2 depend on TRPS1. And CHD4 transcriptional activation of SOX2 was abolished by TRPS1. These findings identify CHD4 as a regulator of SOX2 linked to breast cancer stemness and provide detailed mechanistic of CHD4 in CSC functions.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiang Lv
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bo Wei
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xue Gong
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China.
| | - Liming Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
41
|
Reprogramming of glycolysis by chemical carcinogens during tumor development. Semin Cancer Biol 2022; 87:127-136. [PMID: 36265806 DOI: 10.1016/j.semcancer.2022.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Indiscriminate usage and mismanagement of chemicals in the agricultural and industrial sectors have contaminated different environmental compartments. Exposure to these persistent and hazardous pollutants like heavy metals, endocrine disruptors, aromatic hydrocarbons, and pesticides can result in various health adversities, including cancer. Chemical carcinogens follow a similar pattern of carcinogenesis, like oxidative stress, chromosomal aberration, DNA double-strand break, mismatch repair, and misregulation of oncogenic and/or tumor suppressors. Out of several cancer-associated endpoints, cellular metabolic homeostasis is the commonest to be deregulated upon chemical exposure. Chemical carcinogens hamper glycolytic reprogramming to fuel the malignant transformation of the cells and/or promote cancer progression. Several regulators like Akt, ERK, Ras, c-Myc, HIF-1α, and p53 regulate glycolysis in chemical-induced carcinogenesis. However, the deregulation of the anabolic biochemistry of glucose during chemical-induced carcinogenesis remains to be uncovered. This review comprehensively covers the environmental chemical-induced glycolytic shift during carcinogenesis and its mechanism. The focus is also to fill the major gaps associated with understanding the fairy tale between environmental carcinogens and metabolic reprogramming. Although evidence from studies regarding glycolytic reprogramming in chemical carcinogenesis provides valuable insights into cancer therapy, exposure to a mixture of toxicants and their mechanism of inducing carcinogenesis still needs to be studied.
Collapse
|
42
|
Lewis SM, Callaway MK, dos Santos CO. Clinical applications of 3D normal and breast cancer organoids: A review of concepts and methods. Exp Biol Med (Maywood) 2022; 247:2176-2183. [PMID: 36408534 PMCID: PMC9899987 DOI: 10.1177/15353702221131877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
While mouse models and two-dimensional (2D) cell culture systems have dominated as research tools for cancer biology, three-dimensional (3D) cultures have gained traction as a new approach that retains features of in vivo biology within an in vitro system. Over time, 3D culture systems have evolved from spheroids and tumorspheres to organoids, and by doing so, they have become more complex and representative of original tissue. Such technological improvements have mostly benefited the study of heterogeneous solid tumors, like those found in breast cancer (BC), by providing an attractive avenue for scalable drug testing and biobank generation. Experimentally, organoids have been used in the BC field to dissect mechanisms related to cellular invasion and metastasis-and through co-culture methods-epithelial interactions with stromal and immune cells. In addition, organoid studies of wild-type mouse models and healthy donor samples have provided insight into the basic developmental cellular and molecular biology of the mammary gland, which may inform one's understanding of the initial stages of cancer development and progression.
Collapse
Affiliation(s)
- Steven M Lewis
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, NY 11724, USA,Graduate Program in Genetics, Stony
Brook University, Stony Brook, NY 11794, USA
| | | | - Camila O dos Santos
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, NY 11724, USA,Camila O dos Santos.
| |
Collapse
|
43
|
Lee JS, Tocheny CE, Shaw LM. The Insulin-like Growth Factor Signaling Pathway in Breast Cancer: An Elusive Therapeutic Target. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121992. [PMID: 36556357 PMCID: PMC9782138 DOI: 10.3390/life12121992] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
In this review, we provide an overview of the role of the insulin-like growth factor (IGF) signaling pathway in breast cancer and discuss its potential as a therapeutic target. The IGF pathway ligands, IGF-1 and IGF-2, and their receptors, primarily IGF-1R, are important for normal mammary gland biology, and dysregulation of their expression and function drives breast cancer risk and progression through activation of downstream signaling effectors, often in a subtype-dependent manner. The IGF signaling pathway has also been implicated in resistance to current therapeutic strategies, including ER and HER2 targeting drugs. Unfortunately, efforts to target IGF signaling for the treatment of breast cancer have been unsuccessful, due to a number of factors, most significantly the adverse effects of disrupting IGF signaling on normal glucose metabolism. We highlight here the recent discoveries that provide enthusiasm for continuing efforts to target IGF signaling for the treatment of breast cancer patients.
Collapse
Affiliation(s)
| | | | - Leslie M. Shaw
- Correspondence: ; Tel.: +1-508-856-8675; Fax: +1-508-856-1310
| |
Collapse
|
44
|
Weng J, Fan H, Liu H, Tang S, Zheng Y. YTHDC1 Promotes Stemness Maintenance and Malignant Progression in Head and Neck Squamous Cell Carcinoma. Stem Cells Int 2022; 2022:7494354. [PMID: 36411870 PMCID: PMC9675605 DOI: 10.1155/2022/7494354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND YTH domain containing 1 (YTHDC1), an N6-methyladenosine (m6A) modification reading protein, plays a key role in regulating RNA translation and degradation. However, the role of YTHDC1 in head and neck squamous cell carcinoma (HNSCC) cancer stem cells remains largely unknown. This study is aimed at investigating the role of YTHDC1 in HNSCC and exploring its role in regulating cancer stem cells. METHODS RNA sequencing was used to detect differentially expressed genes (DEGs) between SCC9 spheres and SCC9 cells and to uncover molecular pathways and target molecules associated with CSCs. We detected YTHDC1 expression in The Cancer Genome Atlas (TCGA) database data and clinical samples. Subsequently, YTHDC1 gene suppression assays were performed in HNSCC cell lines to investigate the effect of YTHDC1 on tumor cell stemness maintenance, proliferation, and migration capacity. To further confirm the role of YTHDC1 in regulating cancer stem cells in HNSCC, we analyzed online HNSCC single-cell transcriptomic data to investigate YTHDC1 expression patterns at the single-cell level and the correlation of these levels with the expression of stem cell markers. RESULTS YTHDC1 expression levels were significantly upregulated in SCC9 spheres, and YTHDC1 was aberrantly expressed in HNSCC tumor tissues. The increased YTHDC1 expression was closely correlated with the clinical characteristics of HNSCC patients. YTHDC1 regulates the malignant phenotype of HNSCC in both in vivo and in vitro studies. Further single-cell transcriptomic data analysis revealed that YTHDC1 positively correlated with malignant epithelial cell stemness capacity at the single-cell level, and that YTHDC1 was involved in regulating stemness maintenance in HNSCC. CONCLUSIONS These findings suggest that YTHDC1 may serve as a biomarker for stem maintenance and malignant progression in HNSCC, providing new insights into the treatment of cancer.
Collapse
Affiliation(s)
- Junquan Weng
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong, China
| | - Haidong Fan
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong, China
| | - Huijuan Liu
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong, China
| | - Su Tang
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong, China
| | - Yuyan Zheng
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong, China
| |
Collapse
|
45
|
Valet M, Narbonne P. Formation of benign tumors by stem cell deregulation. PLoS Genet 2022; 18:e1010434. [PMID: 36301803 PMCID: PMC9612571 DOI: 10.1371/journal.pgen.1010434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Within living organisms, stem cells respond to various cues, including to niche signals and growth factors. Niche signals originate from the stem cell's microenvironment and promote the undifferentiated state by preventing differentiation, allowing for stem cell self-renewal. On the other hand, growth factors promote stem cell growth and proliferation, while their sources comprise of a systemic input reflecting the animal's nutritional and metabolic status, and a localized, homeostatic feedback signal from the tissue that the stem cells serve. That homeostatic signal prevents unnecessary stem cell proliferation when the corresponding differentiated tissues already have optimal cell contents. Here, we recapitulate progresses made in our understanding of in vivo stem cell regulation, largely using simple models, and draw the conclusion that 2 types of stem cell deregulations can provoke the formation of benign tumors. Namely, constitutive niche signaling promotes the formation of undifferentiated "stem cell" tumors, while defective homeostatic signaling leads to the formation of differentiated tumors. Finally, we provide evidence that these general principles may be conserved in mammals and as such, may underlie benign tumor formation in humans, while benign tumors can evolve into cancer.
Collapse
Affiliation(s)
- Matthieu Valet
- Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Patrick Narbonne
- Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- * E-mail:
| |
Collapse
|
46
|
Vinogradskaya GR, Ivanov AV, Kushch AA. Mechanisms of Survival of Cytomegalovirus-Infected Tumor Cells. Mol Biol 2022; 56:668-683. [PMID: 36217337 PMCID: PMC9534468 DOI: 10.1134/s0026893322050132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
Human cytomegalovirus (HCMV) DNA and proteins are often detected in malignant tumors, warranting studies of the role that HCMV plays in carcinogenesis and tumor progression. HCMV proteins were shown to regulate the key processes involved in tumorigenesis. While HCMV as an oncogenic factor just came into focus, its ability to promote tumor progression is generally recognized. The review discusses the viral factors and cell molecular pathways that affect the resistance of cancer cells to therapy. CMV inhibits apoptosis of tumor cells, that not only promotes tumor progression, but also reduces the sensitivity of cells to antitumor therapy. Autophagy was found to facilitate either cell survival or cell death in different tumor cells. In leukemia cells, HCMV induces a "protective" autophagy that suppresses apoptosis. Viral factors that mediate drug resistance and their interactions with key cell death pathways are necessary to further investigate in order to develop agents that can restore the tumor sensitivity to anticancer drugs.
Collapse
Affiliation(s)
- G. R. Vinogradskaya
- Konstantinov St. Petersburg Institute of Nuclear Physics, National Research Center “Kurchatov Institute”, 188300 Gatchina, Leningrad oblast Russia
| | - A. V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. A Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
47
|
Quiñonero F, Mesas C, Muñoz-Gámez JA, Jiménez-Luna C, Perazzoli G, Prados J, Melguizo C, Ortiz R. PARP1 inhibition by Olaparib reduces the lethality of pancreatic cancer cells and increases their sensitivity to Gemcitabine. Biomed Pharmacother 2022; 155:113669. [PMID: 36113257 DOI: 10.1016/j.biopha.2022.113669] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer (PC) is one of the tumors with the lowest survival rates due to the poor efficacy of the treatments currently used. Gemcitabine (GMZ), one of the chemotherapeutic agents employed when the tumor is unresectable, frequently fails due to the development of drug resistance. PARP1 is a relevant protein in this phenomenon and appears to be related to cancer progression in several types of tumors, including PC. To determine the relevance of PARP1 in the development and treatment of PC, we used the Panc02 cell line to generate modified PC cells with stably inhibited PARP1 expression (Panc02-L) and used GMZ, Olaparib (OLA) and GMZ+OLA as therapeutic strategies. Viability, radiosensitization, angiogenesis, migration, colony formation, TUNEL, cell cycle, multicellular tumorsphere induction and in vivo assays were performed to test the influence of PARP1 inhibition on resistance phenomena and tumor progression. We demonstrated that stable inhibition or pharmacological blockade of PARP1 using OLA-sensitized Panc02 cells against GMZ significantly decreased their IC50, reducing colony formation capacity, cell migration and vessel formation (angiogenesis) in vitro. Furthermore, in vivo analyses revealed that Panc02-L-derived (PARP1-inhibited) tumors showed less growth and lethality, and that GMZ+OLA treatment significantly reduced tumor growth. In conclusion, PARP1 inhibition, both alone and in combination with GMZ, enhances the effectiveness of this chemotherapeutic agent and represents a promising strategy for the treatment of PC.
Collapse
Affiliation(s)
- Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Jose A Muñoz-Gámez
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain.
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| |
Collapse
|
48
|
Zheng P, Zhou C, Lu L, Liu B, Ding Y. Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res 2022; 41:271. [PMID: 36089608 PMCID: PMC9465867 DOI: 10.1186/s13046-022-02485-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 01/06/2023] Open
Abstract
Elesclomol is an anticancer drug that targets mitochondrial metabolism. In the past, elesclomol was recognized as an inducer of oxidative stress, but now it has also been found to suppress cancer by inducing cuproptosis. Elesclomol’s anticancer activity is determined by the dependence of cancer on mitochondrial metabolism. The mitochondrial metabolism of cancer stem cells, cancer cells resistant to platinum drugs, proteasome inhibitors, molecularly targeted drugs, and cancer cells with inhibited glycolysis was significantly enhanced. Elesclomol exhibited tremendous toxicity to all three kinds of cells. Elesclomol's toxicity to cells is highly dependent on its transport of extracellular copper ions, a process involved in cuproptosis. The discovery of cuproptosis has perfected the specific cancer suppressor mechanism of elesclomol. For some time, elesclomol failed to yield favorable results in oncology clinical trials, but its safety in clinical application was confirmed. Research progress on the relationship between elesclomol, mitochondrial metabolism and cuproptosis provides a possibility to explore the reapplication of elesclomol in the clinic. New clinical trials should selectively target cancer types with high mitochondrial metabolism and attempt to combine elesclomol with platinum, proteasome inhibitors, molecularly targeted drugs, or glycolysis inhibitors. Herein, the particular anticancer mechanism of elesclomol and its relationship with mitochondrial metabolism and cuproptosis will be presented, which may shed light on the better application of elesclomol in clinical tumor treatment.
Collapse
|
49
|
Li S, Wu B, Xiao Y, Wu J, Yang L, Yang C, Huang Z, Pan C, Li M, Yang Y, Tang B, Xie S, Wu X, Zheng S, Wang C, Hong T. Exploring the pathological relationships between adamantinomatous craniopharyngioma and contiguous structures with tumor origin. J Neurooncol 2022; 159:485-497. [PMID: 35939144 DOI: 10.1007/s11060-022-04084-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/28/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Identifying relationships between craniopharyngiomas (CPs) and contiguous structures, and tumor origin are crucial for treatments. This study attempted to explore the relationships and tumor origin. METHODS CPs that underwent endoscopic surgeries were enrolled. The interfacial specimens of CPs attaching the hypothalamus, pituitary stalk (PS), pituitary grand (PG), optic chiasma (OC) and brain tissue (BT) were pathologically examined. Boundaries between CPs and these structures were observed during operations. Expression of β-catenin and stem cell markers were analyzed to explore the tumor origin. Outcomes of patients were assessed. RESULTS A total of 34 CPs were categorized into two groups based on the locations of finger-like protrusions (FP). Group A comprised 18 CPs with FP only present in the specimens attaching to hypothalamus. The surface of these CPs was fused with hypothalamus under endoscopic videos. However, the specimens attaching to the PS, PG, OC, and BT showed no FP. Clear boundaries was observed between these CPs and these structures. Group B comprised 16 CPs with FP only present in the specimens attaching to PS. The tumor surface was fused with PS. Specimens attaching to the hypothalamus, PG, OC and BT showed no FP. Clear boundary was observed among these CPs with these structures. These results implied CPs only invaded a certain part of hypothalamic-pituitary axis. β-catenin and stem cells markers mainly distributed in the FP tissues of both groups. Patients in group B achieved better outcomes than group A. CONCLUSIONS CPs only invade the hypothalamic-pituitary axis with FP and the FP would be the tumor origin.
Collapse
Affiliation(s)
- Shaoyang Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China
| | - Bowen Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China
| | - Yingqun Xiao
- Department of Pathology, The Ninth Hospital of Nanchang, Nanchang, 330002, China
| | - Jie Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China
| | - Le Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China.,Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chenxing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China
| | - Zhongjian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China
| | - Chengbin Pan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China
| | - Minde Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China
| | - Youqing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China
| | - Shenhao Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China
| | - Suyue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China
| | - Chunliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, 330006, China.
| |
Collapse
|
50
|
Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:850-872. [PMID: 36627897 PMCID: PMC9771762 DOI: 10.20517/cdr.2022.20] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 01/13/2023]
Abstract
Resistance to anticancer agents and apoptosis results in cancer relapse and is associated with cancer mortality. Substantial data have provided convincing evidence establishing that human cancers emerge from cancer stem cells (CSCs), which display self-renewal and are resistant to anticancer drugs, radiation, and apoptosis, and express enhanced epithelial to mesenchymal progression. CSCs represent a heterogeneous tumor cell population and lack specific cellular targets, which makes it a great challenge to target and eradicate them. Similarly, their close relationship with the tumor microenvironment creates greater complexity in developing novel treatment strategies targeting CSCs. Several mechanisms participate in the drug and apoptosis resistance phenotype in CSCs in various cancers. These include enhanced expression of ATP-binding cassette membrane transporters, activation of various cytoprotective and survival signaling pathways, dysregulation of stemness signaling pathways, aberrant DNA repair mechanisms, increased quiescence, autophagy, increased immune evasion, deficiency of mitochondrial-mediated apoptosis, upregulation of anti-apoptotic proteins including c-FLIP [cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein], Bcl-2 family members, inhibitors of apoptosis proteins, and PI3K/AKT signaling. Studying such mechanisms not only provides mechanistic insights into these cells that are unresponsive to drugs, but may lead to the development of targeted and effective therapeutics to eradicate CSCs. Several studies have identified promising strategies to target CSCs. These emerging strategies may help target CSC-associated drug resistance and metastasis in clinical settings. This article will review the CSCs drug and apoptosis resistance mechanisms and how to target CSCs.
Collapse
Affiliation(s)
- Ahmad R. Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|