1
|
Yang H, Chen L, Jiang Z, Li L, Hu J, Chen WH. Design, synthesis and biological evaluation of Golgi-targeting anion transporters as inducers of Golgiphagy and apoptosis in cancer cells. Eur J Med Chem 2025; 290:117519. [PMID: 40117859 DOI: 10.1016/j.ejmech.2025.117519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Disruption in the homeostasis of anions within organelles in cancer cells by synthetic small-molecule anion transporters may lead to significant inhibition in the proliferation of cancer cells. However, the specific impact of anion transporters on organelles, in particular on the Golgi apparatus remains to be explored. In this study, we designed and synthesized a novel series of Golgi-targeting anion transporters composed of squaramido moiety for transporting chloride anions and benzenesulfonamido group for targeting the Golgi apparatus. These compounds were able to efficiently facilitate the transport of anions across liposomal and cellular membranes, and exhibit significant cytotoxicity toward several selected cancer cells. Among them, compound 10 was the most active in efficiently disrupting the homeostasis of chloride anions specifically within the Golgi apparatus. This disruption led to profound perturbations in the structure and function of the Golgi apparatus, and triggered Golgiphagy and further apoptosis. More importantly, compound 10 displayed potent antitumor efficacy toward HepG2 xenograft mouse models, with low toxicity and minimal adverse effects on major organs. The present findings underscore the critical role of regulating the homeostasis of chloride anions within the Golgi apparatus in triggering the Golgiphagy and apoptosis of cancer cells, and thus provide a new strategy for the discovery of innovative chemotherapy for cancers.
Collapse
Affiliation(s)
- Haodong Yang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Li Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Zixing Jiang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Lanqing Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Jinhui Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China.
| |
Collapse
|
2
|
Rudinskiy M, Morone D, Molinari M. Fluorescent Reporters, Imaging, and Artificial Intelligence Toolkits to Monitor and Quantify Autophagy, Heterophagy, and Lysosomal Trafficking Fluxes. Traffic 2024; 25:e12957. [PMID: 39450581 DOI: 10.1111/tra.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Lysosomal compartments control the clearance of cell-own material (autophagy) or of material that cells endocytose from the external environment (heterophagy) to warrant supply of nutrients, to eliminate macromolecules or parts of organelles present in excess, aged, or containing toxic material. Inherited or sporadic mutations in lysosomal proteins and enzymes may hamper their folding in the endoplasmic reticulum (ER) and their lysosomal transport via the Golgi compartment, resulting in lysosomal dysfunction and storage disorders. Defective cargo delivery to lysosomal compartments is harmful to cells and organs since it causes accumulation of toxic compounds and defective organellar homeostasis. Assessment of resident proteins and cargo fluxes to the lysosomal compartments is crucial for the mechanistic dissection of intracellular transport and catabolic events. It might be combined with high-throughput screenings to identify cellular, chemical, or pharmacological modulators of these events that may find therapeutic use for autophagy-related and lysosomal storage disorders. Here, discuss qualitative, quantitative and chronologic monitoring of autophagic, heterophagic and lysosomal protein trafficking in fixed and live cells, which relies on fluorescent single and tandem reporters used in combination with biochemical, flow cytometry, light and electron microscopy approaches implemented by artificial intelligence-based technology.
Collapse
Affiliation(s)
- Mikhail Rudinskiy
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Diego Morone
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maurizio Molinari
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Xu Y, Cheng S, Zeng H, Zhou P, Ma Y, Li L, Liu X, Shao F, Ding J. ARF GTPases activate Salmonella effector SopF to ADP-ribosylate host V-ATPase and inhibit endomembrane damage-induced autophagy. Nat Struct Mol Biol 2022; 29:67-77. [PMID: 35046574 DOI: 10.1038/s41594-021-00710-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
Selective autophagy helps eukaryotes to cope with endogenous dangers or foreign invaders; its initiation often involves membrane damage. By studying a Salmonella effector SopF, we recently identified the vacuolar ATPase (V-ATPase)-ATG16L1 axis that initiates bacteria-induced autophagy. Here we show that SopF is an ADP-ribosyltransferase specifically modifying Gln124 of ATP6V0C in V-ATPase. We identify GTP-bound ADP-ribosylation factor (ARF) GTPases as a cofactor required for SopF functioning. Crystal structures of SopF-ARF1 complexes not only reveal structural basis of SopF ADP-ribosyltransferase activity but also a unique effector-binding mode adopted by ARF GTPases. Further, the N terminus of ARF1, although dispensable for high-affinity binding to SopF, is critical for activating SopF to modify ATP6V0C. Moreover, lysosome or Golgi damage-induced autophagic LC3 activation is inhibited by SopF or Q124A mutation of ATP6V0C, thus also mediated by the V-ATPase-ATG16L1 axis. In this process, the V-ATPase functions to sense membrane damages, which can be uncoupled from its proton-pumping activity.
Collapse
Affiliation(s)
- Yue Xu
- National Institute of Biological Sciences, Beijing, China.,Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Huan Zeng
- National Institute of Biological Sciences, Beijing, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ping Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Jingjin Ding
- National Institute of Biological Sciences, Beijing, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
5
|
Abstract
Maintenance of the main Golgi functions, glycosylation and sorting, is dependent on the unique Golgi pH microenvironment that is thought to be set by the balance between the rates of V-ATPase-mediated proton pumping and its leakage back to the cytoplasm via an unknown pathway. The concentration of other ions, such as chloride, potassium, calcium, magnesium, and manganese, is also important for Golgi homeostasis and dependent on the transport activity of other ion transporters present in the Golgi membranes. During the last decade, several new disorders have been identified that are caused by, or are associated with, dysregulated Golgi pH and ion homeostasis. Here, we will provide an updated overview on these disorders and the proteins involved. We will also discuss other disorders for which the molecular defects remain currently uncertain but which potentially involve proteins that regulate Golgi pH or ion homeostasis.
Collapse
|
6
|
Fan L, Wang X, Ge J, Li F, Zhang C, Lin B, Shuang S, Dong C. A Golgi-targeted off-on fluorescent probe for real-time monitoring of pH changes in vivo. Chem Commun (Camb) 2019; 55:6685-6688. [PMID: 31106798 DOI: 10.1039/c9cc02511a] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present the first Golgi-targeted small-molecular pH-sensitive fluorescent probe RSG, which allows an off-on fluorescence response to Golgi acidification with high sensitivity and specificity. RSG has been successfully used for real-time monitoring of Golgi pH changes induced by drug treatment at the cellular level, as well as by the LPS-mediated inflammation in vivo.
Collapse
Affiliation(s)
- Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Khayat W, Hackett A, Shaw M, Ilie A, Dudding-Byth T, Kalscheuer VM, Christie L, Corbett MA, Juusola J, Friend KL, Kirmse BM, Gecz J, Field M, Orlowski J. A recurrent missense variant in SLC9A7 causes nonsyndromic X-linked intellectual disability with alteration of Golgi acidification and aberrant glycosylation. Hum Mol Genet 2019; 28:598-614. [PMID: 30335141 DOI: 10.1093/hmg/ddy371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
We report two unrelated families with multigenerational nonsyndromic intellectual disability (ID) segregating with a recurrent de novo missense variant (c.1543C>T:p.Leu515Phe) in the alkali cation/proton exchanger gene SLC9A7 (also commonly referred to as NHE7). SLC9A7 is located on human X chromosome at Xp11.3 and has not yet been associated with a human phenotype. The gene is widely transcribed, but especially abundant in brain, skeletal muscle and various secretory tissues. Within cells, SLC9A7 resides in the Golgi apparatus, with prominent enrichment in the trans-Golgi network (TGN) and post-Golgi vesicles. In transfected Chinese hamster ovary AP-1 cells, the Leu515Phe mutant protein was correctly targeted to the TGN/post-Golgi vesicles, but its N-linked oligosaccharide maturation as well as that of a co-transfected secretory membrane glycoprotein, vesicular stomatitis virus G (VSVG) glycoprotein, was reduced compared to cells co-expressing SLC9A7 wild-type and VSVG. This correlated with alkalinization of the TGN/post-Golgi compartments, suggestive of a gain-of-function. Membrane trafficking of glycosylation-deficient Leu515Phe and co-transfected VSVG to the cell surface, however, was relatively unaffected. Mass spectrometry analysis of patient sera also revealed an abnormal N-glycosylation profile for transferrin, a clinical diagnostic marker for congenital disorders of glycosylation. These data implicate a crucial role for SLC9A7 in the regulation of TGN/post-Golgi pH homeostasis and glycosylation of exported cargo, which may underlie the cellular pathophysiology and neurodevelopmental deficits associated with this particular nonsyndromic form of X-linked ID.
Collapse
Affiliation(s)
- Wujood Khayat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Anna Hackett
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Alina Ilie
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Tracy Dudding-Byth
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Louise Christie
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Kathryn L Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Brian M Kirmse
- Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019; 7:93. [PMID: 31263697 PMCID: PMC6584808 DOI: 10.3389/fcell.2019.00093] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Abstract
Acinar cells of exocrine glands are highly specialized for producing, storing, and discharging secretory proteins for use on surfaces that represent interfaces between the organism and the surrounding environment. These functions are achieved through the secretory pathway that includes a series of functionally distinct intracellular compartments — the endoplasmic reticulum, subcompartments of the Golgi complex, and the secretion granule in which exportable macromolecules are stored at high concentrations. Most secretion occurs by granule exocytosis in response to external hormonal or neural stimuli. Although these processes have been traced in a variety of morphological and biochemical studies, very Utile is known about the mechanisms involved in facilitating and maintaining secretory storage, orchestrating discharge at the apical cell surface, and in ensuring conservation and re-internalization of the granule membrane. Recent studies initiated on cell fractions obtained from the rat parotid gland have provided significant insight into the protein storage conditions that prevail in the granule interior and the components of the granule membrane that are likely to be involved in general secretory function such as exocytosis.
Collapse
Affiliation(s)
- J. D. Castle
- Department of Cell Biology, Yale University Medical School, New Haven, Connecticut 06510
| | - P. Arvan
- Department of Cell Biology, Yale University Medical School, New Haven, Connecticut 06510
| | - R. Cameron
- Department of Cell Biology, Yale University Medical School, New Haven, Connecticut 06510
| |
Collapse
|
10
|
Serra-Peinado C, Sicart A, Llopis J, Egea G. Actin Filaments Are Involved in the Coupling of V0-V1 Domains of Vacuolar H+-ATPase at the Golgi Complex. J Biol Chem 2016; 291:7286-99. [PMID: 26872971 DOI: 10.1074/jbc.m115.675272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
We previously reported that actin-depolymerizing agents promote the alkalization of the Golgi stack and thetrans-Golgi network. The main determinant of acidic pH at the Golgi is the vacuolar-type H(+)-translocating ATPase (V-ATPase), whose V1domain subunitsBandCbind actin. We have generated a GFP-tagged subunitB2construct (GFP-B2) that is incorporated into the V1domain, which in turn is coupled to the V0sector. GFP-B2 subunit is enriched at distal Golgi compartments in HeLa cells. Subcellular fractionation, immunoprecipitation, and inversal FRAP experiments show that the actin depolymerization promotes the dissociation of V1-V0domains, which entails subunitB2translocation from Golgi membranes to the cytosol. Moreover, molecular interaction between subunitsB2andC1and actin were detected. In addition, Golgi membrane lipid order disruption byd-ceramide-C6 causes Golgi pH alkalization. We conclude that actin regulates the Golgi pH homeostasis maintaining the coupling of V1-V0domains of V-ATPase through the binding of microfilaments to subunitsBandCand preserving the integrity of detergent-resistant membrane organization. These results establish the Golgi-associated V-ATPase activity as the molecular link between actin and the Golgi pH.
Collapse
Affiliation(s)
- Carla Serra-Peinado
- From the Department de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona
| | - Adrià Sicart
- From the Department de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona
| | - Juan Llopis
- the Facultad de Medicina de Albacete and Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, E-0200 Albacete, Spain
| | - Gustavo Egea
- From the Department de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona, the Institut d'Investigació Biomèdica August Pi i Sunyer, E-08036 Barcelona, the Institut de Nanociència i Nanotecnologia (INUB), E-08036 Barcelona, and
| |
Collapse
|
11
|
Ouabain-induced cytoplasmic vesicles and their role in cell volume maintenance. BIOMED RESEARCH INTERNATIONAL 2015; 2015:487256. [PMID: 25866786 PMCID: PMC4383472 DOI: 10.1155/2015/487256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 12/27/2022]
Abstract
Cellular swelling is controlled by an active mechanism of cell volume regulation driven by a Na(+)/K(+)-dependent ATPase and by aquaporins which translocate water along the osmotic gradient. Na(+)/K(+)-pump may be blocked by ouabain, a digitalic derivative, by inhibition of ATP, or by drastic ion alterations of extracellular fluid. However, it has been observed that some tissues are still able to control their volume despite the presence of ouabain, suggesting the existence of other mechanisms of cell volume control. In 1977, by correlating electron microscopy observation with ion and water composition of liver slices incubated in different metabolic conditions in the presence or absence of ouabain, we observed that hepatocytes were able to control their volume extruding water and recovering ion composition in the presence of ouabain. In particular, hepatocytes were able to sequester ions and water in intracellular vesicles and then secrete them at the bile canaliculus pole. We named this "vesicular mechanism of cell volume control." Afterward, this mechanism has been confirmed by us and other laboratories in several mammalian tissues. This review summarizes evidences regarding this mechanism, problems that are still pending, and questions that need to be answered. Finally, we shortly review the importance of cell volume control in some human pathological conditions.
Collapse
|
12
|
Robinson DG, Hoppenrath M, Oberbeck K, Luykx P, Ratajczak R. Localization of Pyrophosphatase and V-ATPase inChlamydomonas reinhardtii. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1998.tb00685.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Abstract
Luminal acidification is of pivotal importance for the physiology of the secretory and endocytic pathways and its diverse trafficking events. Acidification by the proton-pumping V-ATPase requires charge compensation by counterion currents that are commonly attributed to chloride. The molecular identification of intracellular chloride transporters and the improvement of methodologies for measuring intraorganellar pH and chloride have facilitated the investigation of the physiology of vesicular chloride transport. New data question the requirement of chloride for pH regulation of various organelles and furthermore ascribe functions to chloride that are beyond merely electrically shunting the proton pump. This review surveys the currently established and proposed intracellular chloride transporters and gives an overview of membrane-trafficking steps that are affected by the perturbation of chloride transport. Finally, potential mechanisms of membrane-trafficking modulation by chloride are discussed and put into the context of organellar ion homeostasis in general.
Collapse
Affiliation(s)
- Tobias Stauber
- Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany.
| | | |
Collapse
|
14
|
Abstract
Most organelles within the exocytic and endocytic pathways typically acidify their interiors, a phenomenon that is known to be crucial for their optimal functioning in eukaryotic cells. This review highlights recent advances in our understanding of how Golgi acidity is maintained and regulated, and how its misregulation contributes to organelle dysfunction and disease. Both its biosynthetic products (glycans) and protein-sorting events are highly sensitive to changes in Golgi luminal pH and are affected in certain human disease states such as cancers and cutis laxa. Other potential disease states that are caused by, or are associated with, Golgi pH misregulation will also be discussed.
Collapse
Affiliation(s)
- Antti Rivinoja
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
15
|
Abstract
Xu et al. identify Slc26a11, a novel member of the Slc26 anion exchanger family, as an electrogenic (Cl(-))(n)/HCO(3)(-) exchanger. Functional characterization of this transporter suggests that Slc26a11 mediates classical electroneutral Cl(-)/HCO(3)(-) exchange but also exhibits an electrogenic Cl(-) conductance. In the kidney, Slc26a11 colocalizes with the vacuolar H(+)-ATPase in intercalated cells, emphasizing the cooperation of the proton pump with chloride transporters.
Collapse
|
16
|
Xu J, Barone S, Li H, Holiday S, Zahedi K, Soleimani M. Slc26a11, a chloride transporter, localizes with the vacuolar H(+)-ATPase of A-intercalated cells of the kidney. Kidney Int 2011; 80:926-937. [PMID: 21716257 PMCID: PMC11709004 DOI: 10.1038/ki.2011.196] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chloride has an important role in regulating vacuolar H(+)-ATPase activity across specialized cellular and intracellular membranes. In the kidney, vacuolar H(+)-ATPase is expressed on the apical membrane of acid-secreting A-type intercalated cells in the collecting duct where it has an essential role in acid secretion and systemic acid base homeostasis. Here, we report the identification of a chloride transporter, which co-localizes with and regulates the activity of plasma membrane H(+)-ATPase in the kidney collecting duct. Immunoblotting and immunofluorescent labeling identified Slc26a11 (∼72 kDa), expressed in a subset of cells in the collecting duct. On the basis of double-immunofluorescent labeling with AQP2 and identical co-localization with H(+)-ATPase, cells expressing Slc26a11 were deemed to be distinct from principal cells and were found to be intercalated cells. Functional studies in transiently transfected COS7 cells indicated that Slc26a11 (designated as kidney brain anion transporter (KBAT)) can transport chloride and increase the rate of acid extrusion by means of H(+)-ATPase. Thus, Slc26a11 is a partner of vacuolar H(+)-ATPase facilitating acid secretion in the collecting duct.
Collapse
Affiliation(s)
- Jie Xu
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sharon Barone
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hong Li
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shannon Holiday
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kamyar Zahedi
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Manoocher Soleimani
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
17
|
Cameron RS, Arvan P, Castle JD. Secretory Membranes and the Exocrine Storage Compartment. Compr Physiol 2011. [DOI: 10.1002/cphy.cp060307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Al‐Awqati Q, Beauwens R. Cellular Mechanisms of H
+
and HCO
3
−
transport in tight urinary epithelia. Compr Physiol 2011. [DOI: 10.1002/cphy.cp080108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
|
20
|
Maeda Y, Kinoshita T. The acidic environment of the Golgi is critical for glycosylation and transport. Methods Enzymol 2010; 480:495-510. [PMID: 20816224 DOI: 10.1016/s0076-6879(10)80022-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Proteins and glycolipids are modified by various modes of glycosylation in the endoplasmic reticulum (ER) and the Golgi apparatus. It is well known that the lumen of the Golgi is acidic and compromising acidification by chemical compounds causes impaired glycosylation and transport of proteins (Axelsson et al., 2001; Chapman and Munro, 1994; Palokangas et al., 1994; Presley et al., 1997; Puri et al., 2002; Reaves and Banting, 1994; Rivinoja et al., 2006; Tartakoff et al., 1978). The mechanisms by which glycosylation and transport are regulated by an acidic pH remain largely unknown. Recent findings that the impaired regulation of an acidic environment may be implicated in the pathology of several diseases emphasize the importance of pH regulation (Jentsch, 2007; Kasper et al., 2005; Kornak et al., 2001; Kornak et al., 2008; Piwon et al., 2000; Stobrawa et al., 2001; Teichgraber et al., 2008). We recently established a mutant cell line in which Golgi acidification was selectively impaired and the raised luminal Golgi pH caused impaired transport and glycosylation of proteins and altered Golgi morphology (Maeda et al., 2008). As alkalinizing compounds nonselectively affect all acidic organelles including lysosomes, endosomes, and the Golgi, the mutant cell is thought to be useful in analyzing how the acidic environment of the Golgi regulates glycosylation. In this chapter, we have introduced how we established mutant cells with impaired Golgi acidification and methods for measuring Golgi pH.
Collapse
Affiliation(s)
- Yusuke Maeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | |
Collapse
|
21
|
Matzke And MA, Matzke AJM. Potential Difference Across the Nuclear Membrane: A Regulator of Gene Expression? ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368378509033266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Carraro-Lacroix L, Lessa L, Fernandez R, Malnic G. Physiological implications of the regulation of vacuolar H+-ATPase by chloride ions. Braz J Med Biol Res 2009; 42:155-63. [DOI: 10.1590/s0100-879x2009000200002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Accepted: 01/13/2009] [Indexed: 11/22/2022] Open
|
23
|
Maeda Y, Ide T, Koike M, Uchiyama Y, Kinoshita T. GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Nat Cell Biol 2008; 10:1135-45. [PMID: 18794847 DOI: 10.1038/ncb1773] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 08/20/2008] [Indexed: 01/26/2023]
Abstract
The organelles within secretory and endocytotic pathways in mammalian cells have acidified lumens, and regulation of their acidic pH is critical for the trafficking, processing and glycosylation of cargo proteins and lipids, as well as the morphological integrity of the organelles. How organelle lumen acidification is regulated, and how luminal pH elevation disturbs these fundamental cellular processes, is largely unknown. Here, we describe a novel molecule involved in Golgi acidification. First, mutant cells defective in Golgi acidification were established that exhibited delayed protein transport, impaired glycosylation and Golgi disorganization. Using expression cloning, a novel Golgi-resident multi-transmembrane protein, named Golgi pH regulator (GPHR), was identified as being responsible for the mutant cells. After reconstitution in planar lipid bilayers, GPHR exhibited a voltage-dependent anion-channel activity that may function in counterion conductance. Thus, GPHR modulates Golgi functions through regulation of acidification.
Collapse
Affiliation(s)
- Yusuke Maeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
24
|
Rodriguez-Boulan E, Misek DE, Salas DVD, Salas PJI, Bard E. Chapter 6 Protein Sorting in the Secretory Pathway. CURRENT TOPICS IN MEMBRANES AND TRANSPORT 2008; 24:251-294. [PMID: 32287478 PMCID: PMC7146842 DOI: 10.1016/s0070-2161(08)60328-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This chapter focuses on protein sorting in the secretory pathway. From primary and secondary biosynthetic sites in the cytosol and mitochondrial matrix, respectively, proteins and lipids are distributed to more than 30 final destinations in membranes or membrane-bound spaces, where they carry out their programmed function. Molecular sorting is defined, in its most general sense, as the sum of the mechanisms that determine the distribution of a given molecule from its site of synthesis to its site of function in the cell. The final site of residence of a protein in a eukaryotic cell is determined by a combination of various factors, acting in concert: (1) site of synthesis, (2) sorting signals or zip codes, (3) signal recognition or decoding mechanisms, (4) cotranslational or posttranslational mechanisms for translocation across membranes, (5) specific fusion-fission interactions between intracellular vesicular compartments, and (6) restrictions to the lateral mobility in the plane of the bilayer. Improvements in cell fractionation, protein separation, and immune precipitation procedures in the past decade have made them possible. Very little is known about the mechanisms that mediate the localization and concentration of specific proteins and lipids within organelles. Various experimental model systems have become available for their study. The advent of recombinant DNA technology has shortened the time needed for obtaining the primary structure of proteins to a few months.
Collapse
Affiliation(s)
| | - David E Misek
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Dora Vega De Salas
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York
| | - Pedro J I Salas
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York
| | - Enzo Bard
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
25
|
Han JM, Park SG, Liu B, Park BJ, Kim JY, Jin CH, Song YW, Li Z, Kim S. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1/p43 controls endoplasmic reticulum retention of heat shock protein gp96: its pathological implications in lupus-like autoimmune diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:2042-2054. [PMID: 17525271 PMCID: PMC1899434 DOI: 10.2353/ajpath.2007.061266] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2007] [Indexed: 12/14/2022]
Abstract
Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1; previously known as p43) is a multifunctional protein that was initially found in multitRNA synthetase complex. In the present study, screening of the AIMP1-binding proteins revealed that AIMP1 can form a molecular complex with heat shock protein gp96. AIMP1 enhances gp96 dimerization and the interaction between gp96 and KDEL receptor-1 (KDELR-1), which mediates the retrieval of KDEL-containing proteins from Golgi to the endoplasmic reticulum (ER). The interaction between gp96 and KDELR-1 was reduced in AIMP1-deficient cells, and this disturbed ER retention of gp96 and increased its cell surface localization. Moreover, this localization of gp96 at the cell surface was suppressed by its interaction with AIMP1 and enhanced by the depletion of endogenous AIMP1. In addition, AIMP1-deficient mice showed dendritic cell activation attributable to increased gp96 surface presentation and lupus-like autoimmune phenotypes. These results suggest that AIMP1 acts as a regulator of the ER retention of gp96 and provide a new perspective of the regulatory mechanism underlying immune stimulation by gp96.
Collapse
Affiliation(s)
- Jung Min Han
- Imagene Company Biotechnology Incubating Center, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lázaro-Diéguez F, Jiménez N, Barth H, Koster AJ, Renau-Piqueras J, Llopis JL, Burger KNJ, Egea G. Actin filaments are involved in the maintenance of Golgi cisternae morphology and intra-Golgi pH. ACTA ACUST UNITED AC 2007; 63:778-91. [PMID: 16960891 DOI: 10.1002/cm.20161] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Here we examine the contribution of actin dynamics to the architecture and pH of the Golgi complex. To this end, we have used toxins that depolymerize (cytochalasin D, latrunculin B, mycalolide B, and Clostridium botulinum C2 toxin) or stabilize (jasplakinolide) filamentous actin. When various clonal cell lines were examined by epifluorescence microscopy, all of these actin toxins induced compaction of the Golgi complex. However, ultrastructural analysis by transmission electron microscopy and electron tomography/three-dimensional modelling of the Golgi complex showed that F-actin depolymerization first induces perforation/fragmentation and severe swelling of Golgi cisternae, which leads to a completely disorganized structure. In contrast, F-actin stabilization results only in cisternae perforation/fragmentation. Concomitantly to actin depolymerization-induced cisternae swelling and disorganization, the intra-Golgi pH significantly increased. Similar ultrastructural and Golgi pH alkalinization were observed in cells treated with the vacuolar H+ -ATPases inhibitors bafilomycin A1 and concanamycin A. Overall, these results suggest that actin filaments are implicated in the preservation of the flattened shape of Golgi cisternae. This maintenance seems to be mediated by the regulation of the state of F-actin assembly on the Golgi pH homeostasis.
Collapse
Affiliation(s)
- Francisco Lázaro-Diéguez
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Judah JD, Thomas GMH. Two distinct chloride ion requirements in the constitutive protein secretory pathway. Eur J Cell Biol 2006; 85:825-36. [PMID: 16735077 DOI: 10.1016/j.ejcb.2006.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/16/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022] Open
Abstract
The role of chloride ions in regulated secretion is well described but remains poorly characterised in the constitutive system. In the liver, newly synthesised proalbumin is transported to the trans Golgi network where it is converted to albumin by a furin protease and then immediately secreted. We used this acid-dependent hydrolysis and the measurement of specific protein secretion rates to examine the H+ and Cl- ion dependence of albumin synthesis and secretion, a major constitutive protein secretory event in all mammals. Using permeabilised primary rat hepatocytes we show that ordinarily chloride ions are essential for the processing of proalbumin to albumin. However Cl- is not required for transport which continues but releases solely proalbumin. Prior treatment of the cells with Tris (used as a membrane-permeable weak base to neutralise Golgi luminal pH) both eliminated the formation of albumin and very greatly reduced secretion. After washing out Tris, both authentic secretion and processing could be restarted if Cl-, ATP, GTP, cAMP, Ca2+ and cytosolic proteins were added. Hence a requirement for chloride in transport, in addition to processing, can be uncovered by first neutralising pH gradients. Furthermore, the chloride channel blocker DIDS (4,4-diisothiocyanostilbene 2,2-disulphonic acid) reversibly inhibited the constitutive secretory pathway. However, the total mass of proalbumin detectable in DIDS-treated cells fell to 36% of control while the fraction processed to albumin remained almost constant. This clearly dissociates a large part of the Cl- requirement of the constitutive protein secretory pathway from the function of known liver Golgi Cl- channels.
Collapse
Affiliation(s)
- Jacob D Judah
- Department of Physiology, University College London, Rockefeller Building, 21 University Street, London WC1E 6JJ, UK
| | | |
Collapse
|
28
|
Thompson RJ, Akana HCSR, Finnigan C, Howell KE, Caldwell JH. Anion channels transport ATP into the Golgi lumen. Am J Physiol Cell Physiol 2006; 290:C499-514. [PMID: 16403948 DOI: 10.1152/ajpcell.00585.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anion channels provide a pathway for Cl(-) influx into the lumen of the Golgi cisternae. This influx permits luminal acidification by the organelle's H(+)-ATPase. Three different experimental approaches, electrophysiological, biochemical, and proteomic, demonstrated that two Golgi anion channels, GOLAC-1 and GOLAC-2, also mediate ATP anion transport into the Golgi lumen. First, GOLAC-1 and -2 were incorporated into planar lipid bilayers, and single-channel recordings were obtained. Low ionic activities of K(2)ATP added to the cis-chamber directly inhibited the Cl(-) subconductance levels of both channels, with K(m) values ranging from 16 to 115 microM. Substitution of either K(2)ATP or MgATP for Cl(-) on the cis, trans, or both sides indicated that ATP is conducted by the channels with a relative permeability sequence of Cl(-) > ATP(4-) > MgATP(2-). Single-channel currents were observed at physiological concentrations of Cl(-) and ATP, providing evidence for their importance in vivo. Second, transport of [alpha-(32)P]ATP into sealed Golgi vesicles that maintain in situ orientation was consistent with movement through the GOLACs because it exhibited little temperature dependence and was saturated with an apparent K(m) = 25 microM. Finally, after transport of [gamma-(32)P]ATP, a protease-protection assay demonstrated that proteins are phosphorylated within the Golgi lumen, and after SDS-PAGE, the proteins in the phosphorylated bands were identified by mass spectrometry. GOLAC conductances, [alpha-(32)P]ATP transport, and protein phosphorylation have identical pharmacological profiles. We conclude that the GOLACs play dual roles in the Golgi complex, providing pathways for Cl(-) and ATP influx into the Golgi lumen.
Collapse
Affiliation(s)
- Roger J Thompson
- Dept. of Cell and Developmental Biology, Univ. of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
A global and transient rise of intracellular Ca2+ (Ca2+i) is central to the operation of pump-leak coupling in the frog early distal tubule (EDT). The endoplasmic reticulum (ER) is the site of this Ca2+ release and reuptake; however, it is likely that other intracellular pools, such as mitochondria, also contribute to cellular Ca2+ homeostasis. The present study was performed to seek evidence of mitochondrial Ca2+ transport in the frog EDT. Experiments were performed on isolated and permeabilized EDT segments from the frog kidney loaded with the low-affinity, Ca2+-sensitive fluorescent indicator, mag-fura-2. Ca2+ uptake in the absence of SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) activity (inhibition by 2,5-di-t-butyl hydroquinone, TBQ) was evident at a bath [Ca2+] of 1 microm, but not at 200 nm, in the presence of ATP. This uptake was sensitive to the protonophore FCCP and the ATP-synthase inhibitor oligomycin. Ca2+ uptake was also stimulated by respiratory substrates; this uptake was enhanced by oligomycin and reversed by the application of FCCP. These findings provide the first evidence of mitochondrial Ca2+ transport in renal tubules, which appears to occur via a low-affinity pathway and which will act as a physiological Ca2+ buffer, protecting the cell from large increases in Ca2+i.
Collapse
Affiliation(s)
- Mark R Fowler
- School of Biomedical Sciences, Worsley Building, University of Leeds, Leeds, LS2 9NQ, UK
| | | |
Collapse
|
30
|
Nakamura N, Tanaka S, Teko Y, Mitsui K, Kanazawa H. Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem 2004; 280:1561-72. [PMID: 15522866 DOI: 10.1074/jbc.m410041200] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four isoforms of the Na+/H+ exchanger (NHE6-NHE9) are distributed to intracellular compartments in human cells. They are localized to Golgi and post-Golgi endocytic compartments as follows: mid- to trans-Golgi, NHE8; trans-Golgi network, NHE7; early recycling endosomes, NHE6; and late recycling endosomes, NHE9. No significant localization of these NHEs was observed in lysosomes. The distribution of these NHEs is not discrete in the cells, and there is partial overlap with other isoforms, suggesting that the intracellular localization of the NHEs is established by the balance of transport in and out of the post-Golgi compartments as the dynamic membrane trafficking. The overexpression of NHE isoforms increased the luminal pH of the compartments in which the protein resided from the mildly acidic pH to the cytosolic pH, suggesting that their in vivo function is to regulate the pH and monovalent cation concentration in these organelles. We propose that the specific NHE isoforms contribute to the maintenance of the unique acidic pH values of the Golgi and post-Golgi compartments in the cell.
Collapse
Affiliation(s)
- Norihiro Nakamura
- Department of Biological Science, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or basolateral localization patterns. In the proximal tubule, a high number of vacuolar H(+)-ATPases are also found in endosomes, which are acidified by the pump. In addition, vacuolar H(+)-ATPases contribute to proximal tubular bicarbonate reabsorption. The importance in final urinary acidification along the collecting system is highlighted by monogenic defects in two subunits (ATP6V0A4, ATP6V1B1) of the vacuolar H(+)-ATPase in patients with distal renal tubular acidosis. The activity of vacuolar H(+)-ATPases is tightly regulated by a variety of factors such as the acid-base or electrolyte status. This regulation is at least in part mediated by various hormones and protein-protein interactions between regulatory proteins and multiple subunits of the pump.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
32
|
Faundez V, Hartzell HC. Intracellular Chloride Channels: Determinants of Function in the Endosomal Pathway. Sci Signal 2004; 2004:re8. [PMID: 15150424 DOI: 10.1126/stke.2332004re8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Endosomes, and related subcellular compartments, contain various Cl- channels in the ClC family. In this review, we describe the known roles of intracellular Cl- channels and also explore some of the functional implications of transmembrane Cl- flux in these organelles. Cl- influx acts to control intralumenal pH, both by shunting the effects of the proton pump on membrane potential and, possibly, through direct effects of Cl- on the proton pump. Changes in intralumenal pH likely help regulate membrane trafficking. We propose that changes in intralumenal Cl- concentration ([Cl-]) could theoretically play a direct role in regulating membrane trafficking and organellar function through effects on chloride-sensitive proteins in the vesicular membrane, which could transduce information about intralumenal [Cl-] to the outside of the vesicle and thereby recruit various signaling molecules. We present a model in which regulation of cytosolic [Cl-] and vesicular Cl- conductance could help control the amount or type of neurotransmitter stored in a particular population of synaptic vesicles.
Collapse
Affiliation(s)
- Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
33
|
Abstract
Acidification of some organelles, including the Golgi complex, lysosomes, secretory granules, and synaptic vesicles, is important for many of their biochemical functions. In addition, acidic pH in some compartments is also required for the efficient sorting and trafficking of proteins and lipids along the biosynthetic and endocytic pathways. Despite considerable study, however, our understanding of how pH modulates membrane traffic remains limited. In large part, this is due to the diversity of methods to perturb and monitor pH, as well as to the difficulties in isolating individual transport steps within the complex pathways of membrane traffic. This review summarizes old and recent evidence for the role of acidification at various steps of biosynthetic and endocytic transport in mammalian cells. We describe the mechanisms by which organelle pH is regulated and maintained, as well as how organelle pH is monitored and quantitated. General principles that emerge from these studies as well as future directions of interest are discussed.
Collapse
Affiliation(s)
- Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
34
|
Sonawane ND, Verkman AS. Determinants of [Cl-] in recycling and late endosomes and Golgi complex measured using fluorescent ligands. J Cell Biol 2003; 160:1129-38. [PMID: 12668661 PMCID: PMC2172765 DOI: 10.1083/jcb.200211098] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chloride concentration ([Cl-]) was measured in defined organellar compartments using fluorescently labeled transferrin, alpha2-macroglobulin, and cholera toxin B-subunit conjugated with Cl--sensitive and -insensitive dyes. In pulse-chase experiments, [Cl-] in Tf-labeled early/recycling endosomes in J774 cells was 20 mM just after internalization, increasing to 41 mM over approximately 10 min in parallel to a drop in pH from 6.91 to 6.05. The low [Cl-] just after internalization (compared with 137 mM solution [Cl-]) was prevented by reducing the interior-negative Donnan potential. [Cl-] in alpha2-macroglobulin-labeled endosomes, which enter a late compartment, increased from 28 to 58 mM at 1-45 min after internalization, whereas pH decreased from 6.85 to 5.20. Cl- accumulation was prevented by bafilomycin but restored by valinomycin. A Cl- channel inhibitor slowed endosomal acidification and Cl- accumulation by approximately 2.5-fold. [Cl-] was 49 mM and pH was 6.42 in cholera toxin B subunit-labeled Golgi complex in Vero cells; Golgi compartment Cl- accumulation and acidification were reversed by bafilomycin. Our experiments provide evidence that Cl- is the principal counter ion accompanying endosomal and Golgi compartment acidification, and that an interior-negative Donnan potential is responsible for low endosomal [Cl-] early after internalization. We propose that reduced [Cl-] and volume in early endosomes permits endosomal acidification and [Cl-] accumulation without lysis.
Collapse
Affiliation(s)
- N D Sonawane
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
35
|
Abstract
A subset of cellular compartments maintain acidic interior environments that are critical for the specific functions of each organelle and for cell growth and survival in general. The pH of each organelle reflects the balance between proton pumping, counterion conductance, and proton leak. Alterations in steady-state organelle pH due to defects in either proton pumping activity or counterion conductance have been suggested to contribute to the pathology of several diseases; however, definitive evidence remains elusive. This review describes recent evidence for the misregulation of organelle pH in the progression of cancer, Dent's disease, and cystic fibrosis.
Collapse
Affiliation(s)
- Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, 3550 Terrace St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
36
|
Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M. Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 2002; 277:39873-9. [PMID: 12177001 DOI: 10.1074/jbc.m207008200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aquaporins (AQP) were originally regarded as plasma membrane channels that are freely permeated by water or small uncharged solutes but not by ions. Unlike other aquaporins, AQP6 overexpressed in Xenopus laevis oocytes was previously found to exhibit Hg2+ or pH-activated ion conductance. AQP6 could not be analyzed electrophysiologically in mammalian cells, however, because the protein is restricted to intracellular vesicles. Here we report that addition of a green fluorescence protein (GFP) tag to the N terminus of rat AQP6 (GFP-AQP6) redirects the protein to the plasma membranes of transfected mammalian cells. This permitted measurement of rapid, reversible, pH-induced anion currents by GFP-AQP6 in human embryonic kidney 293 cells. Surprisingly, anion selectivity relative to Cl- revealed high nitrate permeability even at pH 7.4; P(NO3)/P(Cl) > 9.8. Site-directed mutation of a pore-lining threonine to isoleucine at position 63 at the midpoint of the channel reduced NO3-/Cl- selectivity. Moreover, no anomalous mole-fraction behavior was observed with NO3-/Cl- mixtures, suggesting a single ion-binding pore in each subunit. Our studies indicate that AQP6 exhibits a new form of anion permeation with marked specificity for nitrate conferred by a specific pore-lining residue, observations that imply that the primary role of AQP6 may be in cellular regulation rather than simple fluid transport.
Collapse
Affiliation(s)
- Masahiro Ikeda
- Departments of Physiology, Biological Chemistry, Medicine, and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
An acidic lumenal pH is vital for the proper posttranslational modifications and sorting of proteins and lipids from the Golgi complex. We characterized ion channels present in Golgi fractions that have been cleared of transiting proteins. A large conductance anion channel was observed in approximately 30% of successful channel incorporations into the planar lipid bilayer. The channel, GOLAC-2, has six levels (one closed and five open). The open states are each approximately 20% increments of the maximal, 325 pS conductance. The channel was approximately 6 times more selective for Cl(-) over K(+). Binomial analysis of percent occupancy for each conducting level supports the hypothesis of five independent conducting pathways. The conducting levels can coordinately gate because full openings and closings were often observed. Addition of 3 to 5 mM reduced glutathione to the cis chamber caused dose-dependent increases in single channel conductance, indicating that the channel may be regulated by the oxidation-reduction state of the cell. We propose that GOLAC-2 is a co-channel complex consisting of five identical pores that have a coordinated gating mechanism. GOALC-2 may function as a source of counter anions for the H(+)-ATPase and may be involved in regulating charge balance and membrane potential of the Golgi complex.
Collapse
Affiliation(s)
- Roger J Thompson
- Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Osteoclasts resorb bone by attaching to the surface and then secreting protons into an extracellular compartment formed between osteoclast and bone surface. This secretion is necessary for bone mineral solubilization and the digestion of organic bone matrix by acid proteases. This study summarizes the characterization and role of each type of ion transport and defines the main biochemical mechanisms involved in the dissolution of bone mineral during bone resorption. The primary mechanism responsible for acidification of the osteoclast-bone interface is vacuolar H+-adenosine triphosphatase (ATPase) coupled with Cl- conductance localized to the ruffled membrane. Carbonic anhydrase II (CAII) provides the proton source for extracellular acidification by H+-ATPase and the HCO3- source for the HCO3-/Cl- exchanger. Whereas some transporters are responsible for the bone resorption process, others are essential for pH regulation in the osteoclast. The HCO3-/Cl- exchanger, in association with CAII, is the major transporter for maintenance of normal intracellular pH. An Na+/H+ antiporter may also contribute to the recovery of intracellular pH during early osteoclast activation. Once this mechanism has been rendered inoperative, another conductive pathway translocates the protons and modulates cytoplasmic pH. Inward-rectifying K+ channels may also be involved by compensating for the external acidification due to H+ transport. These different effects of transport processes, either on bone resorption or pH homeostasis, increase the number of possible sites for pharmacological intervention in the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- A-V Rousselle
- Labaoratoire de Physiopathologie de la Résorption Osseuse, Faculté de Médecine, Nantes, France
| | | |
Collapse
|
39
|
Sonawane ND, Thiagarajah JR, Verkman AS. Chloride concentration in endosomes measured using a ratioable fluorescent Cl- indicator: evidence for chloride accumulation during acidification. J Biol Chem 2002; 277:5506-13. [PMID: 11741919 DOI: 10.1074/jbc.m110818200] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel long wavelength fluorescent Cl(-) indicator was used to test whether endosomal Cl(-) conductance provides the principal electrical shunt to permit endosomal acidification. The green fluorescent Cl(-)-sensitive chromophore 10,10'-bis[3-carboxypropyl]-9,9'-biacridinium dinitrate (BAC) was conjugated to aminodextran together with the red fluorescent Cl(-)-insensitive chromophore tetramethylrhodamine (TMR). BAC fluorescence is pH-insensitive and quenched by Cl(-) with a Stern-Volmer constant of 36 m(-1). Endosomes in J774 and Chinese hamster ovary (CHO) cells were pulse-labeled with BAC-TMR-dextran by fluid-phase endocytosis. Endosomal [Cl(-)] increased over 45 min from 17 to 53 mm in J774 cells and from 28 to 73 mm in CHO cells, during which time endosomal pH decreased from 6.95 to 5.30 (J774) and 6.92 to 5.60 (CHO). The acidification and increased [Cl(-)] were blocked by bafilomycin. Together with ion substitution and buffer capacity measurements, we conclude that Cl(-) transport accounts quantitatively for the electrical shunt during vacuolar acidification. Measurements of relative endosomal volume by a novel ratio imaging method involving fluorescence self-quenching indicated a 2.5-fold increase in volume during early acidification and Cl(-) accumulation, which was blocked by bafilomycin. These experiments provide the first direct measurement of endosomal [Cl(-)] and indicate that endosomal acidification is accompanied by significant Cl(-) entry and volume increase.
Collapse
Affiliation(s)
- N D Sonawane
- Department of Medicin, Cardiovascular Research Institute, University of California, San Francisco, California 94143-0521, USA
| | | | | |
Collapse
|
40
|
Mura CV, Becker MI, Orellana A, Wolff D. Immunopurification of Golgi vesicles by magnetic sorting. J Immunol Methods 2002; 260:263-71. [PMID: 11792394 DOI: 10.1016/s0022-1759(01)00546-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have designed a method that permits to isolate highly purified Golgi vesicles deprived of endoplasmic reticulum (ER), main contaminant of Golgi fractions. To this end, we prepared a rabbit polyclonal antibody against the cytosolic N-terminal oligopeptide of the enzyme heparan glucosaminyl N-deacetylase/N-sulphotransferase (HSST), a specific marker for Golgi apparatus. The Golgi localization of HSST was confirmed by indirect immunofluorescence microscopy. The antibody binding to Golgi vesicles was demonstrated by immunoelectronmicroscopy and allowed the immunopurification by magnetic sorting. Golgi vesicles subjected to purification by magnetic sorting showed the presence of HSST and p28, which is an integral membrane protein on the cis-Golgi also used as a specific Golgi marker. The purified material was devoid of calreticulin, a specific ER marker. This purification method will allow to improve studies requiring highly purified Golgi membranes such as identification of specific receptors and the electrophysiological characterization of Golgi membrane ion channels, which have been jeopardized up to now by ER membrane contamination.
Collapse
Affiliation(s)
- Casilda V Mura
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | | | | | | |
Collapse
|
41
|
Campbell BJ, Yu LG, Rhodes JM. Altered glycosylation in inflammatory bowel disease: a possible role in cancer development. Glycoconj J 2001; 18:851-8. [PMID: 12820718 DOI: 10.1023/a:1022240107040] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ulcerative colitis and Crohn's disease (together known as Inflammatory Bowel Disease or IBD) are both associated with increased risk for colorectal cancer. Although it is conventional to emphasise differences between IBD-associated and sporadic colon cancer, such as a lower rate of Adenomatosis Polyposis Coli mutations and earlier p53 mutations, IBD-associated cancer has a similar dysplasia-cancer sequence to sporadic colon cancer, similar frequencies of major chromosomal abnormalities and of microsatellite instability and similar glycosylation changes. This suggests that IBD-associated colon cancer and sporadic colon cancer might have similar pathogenic mechanisms. Because the normal colon is arguably in a continual state of low-grade inflammation in response to its microbial flora, it is reasonable to suggest that both IBD-associated and sporadic colon cancer may be the consequence of bacteria-induced inflammation. We have speculated that the glycosylation changes might result in recruitment to the mucosa of bacterial and dietary lectins that might otherwise pass harmlessly though the gut lumen. These could then lead to increased inflammation and/or proliferation and thence to ulceration or cancer. The glycosylation changes include increased expression of onco-fetal carbohydrates, such as the galactose-terminated Thomsen-Friedenreich antigen (Gal beta1,3GalNAc alpha-), increased sialylation of terminal structures and reduced sulphation. These changes cannot readily be explained by alterations in glycosyltransferase activity but similar changes can be induced in vitro by alkalinisation of the Golgi lumen. Consequences of these changes may be relevant not only for cell-surface glycoconjugates but also for intracellular glycoconjugates.
Collapse
Affiliation(s)
- B J Campbell
- Glycobiology Group, Henry Wellcome Laboratory of Molecular & Cellular Gastroenterology, Department of Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| | | | | |
Collapse
|
42
|
Suginta W, Karoulias N, Aitken A, Ashley RH. Chloride intracellular channel protein CLIC4 (p64H1) binds directly to brain dynamin I in a complex containing actin, tubulin and 14-3-3 isoforms. Biochem J 2001; 359:55-64. [PMID: 11563969 PMCID: PMC1222121 DOI: 10.1042/0264-6021:3590055] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian chloride intracellular channel (CLIC) (p64-related) proteins are widely expressed, with an unusual dual localization as both soluble and integral membrane proteins. The molecular basis for their cellular localization and ion channel activity remains unclear. To help in addressing these problems, we identified novel rat brain CLIC4 (p64H1) binding partners by affinity chromatography, mass spectrometric analysis and microsequencing. Brain CLIC4 binds dynamin I, alpha-tubulin, beta-actin, creatine kinase and two 14-3-3 isoforms; the interactions are confirmed in vivo by immunoprecipitation. Gel overlay and reverse pull-down assays indicate that the binding of CLIC4 to dynamin I and 14-3-3zeta is direct. In HEK-293 cells, biochemical and immunofluorescence analyses show partial co-localization of recombinant CLIC4 with caveolin and with functional caveolae, which is consistent with a dynamin-associated role for CLIC4 in caveolar endocytosis. We speculate that brain CLIC4 might be involved in the dynamics of neuronal plasma membrane microdomains (micropatches) containing caveolin-like proteins and might also have other cellular roles related to membrane trafficking. Our results provide the basis for new hypotheses concerning novel ways in which CLIC proteins might be associated with cell membrane remodelling, the control of cell shape, and anion channel activity.
Collapse
Affiliation(s)
- W Suginta
- Department of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | | | | | | |
Collapse
|
43
|
Campbell BJ, Rowe GE, Leiper K, Rhodes JM. Increasing the intra-Golgi pH of cultured LS174T goblet-differentiated cells mimics the decreased mucin sulfation and increased Thomsen-Friedenreich antigen (Gal beta1-3GalNac alpha-) expression seen in colon cancer. Glycobiology 2001; 11:385-93. [PMID: 11425799 DOI: 10.1093/glycob/11.5.385] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mucins in ulcerative colitis and colon cancer share common properties of reduced sulfation and increased oncofetal carbohydrate antigen expression. It has previously been shown that there is no simple correlation between these changes and the activity of the relevant glycosyl-, sialyl-, and sulfo-transferases. We examined mucin sulfation and expression of oncofetal Thomsen-Friedenreich (TF) antigen (galactosyl beta1-3N-acetylgalactosamine alpha-) in the goblet cell-differentiated human colon cancer cell line LS174T following treatment with bafilomycin A(1, )which raises intra-Golgi pH, or monensin, which disrupts medial-trans Golgi transport. Cells were dual-labeled with sodium [(35)S]-sulfate and D-[6-(3)H(N)]-glucosamine hydrochloride, or labeled with L-[U-(14)C]-threonine alone. Mucin was purified using Sepharose CL-4B gel filtration. Mucin sulfo-Lewis(a) and TF antigen expression were assessed using the F2 anti-sulfo-Lewis(a) monoclonal antibody and peanut agglutinin binding respectively. Bafilomycin (0.01 microM; 48 h) reduced total mucin sulfation, expressed relative to incorporation of glucosamine, to 0.50 +/- 0.04 d.p.m. [(35)S]-sulfate per d.p.m. [(3)H]-glucosamine compared to control, 0.84 +/- 0.05 (p < 0.001, n = 16). This was accompanied by 50.3 +/- 8.0% increased expression of TF antigen (p < 0.01) and 50.1 +/- 5.5% decreased expression of sulfo-Lewis(a) (p < 0.01). The reduced sulfate:glucosamine ratio was largely due to increased incorporation of glucosamine into newly synthesized mucin rather than reduction in total sulfate incorporation. In contrast, monensin only reduced total mucin glycosylation at concentrations > 0.1 microM and had no significant effect on mucin sulfation or TF expression. Intra-Golgi alkalinization affects mucin glycosylation, resulting in decreased mucin sulfation and increased expression of TF antigen, changes that mimic those seen in cancerous and premalignant human colonic epithelium.
Collapse
Affiliation(s)
- B J Campbell
- Glycobiology Group, Gastroenterology Research Unit, Department of Medicine, University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| | | | | | | |
Collapse
|
44
|
Ying M, Flatmark T, Saraste J. The p58-positive pre-golgi intermediates consist of distinct subpopulations of particles that show differential binding of COPI and COPII coats and contain vacuolar H(+)-ATPase. J Cell Sci 2000; 113 ( Pt 20):3623-38. [PMID: 11017878 DOI: 10.1242/jcs.113.20.3623] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the structural and functional properties of the pre-Golgi intermediate compartment (IC) in normal rat kidney cells using analytical cell fractionation with p58 as the principal marker. The sedimentation profile (sediterm) of p58, obtained by analytical differential centrifugation, revealed in steady-state cells the presence of two main populations of IC elements whose average sedimentation coefficients, s(H)=1150+/-58S (‘heavy’) and s(L)=158+/-8S (‘light’), differed from the s-values obtained for elements of the rough and smooth endoplasmic reticulum. High resolution analysis of these subpopulations in equilibrium density gradients further revealed that the large difference in their s-values was mainly due to particle size. The ‘light’ particle population contained the bulk of COPI and COPII coats, and redistribution of p58 to these particles was observed in transport-arrested cells, showing that the two types of elements are also compositionally distinct and have functional counterparts in intact cells. Using a specific antibody against the 16 kDa proteolipid subunit of the vacuolar H(+)-ATPase, an enrichment of the V(o)domain of the ATPase was observed in the p58-positive IC elements. Interestingly, these elements could contain both COPI and COPII coats and their density distribution was markedly affected by GTP(γ)S. Together with morphological observations, these results demonstrate that, in addition to clusters of small tubules and vesicles, the IC also consists of large-sized structures and corroborate the proposal that the IC elements contain an active vacuolar H(+)-ATPase.
Collapse
Affiliation(s)
- M Ying
- Departments of Biochemistry and Molecular Biology and Anatomy and Cell Biology, University of Bergen, Norway
| | | | | |
Collapse
|
45
|
Gibson GA, Hill WG, Weisz OA. Evidence against the acidification hypothesis in cystic fibrosis. Am J Physiol Cell Physiol 2000; 279:C1088-99. [PMID: 11003589 DOI: 10.1152/ajpcell.2000.279.4.c1088] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pleiotropic effects of cystic fibrosis (CF) result from the mislocalization or inactivity of an apical membrane chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR may also modulate intracellular chloride conductances and thus affect organelle pH. To test the role of CFTR in organelle pH regulation, we developed a model system to selectively perturb the pH of a subset of acidified compartments in polarized cells and determined the effects on various protein trafficking steps. We then tested whether these effects were observed in cells lacking wild-type CFTR and whether reintroduction of CFTR affected trafficking in these cells. Our model system involves adenovirus-mediated expression of the influenza virus M2 protein, an acid-activated ion channel. M2 expression selectively slows traffic through the trans-Golgi network (TGN) and apical endocytic compartments in polarized Madin-Darby canine kidney (MDCK) cells. Expression of M2 or treatment with other pH perturbants also slowed protein traffic in the CF cell line CFPAC, suggesting that the TGN in this cell line is normally acidified. Expression of functional CFTR had no effect on traffic and failed to rescue the effect of M2. Our results argue against a role for CFTR in the regulation of organelle pH and protein trafficking in epithelial cells.
Collapse
Affiliation(s)
- G A Gibson
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
46
|
Abstract
The factors contributing to the establishment of the steady state Golgi pH (pH(G)) were studied in intact and permeabilized mammalian cells by fluorescence ratio imaging. Retrograde transport of the nontoxic B subunit of verotoxin 1 was used to deliver pH-sensitive probes to the Golgi complex. To evaluate whether counter-ion permeability limited the activity of the electrogenic V-ATPase, we determined the concentration of K(+) in the lumen of the Golgi using a null point titration method. The [K(+)] inside the Golgi was found to be close to that of the cytosol, and increasing its permeability had no effect on pH(G). Moreover, the capacity of the endogenous counter-ion permeability exceeded the rate of H(+) pumping, implying that the potential across the Golgi membrane is negligible and has little influence on pH(G). The V-ATPase does not reach thermodynamic equilibrium nor does it seem to be allosterically inactivated at the steady state pH(G). In fact, active H(+) pumping was detectable even below the resting pH(G). A steady state pH was attained when the rate of pumping was matched by the passive backflux of H(+) (equivalents) or "leak." The nature of this leak pathway was investigated in detail. Neither vesicular traffic nor H(+)/cation antiporters or symporters were found to contribute to the net loss of H(+) from the Golgi. Instead, the leak was sensitive to voltage changes and was inhibited by Zn(2+), resembling the H(+) conductive pathway of the plasma membrane. We conclude that a balance between an endogenous leak, which includes a conductive component, and the H(+) pump determines the pH at which the Golgi lumen attains a steady state.
Collapse
Affiliation(s)
- F B Schapiro
- Cell Biology Programme, Research Institute, The Hospital for Sick Children and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
47
|
Abstract
The Golgi complex is present in every eukaryotic cell and functions in posttranslational modifications and sorting of proteins and lipids to post-Golgi destinations. Both functions require an acidic lumenal pH and transport of substrates into and by-products out of the Golgi lumen. Endogenous ion channels are expected to be important for these features, but none has been described. Ion channels from an enriched Golgi fraction cleared of transiting proteins were incorporated into planar lipid bilayers. Eighty percent of the single-channel recordings revealed the same anion channel. This channel has novel properties and has been named GOLAC (Golgi anion channel). The channel has six subconductance states with a maximum conductance of 130 pS, is open over 95% of the time, and is not voltage-gated. Significant for Golgi function, the channel conductance is increased by reduction of pH on the lumenal surface. This channel may serve two nonexclusive functions: providing counterions for the acidification of the Golgi lumen by the H(+)-ATPase and removal of inorganic phosphate generated by glycosylation and sulfation of proteins and lipids in the Golgi.
Collapse
Affiliation(s)
- M H Nordeen
- Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Quantal size is often modeled as invariant, although it is now well established that the number of transmitter molecules released per synaptic vesicle during exocytosis can be modulated in central and peripheral synapses. In this review, we suggest why presynaptically altered quantal size would be important at social synapses that provide extrasynaptic neurotransmitter. Current techniques used to measure quantal size are reviewed with particular attention to amperometry, the first approach to provide direct measurement of the number of molecules and kinetics of presynaptic quantal release, and to CNS dopamine neuronal terminals. The known interventions that alter quantal size at the presynaptic locus are reviewed and categorized as (1) alteration of transvesicular free energy gradients, (2) modulation of vesicle transmitter transporter activity, (3) modulation of fusion pore kinetics, (4) altered transmitter degranulation, and (5) changes in synaptic vesicle volume. Modulation of the number of molecules released per quantum underlies mechanisms of drug action of L-DOPA and the amphetamines, and seems likely to be involved in both normal synaptic modification and disease states. Statistical analysis for examining quantal size and data presentation is discussed. We include detailed information on performing nonparametric resampling statistical analysis, the Kolmogorov-Smirnov test for two populations, and random walk simulations using spreadsheet programs.
Collapse
Affiliation(s)
- D Sulzer
- Department of Neurology, Columbia University, New York, USA.
| | | |
Collapse
|
49
|
Wu MM, Llopis J, Adams S, McCaffery JM, Kulomaa MS, Machen TE, Moore HP, Tsien RY. Organelle pH studies using targeted avidin and fluorescein-biotin. CHEMISTRY & BIOLOGY 2000; 7:197-209. [PMID: 10712929 DOI: 10.1016/s1074-5521(00)00088-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Mammalian organelles of the secretory pathway are of differing pH. The pH values form a decreasing gradient: the endoplasmic reticulum (ER) is nearly neutral, the Golgi is mildly acidic and the secretory granules are more acidic still ( approximately pH 5). The mechanisms that regulate pH in these organelles are still unknown. RESULTS Using a novel method, we tested whether differences in H(+) 'leak' and/or counterion conductances contributed to the pH difference between two secretory pathway organelles. A pH-sensitive, membrane-permeable fluorescein-biotin was targeted to endoplasmic-reticulum- and Golgi-localized avidin-chimera proteins in HeLa cells. In live, intact cells, ER pH (pH(ER)) was 7.2 +/- 0.2 and Golgi pH (pH(G)) was 6.4 +/- 0.3 and was dissipated by bafilomycin. Buffer capacities of the cytosol, ER and Golgi were all similar (6-10 mM/pH). ER membranes had an apparent H(+) permeability three times greater than that of Golgi membranes. Removal of either K(+) or Cl(-) did not affect ER and Golgi H(+) leak rates, or steady-state pH(G) and pH(ER). CONCLUSIONS The Golgi is more acidic than the ER because it has an active H(+) pump and fewer or smaller H(+) leaks. Neither buffer capacity nor counterion permeabilities were key determinants of pH(G), pH(ER) or ER/Golgi H(+) leak rates.
Collapse
Affiliation(s)
- M M Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Pushkin A, Yip KP, Clark I, Abuladze N, Kwon TH, Tsuruoka S, Schwartz GJ, Nielsen S, Kurtz I. NBC3 expression in rabbit collecting duct: colocalization with vacuolar H+-ATPase. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F974-81. [PMID: 10600945 DOI: 10.1152/ajprenal.1999.277.6.f974] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently cloned and characterized a unique sodium bicarbonate cotransporter, NBC3, which unlike other members of the NBC family, is ethylisopropylamiloride (EIPA) inhibitable, DIDS insensitive, and electroneutral (A. Pushkin, N. Abuladze, I. Lee, D. Newman, J. Hwang, and I. Kurtz. J. Biol. Chem. 274: 16569-16575, 1999). In the present study, a specific polyclonal antipeptide COOH-terminal antibody, NBC3-C1, was generated and used to determine the pattern of NBC3 protein expression in rabbit kidney. A major band of approximately 200 kDa was detected on immunoblots of rabbit kidney. Immunocytochemistry of rabbit kidney frozen sections revealed specific staining of the apical membrane of intercalated cells in both the cortical and outer medullary collecting ducts. The pattern of NBC3 protein expression in the collecting duct was nearly identical to the same sections stained with an antibody against the vacuolar H+-ATPase 31-kDa subunit. In addition, the NBC3-C1 antibody coimmunoprecipitated the vacuolar H+-ATPase 31-kDa subunit. Functional studies in outer medullary collecting ducts (inner stripe) showed that type A intercalated cells have an apical Na+-dependent base transporter that is EIPA inhibitable and DIDS insensitive. The data suggest that NBC3 participates in H+/base transport in the collecting duct. The close association of NBC3 and the vacuolar H+-ATPase in type A intercalated cells suggests a potential structural/functional interaction between the two transporters.
Collapse
Affiliation(s)
- A Pushkin
- Division of Nephrology, University of California at Los Angeles, School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|