1
|
Liu Y, Li J, Ding C, Tong H, Yan Y, Li S, Li S, Cao Y. Leu promotes C2C12 cell differentiation by regulating the GSK3β/β-catenin signaling pathway through facilitating the interaction between SESN2 and RPN2. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6696-6705. [PMID: 38551359 DOI: 10.1002/jsfa.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 03/02/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Leucine (Leu) is an essential amino acid that facilitates skeletal muscle satellite cell differentiation, yet its mechanism remains underexplored. Sestrin2 (SESN2) serves as a Leu sensor, binding directly to Leu, while ribophorin II (RPN2) acts as a signaling factor in multiple pathways. This study aimed to elucidate Leu's impact on mouse C2C12 cell differentiation and skeletal muscle injury repair by modulating RPN2 expression through SESN2, offering a theoretical foundation for clinical skeletal muscle injury prevention and treatment. RESULTS Leu addition promoted C2C12 cell differentiation compared to the control, enhancing early differentiation via myogenic determinant (MYOD) up-regulation. Sequencing revealed SESN2 binding to and interacting with RPN2. RPN2 overexpression up-regulated MYOD, myogenin and myosin heavy chain 2, concurrently decreased p-GSK3β and increased nuclear β-catenin. Conversely, RPN2 knockdown yielded opposite results. Combining RPN2 knockdown with Leu rescued increased p-GSK3β and decreased nuclear β-catenin compared to Leu absence. Hematoxylin and eosin staining results showed that Leu addition accelerated mouse muscle damage repair, up-regulating Pax7, MYOD and RPN2 in the cytoplasm, and nuclear β-catenin, confirming that the role of Leu in muscle injury repair was consistent with the results for C2C12 cells. CONCLUSION Leu, bound with SESN2, up-regulated RPN2 expression, activated the GSK3β/β-catenin pathway, enhanced C2C12 differentiation and expedited skeletal muscle damage repair. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifan Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Jinping Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Cong Ding
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Huili Tong
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Yunqin Yan
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Shuang Li
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Shufeng Li
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Yunkao Cao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Affiliation(s)
- G Kreibich
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | |
Collapse
|
3
|
Prinz WA, Grzyb L, Veenhuis M, Kahana JA, Silver PA, Rapoport TA. Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Biol 2000; 150:461-74. [PMID: 10931860 PMCID: PMC2175198 DOI: 10.1083/jcb.150.3.461] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We find that the peripheral ER in Saccharomyces cerevisiae forms a dynamic network of interconnecting membrane tubules throughout the cell cycle, similar to the ER in higher eukaryotes. Maintenance of this network does not require microtubule or actin filaments, but its dynamic behavior is largely dependent on the actin cytoskeleton. We isolated three conditional mutants that disrupt peripheral ER structure. One has a mutation in a component of the COPI coat complex, which is required for vesicle budding. This mutant has a partial defect in ER segregation into daughter cells and disorganized ER in mother cells. A similar phenotype was found in other mutants with defects in vesicular trafficking between ER and Golgi complex, but not in mutants blocked at later steps in the secretory pathway. The other two mutants found in the screen have defects in the signal recognition particle (SRP) receptor. This receptor, along with SRP, targets ribosome-nascent chain complexes to the ER membrane for protein translocation. A conditional mutation in SRP also disrupts ER structure, but other mutants with translocation defects do not. We also demonstrate that, both in wild-type and mutant cells, the ER and mitochondria partially coalign, and that mutations that disrupt ER structure also affect mitochondrial structure. Our data suggest that both trafficking between the ER and Golgi complex and ribosome targeting are important for maintaining ER structure, and that proper ER structure may be required to maintain mitochondrial structure.
Collapse
Affiliation(s)
- William A. Prinz
- Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Lara Grzyb
- Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Marten Veenhuis
- Laboratory for Eukaryotic Microbiology, GBB, University of Groningen, 9750 AA Haren, The Netherlands
| | - Jason A. Kahana
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Dana Farber Cancer Institute, Boston, Massachusetts 02115
| | - Pamela A. Silver
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Dana Farber Cancer Institute, Boston, Massachusetts 02115
| | - Tom A. Rapoport
- Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
4
|
Fu J, Pirozzi G, Sanjay A, Levy R, Chen Y, De Lemos-Chiarandini C, Sabatini D, Kreibich G. Localization of ribophorin II to the endoplasmic reticulum involves both its transmembrane and cytoplasmic domains. Eur J Cell Biol 2000; 79:219-28. [PMID: 10826490 PMCID: PMC7134489 DOI: 10.1078/s0171-9335(04)70025-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins that are concentrated in specific compartments of the endomembrane system in order to exert their organelle-specific function must possess specific localization signals that prevent their transport to distal regions of the exocytic pathway. Some resident proteins of the endoplasmic reticulum (ER) that are known to escape with low efficiency from this organelle to a post ER compartment are recognized by a recycling receptor and brought back to their site of residence. Other ER proteins, however, appear to be retained in the ER by mechanisms that operate in the organelle itself. The mammalian oligosaccharyltransferase (OST) is a protein complex that effects the cotranslational N-glycosylation of newly synthesized polypeptides, and is composed of at least four rough ER-specific membrane proteins: ribophorins I and II (RI and RII), OST48, and Dadl. The mechanism(s) by which the subunits of this complex are retained in the ER are not well understood. In an effort to identify the domains within RII responsible for its ER localization we have studied the fate of chimeric proteins in which one or more RII domains were replaced by the corresponding ones of the Tac antigen, the latter being a well characterized plasma membrane protein that lacks intrinsic ER retention signals and serves to provide a neutral framework for the identification of retention signals in other proteins. We found that the luminal domain of RII by itself does not contain retention information, while the cytoplasmic and transmembrane domains contain independent ER localization signals. We also show that the retention function of the transmembrane domain is strengthened by the presence of a flanking luminal region consisting of 15 amino acids.
Collapse
Affiliation(s)
- J Fu
- Department of Cell Biology, New York University Medical Center, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Fu J, Kreibich G. Retention of subunits of the oligosaccharyltransferase complex in the endoplasmic reticulum. J Biol Chem 2000; 275:3984-90. [PMID: 10660554 DOI: 10.1074/jbc.275.6.3984] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins of the endoplasmic reticulum (ER) may be localized to this organelle by mechanisms that involve retention, retrieval, or a combination of both. For luminal ER proteins, which contain a KDEL domain, and for type I transmembrane proteins carrying a dilysine motif, specific retrieval mechanisms have been identified. However, most ER membrane proteins do not contain easily identifiable retrieval motifs. ER localization information has been found in cytoplasmic, transmembrane, or luminal domains. In this study, we have identified ER localization domains within the three type I transmembrane proteins, ribophorin I (RI), ribophorin II (RII), and OST48. Together with DAD1, these membrane proteins form an oligomeric complex that has oligosaccharyltransferase (OST) activity. We have previously shown that ER retention information is independently contained within the transmembrane and the cytoplasmic domain of RII, and in the case of RI, a truncated form consisting of the luminal domain was retained in the ER. To determine whether other domains of RI carry additional retention information, we have generated chimeras by exchanging individual domains of the Tac antigen with the corresponding ones of RI. We demonstrate here that only the luminal domain of RI contains ER retention information. We also show that the dilysine motif in OST48 functions as an ER localization motif because OST48 in which the two lysine residues are replaced by serine (OST48ss) is no longer retained in the ER and is found instead also at the plasma membrane. OST48ss is, however, retained in the ER when coexpressed with RI, RII, or chimeras, which by themselves do not exit from the ER, indicating that they may form partial oligomeric complexes by interacting with the luminal domain of OST48. In the case of the Tac chimera containing only the luminal domain of RII, which by itself exits from the ER and is rapidly degraded, it is retained in the ER and becomes stabilized when coexpressed with OST48.
Collapse
Affiliation(s)
- J Fu
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
6
|
The Saccharomyces cerevisiae oligosaccharyltransferase is a protein complex composed of Wbp1p, Swp1p, and four additional polypeptides. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99962-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Affiliation(s)
- R J Hendriks
- Biological Structures and Biocomputing Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
8
|
Rajasekaran AK, Morimoto T, Hanzel DK, Rodriguez-Boulan E, Kreibich G. Structural reorganization of the rough endoplasmic reticulum without size expansion accounts for dexamethasone-induced secretory activity in AR42J cells. J Cell Sci 1993; 105 ( Pt 2):333-45. [PMID: 7691838 DOI: 10.1242/jcs.105.2.333] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A striking reorganization of the rough endoplasmic reticulum (RER) from a tubulo-vesicular (TV-RER) to a stacked cisternal (SC-RER) configuration was observed when the secretory activity of AR42J cells, a cell line derived from a rat pancreatic acinar carcinoma, was induced by dexamethasone. Treatment with 10 nM dexamethasone resulted in a 6.6-fold increase in the intracellular and a 4.6-fold increase in the secreted amylase activity, respectively. On the basis of the morphometric analysis of thin-section electron micrographs it has been previously reported that this increase in secretory activity is accompanied by a 2.4-fold or 30-fold increase in the size of the RER. We have developed a new biochemical method to determine the size of the RER by quantifying the membrane-bound ribosomes. Using this procedure we did not detect any change in the size of the RER after induction of an active secretory state in AR42J cells. Electron microscopic observation showed the predominance of SC-RER in dexamethasone-treated cells compared to the abundance of TV-RER in control cells. Laser scanning confocal microscopy showed a patchy distribution of ER staining in dexamethasone-treated cells compared to more basal localization in control cells. On the basis of our observations we conclude that in AR42J cells the increase in secretory activity induced by dexamethasone is accompanied by a reorganization of the RER rather than by an increase in ER surface area, as reported by others. Our results suggest that SC-RER is a biosynthetically more efficient form of the RER, which is found predominantly in actively secreting cells.
Collapse
Affiliation(s)
- A K Rajasekaran
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021
| | | | | | | | | |
Collapse
|
9
|
Ivessa NE, De Lemos-Chiarandini C, Tsao YS, Takatsuki A, Adesnik M, Sabatini DD, Kreibich G. O-glycosylation of intact and truncated ribophorins in brefeldin A-treated cells: newly synthesized intact ribophorins are only transiently accessible to the relocated glycosyltransferases. J Cell Biol 1992; 117:949-58. [PMID: 1577870 PMCID: PMC2289488 DOI: 10.1083/jcb.117.5.949] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ribophorins I and II are type I transmembrane glycoproteins of the ER that are segregated to the rough domains of this organelle. Both ribophorins appear to be part of the translocation apparatus for nascent polypeptides that is associated with membrane-bound ribosomes and participate in the formation of a proteinaceous network within the ER membrane that also includes other components of the translocation apparatus. The ribophorins are both highly stable proteins that lack O-linked sugars but each contains one high mannose N-linked oligosaccharide that remains endo H sensitive throughout their lifetimes. We have previously shown (Tsao, Y. S., N. E. Ivessa, M. Adesnik, D. D. Sabatini, and G. Kreibich. 1992. J. Cell Biol. 116:57-67) that a COOH-terminally truncated variant of ribophorin I that contains only the first 332 amino acids of the luminal domain (RI332), when synthesized in permanent transformants of HeLa cells, undergoes a rapid degradation with biphasic kinetics in the ER itself and in a second, as yet unidentified nonlysosomal pre-Golgi compartment. We now show that in cells treated with brefeldin A (BFA) RI332 molecules undergo rapid O-glycosylation in a multistep process that involves the sequential addition of N-acetylgalactosamine, galactose, and terminal sialic acid residues. Addition of O-linked sugars affected all newly synthesized RI332 molecules and was completed soon after synthesis with a half time of about 10 min. In the same cells, intact ribophorins I and II also underwent O-linked glycosylation in the presence of BFA, but these molecules were modified only during a short time period immediately after their synthesis was completed, and the modification affected only a fraction of the newly synthesized polypeptides. More important, these molecules synthesized before the addition of BFA were not modified by O-glycosylation. The same is true for ribophorin I when overexpressed in HeLa cells although it is significantly less stable than the native polypeptide in control cells. We, therefore, conclude that soon after their synthesis, ribophorins lose their susceptibility to the relocated Golgi enzymes that effect the O-glycosylation, most likely as a consequence of a conformational change in the ribophorins that occurs during their maturation, although it cannot be excluded that rapid integration of these molecules into a supramolecular complex in the ER membrane leads to their inaccessibility to these enzymes.
Collapse
Affiliation(s)
- N E Ivessa
- Department of Cell Biology, New York University School of Medicine, New York 10016
| | | | | | | | | | | | | |
Collapse
|
10
|
Tsao YS, Ivessa NE, Adesnik M, Sabatini DD, Kreibich G. Carboxy terminally truncated forms of ribophorin I are degraded in pre-Golgi compartments by a calcium-dependent process. J Cell Biol 1992; 116:57-67. [PMID: 1730749 PMCID: PMC2289265 DOI: 10.1083/jcb.116.1.57] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two COOH terminally truncated variants of ribophorin I (RI), a type I transmembrane glycoprotein of 583 amino acids that is segregated to the rough portions of the ER and is associated with the protein-translocating apparatus of this organelle, were expressed in permanent HeLa cell transformants. Both variants, one membrane anchored but lacking part of the cytoplasmic domain (RL467) and the other consisting of the luminal 332 NH2-terminal amino acids (RI332), were retained intracellularly but, in contrast to the endogenous long lived, full length ribophorin I (t 1/2 = 25 h), were rapidly degraded (t 1/2 less than 50 min) by a nonlysosomal mechanism. The absence of a measurable lag phase in the degradation of both truncated ribophorins indicates that their turnover begins in the ER itself. The degradation of RI467 was monophasic (t 1/2 = 50 min) but the rate of degradation of RI332 molecules increased about threefold approximately 50 min after their synthesis. Several pieces of evidence suggest that the increase in degradative rate is the consequence of the transport of RI332 molecules that are not degraded during the first phase to a second degradative compartment. Thus, when added immediately after labeling, ionophores that inhibit vesicular flow out of the ER, such as carbonyl cyanide m-chlorophenylhydrazone (CCCP) and monensin, suppressed the second phase of degradation of RI332. On the other hand, when CCCP was added after the second phase of degradation of RI332 was initiated, the degradation was unaffected. Moreover, in cells treated with brefeldin A the degradation of RI332 became monophasic, and took place with a half-life intermediate between those of the two normal phases. These results point to the existence of two subcellular compartments where abnormal ER proteins can be degraded. One is the ER itself and the second is a non-lysosomal pre-Golgi compartment to which ER proteins are transported by vesicular flow. A survey of the effects of a variety of other ionophores and protease inhibitors on the turnover of RI332 revealed that metalloproteases are involved in both phases of the turnover and that the maintenance of a high Ca2+ concentration is necessary for the degradation of the luminally truncated ribophorin.
Collapse
Affiliation(s)
- Y S Tsao
- Department of Cell Biology, New York University School of Medicine, New York 10016
| | | | | | | | | |
Collapse
|
11
|
Collins PG, Gilmore R. Ribosome binding to the endoplasmic reticulum: a 180-kD protein identified by crosslinking to membrane-bound ribosomes is not required for ribosome binding activity. J Biophys Biochem Cytol 1991; 114:639-49. [PMID: 1869584 PMCID: PMC2289890 DOI: 10.1083/jcb.114.4.639] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have used the membrane-impermeable, thiol-cleavable, crosslinker 3,3'-dithio bis (sulfosuccinimidylpropionate) to identify proteins that are in the vicinity of membrane-bound ribosomes of the RER. A specific subset of RER proteins was reproducibly crosslinked to the ribosome. Immunoblot analysis of the crosslinked products with antibodies raised against signal recognition particle receptor, ribophorin I, and the 35-kD subunit of the signal sequence receptor demonstrated that these translocation components had been crosslinked to the ribosome, but each to a different extent. The most prominent polypeptide among the crosslinked products was a 180-kD protein that has recently been proposed to be a ribosome receptor (Savitz, A.J., and D.I. Meyer, 1990. Nature (Lond.). 346: 540-544). RER membrane proteins were reconstituted into liposomes and assayed with radiolabeled ribosomes to determine whether ribosome binding activity could be ascribed to the 180-kD protein. Differential detergent extraction was used to prepare soluble extracts of microsomal membrane vesicles that either contained or lacked the 180-kD protein. Liposomes reconstituted from both extracts bound ribosomes with essentially identical affinity. Additional fractionation experiments demonstrated that the bulk of the ribosome binding activity present in detergent extracts of microsomal membranes could be readily resolved from the 180-kD protein by size exclusion chromatography. Taken together, we conclude that the 180-kD protein is in the vicinity of membrane bound ribosomes, yet does not correspond to the ribosome receptor.
Collapse
Affiliation(s)
- P G Collins
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
12
|
Protein Sorting in the Secretory System of Plant Cells. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/s0074-7696(08)61215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
13
|
Sanderson CM, Crowe JS, Meyer DI. Protein retention in yeast rough endoplasmic reticulum: expression and assembly of human ribophorin I. J Cell Biol 1990; 111:2861-70. [PMID: 2269658 PMCID: PMC2116400 DOI: 10.1083/jcb.111.6.2861] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The RER retains a specific subset of ER proteins, many of which have been shown to participate in the translocation of nascent secretory and membrane proteins. The mechanism of retention of RER specific membrane proteins is unknown. To study this phenomenon in yeast, where no RER-specific membrane proteins have yet been identified, we expressed the human RER-specific protein, ribophorin I. In all mammalian cell types examined, ribophorin I has been shown to be restricted to the membrane of the RER. Here we ascertain that yeast cells correctly target, assemble, and retain ribophorin I in their RER. Floatation experiments demonstrated that human ribophorin I, expressed in yeast, was membrane associated. Carbonate (pH = 11) washing and Triton X-114 cloud-point precipitations of yeast microsomes indicated that ribophorin I was integrated into the membrane bilayer. Both chromatography on Con A and digestion with endoglycosidase H were used to prove that ribophorin I was glycosylated once, consistent with its expression in mammalian cells. Proteolysis of microsomal membranes and subsequent immunoblotting showed ribophorin I to have assumed the correct transmembrane topology. Sucrose gradient centrifugation studies found ribophorin I to be included only in fractions containing rough membranes and excluded from smooth ones that, on the basis of the distribution of BiP, included smooth ER. Ribosome removal from rough membranes and subsequent isopycnic centrifugation resulted in a shift in the buoyant density of the ribophorin I-containing membranes. Furthermore, the rough and density-shifted fractions were the exclusive location of protein translocation activity. Based on these studies we conclude that sequestration of membrane proteins to rough domains of ER probably occurs in a like manner in yeast and mammalian cells.
Collapse
Affiliation(s)
- C M Sanderson
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles 90024
| | | | | |
Collapse
|
14
|
Yu YH, Sabatini DD, Kreibich G. Antiribophorin antibodies inhibit the targeting to the ER membrane of ribosomes containing nascent secretory polypeptides. J Biophys Biochem Cytol 1990; 111:1335-42. [PMID: 2211814 PMCID: PMC2116236 DOI: 10.1083/jcb.111.4.1335] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polyclonal antibodies directed against ribophorins I and II, two membrane glycoproteins characteristic of the rough endoplasmic reticulum, inhibit the cotranslational translocation of a secretory protein growth hormone into the lumen of dog pancreas or rat liver microsomes. As expected, site-specific antibodies to epitopes located within the cytoplasmic domain of ribophorin I, but not antibodies to epitopes in the luminal domain of this protein, were effective in inhibiting translocation. Since monovalent Fab fragments were as inhibitory as intact IgG molecules, ribophorins must be closely associated with the translocation site and, therefore, are likely to function at some stage in the translocation process. In all cases, the antibodies that inhibited translocation also caused a significant reduction in total protein synthesis and treatments that neutralized their capacity to inhibit translocation also prevented their inhibitory effect on protein synthesis. This would be expected if the antibodies blocked the membrane-mediated relief of the SRP-induced arrest of polypeptide elongation. The antibodies were effective only when added before translocation was allowed to begin. In this case, they prevented the targeting of active ribosomes containing mRNA and nascent chains to the ER membrane. Thus, ribophorins must either directly participate in targeting or be so close to the targeting site that the antibodies sterically blocked this early phase of the translocation process.
Collapse
Affiliation(s)
- Y H Yu
- Department of Cell Biology, New York University School of Medicine, New York 10016
| | | | | |
Collapse
|
15
|
Abstract
Attachment of ribosomes to the membrane of the endoplasmic reticulum is one of the crucial first steps in the transport and secretion of intracellular proteins in mammalian cells. The process is mediated by an integral membrane protein of relative molecular mass 180,000 (Mr 180K), having a large (at least 160K) cytosolic domain that, when proteolytically detached from the membrane, can competitively inhibit the binding of ribosomes to intact membranes. Isolation of this domain has led to the identification, purification and characterization of the intact ribosome receptor, as well as its functional reconstitution into lipid vesicles.
Collapse
Affiliation(s)
- A J Savitz
- Department of Biological Chemistry, UCLA School of Medicine 90024
| | | |
Collapse
|
16
|
Wiest DL, Burkhardt JK, Hester S, Hortsch M, Meyer DI, Argon Y. Membrane biogenesis during B cell differentiation: most endoplasmic reticulum proteins are expressed coordinately. J Cell Biol 1990; 110:1501-11. [PMID: 2335560 PMCID: PMC2200180 DOI: 10.1083/jcb.110.5.1501] [Citation(s) in RCA: 185] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The induction of high-rate protein secretion entails increased biogenesis of secretory apparatus organelles. We examined the biogenesis of the secretory apparatus in the B cell line CH12 because it can be induced in vitro to secrete immunoglobulin (Ig). Upon stimulation with lipopolysaccharide (LPS), CH12 cells increased secretion of IgM 12-fold. This induced secretion was accompanied by preferential expansion of the ER and the Golgi complex. Three parameters of the rough ER changed: its area and volume increased 3.3- and 3.7-fold, respectively, and the density of membrane-bound ribosomes increased 3.5-fold. Similarly, the area of the Golgi stack increased 3.3-fold, and its volume increased 4.1-fold. These changes provide sufficient biosynthetic capacity to account for the increased secretory activity of CH12. Despite the large increase in IgM synthesis, and because of the expansion of the ER, the concentration of IgM within the ER changed less than twofold during the differentiation process. During the amplification of the rough ER, the expression of resident proteins changed according to one of two patterns. The majority (75%) of rough microsomal (RM) proteins increased in proportion to the increase in rough ER size. Included in this group were both lumenal proteins such as Ig binding protein (BiP), and membrane proteins such as ribophorins I and II. In addition, the expression of a minority (approximately 9%) of RM polypeptides increased preferentially, such that their abundance within the RM of secreting CH12 cells was increased. Thus, the expansion of ER during CH12 differentiation involves preferential increases in the abundance of a few resident proteins, superimposed upon proportional increases in most ER proteins.
Collapse
Affiliation(s)
- D L Wiest
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | |
Collapse
|
17
|
Yu YH, Zhang YY, Sabatini DD, Kreibich G. Reconstitution of translocation-competent membrane vesicles from detergent-solubilized dog pancreas rough microsomes. Proc Natl Acad Sci U S A 1989; 86:9931-5. [PMID: 2602384 PMCID: PMC298616 DOI: 10.1073/pnas.86.24.9931] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dog pancreas rough microsomes were solubilized in 1% octyl beta-glucoside, and membrane vesicles were reconstituted by slow 30-fold dilution with a buffer of low ionic strength. Asymmetric assembly of the membranes occurred during reconstitution since the vesicles formed contained ribosomes bound only to the vesicular outer surfaces. The reconstituted vesicles were similar in protein composition to native rough microsomes, although these vesicles were largely devoid of luminal-content proteins. These reconstituted vesicles could translocate and process nascent secretory (human placental lactogen) and membrane proteins (influenza hemagglutinin and rat liver ribophorin I) synthesized in cell-free translation systems programmed with the corresponding mRNAs. Signal cleavage and N-glycosylation only occurred when the reconstituted membranes were present during translation, providing evidence that the translocation apparatus was asymmetrically assembled into the reconstituted membranes. When a supernatant lacking ribosomes and particles greater than 50S from centrifuging the detergent-solubilized microsomes at high speed was used for reconstitution, smooth-surfaced membrane vesicles were obtained that, except for the absence of ribosomal proteins, were similar in protein composition to that of the reconstituted vesicles from total solubilized rough microsomes. The reconstituted smooth-surfaced vesicles, however, were totally inactive in cotranslational processing and translocation of nascent polypeptides. These findings suggest that ribosomes and/or large macromolecular complexes, not dissociated under our solubilization conditions, are essential for in vitro assembly of a functional translocation apparatus.
Collapse
Affiliation(s)
- Y H Yu
- Department of Cell Biology, New York University Medical Center, NY 10016
| | | | | | | |
Collapse
|
18
|
Nilsson T, Jackson M, Peterson PA. Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell 1989; 58:707-18. [PMID: 2527615 DOI: 10.1016/0092-8674(89)90105-0] [Citation(s) in RCA: 402] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The adenoviral transmembrane E3/19K glycoprotein is a resident of the endoplasmic reticulum. Here we show that the last six amino acid residues of the 15-membered cytoplasmic tail are necessary and sufficient for the ER retention. These residues can be transplanted onto the cytoplasmic tail of other membrane-bound proteins such that ER residency is conferred. Deletion analysis demonstrated that no single amino acid residue is responsible for the retention. The identified structural motif must occupy the extreme COOH-terminal position to be functional. An endogenous transmembrane ER protein, UDP-glucuronosyltransferase, also contains a retention signal in its cytoplasmic tail. We suggest that short linear sequences occupying the extreme COOH-terminal position of transmembrane ER proteins serve as retention signals.
Collapse
Affiliation(s)
- T Nilsson
- Department of Immunology, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | | | |
Collapse
|
19
|
Gierow P, Jergil B. Heterogeneity of smooth endoplasmic reticulum from rat liver studied by two-phase partitioning. Biochem J 1989; 262:55-61. [PMID: 2554895 PMCID: PMC1133228 DOI: 10.1042/bj2620055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Smooth microsomal membranes, prepared from rat liver by sucrose-density-gradient centrifugation, were subfractionated by counter-current distribution in an aqueous two-phase system consisting of poly(ethylene glycol) and Dextran T500. A comparison of the distribution curves of marker enzymes, together with theoretically calculated curves, indicated the presence of at least five membrane subfractions, differing in the ratios of the marker enzymes. Glucose-6-phosphatase and arylesterase distributed in one manner, and NADPH-cytochrome c reductase and NADH-ferricyanide reductase in another. Evidence for further heterogeneities in the distribution of marker enzymes in smooth microsomes was obtained by analysing the membrane domain structure using a recently described method [Albertsson (1988) Q. Rev. Biophys. 21, 61-98]. Phenobarbital treatment did not influence the behaviour of the marker enzymes.
Collapse
Affiliation(s)
- P Gierow
- Department of Biochemistry, University of Lund, Sweden
| | | |
Collapse
|
20
|
|
21
|
Valle G, Bhamra SS, Martin S, Griffiths G, Colman A. Effect of anti-ER antibodies within the ER lumen of living cells. Exp Cell Res 1988; 176:221-33. [PMID: 3288484 DOI: 10.1016/0014-4827(88)90326-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We describe the production and partial characterization of 12 monoclonal antibodies raised against a preparation of endoplasmic reticulum membranes obtained from Xenopus laevis liver. Four of the antibodies cross-react with liver melanocytes; two of the antibodies recognize extracellular antigens, whilst the remaining six recognize antigens present in hepatocytes. The concentrations of these latter antigens increase markedly in livers stimulated by estrogen. Western blotting analysis revealed that the six anti-hepatocyte monoclonal antibodies recognize at least five different antigens whose molecular weights are 14K, 18K, 19K, 43K, and 125K. The possible functional involvement of the various antigens in the secretory pathway was investigated using Xenopus oocytes as a surrogate secretory system. The mRNAs coding for the monoclonal antibodies were injected into oocytes and the resulting immunoglobulin chains were translated and assembled into active anti-ER antibodies inside the lumen of the ER. The effect on secretion was then observed. Our data indicate that the binding of antibodies to most antigens of the endoplasmic reticulum membrane may result in a blockage of secretion.
Collapse
Affiliation(s)
- G Valle
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Godelaine D, Beaufay H. The membrane of the rough endoplasmic reticulum contains cytoplasmically exposed high affinity GTP-binding sites. Biochem Biophys Res Commun 1987; 148:478-84. [PMID: 3118874 DOI: 10.1016/0006-291x(87)91136-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Binding experiments using [14C]GTP and rat liver rough microsomes gave Scatchard plots with Kd congruent to 0.1 microM and a binding capacity congruent to 40 pmol/mg microsomal protein. Removal of the ribosomes did not modify the binding parameters. GTP was competed out by GTP analogues but not by ATP. Limited proteolysis of rough microsomes decreased the GTP-binding capacity and prevented GTP from suppressing the latency of mannose-6-phosphatase and of the synthesis of dolichol-linked chitobiose. The GTP-binding protein is probably involved in these effects of GTP. Its function could be to act in the association-dissociation of membrane components at the ribosome-membrane junction.
Collapse
Affiliation(s)
- D Godelaine
- Laboratoire de Chimie Physiologique, Université de Louvain, Brussels, Belgium
| | | |
Collapse
|
23
|
Yoshida H, Tondokoro N, Asano Y, Mizusawa K, Yamagishi R, Horigome T, Sugano H. Studies on membrane proteins involved in ribosome binding on the rough endoplasmic reticulum. Ribophorins have no ribosome-binding activity. Biochem J 1987; 245:811-9. [PMID: 3663192 PMCID: PMC1148202 DOI: 10.1042/bj2450811] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A membrane protein fraction showing affinity for ribosomes was isolated from rat liver microsomes (microsomal fractions) in association with ribosomes by treatment of the microsomes with Emulgen 913 and then solubilized from the ribosomes with sodium deoxycholate. This protein fraction was separated into two fractions, glycoproteins, including ribophorins I and II, and non-glycoproteins, virtually free from ribophorins I and II, on concanavalin A-Sepharose columns. The two fractions were each reconstituted into liposomes to determine their ribosome-binding activities. The specific binding activity of the non-glycoprotein fraction was approx. 2.3-fold higher than that of the glycoprotein fraction. The recovery of ribosome-binding capacity of the two fractions was about 85% of the total binding capacity of the material applied to a concanavalin A-Sepharose column, and about 90% of it was found in the non-glycoprotein fraction. The affinity constants of the ribosomes for the reconstituted liposomes were somewhat higher than those for stripped rough microsomes. The mode of ribosome binding to the reconstituted liposomes was very similar to that to the stripped rough microsomes, in its sensitivity to proteolytic enzymes and its strong inhibition by increasing KCl concentration. These results support the idea that ribosome binding to rat liver microsomes is not directly mediated by ribophorins I and II, but that another unidentified membrane protein(s) plays a role in ribosome binding.
Collapse
Affiliation(s)
- H Yoshida
- Department of Biochemistry, Faculty of Science, Niigata University, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Paiement J, Rindress D, Smith CE, Poliquin L, Bergeron JJ. Properties of a GTP sensitive microdomain in rough microsomes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 898:6-22. [PMID: 3828332 DOI: 10.1016/0005-2736(87)90105-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stripped rough microsomes (SRM) fuse when incubated with physiological concentrations of GTP and MgCl2. In order to examine further to what extent such fusions are associated with other membrane functions of rough endoplasmic reticulum, we have evaluated the role of cytosolically exposed peptide constituents of SRM in fusion, and the possible relationship of GTP/MgCl2-induced fusion in protein transport across endoplasmic reticulum (ER) membranes, and in ER-Golgi interactions. Controlled proteolytic digestion of SRM led to the loss of fusion capability at 15 micrograms/ml trypsin--a concentration which maintained the latency of intraluminal mannose-6-phosphatase. Hence, a cytosolically exposed protein(s) regulated fusion. Based on ribonuclease-induced ribosome capping experiments, it was further concluded that the cytosolic oriented protein(s) was sequestered beneath the ribosome. As co-translational cell free translocation of placental lactogen across SRM was similar in control membranes compared to those rendered incapable of fusing, it was concluded that the fusion phenomenon may not be related to translocation. Under conditions promoting homologous fusion of SRM or Golgi membranes, mixtures of the two membranes showed no heterologous membrane fusion as assessed morphologically or by the transport of newly synthesized membrane glycoprotein. These experiments attest to the specificity of cytosolically exposed protein(s) in regulating nucleotide/divalent cation-induced membrane fusion.
Collapse
|
25
|
Lechner MC, Sinogas C, Osório-Almeida ML, Freire MT, Chaumet-Riffaud P, Frain M, Sala-Trepat JM. Phenobarbital-mediated modulation of gene expression in rat liver. Analysis of cDNA clones. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 163:231-8. [PMID: 3816806 DOI: 10.1111/j.1432-1033.1987.tb10792.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phenobarbital evokes a pleiotypic response in the liver characterized by cell hypertrophy and mono-oxygenase induction. These phenomena arise through complex modulation mechanisms changing the pattern of protein synthesis, distinct from those triggered by other well known inducers, like steroid hormones or polycyclic hydrocarbons. To investigate the mechanisms involved in regulating the expression of the phenobarbital-inducible tissue-specific genes, we constructed two libraries of recombinant bacterial plasmids pBR322 in Escherichia coli. Each library contains cDNA copies of polysomal poly(A)-rich RNA obtained from control and 16-h phenobarbital-induced rat liver. A thousand cloned sequences from each library were screened by double-cross colony hybridization using [32P]cDNA prepared from homologous and heterologous poly(A)-rich RNAs as the probes. The statistical analysis of the results revealed that phenobarbital treatment significantly changes the relative abundance of different polysomal mRNA classes in rat liver. Clones corresponding to mRNAs clearly induced following phenobarbital treatment have been further selected by plasmid DNA dot hybridization, and used as probes for measuring the changes in each mRNA concentration in the whole cell and in the polysomal RNAs from rat livers, at different times after phenobarbital treatment. The fact that changes in the concentration of each specific mRNA in the polysomes does not parallel the variation of its total concentration in the cell indicates that the induced modulation of protein synthesis in the liver is brought about by mechanisms involving both transcriptional and translational regulation, since besides the increases in whole cellular mRNA concentration a marked mobilization of mRNA into active polysomes could be demonstrated during the onset of the adaptive response to phenobarbital.
Collapse
|
26
|
Tajima S, Lauffer L, Rath VL, Walter P. The signal recognition particle receptor is a complex that contains two distinct polypeptide chains. J Cell Biol 1986; 103:1167-78. [PMID: 3021779 PMCID: PMC2114348 DOI: 10.1083/jcb.103.4.1167] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Signal recognition particle (SRP) and SRP receptor are known to be essential components of the cellular machinery that targets nascent secretory proteins to the endoplasmic reticulum (ER) membrane. Here we report that the SRP receptor contains, in addition to the previously identified and sequenced 69-kD polypeptide (alpha-subunit, SR alpha), a 30-kD beta-subunit (SR beta). When SRP receptor was purified by SRP-Sepharose affinity chromatography, we observed the co-purification of two other ER membrane proteins. Both proteins are approximately 30 kD in size and are immunologically distinct from each other, as well as from SR alpha and SRP proteins. One of the 30-kD proteins (SR beta) forms a tight complex with SR alpha in detergent solution that is stable to high salt and can be immunoprecipitated with antibodies to either SR alpha or SR beta. Both subunits are present in the ER membrane in equimolar amounts and co-fractionate in constant stoichiometry when rough and smooth liver microsomes are separated on sucrose gradients. We therefore conclude that SR beta is an integral component of SRP receptor. The presence of SR beta was previously masked by proteolytic breakdown products of SR alpha observed by others and by the presence of another 30-kD ER membrane protein (mp30) which co-purifies with SR alpha. Mp30 binds to SRP-Sepharose directly and is present in the ER membrane in several-fold molar excess of SR alpha and SR beta. The affinity of mp30 for SRP suggests that it may serve a yet unknown function in protein translocation.
Collapse
|
27
|
Hortsch M, Avossa D, Meyer DI. Characterization of secretory protein translocation: ribosome-membrane interaction in endoplasmic reticulum. J Cell Biol 1986; 103:241-53. [PMID: 3087996 PMCID: PMC2113795 DOI: 10.1083/jcb.103.1.241] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Secretory proteins are synthesized on ribosomes bound to the membrane of the endoplasmic reticulum (ER). After the selection of polysomes synthesizing secretory proteins and their direction to the membrane of the ER via signal recognition particle (SRP) and docking protein respectively, the polysomes become bound to the ER membrane via an unknown, protein-mediated mechanism. To identify proteins involved in protein translocation, beyond the (SRP-docking protein-mediated) recognition step, controlled proteolysis was used to functionally inactivate rough microsomes that had previously been depleted of docking protein. As the membranes were treated with increasing levels of protease, they lost their ability to be functionally reconstituted with the active cytoplasmic fragment of docking protein (DPf). This functional inactivation did not correlate with a loss of either signal peptidase activity, nor with the ability of the DPf to reassociate with the membrane. It did correlate, however, with a loss of the ability of the microsomes to bind ribosomes. Ribophorins are putative ribosome-binding proteins. Immunoblots developed with monoclonal antibodies against canine ribophorins I and II demonstrated that no correlation exists between the protease-induced inability to bind ribosomes and the integrity of the ribophorins. Ribophorin I was 85% resistant and ribophorin II 100% resistant to the levels of protease needed to totally eliminate ribosome binding. Moreover, no direct association was found between ribophorins and ribosomes; upon detergent solubilization at low salt concentrations, ribophorins could be sedimented in the presence or absence of ribosomes. Finally, the alkylating agent N-ethylmaleimide was shown to be capable of inhibiting translocation (beyond the SRP-docking protein-mediated recognition step), but had no affect on the ability of ribosomes to bind to ER membranes. We conclude that potentially two additional proteinaceous components, as yet unidentified, are involved in protein translocation. One is protease sensitive and possibly involved in ribosome binding, the other is N-ethylmaleimide sensitive and of unknown function.
Collapse
|
28
|
Rothblatt JA, Meyer DI. Secretion in yeast: reconstitution of the translocation and glycosylation of alpha-factor and invertase in a homologous cell-free system. Cell 1986; 44:619-28. [PMID: 3512097 DOI: 10.1016/0092-8674(86)90271-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A homologous cell-free system has been derived from the yeast Saccharomyces cerevisiae that allows the translation, translocation, and glycosylation of the precursors of yeast mating factor alpha and invertase. The precursors were translated in a yeast lysate from mRNA obtained by in vitro transcription of the MF alpha 1 and SUC2 genes. Inclusion of yeast microsomes resulted in the glycosylation of the alpha-factor precursor, which was demonstrated to be sequestered within the membrane vesicles. Similar results, including signal sequence cleavage, were observed for invertase. Processing of secretory proteins translated in a yeast lysate could not be achieved using microsomes derived from canine pancreas, nor were yeast microsomes active in a wheat germ translation system.
Collapse
|
29
|
Briggs MS, Gierasch LM. Molecular mechanisms of protein secretion: the role of the signal sequence. ADVANCES IN PROTEIN CHEMISTRY 1986; 38:109-80. [PMID: 3541538 DOI: 10.1016/s0065-3233(08)60527-6] [Citation(s) in RCA: 183] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Alvarez F, Bernard O, Homberg JC, Kreibich G. Anti-liver-kidney microsome antibody recognizes a 50,000 molecular weight protein of the endoplasmic reticulum. J Exp Med 1985; 161:1231-6. [PMID: 3989471 PMCID: PMC2187601 DOI: 10.1084/jem.161.5.1231] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Children with autoimmune chronic active hepatitis may have high titers of antibodies detected by immunofluorescence staining of hepatocytes and tubular cells in rat liver and kidney sections, respectively. These antibodies are directed against antigens contained in microsomal fractions prepared from these two organs. We have found that sera from these patients recognized a 50,000 mol wt protein present in higher concentration in smooth microsome subfractions compared with rough microsome subfractions. This protein is an integral membrane protein and is not glycosylated. It is exposed on the cytoplasmic face of the endoplasmic reticulum and is rather resistant to proteolysis with proteinase K. Since patients with liver disease of different etiology and similar severity of cell lysis do not give rise to liver-kidney microsome antibody (LKMA), lysis of hepatocytes is apparently not a sufficient condition for their development.
Collapse
|
31
|
Marcantonio EE, Amar-Costesec A, Kreibich G. Segregation of the polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorins and ribosomes. II. Rat liver microsomal subfractions contain equimolar amounts of ribophorins and ribosomes. J Cell Biol 1984; 99:2254-9. [PMID: 6501424 PMCID: PMC2113550 DOI: 10.1083/jcb.99.6.2254] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ribophorins I and II, two transmembrane glycoproteins characteristic of the rough endoplasmic reticulum (ER) are thought to be part of the translocation apparatus for proteins made on membrane bound polysomes. To study the stoichiometry between ribophorins and membrane-bound ribosomes we have determined the RNA and ribophorin content in rat liver microsomes or in microsomal subfractions of different density (i.e., ribosome content). The specificity of antibodies against the ribophorins was demonstrated by Western blot analysis of rat liver rough microsomes separated by 2-dimensional gel electrophoresis. The ribophorin content of microsomal subfractions was determined by indirect immunoprecipitation and for ribophorin I by a radioimmune assay. In the latter assay a molar ratio of ribophorin I/ribosomes approaching one was calculated for total microsomes as well as in the gradient subfractions. We therefore suggest that ribophorins mediate the binding of ribosomes to endoplasmic reticulum membranes or play a role in co-translational process which depend on this binding, such as the insertion of nascent polypeptides into the membrane or their transfer into the cisternal lumen.
Collapse
|