1
|
Steventon R, Stolle L, Thompson CP. How Broadly Neutralising Antibodies Are Redefining Immunity to Influenza. Antibodies (Basel) 2025; 14:4. [PMID: 39846612 PMCID: PMC11755579 DOI: 10.3390/antib14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Recent avian influenza outbreaks have heightened global concern over viral threats with the potential to significantly impact human health. Influenza is particularly alarming due to its history of causing pandemics and zoonotic reservoirs. In response, significant progress has been made toward the development of universal influenza vaccines, largely driven by the discovery of broadly neutralising antibodies (bnAbs), which have the potential to neutralise a broad range of influenza viruses, extending beyond the traditional strain-specific response. This could lead to longer-lasting immunity, reducing the need for seasonal vaccinations, and improve preparedness for future pandemics. This review offers a comprehensive analysis of these antibodies, their application in clinical studies, and both their potential and possible shortcomings in managing future influenza outbreaks.
Collapse
Affiliation(s)
| | | | - Craig Peter Thompson
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (R.S.); (L.S.)
| |
Collapse
|
2
|
Gordon S, Roberti A, Kaufmann SHE. Mononuclear Phagocytes, Cellular Immunity, and Nobel Prizes: A Historic Perspective. Cells 2024; 13:1378. [PMID: 39195266 PMCID: PMC11352343 DOI: 10.3390/cells13161378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The mononuclear phagocyte system includes monocytes, macrophages, some dendritic cells, and multinuclear giant cells. These cell populations display marked heterogeneity depending on their differentiation from embryonic and bone marrow hematopoietic progenitors, tissue location, and activation. They contribute to tissue homeostasis by interacting with local and systemic immune and non-immune cells through trophic, clearance, and cytocidal functions. During evolution, they contributed to the innate host defense before effector mechanisms of specific adaptive immunity emerged. Mouse macrophages appear at mid-gestation and are distributed throughout the embryo to facilitate organogenesis and clear cells undergoing programmed cell death. Yolk sac, AGM, and fetal liver-derived tissue-resident macrophages persist throughout postnatal and adult life, supplemented by bone marrow-derived blood monocytes, as required after injury and infection. Nobel awards to Elie Metchnikoff and Paul Ehrlich in 1908 drew attention to cellular phagocytic and humoral immunity, respectively. In 2011, prizes were awarded to Jules Hoffmann and Bruce Beutler for contributions to innate immunity and to Ralph Steinman for the discovery of dendritic cells and their role in antigen presentation to T lymphocytes. We trace milestones in the history of mononuclear phagocyte research from the perspective of Nobel awards bearing directly and indirectly on their role in cellular immunity.
Collapse
Affiliation(s)
- Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Annabell Roberti
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany;
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
3
|
Jiang F, Lei C, Chen Y, Zhou N, Zhang M. The complement system and diabetic retinopathy. Surv Ophthalmol 2024; 69:575-584. [PMID: 38401574 DOI: 10.1016/j.survophthal.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Diabetic retinopathy (DR) is one of the common microvascular complications of diabetes mellitus and is the main cause of visual impairment in diabetic patients. The pathogenesis of DR is still unclear. The complement system, as an important component of the innate immune system in addition to defending against the invasion of foreign microorganisms, is involved in the occurrence and development of DR through 3 widely recognized complement activation pathways, the complement regulatory system, and many other pathways. Molecules such as C3a, C5a, and membrane attacking complex, as important molecules of the complement system, are involved in the pathologenesus of DR, either through direct damaging effects or by activating cells (microglia, macroglia, etc.) in the retinal microenvironment to contribute to the pathological damage of DR indirectly. We review the integral association of the complement system and DR to further understand the pathogenesis of DR and possibly provide a new strategy for itstreatment.
Collapse
Affiliation(s)
- Feipeng Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Chunyan Lei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Nenghua Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China.
| |
Collapse
|
4
|
Côrtes N, Lira A, Prates-Syed W, Dinis Silva J, Vuitika L, Cabral-Miranda W, Durães-Carvalho R, Balan A, Cabral-Marques O, Cabral-Miranda G. Integrated control strategies for dengue, Zika, and Chikungunya virus infections. Front Immunol 2023; 14:1281667. [PMID: 38196945 PMCID: PMC10775689 DOI: 10.3389/fimmu.2023.1281667] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Arboviruses are a major threat to public health in tropical regions, encompassing over 534 distinct species, with 134 capable of causing diseases in humans. These viruses are transmitted through arthropod vectors that cause symptoms such as fever, headache, joint pains, and rash, in addition to more serious cases that can lead to death. Among the arboviruses, dengue virus stands out as the most prevalent, annually affecting approximately 16.2 million individuals solely in the Americas. Furthermore, the re-emergence of the Zika virus and the recurrent outbreaks of chikungunya in Africa, Asia, Europe, and the Americas, with one million cases reported annually, underscore the urgency of addressing this public health challenge. In this manuscript we discuss the epidemiology, viral structure, pathogenicity and integrated control strategies to combat arboviruses, and the most used tools, such as vaccines, monoclonal antibodies, treatment, etc., in addition to presenting future perspectives for the control of arboviruses. Currently, specific medications for treating arbovirus infections are lacking, and symptom management remains the primary approach. However, promising advancements have been made in certain treatments, such as Chloroquine, Niclosamide, and Isatin derivatives, which have demonstrated notable antiviral properties against these arboviruses in vitro and in vivo experiments. Additionally, various strategies within vector control approaches have shown significant promise in reducing arbovirus transmission rates. These encompass public education initiatives, targeted insecticide applications, and innovative approaches like manipulating mosquito bacterial symbionts, such as Wolbachia. In conclusion, combatting the global threat of arbovirus diseases needs a comprehensive approach integrating antiviral research, vaccination, and vector control. The continued efforts of research communities, alongside collaborative partnerships with public health authorities, are imperative to effectively address and mitigate the impact of these arboviral infections on public health worldwide.
Collapse
Affiliation(s)
- Nelson Côrtes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Aline Lira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Wasim Prates-Syed
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Jaqueline Dinis Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Durães-Carvalho
- São Paulo School of Medicine, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Andrea Balan
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- Applied Structural Biology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Zolfaghari MA, Ghadiri Moghaddam F, Rajput S, Karimi A, Naghi Vishteh M, Mahmoodpoor A, Dolati S, Yousefi M. SARS-CoV-2 vaccines: A double-edged sword throughout rapid evolution of COVID-19. Cell Biol Int 2022; 46:2009-2017. [PMID: 36047303 PMCID: PMC9539123 DOI: 10.1002/cbin.11903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/12/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
After more than 2 years of the coronavirus disease 2019 pandemic caused by severe acute respiratory syndrome coronavirus 2, several questions have remained unanswered that affected our daily lives. Although substantial vaccine development could resist this challenge, emerging new variants in different countries could be considered as potent concerns regarding the adverse effects of reinfection or postvaccination. Precisely, these concerns address some significant and probable outcomes in vaccinated or reinfected models, followed by some virus challenges, such as antibody-dependent enhancement and cytokine storm. Therefore, the importance of evaluating the effectiveness of neutralizing antibodies (nAbs) elicited by vaccination and the rise of new variants must be addressed.
Collapse
Affiliation(s)
- Mohammad Ali Zolfaghari
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | | | - Shabnam Rajput
- Department of Pediatrics, School of MedicineJahrom University of Medical SciencesJahromIran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohadeseh Naghi Vishteh
- Department of Genetics and Molecular Biology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Ata Mahmoodpoor
- Department of AnesthesiologyTabriz University of Medical SciencesTabrizIran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| | - Mehdi Yousefi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Immunology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
6
|
Bigay J, Le Grand R, Martinon F, Maisonnasse P. Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Front Microbiol 2022; 13:932408. [PMID: 36033843 PMCID: PMC9399815 DOI: 10.3389/fmicb.2022.932408] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The fight against infectious diseases calls for the development of safe and effective vaccines that generate long-lasting protective immunity. In a few situations, vaccine-mediated immune responses may have led to exacerbated pathology upon subsequent infection with the pathogen targeted by the vaccine. Such vaccine-associated enhanced disease (VAED) has been reported, or at least suspected, in animal models, and in a few instances in humans, for vaccine candidates against the respiratory syncytial virus (RSV), measles virus (MV), dengue virus (DENV), HIV-1, simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and the Middle East respiratory syndrome coronavirus (MERS-CoV). Although alleviated by clinical and epidemiological evidence, a number of concerns were also initially raised concerning the short- and long-term safety of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the ongoing COVID-19 pandemic. Although the mechanisms leading to this phenomenon are not yet completely understood, the individual and/or collective role of antibody-dependent enhancement (ADE), complement-dependent enhancement, and cell-dependent enhancement have been highlighted. Here, we review mechanisms that may be associated with the risk of VAED, which are important to take into consideration, both in the assessment of vaccine safety and in finding ways to define models and immunization strategies that can alleviate such concerns.
Collapse
Affiliation(s)
| | | | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud-INSERM U1184, CEA, Fontenay-Aux-Roses, France
| | | |
Collapse
|
7
|
Yang X, Zhang X, Zhao X, Yuan M, Zhang K, Dai J, Guan X, Qiu HJ, Li Y. Antibody-Dependent Enhancement: ″Evil″ Antibodies Favorable for Viral Infections. Viruses 2022; 14:v14081739. [PMID: 36016361 PMCID: PMC9412366 DOI: 10.3390/v14081739] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
The pandemics caused by emerging viruses such as severe acute respiratory syndrome coronavirus 2 result in severe disruptions to public health. Vaccines and antibody drugs play essential roles in the control and prevention of emerging infectious diseases. However, in contrast with the neutralizing antibodies (NAbs), sub- or non-NAbs may facilitate the virus to enter the cells and enhance viral infection, which is termed antibody-dependent enhancement (ADE). The ADE of most virus infections is mediated by the Fc receptors (FcRs) expressed on the myeloid cells, while others are developed by other mechanisms, such as complement receptor-mediated ADE. In this review, we comprehensively analyzed the characteristics of the viruses inducing FcRs-mediated ADE and the new molecular mechanisms of ADE involved in the virus entry, immune response, and transcription modulation, which will provide insights into viral pathogenicity and the development of safer vaccines and effective antibody drugs against the emerging viruses inducing ADE.
Collapse
Affiliation(s)
- Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Kehui Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jingwen Dai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiangyu Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence: (H.-J.Q.); (Y.L.)
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (H.-J.Q.); (Y.L.)
| |
Collapse
|
8
|
Day CJ, Hardison RL, Spillings BL, Poole J, Jurcisek JA, Mak J, Jennings MP, Edwards JL. Complement Receptor 3 Mediates HIV-1 Transcytosis across an Intact Cervical Epithelial Cell Barrier: New Insight into HIV Transmission in Women. mBio 2022; 13:e0217721. [PMID: 35012346 PMCID: PMC8749410 DOI: 10.1128/mbio.02177-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Transmission of HIV across the mucosal surface of the female reproductive tract to engage subepithelial CD4-positive T cells is not fully understood. Cervical epithelial cells express complement receptor 3 (CR3) (integrin αMβ2 or CD11b/CD18). In women, the bacterium Neisseria gonorrhoeae uses CR3 to invade the cervical epithelia to cause cervicitis. We hypothesized that HIV may also use CR3 to transcytose across the cervical epithelia. Here, we show that HIV-1 strains bound with high affinity to recombinant CR3 in biophysical assays. HIV-1 bound CR3 via the I-domain region of the CR3 alpha subunit, CD11b, and binding was dependent on HIV-1 N-linked glycans. Mannosylated glycans on the HIV surface were a high-affinity ligand for the I-domain. Man5 pentasaccharide, representative of HIV N-glycans, could compete with HIV-1 for CR3 binding. Using cellular assays, we show that HIV bound to CHO cells by a CR3-dependent mechanism. Antibodies to the CR3 I-domain or to the HIV-1 envelope glycoprotein blocked the binding of HIV-1 to primary human cervical epithelial (Pex) cells, indicating that CR3 was necessary and sufficient for HIV-1 adherence to Pex cells. Using Pex cells in a Transwell model system, we show that, following transcytosis across an intact Pex cell monolayer, HIV-1 is able to infect TZM-bl reporter cells. Targeting the HIV-CR3 interaction using antibodies, mannose-binding lectins, or CR3-binding small-molecule drugs blocked HIV transcytosis. These studies indicate that CR3/Pex may constitute an efficient pathway for HIV-1 transmission in women and also demonstrate strategies that may prevent transmission via this pathway. IMPORTANCE In women, the lower female reproductive tract is the primary site for HIV infection. How HIV traverses the epithelium to infect CD4 T cells in the submucosa is ill-defined. Cervical epithelial cells have a protein called CR3 on their surface. We show that HIV-1 binds to CR3 with high affinity and that this interaction is necessary and sufficient for HIV adherence to, and transcytosis across, polarized, human primary cervical epithelial cells. This suggests a unique role for CR3 on epithelial cells in dually facilitating HIV-1 attachment and entry. The HIV-CR3 interaction may constitute an efficient pathway for HIV delivery to subepithelial lymphocytes following virus transmission across an intact cervical epithelial barrier. Strategies with potential to prevent transmission via this pathway are presented.
Collapse
Affiliation(s)
- Christopher J. Day
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Rachael L. Hardison
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | | - Jessica Poole
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Joseph A. Jurcisek
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Jennifer L. Edwards
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Ajmeriya S, Kumar A, Karmakar S, Rana S, Singh H. Neutralizing Antibodies and Antibody-Dependent Enhancement in COVID-19: A Perspective. J Indian Inst Sci 2022; 102:671-687. [PMID: 35136306 PMCID: PMC8814804 DOI: 10.1007/s41745-021-00268-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Antibody-dependent enhancement (ADE) is an alternative route of viral entry in the susceptible host cell. In this process, antiviral antibodies enhance the entry access of virus in the cells via interaction with the complement or Fc receptors leading to the worsening of infection. SARS-CoV-2 variants pose a general concern for the efficacy of neutralizing antibodies that may fail to neutralize infection, raising the possibility of a more severe form of COVID-19. Data from various studies on respiratory viruses raise the speculation that antibodies elicited against SARS-CoV-2 and during COVID-19 recovery could potentially exacerbate the infection through ADE at sub-neutralizing concentrations; this may contribute to disease pathogenesis. It is, therefore, of utmost importance to study the effectiveness of the anti-SARS-CoV-2 antibodies in COVID-19-infected subjects. Theoretically, ADE remains a general concern for the efficacy of antibodies elicited during infection, most notably in convalescent plasma therapy and in response to vaccines where it could be counterproductive.
Collapse
Affiliation(s)
- Swati Ajmeriya
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Center, Indian Council of Medical Research (ICMR), Ansari Nagar, New Delhi, 110029 India
| | - Amit Kumar
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Center, Indian Council of Medical Research (ICMR), Ansari Nagar, New Delhi, 110029 India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, AIIMS, Room no 3020, Ansari Nagar, New Delhi, 110029 India
| | - Shweta Rana
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Center, Indian Council of Medical Research (ICMR), Ansari Nagar, New Delhi, 110029 India
| | - Harpreet Singh
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Center, Indian Council of Medical Research (ICMR), Ansari Nagar, New Delhi, 110029 India
| |
Collapse
|
10
|
Chen XX, Zhou X, Guo T, Qiao S, Guo Z, Li R, Jin Q, Hu X, Xing G, Deng R, Wan B, Zhang G. Efficacy of a live attenuated highly pathogenic PRRSV vaccine against a NADC30-like strain challenge: implications for ADE of PRRSV. BMC Vet Res 2021; 17:260. [PMID: 34332554 PMCID: PMC8325048 DOI: 10.1186/s12917-021-02957-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) infection can cause severe reproductive failure in sows and respiratory distress in pigs of all ages, leading to major economic losses. To date, there are still no effective strategies to prevent and control PRRSV. Antibody-dependent enhancement (ADE), a phenomenon in which preexisting non-neutralizing antibodies or sub-neutralizing antibodies facilitate virus entry and replication, may be a significant obstacle in the development of effective vaccines for many viruses, including PRRSV. However, the contribution of ADE to PRRSV infection remains controversial, especially in vivo. Whether attenuated PRRSV vaccines prevent or worsen subsequent disease in pigs infected by novel PRRSV strains requires more research. In the present study, in vivo experiments were conducted to evaluate ADE under different immune statuses, which were produced by waiting different lengths of time after vaccination with a commercially available attenuated highly pathogenic PRRSV (HP-PRRSV) vaccine (JXA1-R) before challenging the pigs with a novel heterologous NADC30-like strain. RESULTS Piglets that were vaccinated before being challenged with PRRSV exhibited lower mortality rates, lower body temperatures, higher bodyweight gain, and lower viremia. These results demonstrate that vaccination with JXA1-R alleviated the clinical signs of PRRSV infection in all vaccinated groups. CONCLUSIONS The obtained data indicate that the attenuated vaccine test here provided partial protection against the NADC30-like strain HNhx. No signs of enhanced PRRSV infection were observed under the applied experimental conditions. Our results provide some insight into the molecular mechanisms underlying vaccine-induced protection or enhancement in PRRSV.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Xinyu Zhou
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Tengda Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Qianyue Jin
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Xiaofei Hu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China.
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China. .,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Mody A, Singh M, Chhetri CD, Castro M, Sanghera P. Variations in West Nile Virus neuroinvasive infection: A case series of three patients in West Phoenix. IDCases 2021; 24:e01066. [PMID: 33996462 PMCID: PMC8093454 DOI: 10.1016/j.idcr.2021.e01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Accepted: 03/09/2021] [Indexed: 11/27/2022] Open
Abstract
West Nile Virus (WNV) is the most common mosquito-borne virus in the United States and North America. Although WNV disease occurs on a spectrum ranging from a relatively benign febrile illness to life-threatening neuroinvasive disease, the clinical presentations can vary widely and thus necessitates a high degree of suspicion. Here we describe three such cases where each individual presented with a unique constellation of symptoms that made the diagnosis challenging. It is essential for physicians to be well informed on the differing symptomology so early diagnosis and supportive management can mitigate poor prognosis.
Collapse
Affiliation(s)
- Aniket Mody
- Department of Internal Medicine, Abrazo Arrowhead Hospital, Glendale, AZ 85308, United States
| | - Monider Singh
- Department of Internal Medicine, Abrazo Arrowhead Hospital, Glendale, AZ 85308, United States
| | - Chandra D Chhetri
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, United States
| | - Michael Castro
- Department of Internal Medicine, Abrazo Arrowhead Hospital, Glendale, AZ 85308, United States
| | - Perminder Sanghera
- Department of Internal Medicine, Abrazo Arrowhead Hospital, Glendale, AZ 85308, United States
| |
Collapse
|
12
|
Xu L, Ma Z, Li Y, Pang Z, Xiao S. Antibody dependent enhancement: Unavoidable problems in vaccine development. Adv Immunol 2021; 151:99-133. [PMID: 34656289 PMCID: PMC8438590 DOI: 10.1016/bs.ai.2021.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In some cases, antibodies can enhance virus entry and replication in cells. This phenomenon is called antibody-dependent infection enhancement (ADE). ADE not only promotes the virus to be recognized by the target cell and enters the target cell, but also affects the signal transmission in the target cell. Early formalin-inactivated virus vaccines such as aluminum adjuvants (RSV and measles) have been shown to induce ADE. Although there is no direct evidence that there is ADE in COVID-19, this potential risk is a huge challenge for prevention and vaccine development. This article focuses on the virus-induced ADE phenomenon and its molecular mechanism. It also summarizes various attempts in vaccine research and development to eliminate the ADE phenomenon, and proposes to avoid ADE in vaccine development from the perspective of antigens and adjuvants.
Collapse
|
13
|
Cloutier M, Nandi M, Ihsan AU, Chamard HA, Ilangumaran S, Ramanathan S. ADE and hyperinflammation in SARS-CoV2 infection- comparison with dengue hemorrhagic fever and feline infectious peritonitis. Cytokine 2020; 136:155256. [PMID: 32866898 PMCID: PMC7439999 DOI: 10.1016/j.cyto.2020.155256] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic has rapidly spread around the world with significant morbidity and mortality in a subset of patients including the elderly. The poorer outcomes are associated with 'cytokine storm-like' immune responses, otherwise referred to as 'hyperinflammation'. While most of the infected individuals show minimal or no symptoms and recover spontaneously, a small proportion of the patients exhibit severe symptoms characterized by extreme dyspnea and low tissue oxygen levels, with extensive damage to the lungs referred to as acute respiratory distress symptom (ARDS). The consensus is that the hyperinflammatory response of the host is akin to the cytokine storm observed during sepsis and is the major cause of death. Uncertainties remain on the factors that lead to hyperinflammatory response in some but not all individuals. Hyperinflammation is a common feature in different viral infections such as dengue where existing low-titer antibodies to the virus enhances the infection in immune cells through a process called antibody-dependent enhancement or ADE. ADE has been reported following vaccination or secondary infections with other corona, Ebola and dengue virus. Detailed analysis has shown that antibodies to any viral epitope can induce ADE when present in sub-optimal titers or is of low affinity. In this review we will discuss ADE in the context of dengue and coronavirus infections including Covid-19.
Collapse
Affiliation(s)
- Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Awais Ullah Ihsan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugues Allard Chamard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
14
|
Kumar NA, Kunnakkadan U, Thomas S, Johnson JB. In the Crosshairs: RNA Viruses OR Complement? Front Immunol 2020; 11:573583. [PMID: 33133089 PMCID: PMC7550403 DOI: 10.3389/fimmu.2020.573583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
Complement, a part of the innate arm of the immune system, is integral to the frontline defense of the host against innumerable pathogens, which includes RNA viruses. Among the major groups of viruses, RNA viruses contribute significantly to the global mortality and morbidity index associated with viral infection. Despite multiple routes of entry adopted by these viruses, facing complement is inevitable. The initial interaction with complement and the nature of this interaction play an important role in determining host resistance versus susceptibility to the viral infection. Many RNA viruses are potent activators of complement, often resulting in virus neutralization. Yet, another facet of virus-induced activation is the exacerbation in pathogenesis contributing to the overall morbidity. The severity in disease and death associated with RNA virus infections shows a tip in the scale favoring viruses. Growing evidence suggest that like their DNA counterparts, RNA viruses have co-evolved to master ingenious strategies to remarkably restrict complement. Modulation of host genes involved in antiviral responses contributed prominently to the adoption of unique strategies to keep complement at bay, which included either down regulation of activation components (C3, C4) or up regulation of complement regulatory proteins. All this hints at a possible “hijacking” of the cross-talk mechanism of the host immune system. Enveloped RNA viruses have a selective advantage of not only modulating the host responses but also recruiting membrane-associated regulators of complement activation (RCAs). This review aims to highlight the significant progress in the understanding of RNA virus–complement interactions.
Collapse
Affiliation(s)
- Nisha Asok Kumar
- Viral Disease Biology, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Umerali Kunnakkadan
- Viral Disease Biology, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Sabu Thomas
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - John Bernet Johnson
- Viral Disease Biology, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
15
|
Trovato M, Sartorius R, D’Apice L, Manco R, De Berardinis P. Viral Emerging Diseases: Challenges in Developing Vaccination Strategies. Front Immunol 2020; 11:2130. [PMID: 33013898 PMCID: PMC7494754 DOI: 10.3389/fimmu.2020.02130] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
In the last decades, a number of infectious viruses have emerged from wildlife or re-emerged, generating serious threats to the global health and to the economy worldwide. Ebola and Marburg hemorrhagic fevers, Lassa fever, Dengue fever, Yellow fever, West Nile fever, Zika, and Chikungunya vector-borne diseases, Swine flu, Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the recent Coronavirus disease 2019 (COVID-19) are examples of zoonoses that have spread throughout the globe with such a significant impact on public health that the scientific community has been called for a rapid intervention in preventing and treating emerging infections. Vaccination is probably the most effective tool in helping the immune system to activate protective responses against pathogens, reducing morbidity and mortality, as proven by historical records. Under health emergency conditions, new and alternative approaches in vaccine design and development are imperative for a rapid and massive vaccination coverage, to manage a disease outbreak and curtail the epidemic spread. This review gives an update on the current vaccination strategies for some of the emerging/re-emerging viruses, and discusses challenges and hurdles to overcome for developing efficacious vaccines against future pathogens.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Enhancement/immunology
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Communicable Diseases, Emerging/prevention & control
- Communicable Diseases, Emerging/virology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Coronavirus Infections/virology
- Cross Reactions/immunology
- Humans
- Immunization, Passive
- Pandemics/prevention & control
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/therapy
- Pneumonia, Viral/virology
- SARS-CoV-2
- Vaccination
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Inactivated/immunology
- Vaccines, Subunit/immunology
- Viral Vaccines/immunology
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Maria Trovato
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Lukácsi S, Mácsik-Valent B, Nagy-Baló Z, Kovács KG, Kliment K, Bajtay Z, Erdei A. Utilization of complement receptors in immune cell-microbe interaction. FEBS Lett 2020; 594:2695-2713. [PMID: 31989596 DOI: 10.1002/1873-3468.13743] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
The complement system is a major humoral component of immunity and is essential for the fast elimination of pathogens invading the body. In addition to its indispensable role in innate immunity, the complement system is also involved in pathogen clearance during the effector phase of adaptive immunity. The fastest way of killing the invader is lysis by the membrane attack complex, which is formed by the terminal components of the complement cascade. Not all pathogens are lysed however and, if opsonized by a variety of molecules, they undergo phagocytosis and disposal inside immune cells. The most important complement-derived opsonins are C1q, the first component of the classical pathway, MBL, the initiator of the lectin pathway and C3-derived activation fragments, including C3b, iC3b and C3d, which all serve as ligands for their corresponding receptors. In this review, we discuss how complement receptors are utilized by various immune cells to tackle invading microbes, or by pathogens to evade host response.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | | | - Zsuzsa Nagy-Baló
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Kristóf G Kovács
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | | | - Zsuzsa Bajtay
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Anna Erdei
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
18
|
Malafa S, Medits I, Aberle JH, Aberle SW, Haslwanter D, Tsouchnikas G, Wölfel S, Huber KL, Percivalle E, Cherpillod P, Thaler M, Roßbacher L, Kundi M, Heinz FX, Stiasny K. Impact of flavivirus vaccine-induced immunity on primary Zika virus antibody response in humans. PLoS Negl Trop Dis 2020; 14:e0008034. [PMID: 32017766 PMCID: PMC7021315 DOI: 10.1371/journal.pntd.0008034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/14/2020] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
Background Zika virus has recently spread to South- and Central America, causing congenital birth defects and neurological complications. Many people at risk are flavivirus pre-immune due to prior infections with other flaviviruses (e.g. dengue virus) or flavivirus vaccinations. Since pre-existing cross-reactive immunity can potentially modulate antibody responses to Zika virus infection and may affect the outcome of disease, we analyzed fine-specificity as well as virus-neutralizing and infection-enhancing activities of antibodies induced by a primary Zika virus infection in flavivirus-naïve as well as yellow fever- and/or tick-borne encephalitis-vaccinated individuals. Methodology Antibodies in sera from convalescent Zika patients with and without vaccine-induced immunity were assessed by ELISA with respect to Zika virus-specificity and flavivirus cross-reactivity. Functional analyses included virus neutralization and infection-enhancement. The contribution of IgM and cross-reactive antibodies to these properties was determined by depletion experiments. Principal findings Pre-existing flavivirus immunity had a strong influence on the antibody response in primary Zika virus infections, resulting in higher titers of broadly flavivirus cross-reactive antibodies and slightly lower levels of Zika virus-specific IgM. Antibody-dependent enhancement (ADE) of Zika virus was mediated by sub-neutralizing concentrations of specific IgG but not by cross-reactive antibodies. This effect was potently counteracted by the presence of neutralizing IgM. Broadly cross-reactive antibodies were able to both neutralize and enhance infection of dengue virus but not Zika virus, indicating a different exposure of conserved sequence elements in the two viruses. Conclusions Our data point to an important role of flavivirus-specific IgM during the transient early stages of infection, by contributing substantially to neutralization and by counteracting ADE. In addition, our results highlight structural differences between strains of Zika and dengue viruses that are used for analyzing infection-enhancement by cross-reactive antibodies. These findings underscore the possible impact of specific antibody patterns on flavivirus disease and vaccination efficacy. The explosive spread of Zika virus, a flavivirus, to South- and Central America underscores the potential threat of newly emerging arthropod-borne viruses. Zika virus infection can cause congenital birth defects and neurological complications. Many people at risk are flavivirus pre-immune because of prior infections with other flaviviruses (e.g. dengue virus, which co-circulates in Zika outbreak regions) or vaccinations (e.g. against yellow fever or tick-borne encephalitis) and have non-protective cross-reactive antibodies at the time of infection. Since pre-existing immunity can modulate the specificity and functional activity of antibody responses, and cross-reactive antibodies have been implicated in disease enhancement, we compared the specificities of serum samples from flavivirus-naïve and vaccinated individuals after primary Zika virus infections. Prior immunity led to a strong booster of cross-reactive antibodies that did not neutralize Zika virus. Importantly, we could also show that newly formed IgM antibodies contributed significantly to virus neutralization and prevented infection enhancement by other antibodies. Our data thus show how pre-existing cross-reactive immunities can alter the specificities and functional activities of antibody responses in flavivirus infections, which may affect flavivirus-induced disease and the efficacy of vaccinations.
Collapse
Affiliation(s)
- Stefan Malafa
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Iris Medits
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H. Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Silke Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany; Center of Infection Research (DZIF) Partner, Munich, Germany
| | - Kristina L. Huber
- Division of Infectious Diseases and Tropical Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pascal Cherpillod
- Laboratory of Virology, Laboratory Medicine Division, Geneva University Hospitals, Geneva, Switzerland
| | - Melissa Thaler
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Lena Roßbacher
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Franz X. Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
- * E-mail: (FXH); (KS)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
- * E-mail: (FXH); (KS)
| |
Collapse
|
19
|
Abstract
Dengue virus (DENV) belongs to the family Flaviviridae, genus Flavivirus. It is a single-stranded positive-sense ribonucleic acid virus with 10,700 bases. The genus Flavivirus includes other arthropod borne viruses such as yellow fever virus, West Nile virus, Zika virus, tick-borne encephalitis virus. It infects ~50–200 million people annually, putting over 3.6 billion people living in tropical regions at risk and causing ~20,000 deaths annually. The expansion of dengue is attributed to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement, and also viral evolution. There are four antigenically different serotypes of DENV based on the differences in their viral structural and nonstructural proteins. DENV infection causes a spectrum of illness ranging from asymptomatic to dengue fever to severe dengue shock syndrome. Infection with one serotype confers lifelong immunity against that serotype, but heterologus infection leads to severe dengue hemorrhagic fever due to antibody-dependent enhancement. Diagnosis of dengue infections is based mainly on serological detection of either antigen in acute cases or antibodies in both acute and chronic infection. Viral detection and real-time PCR detection though helpful is not feasible in resource poor setup. Treatment of dengue depends on symptomatic management along with fluid resuscitation and may require platelet transfusion. Although vaccine development is in late stages of development, developing a single vaccine against four serotypes often causes serious challenges to researchers; hence, the main stay of prevention is vector control and management.
Collapse
|
20
|
Bai F, Thompson EA, Vig PJS, Leis AA. Current Understanding of West Nile Virus Clinical Manifestations, Immune Responses, Neuroinvasion, and Immunotherapeutic Implications. Pathogens 2019; 8:pathogens8040193. [PMID: 31623175 PMCID: PMC6963678 DOI: 10.3390/pathogens8040193] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) is the most common mosquito-borne virus in North America. WNV-associated neuroinvasive disease affects all ages, although elderly and immunocompromised individuals are particularly at risk. WNV neuroinvasive disease has killed over 2300 Americans since WNV entered into the United States in the New York City outbreak of 1999. Despite 20 years of intensive laboratory and clinical research, there are still no approved vaccines or antivirals available for human use. However, rapid progress has been made in both understanding the pathogenesis of WNV and treatment in clinical practices. This review summarizes our current understanding of WNV infection in terms of human clinical manifestations, host immune responses, neuroinvasion, and therapeutic interventions.
Collapse
Affiliation(s)
- Fengwei Bai
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - E Ashley Thompson
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Parminder J S Vig
- Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - A Arturo Leis
- Methodist Rehabilitation Center, Jackson, MS 39216, USA.
| |
Collapse
|
21
|
Sautter CA, Trus I, Nauwynck H, Summerfield A. No Evidence for a Role for Antibodies during Vaccination-Induced Enhancement of Porcine Reproductive and Respiratory Syndrome. Viruses 2019; 11:v11090829. [PMID: 31489915 PMCID: PMC6784192 DOI: 10.3390/v11090829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/02/2022] Open
Abstract
Vaccination is one of the most important tools to protect pigs against infection with porcine reproductive and respiratory syndrome virus 1 (PRRSV-1). Although neutralizing antibodies are considered to represent an important mechanism of protective immunity, anti-PRRSV antibodies, in particular at subneutralizing concentrations, have also been reported to exacerbate PRRSV infection, probably through FcγR-mediated uptake of antibody-opsonized PRRSV, resulting in enhanced infection of, and replication in, target cells. Therefore, we investigated this pathway using sera from an animal experiment in which vaccine-mediated enhancement of clinical symptoms was observed. Three groups of six pigs were vaccinated with an inactivated PRRSV vaccine based on the PRRSV-1 subtype 3 strain Lena and challenged after a single or a prime-boost immunization protocol, or injected with PBS. We specifically tested if sera obtained from these animals can enhance macrophage infections, viral shedding, or cytokine release at different dilutions. Neither the presence of neutralizing antibodies nor general anti-PRRSV antibodies, mediated an enhanced infection, increased viral release or cytokine production by macrophages. Taken together, our data indicate that the exacerbated disease was not caused by antibodies.
Collapse
Affiliation(s)
- Carmen A Sautter
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Ivan Trus
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Artur Summerfield
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| |
Collapse
|
22
|
Smatti MK, Al Thani AA, Yassine HM. Viral-Induced Enhanced Disease Illness. Front Microbiol 2018; 9:2991. [PMID: 30568643 PMCID: PMC6290032 DOI: 10.3389/fmicb.2018.02991] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding immune responses to viral infections is crucial to progress in the quest for effective infection prevention and control. The host immunity involves various mechanisms to combat viral infections. Under certain circumstances, a viral infection or vaccination may result in a subverted immune system, which may lead to an exacerbated illness. Clinical evidence of enhanced illness by preexisting antibodies from vaccination, infection or maternal passive immunity is available for several viruses and is presumptively proposed for other viruses. Multiple mechanisms have been proposed to explain this phenomenon. It has been confirmed that certain infection- and/or vaccine-induced immunity could exacerbate viral infectivity in Fc receptor- or complement bearing cells- mediated mechanisms. Considering that antibody dependent enhancement (ADE) is a major obstacle in vaccine development, there are continues efforts to understand the underlying mechanisms through identification of the epitopes and antibodies responsible for disease enhancement or protection. This review discusses the recent findings on virally induced ADE, and highlights the potential mechanisms leading to this condition.
Collapse
Affiliation(s)
- Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
23
|
Paul AM, Acharya D, Duty L, Thompson EA, Le L, Stokic DS, Leis AA, Bai F. Osteopontin facilitates West Nile virus neuroinvasion via neutrophil "Trojan horse" transport. Sci Rep 2017; 7:4722. [PMID: 28680095 PMCID: PMC5498593 DOI: 10.1038/s41598-017-04839-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/22/2017] [Indexed: 01/26/2023] Open
Abstract
West Nile virus (WNV) can cause severe human neurological diseases including encephalitis and meningitis. The mechanisms by which WNV enters the central nervous system (CNS) and host-factors that are involved in WNV neuroinvasion are not completely understood. The proinflammatory chemokine osteopontin (OPN) is induced in multiple neuroinflammatory diseases and is responsible for leukocyte recruitment to sites of its expression. In this study, we found that WNV infection induced OPN expression in both human and mouse cells. Interestingly, WNV-infected OPN deficient (Opn -/-) mice exhibited a higher survival rate (70%) than wild type (WT) control mice (30%), suggesting OPN plays a deleterious role in WNV infection. Despite comparable levels of viral load in circulating blood cells and peripheral organs in the two groups, WNV-infected polymorphonuclear neutrophil (PMN) infiltration and viral burden in brain of Opn -/- mice were significantly lower than in WT mice. Importantly, intracerebral administration of recombinant OPN into the brains of Opn -/- mice resulted in increased WNV-infected PMN infiltration and viral burden in the brain, which was coupled to increased mortality. The overall results suggest that OPN facilitates WNV neuroinvasion by recruiting WNV-infected PMNs into the brain.
Collapse
Affiliation(s)
- Amber M Paul
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Dhiraj Acharya
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Laurel Duty
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - E Ashley Thompson
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Linda Le
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, 39216, USA
| | - A Arturo Leis
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, 39216, USA.,Department of Neurology, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Fengwei Bai
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
24
|
Conde JN, Silva EM, Barbosa AS, Mohana-Borges R. The Complement System in Flavivirus Infections. Front Microbiol 2017; 8:213. [PMID: 28261172 PMCID: PMC5306369 DOI: 10.3389/fmicb.2017.00213] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/30/2017] [Indexed: 01/29/2023] Open
Abstract
The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical climates worldwide, affecting hundreds of millions of people each year. The Flaviviridae family includes dengue, West Nile, Zika, Japanese encephalitis, and yellow fever viruses that are typically transmitted by mosquitoes or ticks, and cause a wide range of symptoms, such as fever, shock, meningitis, paralysis, birth defects, and death. The flavivirus genome is composed of a single positive-sense RNA molecule encoding a single viral polyprotein. This polyprotein is further processed by viral and host proteases into three structural proteins (C, prM/M, E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) that are involved in viral replication and pathogenicity. The complement system has been described to play an important role in flavivirus infection either by protecting the host and/or by influencing disease pathogenesis. In this mini-review, we will explore the role of complement system inhibition and/or activation against infection by the Flavivirus genus, with an emphasis on dengue and West Nile viruses.
Collapse
Affiliation(s)
- Jonas N Conde
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Emiliana M Silva
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Angela S Barbosa
- Laboratório de Bacteriologia, Instituto Butantan São Paulo, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Taylor A, Foo SS, Bruzzone R, Dinh LV, King NJC, Mahalingam S. Fc receptors in antibody-dependent enhancement of viral infections. Immunol Rev 2016; 268:340-64. [PMID: 26497532 PMCID: PMC7165974 DOI: 10.1111/imr.12367] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sensitization of the humoral immune response to invading viruses and production of antiviral antibodies forms part of the host antiviral repertoire. Paradoxically, for a number of viral pathogens, under certain conditions, antibodies provide an attractive means of enhanced virus entry and replication in a number of cell types. Known as antibody‐dependent enhancement (ADE) of infection, the phenomenon occurs when virus‐antibody immunocomplexes interact with cells bearing complement or Fc receptors, promoting internalization of the virus and increasing infection. Frequently associated with exacerbation of viral disease, ADE of infection presents a major obstacle to the prevention of viral disease by vaccination and is thought to be partly responsible for the adverse effects of novel antiviral therapeutics such as intravenous immunoglobulins. There is a growing body of work examining the intracellular signaling pathways and epitopes responsible for mediating ADE, with a view to aiding rational design of antiviral strategies. With in vitro studies also confirming ADE as a feature of infection for a growing number of viruses, challenges remain in understanding the multilayered molecular mechanisms of ADE and its effect on viral pathogenesis.
Collapse
Affiliation(s)
- Adam Taylor
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| | - Suan-Sin Foo
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, Hong Kong.,Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Luan Vu Dinh
- Discipline of Pathology, Bosch Institute, School of Medical Sciences, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Nicholas J C King
- Discipline of Pathology, Bosch Institute, School of Medical Sciences, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| |
Collapse
|
26
|
Bopegamage S. Enterovirus infections: Pivoting role of the adaptive immune response. Virulence 2016; 7:495-7. [PMID: 27058267 PMCID: PMC5026793 DOI: 10.1080/21505594.2016.1175701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 12/04/2022] Open
Affiliation(s)
- Shubhada Bopegamage
- Enterovirus Laboratory, Faculty of Medicine, Slovak Medical University, Bratislava, Slovak Republic
| |
Collapse
|
27
|
Marinho CF, Azeredo EL, Torrentes-Carvalho A, Marins-Dos-Santos A, Kubelka CF, de Souza LJ, Cunha RV, de-Oliveira-Pinto LM. Down-regulation of complement receptors on the surface of host monocyte even as in vitro complement pathway blocking interferes in dengue infection. PLoS One 2014; 9:e102014. [PMID: 25061945 PMCID: PMC4111305 DOI: 10.1371/journal.pone.0102014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/13/2014] [Indexed: 12/16/2022] Open
Abstract
In dengue virus (DENV) infection, complement system (CS) activation appears to have protective and pathogenic effects. In severe dengue fever (DF), the levels of DENV non-structural-1 protein and of the products of complement activation, including C3a, C5a and SC5b-9, are higher before vascular leakage occurs, supporting the hypothesis that complement activation contributes to unfavourable outcomes. The clinical manifestations of DF range from asymptomatic to severe and even fatal. Here, we aimed to characterise CS by their receptors or activation product, in vivo in DF patients and in vitro by DENV-2 stimulation on monocytes. In comparison with healthy controls, DF patients showed lower expression of CR3 (CD11b), CR4 (CD11c) and, CD59 on monocytes. The DF patients who were high producers of SC5b-9 were also those that showed more pronounced bleeding or vascular leakage. Those findings encouraged us to investigate the role of CS in vitro, using monocytes isolated from healthy subjects. Prior blocking with CR3 alone (CD11b) or CR3 (CD11b/CD18) reduced viral infection, as quantified by the levels of intracellular viral antigen expression and soluble DENV non-structural viral protein. However, we found that CR3 alone (CD11b) or CR3 (CD11b/CD18) blocking did not influence major histocompatibility complex presentation neither active caspase-1 on monocytes, thus probably ruling out inflammasome-related mechanisms. Although it did impair the secretion of tumour necrosis factor alpha and interferon alpha. Our data provide strategies of blocking CR3 (CD11b) pathways could have implications for the treatment of viral infection by antiviral-related mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rivaldo Venâncio Cunha
- Department of Clinical Medicine, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | | |
Collapse
|
28
|
Antibody-mediated enhancement of parvovirus B19 uptake into endothelial cells mediated by a receptor for complement factor C1q. J Virol 2014; 88:8102-15. [PMID: 24807719 DOI: 10.1128/jvi.00649-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite its strong host tropism for erythroid progenitor cells, human parvovirus B19 (B19V) can also infect a variety of additional cell types. Acute and chronic inflammatory cardiomyopathies have been associated with a high prevalence of B19V DNA in endothelial cells of the myocardium. To elucidate the mechanisms of B19V uptake into endothelium, we first analyzed the surface expression of the well-characterized primary B19V receptor P antigen and the putative coreceptors α5β1 integrins and Ku80 antigen on primary and permanent endothelial cells. The receptor expression pattern and also the primary attachment levels were similar to those in the UT7/Epo-S1 cell line regarded as functional for B19V entry, but internalization of the virus was strongly reduced. As an alternative B19V uptake mechanism in endothelial cells, we demonstrated antibody-dependent enhancement (ADE), with up to a 4,000-fold increase in B19V uptake in the presence of B19V-specific human antibodies. ADE was mediated almost exclusively at the level of virus internalization, with efficient B19V translocation to the nucleus. In contrast to monocytes, where ADE of B19V has been described previously, enhancement does not rely on interaction of the virus-antibody complexes with Fc receptors (FcRs), but rather, involves an alternative mechanism mediated by the heat-sensitive complement factor C1q and its receptor, CD93. Our results suggest that ADE represents the predominant mechanism of endothelial B19V infection, and it is tempting to speculate that it may play a role in the pathogenicity of cardiac B19V infection. Importance: Both efficient entry and productive infection of human parvovirus B19 (B19V) seem to be limited to erythroid progenitor cells. However, in vivo, the viral DNA can also be detected in additional cell types, such as endothelial cells of the myocardium, where its presence has been associated with acute and chronic inflammatory cardiomyopathies. In this study, we demonstrated that uptake of B19V into endothelial cells most probably does not rely on the classical receptor-mediated route via the primary B19V receptor P antigen and coreceptors, such as α5β1 integrins, but rather on antibody-dependent mechanisms. Since the strong antibody-dependent enhancement (ADE) of B19V entry requires the CD93 surface protein, it very likely involves bridging of the B19V-antibody complexes to this receptor by the complement factor C1q, leading to enhanced endocytosis of the virus.
Collapse
|
29
|
Yeo ASL, Azhar NA, Yeow W, Talbot CC, Khan MA, Shankar EM, Rathakrishnan A, Azizan A, Wang SM, Lee SK, Fong MY, Manikam R, Sekaran SD. Lack of clinical manifestations in asymptomatic dengue infection is attributed to broad down-regulation and selective up-regulation of host defence response genes. PLoS One 2014; 9:e92240. [PMID: 24727912 PMCID: PMC3984081 DOI: 10.1371/journal.pone.0092240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/19/2014] [Indexed: 12/25/2022] Open
Abstract
Objectives Dengue represents one of the most serious life-threatening vector-borne infectious diseases that afflicts approximately 50 million people across the globe annually. Whilst symptomatic infections are frequently reported, asymptomatic dengue remains largely unnoticed. Therefore, we sought to investigate the immune correlates conferring protection to individuals that remain clinically asymptomatic. Methods We determined the levels of neutralizing antibodies (nAbs) and gene expression profiles of host immune factors in individuals with asymptomatic infections, and whose cognate household members showed symptoms consistent to clinical dengue infection. Results We observed broad down-regulation of host defense response (innate, adaptive and matrix metalloprotease) genes in asymptomatic individuals as against symptomatic patients, with selective up-regulation of distinct genes that have been associated with protection. Selected down-regulated genes include: TNF α (TNF), IL8, C1S, factor B (CFB), IL2, IL3, IL4, IL5, IL8, IL9, IL10 and IL13, CD80, CD28, and IL18, MMP8, MMP10, MMP12, MMP15, MMP16, and MMP24. Selected up-regulated genes include: RANTES (CCL5), MIP-1α (CCL3L1/CCL3L3), MIP-1β (CCL4L1), TGFβ (TGFB), and TIMP1. Conclusion Our findings highlight the potential association of certain host genes conferring protection against clinical dengue. These data are valuable to better explore the mysteries behind the hitherto poorly understood immunopathogenesis of subclinical dengue infection.
Collapse
Affiliation(s)
- Adeline S. L. Yeo
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Nur Atiqah Azhar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- Perdana University Graduate School of Medicine & Centre for Bioinformatics, MARDI Complex, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia
| | - Wanyi Yeow
- Perdana University Graduate School of Medicine & Centre for Bioinformatics, MARDI Complex, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia
| | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mohammad Asif Khan
- Perdana University Graduate School of Medicine & Centre for Bioinformatics, MARDI Complex, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Esaki M. Shankar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Anusyah Rathakrishnan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Azliyati Azizan
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Seok Mui Wang
- Institute for Medical Molecular Biotechnology, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Siew Kim Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University of Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Shamala Devi Sekaran
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
30
|
Abstract
Vaccines to protect against tick-borne encephalitis (TBE) are produced by two manufacturers and are widely used in European and Asian countries, where TBE virus is endemic. General trends in vaccine development during recent decades and extensive postmarketing experience resulted in several modifications to their formulations and practical implications for use. Modifications were made to the production process, such as the change of the virus master bank from mouse brain to primary cells; to the excipients, especially the stabilizers and preservative; and to include formulations for children. Additionally, a rapid vaccination schedule has been developed for persons who require a fast onset of protection. Recent data from clinical studies and postmarketing surveillance indicate that both vaccines are safe, efficacious and interchangeable. Further (major) changes to formulation or alternative targets for vaccine development are not anticipated in the next 5 years. Recent serologic studies indicate that the persistence of protective immunity was longer than expected. Thus, recommendations for prolongation of TBE booster intervals have been made in several European countries, and a harmonization for booster recommendations is predicted within the European Union. Based on epidemiologic trends, the use of TBE vaccines will continue to increase in all age groups, including children.
Collapse
Affiliation(s)
- Olaf Zent
- Chiron Vaccines, Clinical Research and Medical Affairs, Chiron Behring GmbH & Co KG, Emil-von-Behring Str. 76, 35041 Marburg, Germany.
| | | |
Collapse
|
31
|
Liu Z, Ji Y, Huang X, Fu Y, Wei J, Cai X, Zhu Q. An adapted duck Tembusu virus induces systemic infection and mediates antibody-dependent disease severity in mice. Virus Res 2013; 176:216-22. [DOI: 10.1016/j.virusres.2013.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
|
32
|
Dengue nonstructural protein-1 status is not associated to circulating levels of interleukin-17, C-reactive protein and complement in children with acute dengue. J Clin Virol 2013. [DOI: 10.1016/j.jcv.2012.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
|
34
|
A hamster-derived West Nile virus strain is highly attenuated and induces a differential proinflammatory cytokine response in two murine cell lines. Virus Res 2012; 167:179-87. [PMID: 22580088 DOI: 10.1016/j.virusres.2012.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/29/2012] [Accepted: 04/30/2012] [Indexed: 01/01/2023]
Abstract
Increasing evidence suggests that West Nile virus (WNV) induces a persistent infection in some humans and animals. Here, we characterized infection of mouse macrophage and kidney epithelial cell lines with a strain of WNV (H8912), cultured from urine of a persistently infected hamster. WNV H8912 had a reduced replication rate, concurrent with a lower interferon (IFN)-β gene expression in both cell types compared to its parent strain - WNV NY99. In WNV H8912-infected macrophages, we observed higher interleukin (IL)-6 and tumor necrosis factor (TNF)-α expression and more nuclear factor kappa B (NF-κB) activation than in cells infected with WNV NY99. In contrast, there were reduced levels of TNF-α and IL-6 expression, as well as less NF-κB activation following WNV H8912 infection in the kidney epithelial cells compared to WNV NY99. Overall, our results demonstrate that the WNV isolate obtained from hamster urine is an attenuated virus and induces a differential proinflammatory cytokine response in mouse macrophage and kidney epithelial cell lines.
Collapse
|
35
|
Abstract
Dengue viruses (DENV) cause a spectrum of disease in humans, ranging from dengue fever (DF) to a severe, life-threatening syndrome called dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Despite the global morbidity and mortality associated with DENV infection, mechanisms of immune control and viral pathogenesis are poorly understood. In a recent article, Avirutnan et al. [mBio2(6):e00276-11, 201122167226] demonstrated that DENV can be directly neutralized via the mannose binding lectin (MBL) pathway of the complement system and that deficiency in MBL level or activity due to host polymorphisms in the MBL2 gene correlates with reduced levels of DENV neutralization. These findings implicate a role for the MBL pathway in controlling DENV infections and modulating DHF/DSS manifestations.
Collapse
|
36
|
Affiliation(s)
- Pyung Ok Lim
- Department of Science Education, Jeju National University, Jeju, Korea
| | - Tae Hee Lee
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Chonju, Chonbuk, Korea
- Institute for Medical Science, Chonbuk National University Medical School, Chonju, Chonbuk, Korea
| | - Kyung Min Chung
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Chonju, Chonbuk, Korea
- Institute for Medical Science, Chonbuk National University Medical School, Chonju, Chonbuk, Korea
| |
Collapse
|
37
|
Pyaram K, Yadav VN, Reza MJ, Sahu A. Virus–complement interactions: an assiduous struggle for dominance. Future Virol 2010. [DOI: 10.2217/fvl.10.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complement system is a major component of the innate immune system that recognizes invading pathogens and eliminates them by means of an array of effector mechanisms, in addition to using direct lytic destruction. Viruses, in spite of their small size and simple composition, are also deftly recognized and neutralized by the complement system. In turn, as a result of years of coevolution with the host, viruses have developed multiple mechanisms to evade the host complement. These complex interactions between the complement system and viruses have been an area of focus for over three decades. In this article, we provide a broad overview of the field using key examples and up-to-date information on the complement-evasion strategies of viruses.
Collapse
Affiliation(s)
- Kalyani Pyaram
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Viveka Nand Yadav
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Malik Johid Reza
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | |
Collapse
|
38
|
Nielsen DG. The relationship of interacting immunological components in dengue pathogenesis. Virol J 2009; 6:211. [PMID: 19941667 PMCID: PMC2789730 DOI: 10.1186/1743-422x-6-211] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/27/2009] [Indexed: 12/18/2022] Open
Abstract
The World Health Organization (WHO) estimates that there are over 50 million cases of dengue fever reported annually and approximately 2.5 billion people are at risk. Mild dengue fever presents with headache, fever, rash, myalgia, osteogenic pain, and lethargy. Severe disease can manifest as dengue shock syndrome (DSS) or dengue hemorrhagic fever (DHF). Symptoms of DSS/DHF are leukopenia, low blood volume and pressure encephalitis, cold and sweaty skin, gastrointestinal bleeding, and spontaneous bleeding from gums and nose. Currently, there are no therapeutics available beyond supportive care and untreated complicated dengue fever can have a 50% mortality rate. According to WHO DSS/DHF is the leading cause of childhood mortality in some Asian countries. Dendritic cells are professional antigen presenting cells that are primary targets in a dengue infection. Dengue binds to Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN). DC-SIGN has a high affinity for ICAM3 which is expressed in activating T-cells. Previous studies have demonstrated an altered T-cell phenotype expressed in dengue infected patients that could be potentially mediated by dengue-infected DCs. Dengue is enhanced by three interacting components of the immune system. Dengue begins by infecting dendritic cells which in immature dendritic cells is mediated by DC-SIGN. In mature dendritic cells, antibodies can enhance dengue infection via Fc receptors. Downstream of dendritic cells T-cells become activated and generate the very cytokines implicated in vascular leak and shock in addition to activating effector cells. Both the virus and the antibodies are involved in release of complement and anaphylatoxins which can cause or exacerbate DHF/DSS. These systems are inextricable and strongly associated with dengue pathogenesis.
Collapse
Affiliation(s)
- David G Nielsen
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana 70112-2699, USA.
| |
Collapse
|
39
|
Diamond MS. Progress on the development of therapeutics against West Nile virus. Antiviral Res 2009; 83:214-27. [PMID: 19501622 PMCID: PMC2759769 DOI: 10.1016/j.antiviral.2009.05.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023]
Abstract
A decade has passed since the appearance of West Nile virus (WNV) in humans in the Western Hemisphere in New York City. During this interval, WNV spread inexorably throughout North and South America and caused millions of infections ranging from a sub-clinical illness, to a self-limiting febrile syndrome or lethal neuroinvasive disease. Its entry into the United States triggered intensive research into the basic biology of WNV and the elements that comprise a protective host immune response. Although no therapy is currently approved for use in humans, several strategies are being pursued to develop effective prophylaxis and treatments. This review describes the current state of knowledge on epidemiology, clinical presentation, pathogenesis, and immunobiology of WNV infection, and highlights progress toward an effective therapy.
Collapse
Affiliation(s)
- Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
40
|
Sauter P, Hober D. Mechanisms and results of the antibody-dependent enhancement of viral infections and role in the pathogenesis of coxsackievirus B-induced diseases. Microbes Infect 2009; 11:443-51. [PMID: 19399964 DOI: 10.1016/j.micinf.2009.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The mechanisms of the antibody-dependent enhancement (ADE) of viral infection are presented, particularly within the Picornaviridae family. The ADE of infection has been described in both human and animal models, worsens viral infections and compromises vaccine safety. The ADE of coxsackievirus B infection can also be implied in the pathogenesis of diseases like chronic dilated cardiomyopathy or insulin-dependent type 1 diabetes.
Collapse
Affiliation(s)
- Pierre Sauter
- Laboratoire de virologie/UPRES EA3610, Faculté de médecine, Université Lille-2, CHRU de Lille, Centre de Biologie et Parc Eurasanté, Lille 59037, France
| | | |
Collapse
|
41
|
Abstract
The complement system is a family of serum and cell surface proteins that recognize pathogen-associated molecular patterns, altered-self ligands, and immune complexes. Activation of the complement cascade triggers several antiviral functions including pathogen opsonization and/or lysis, and priming of adaptive immune responses. In this review, we will examine the role of complement activation in protection and/or pathogenesis against infection by Flaviviruses, with an emphasis on experiments with West Nile and Dengue viruses.
Collapse
Affiliation(s)
- Panisadee Avirutnan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | | | |
Collapse
|
42
|
Pierson TC, Fremont DH, Kuhn RJ, Diamond MS. Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host Microbe 2008; 4:229-38. [PMID: 18779049 PMCID: PMC2678546 DOI: 10.1016/j.chom.2008.08.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 08/15/2008] [Indexed: 11/30/2022]
Abstract
Flaviviruses are a group of small RNA viruses that cause severe disease in humans worldwide and are the target of several vaccine development programs. A primary goal of these efforts is to elicit a protective humoral response directed against the envelope proteins arrayed on the surface of the flavivirus virion. Advances in the structural biology of these viruses has catalyzed rapid progress toward understanding the complexity of the flavivirus immunogen and the molecular basis of antibody-mediated neutralization. These insights have identified factors that govern the potency of neutralizing antibodies and will inform the design and evaluation of novel vaccines.
Collapse
Affiliation(s)
- Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, 33 North Drive, Building 33, Room 1E19A.2, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
Alphaviruses such as Ross River virus (RRV) and chikungunya virus are mosquito-transmitted viruses that cause explosive epidemics of debilitating arthritis and myositis affecting millions of humans worldwide. Previous studies using a mouse model of RRV-induced disease demonstrated that viral infection results in a severe inflammatory arthritis and myositis and that complement component 3 (C3) contributes to the destructive phase of the inflammatory disease but not the recruitment of cellular infiltrates to the sites of RRV-induced inflammation. Here, we demonstrate that mice deficient in complement receptor 3 (CR3) (CD11b(-/-)), a signaling receptor activated by multiple ligands including the C3 cleavage fragment iC3b, develop less-severe disease signs and decreased tissue destruction compared to RRV-infected wild-type mice. CR3 deficiency had no effect on viral replication, nor did it diminish the magnitude, kinetics, and composition of the cellular infiltrates at the sites of inflammation. However, the genetic absence of CR3 diminished the expression of specific proinflammatory and cytotoxic effectors, including S100A9/S100A8 and interleukin-6, within the inflamed tissues, suggesting that CR3-dependent signaling at the sites of inflammation contributes to tissue damage and severe disease.
Collapse
|
44
|
Wang S, Welte T, McGargill M, Town T, Thompson J, Anderson JF, Flavell RA, Fikrig E, Hedrick SM, Wang T. Drak2 contributes to West Nile virus entry into the brain and lethal encephalitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:2084-91. [PMID: 18641347 PMCID: PMC2494872 DOI: 10.4049/jimmunol.181.3.2084] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Death-associated protein kinase-related apoptosis-inducing kinase-2 (Drak2), a member of the death-associated protein family of serine/threonine kinases, is specifically expressed in T and B cells. In the absence of Drak2, mice are resistant to experimental autoimmune encephalomyelitis due to a decrease in the number of cells infiltrating the CNS. In the present study, we investigated the role of Drak2 in West Nile virus (WNV)-induced encephalitis and found that Drak2(-/-) mice were also more resistant to lethal WNV infection than wild-type mice. Although Drak2(-/-) mice had an increase in the number of IFN-gamma-producing T cells in the spleen after infection, viral levels in the peripheral tissues were not significantly different between these two groups of mice. In contrast, there was a reduced viral load in the brains of Drak2(-/-) mice, which was accompanied by a decrease in the number of Drak2(-/-) CD4(+) and CD8(+) T cells in the brain following WNV infection. Moreover, we detected viral Ags in T cells isolated from the spleen or brain of WNV-infected mice. These results suggest that following a systemic infection, WNV might cross the blood brain barrier and enter the CNS by being carried by infected infiltrating T cells.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Thomas Welte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Maureen McGargill
- Department of Biology and Cancer Center, University of California-San Diego, La Jolla, CA 92093
| | - Terrence Town
- Section of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520
| | - Jesse Thompson
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - John F Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, P. O. Box 1106, New Haven, CT 06504
| | - Richard A Flavell
- Section of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520
- The Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520
| | - Erol Fikrig
- The Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520
| | - Stephen M. Hedrick
- Department of Biology and Cancer Center, University of California-San Diego, La Jolla, CA 92093
| | - Tian Wang
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
45
|
Klein RS, Diamond MS. Immunological headgear: antiviral immune responses protect against neuroinvasive West Nile virus. Trends Mol Med 2008; 14:286-94. [PMID: 18539532 DOI: 10.1016/j.molmed.2008.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/01/2008] [Accepted: 05/01/2008] [Indexed: 01/12/2023]
Abstract
With the emergence of epidemic strains of West Nile virus (WNV) in North America, there has been a surge in new research and knowledge regarding the peripheral immune responses that prevent neuroinvasion, the routes of WNV entry into the central nervous system (CNS) and the critical CNS immune responses that promote viral clearance and recovery at this anatomic site. WNV infection induces archetypal antiviral immune responses that, in most cases, lead to elimination of the virus with relatively few immunopathological consequences. Here, we present our current understanding of the innate and adaptive immune responses that limit dissemination to the CNS from WNV infection and the antiviral immune responses within the CNS that intervene when they fail.
Collapse
Affiliation(s)
- Robyn S Klein
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO 63110, USA.
| | | |
Collapse
|
46
|
Beck Z, Prohászka Z, Füst G. Traitors of the immune system-enhancing antibodies in HIV infection: their possible implication in HIV vaccine development. Vaccine 2008; 26:3078-85. [PMID: 18241961 PMCID: PMC7115406 DOI: 10.1016/j.vaccine.2007.12.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 12/14/2007] [Accepted: 12/14/2007] [Indexed: 11/23/2022]
Abstract
Considering recent HIV vaccine failures, the authors believe that it would be most important to find new targets for vaccine-induced immunity, and to analyze the data from previous trials, using an innovative approach. In their review article, the authors briefly summarize the significance of the antibody-dependent enhancement of infection in different viral diseases and discuss role of these types of antibodies as the obstacles for vaccine development. Findings which indicate that complement-mediated antibody-dependent enhancement (C-ADE) is present also in HIV-infected patients, are summarized. Previous results of the authors, suggesting that C-ADE plays a very important role in the progression of HIV infection are described. Data reflecting that enhancing antibodies may develop even in vaccinated animals and human volunteers, and may be responsible for the paradoxical results obtained in some subgroups of vaccinees are discussed. Finally, based on their hypothesis, the authors offer some suggestions for the future development of vaccines.
Collapse
Affiliation(s)
- Zoltán Beck
- Medical and Health Science Center, University of Debrecen, Hungary
| | | | | |
Collapse
|
47
|
Abstract
West Nile virus (WNV) infection of mosquitoes, birds, and vertebrates continues to spread in the Western Hemisphere. In humans, WNV infects the central nervous system and causes severe disease, primarily in the immunocompromised and elderly. In this review we discuss the mechanisms by which antibody controls WNV infection. Recent virologic, immunologic, and structural experiments have enhanced our understanding on how antibodies neutralize WNV and protect against disease. These advances have significant implications for the development of novel antibody-based therapies and targeted vaccines.
Collapse
|
48
|
|
49
|
Mehlhop E, Ansarah-Sobrinho C, Johnson S, Engle M, Fremont DH, Pierson TC, Diamond MS. Complement protein C1q inhibits antibody-dependent enhancement of flavivirus infection in an IgG subclass-specific manner. Cell Host Microbe 2007; 2:417-26. [PMID: 18078693 PMCID: PMC2194657 DOI: 10.1016/j.chom.2007.09.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/28/2007] [Accepted: 09/26/2007] [Indexed: 01/11/2023]
Abstract
Severe dengue virus infection can occur in humans with pre-existing antibodies against the virus. This observation led to the hypothesis that a subneutralizing antibody level in vivo can increase viral burden and cause more severe disease. Indeed, antibody-dependent enhancement of infection (ADE) in vitro has been described for multiple viruses, including the flaviviruses dengue virus and West Nile virus. Here, we demonstrate that the complement component C1q restricts ADE by anti-flavivirus IgG antibodies in an IgG subclass-specific manner in cell culture and in mice. IgG subclasses that avidly bind C1q induced minimal ADE in the presence of C1q. These findings add a layer of complexity for the analysis of humoral immunity and flavivirus infection.
Collapse
Affiliation(s)
- Erin Mehlhop
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110 USA
| | - Camilo Ansarah-Sobrinho
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Michael Engle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110 USA
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110 USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110 USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110 USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110 USA
| |
Collapse
|
50
|
Infection-enhancing and -neutralizing activities of mouse monoclonal antibodies against dengue type 2 and 4 viruses are controlled by complement levels. J Virol 2007; 82:927-37. [PMID: 18003724 DOI: 10.1128/jvi.00992-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Dengue viruses are distributed widely in the tropical and subtropical areas of the world and cause dengue fever and its severer form, dengue hemorrhagic fever. While neutralizing antibodies are considered to play a major role in protection from these diseases, antibody-dependent enhancement (ADE) of infection is an important mechanism involved in disease severity, in addition to the involvement of T lymphocytes. Here, we analyzed relationships between neutralizing and enhancing activities at a clonal level using models of dengue type 2 virus (DENV2) and dengue type 4 virus (DENV4). Totals of 33 monoclonal antibodies (MAbs) against DENV2 and 43 against DENV4 were generated, all directed to the envelope protein. In these MAbs, enhancing activities were shown at subneutralizing doses under normal ADE assay conditions where test samples were heat inactivated. However, the inclusion of commercial rabbit complement or fresh sera from healthy humans in the ADE assay system abolished the enhancing activities of all these MAbs. The reductive effect of fresh sera on enhancing activities was significantly reduced by their heat inactivation or the use of C1q- or C3-depleted sera. In some fresh sera, enhancing activities were shown within a range of 20 to 80% of normal complement levels in a dose-dependent fashion. These results indicate that a single antibody species possesses two distinct activities (neutralizing/enhancing), which are controlled by the level of complement, suggesting the involvement of complement in dengue disease severity. Fresh human sera also tended to reduce enhancing activities more effectively in homologous than heterologous combinations of viruses (DENV2/DENV4) and MAbs (against DENV2/DENV4).
Collapse
|