1
|
Wang T, Li C, Xia C, Dong Y, Yang D, Geng Y, Cai J, Zhang J, Zhang X, Wang J. Oncogenic NRAS hyper-activates multiple pathways in human cord blood stem/progenitor cells and promotes myelomonocytic proliferation in vivo. Am J Transl Res 2015; 7:1963-1973. [PMID: 26692939 PMCID: PMC4656772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Oncogenic NRAS mutations are prevalent in human myeloid leukemia, especially in chronic myelomonocytic leukemia (CMML). NrasG12D mutation at its endogenous locus in murine hematopoietic stem cells (HSCs) leads to CMML and acute T-cell lymphoblastic lymphoma/leukemia in a dose-dependent manner. Hyper-activated MAPK and STAT5 pathways by oncogenic Nras contribute to the leukemogenesis in vivo. However, it is unclear whether these conclusions remain true in a more human relevant model. Here, we evaluated the effects of NRASG12D on human hematopoiesis and leukemogenesis in vitro and in vivo by ectopically expressing NRASG12D in human cord blood stem/progenitor cells (hSPCs). NRASG12D expressing hSPCs preferentially differentiated into myelomonocytic lineage cells, demonstrated by forming more colony forming unit-macrophages than control hSPCs in cultures. Transplantation of NRASG12D expressing hSPCs initiated myeloproliferative neoplasm in immune deficiency mice. All the recipient mice died of myeloid tumor burdens in spleens and bone marrows and none developed lymphoid leukemia. Phospho-flow analysis of CD34(+) CD38(-) hSPCs confirmed that NRASG12D hyper-activated MAPK, AKT and STAT5 pathways. Our study provides the strong evidence that NRASG12D mutation mainly targets monocytic lineage cells and leads to myelomonocytic proliferation in vivo in a highly human relevant context.
Collapse
Affiliation(s)
- Tongjie Wang
- School of Life Sciences, University of Science and Technology of ChinaAnhui, China
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineGuangzhou, China
| | - Chen Li
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Chengxiang Xia
- School of Life Sciences, University of Science and Technology of ChinaAnhui, China
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineGuangzhou, China
| | - Yong Dong
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineGuangzhou, China
| | - Dan Yang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineGuangzhou, China
| | - Yang Geng
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineGuangzhou, China
| | - Jizhen Cai
- Laboratory Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesChina
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Xiangzhong Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Jinyong Wang
- School of Life Sciences, University of Science and Technology of ChinaAnhui, China
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineGuangzhou, China
| |
Collapse
|
2
|
Increased c-Jun expression and reduced GATA2 expression promote aberrant monocytic differentiation induced by activating PTPN11 mutants. Mol Cell Biol 2009; 29:4376-93. [PMID: 19528235 DOI: 10.1128/mcb.01330-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is characterized by myelomonocytic cell overproduction and commonly bears activating mutations in PTPN11. Murine hematopoietic progenitors expressing activating Shp2 undergo myelomonocytic differentiation, despite being subjected to conditions that normally support only mast cells. Evaluation of hematopoietic-specific transcription factor expression indicates reduced GATA2 and elevated c-Jun in mutant Shp2-expressing progenitors. We hypothesized that mutant Shp2-induced Ras hyperactivation promotes c-Jun phosphorylation and constitutive c-Jun expression, permitting, as a coactivator of PU.1, excessive monocytic differentiation and reduced GATA2. Hematopoietic progenitors expressing activating Shp2 demonstrate enhanced macrophage CFU (CFU-M) compared to that of wild-type Shp2-expressing cells. Treatment with the JNK inhibitor SP600125 or cotransduction with GATA2 normalizes activating Shp2-generated CFU-M. However, cotransduction of DeltaGATA2 (lacking the C-terminal zinc finger, needed to bind PU.1) fails to normalize CFU-M. NIH 3T3 cells expressing Shp2E76K produce higher levels of luciferase expression directed by the macrophage colony-stimulating factor receptor (MCSFR) promoter, which utilizes c-Jun as a coactivator of PU.1. Coimmunoprecipitation demonstrates increased c-Jun-PU.1 complexes in mutant Shp2-expressing hematopoietic progenitors, while chromatin immunoprecipitation demonstrates increased c-Jun binding to the c-Jun promoter and an increased c-Jun-PU.1 complex at the Mcsfr promoter. Furthermore, JMML progenitors express higher levels of c-JUN than healthy controls, substantiating the disease relevance of these mechanistic findings.
Collapse
|
3
|
Olivier EN, Qiu C, Velho M, Hirsch RE, Bouhassira EE. Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp Hematol 2007; 34:1635-42. [PMID: 17157159 DOI: 10.1016/j.exphem.2006.07.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 06/12/2006] [Accepted: 07/11/2006] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To develop a method to produce in culture large number of erythroid cells from human embryonic stem cells. MATERIALS AND METHODS Human H1 embryonic stem cells were differentiated into hematopoietic cells by coculture with a human fetal liver cell line, and the resulting CD34-positive cells were expanded in vitro in liquid culture using a three-step method. The erythroid cells produced were then analyzed by light microscopy and flow cytometry. Globin expression was characterized by quantitative reverse-transcriptase polymerase chain reaction and by high-performance liquid chromatography. RESULTS CD34-positive cells produced from human embryonic stem cells could be efficiently differentiated into erythroid cells in liquid culture leading to a more than 5000-fold increase in cell number. The erythroid cells produced are similar to primitive erythroid cells present in the yolk sac of early human embryos and did not enucleate. They are fully hemoglobinized and express a mixture of embryonic and fetal globins but no beta-globin. CONCLUSIONS We have developed an experimental protocol to produce large numbers of primitive erythroid cells starting from undifferentiated human embryonic stem cells. As the earliest human erythroid cells, the nucleated primitive erythroblasts, are not very well characterized because experimental material at this stage of development is very difficult to obtain, this system should prove useful to answer a number of experimental questions regarding the biology of these cells. In addition, production of mature red blood cells from human embryonic stem cells is of great potential practical importance because it could eventually become an alternate source of cell for transfusion.
Collapse
Affiliation(s)
- Emmanuel N Olivier
- Einstein Center for Human Embryonic Stem Cell Research, Department of Medicine, Hematology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
4
|
Qiu C, Hanson E, Olivier E, Inada M, Kaufman DS, Gupta S, Bouhassira EE. Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp Hematol 2006; 33:1450-8. [PMID: 16338487 DOI: 10.1016/j.exphem.2005.09.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/08/2005] [Accepted: 09/12/2005] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To find a human cell line that could support differentiation of human embryonic stem cells (hESCs) into hematopoietic cells. To determine in detail the expression profiles of the beta-like globin genes in hESC-derived erythroid cells. MATERIALS AND METHODS FH-B-hTERT, a human fetal liver-derived cell line, and S17, a mouse bone marrow stromal cell line, were used as stromas to induce the differentiation of hESC into hematopoietic cells. The number of hematopoietic progenitors and surface antigen expression were monitored during time-course experiments using colony assays and flow cytometry. Globin expression patterns in individual erythroid colonies were determined by real-time quantitative reverse transcriptase polymerase chain reaction. RESULTS Comparison of coculture of hESCs with FH-B-hTERT or S17 cells revealed that the fraction of CD34(+) cells and the number of clonogenic progenitors per 250,000 cells plated were higher with FH-B-hTERT than with S17. Analysis of beta-like globin expression in individual burst-forming unit erythroid and colony-forming unit erythroid colonies revealed that erythroid cells derived from hESC cocultured for 8 to 21 days on either FH-B-hTERT or S17 produced epsilon- and gamma-globin mRNAs in similar amounts. With increasing time in coculture, the mean ratio of gamma/epsilon increased by more than 10-fold on both S17 and FH-B-hTERT stroma. Importantly, beta-globin expression was barely detectable at all time point examined. CONCLUSIONS FH-B-hTERT can induce hESCs differentiation into hematopoietic cells more efficiently than S17. In vitro differentiation of hESCs recapitulates the epsilon-globin to gamma-globin switch but not the gamma-globin to beta-globin switch that occurs around birth. This experimental system will be useful for studying the regulation of globin gene expression during early human hematopoiesis.
Collapse
Affiliation(s)
- Caihong Qiu
- Einstein Center for Human Embryonic Stem Cell Research, Department of Medicine, Division of Hematology and Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Hemmrich K, Kröncke KD, Suschek CV, Kolb-Bachofen V. What sense lies in antisense inhibition of inducible nitric oxide synthase expression? Nitric Oxide 2005; 12:183-99. [PMID: 15894496 DOI: 10.1016/j.niox.2005.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2004] [Revised: 03/10/2005] [Accepted: 04/04/2005] [Indexed: 01/21/2023]
Abstract
The impact of nitric oxide (NO) synthesized after activation by proinflammatory cytokines and/or bacterial products by an inducible NO synthase (iNOS) is still contradictory. Expression of iNOS in inflammatory reactions is often found predominantly in cells of epithelial origin, and in these cases NO may serve as a protective agent limiting pathogen spreading, downregulating local inflammatory reactions by inducing production of Th2-like responses in a classical feedback circle, or limiting tissue damage during stress conditions. However, an abundant amount of data on chronic human disorders with predominant proinflammatory Th1-like reactions points to a destructive role of iNOS activity calling for a specific inhibition. Various methods to inhibit iNOS have been established to elucidate a protective versus a destructive role of NO during various stresses. In this review, we focus on antisense (AS)-mediated gene knock-down as a relatively new method to inhibit NO production and summarize the techniques applied and their successes. At least in theory, it provides a specific, rapid, and potentially high-throughput method for inhibiting gene expression and function. We here discuss the opportunities of iNOS-directed AS-ODN, and extensively deal with limitations and experimental problems.
Collapse
Affiliation(s)
- Karsten Hemmrich
- Research Group Immunobiology, MED-Heinrich-Heine-University of Düsseldorf, Gebäude 23.12, Postfach 10 10 07, D-40001 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
6
|
Malaguarnera L, Pilastro MR, Vicari L, Dimarco R, Manzella L, Palumbo G, Messina A. Pyrrolidinedithiocarbamate induces apoptosis in human acute myelogenous leukemic cells affecting NF-kappaB activity. Cancer Invest 2005; 23:404-12. [PMID: 16193640 DOI: 10.1081/cnv-67147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pyrrolidindithiocarbamate (PDTC), is a metal chelator widely used to study the activation of redox sensitive transcription factors. Recently it has been demonstrated that it manifests pro-oxidant properties. The nuclear factor-Kappa B (NF-kappaB) transcription factor can both promote cell survival and induce apoptosis depending on cell type and context in response to genotoxic stress. In our previous study we reported that in acute myelogenous leukemia CD34+ cells PDTC stimulates apoptosis, whereas in CD34+ cells of healthy volunteers PDTC was ineffective. This cytotoxicity was dependent on the generation of superoxide anion and oxidized glutathione. In this article we have shown that the pro-oxidant effect of PDTC in AML cells induces NF-kappaB activity. These findings imply a role for NF-kappaB in the survival of normal cells with respect to leukemic cells, suggesting that NF-kappaB activity and function differs according to tumor cell phenotype.
Collapse
Affiliation(s)
- Lucia Malaguarnera
- Department of Biomedical Sciences, University of Catania, Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
7
|
Guo X, Schrader KA, Xu Y, Schrader JW. Expression of a constitutively active mutant of M-Ras in normal bone marrow is sufficient for induction of a malignant mastocytosis/mast cell leukemia, distinct from the histiocytosis/monocytic leukemia induced by expression of activated H-Ras. Oncogene 2005; 24:2330-42. [PMID: 15735740 DOI: 10.1038/sj.onc.1208441] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expression of constitutively activated M-Ras in normal murine bone-marrow cells was sufficient to induce the factor-independent, in vitro growth and differentiation of colonies of macrophages and neutrophils, and the generation of immortal lines of factor-independent mast cells, and, upon in vivo injection of the transduced cells, a fatal mastocytosis/mast-cell leukemia. In contrast, expression of constitutively activated H-Ras in bone-marrow cells resulted in the in vitro growth, in the absence of exogenous factors, of colonies that contained only macrophages and of lines of cells resembling dendritic cells, and, upon in vivo injection of the transduced cells, a fatal histiocytosis/monocytic leukemia. Macrophages generated by bone-marrow cells expressing activated M-Ras or activated H-Ras differed morphologically, the latter appearing more activated, a difference abrogated by an inhibitor of Erk activation. Inhibition of either Erk or PI3 kinase blocked the capacity of both activated M-Ras and activated H-Ras to support proliferation and viability. However, inhibition of p38 MAPK activity suppressed proliferation of bone-marrow cells expressing activated H-Ras, but enhanced that of bone-marrow cells expressing activated M-Ras. Thus, expression of either activated M-Ras or H-Ras in normal hematopoietic cells was sufficient for transformation but each resulted in the generation of distinct lineages of cells.
Collapse
Affiliation(s)
- Xuecui Guo
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada V6T1Z3
| | | | | | | |
Collapse
|
8
|
Dorrell C, Takenaka K, Minden MD, Hawley RG, Dick JE. Hematopoietic cell fate and the initiation of leukemic properties in primitive primary human cells are influenced by Ras activity and farnesyltransferase inhibition. Mol Cell Biol 2004; 24:6993-7002. [PMID: 15282300 PMCID: PMC479743 DOI: 10.1128/mcb.24.16.6993-7002.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ras pathway transduces divergent signals determining normal cell fate and is frequently activated in hematopoietic malignancies, but the manner in which activation contributes to human leukemia is poorly understood. We report that a high level of activated H-Ras signaling in transduced primary human hematopoietic progenitors reduced their proliferation and enhanced monocyte/macrophage differentiation. However, the exposure of these cells to a farnesyltransferase inhibitor and establishment of a moderate level of Ras activity showed increased proliferation, an elevated frequency of primitive blast-like cells, and progenitors with enhanced self-renewal capacity. These results suggest that the amplitude of Ras pathway signaling is a determinant of myeloid cell fate and that moderate Ras activation in primitive hematopoietic cells can be an early event in leukemogenesis.
Collapse
Affiliation(s)
- Craig Dorrell
- Department of Molecular and Cellular Biology, Princess Margaret Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
9
|
Ehrhardt A, Ehrhardt GRA, Guo X, Schrader JW. Ras and relatives--job sharing and networking keep an old family together. Exp Hematol 2002; 30:1089-106. [PMID: 12384139 DOI: 10.1016/s0301-472x(02)00904-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many members of the Ras superfamily of GTPases have been implicated in the regulation of hematopoietic cells, with roles in growth, survival, differentiation, cytokine production, chemotaxis, vesicle-trafficking, and phagocytosis. The well-known p21 Ras proteins H-Ras, N-Ras, K-Ras 4A, and K-Ras 4B are also frequently mutated in human cancer and leukemia. Besides the four p21 Ras proteins, the Ras subfamily of the Ras superfamily includes R-Ras, TC21 (R-Ras2), M-Ras (R-Ras3), Rap1A, Rap1B, Rap2A, Rap2B, RalA, and RalB. They exhibit remarkable overall amino acid identities, especially in the regions interacting with the guanine nucleotide exchange factors that catalyze their activation. In addition, there is considerable sharing of various downstream effectors through which they transmit signals and of GTPase activating proteins that downregulate their activity, resulting in overlap in their regulation and effector function. Relatively little is known about the physiological functions of individual Ras family members, although the presence of well-conserved orthologs in Caenorhabditis elegans suggests that their individual roles are both specific and vital. The structural and functional similarities have meant that commonly used research tools fail to discriminate between the different family members, and functions previously attributed to one family member may be shared with other members of the Ras family. Here we discuss similarities and differences in activation, effector usage, and functions of different members of the Ras subfamily. We also review the possibility that the differential localization of Ras proteins in different parts of the cell membrane may govern their responses to activation of cell surface receptors.
Collapse
Affiliation(s)
- Annette Ehrhardt
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
10
|
Klejman A, Rushen L, Morrione A, Slupianek A, Skorski T. Phosphatidylinositol-3 kinase inhibitors enhance the anti-leukemia effect of STI571. Oncogene 2002; 21:5868-76. [PMID: 12185586 DOI: 10.1038/sj.onc.1205724] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Revised: 05/23/2002] [Accepted: 06/10/2002] [Indexed: 11/09/2022]
Abstract
BCR/ABL fusion tyrosine kinase is responsible for the initiation and maintenance of the Philadelphia chromosome (Ph(1))-positive chronic myelogenous leukemia (CML) and a cohort of acute lymphocytic leukemias (ALL). STI571 (Gleevec), a novel anti-leukemia drug targeting BCR/ABL kinase can induce remissions of the Ph(1)-positive leukemias. STI571 was recently combined with the standard cytostatic drugs to achieve better therapeutic results and to overcome emerging drug resistance mechanisms. We decided to search for a more specific partner compound for STI571. Our previous studies showed that a signaling protein phosphatidylinositol-3 kinase (PI-3k) is essential for the growth of CML cells, but not of normal hematopoietic cells (Blood, 86:726,1995). Therefore the anti- Ph(1)-leukemia effect of the combination of BCR/ABL kinase inhibitor STI571 and PI-3k inhibitor wortmannin (WT) or LY294002 (LY) was tested. We showed that STI571+WT exerted a synergistic effect against the Ph(1)-positive cell lines, but did not affect the growth of Ph(1)-negative cell line. Moreover, the combinations of STI571+WT or STI571+LY were effective in the inhibition of clonogenic growth of CML-chronic phase and CML-blast crisis patient cells, while sparing normal bone marrow cells. Single colony RT-PCR assay showed that colonies arising from the mixture of CML cells and normal bone marrow cells after treatment with STI571+WT were selectively depleted of BCR/ABL-positive cells. Biochemical analysis of the CML cells after the treatment revealed that combination of STI571+WT caused a more pronounced activation of caspase-3 and induced massive apoptosis, in comparison to STI571 and WT alone. In conclusion, combination of STI571+WT or STI571+LY may represent a novel approach against the Ph(1)-positive leukemias.
Collapse
Affiliation(s)
- Agata Klejman
- Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | |
Collapse
|
11
|
Behre G, Singh SM, Liu H, Bortolin LT, Christopeit M, Radomska HS, Rangatia J, Hiddemann W, Friedman AD, Tenen DG. Ras signaling enhances the activity of C/EBP alpha to induce granulocytic differentiation by phosphorylation of serine 248. J Biol Chem 2002; 277:26293-9. [PMID: 11978795 DOI: 10.1074/jbc.m202301200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor C/EBP alpha regulates early steps of normal granulocyte differentiation since mice with a disruption of the C/EBP alpha gene do not express detectable levels of the granulocyte colony-stimulating factor receptor and produce no neutrophils. We have recently shown that C/EBP alpha function is also impaired in acute myeloid leukemias. However, how the transcriptional activity of C/EBP alpha is regulated both in myelopoiesis and leukemogenesis is not fully understood. The current study demonstrates that activated Ras enhances the ability of C/EBP alpha to transactivate the granulocyte colony-stimulating factor receptor promoter and a minimal promoter containing only C/EBP DNA binding sites. Ras signaling activates C/EBP alpha via the transactivation domain because it enhances the transactivation function of a fusion protein containing a Gal4 DNA binding domain and the C/EBP alpha transactivation domain and does not change C/EBP alpha DNA binding. Ras acts on serine 248 of the C/EBP alpha transactivation domain, because it does not enhance the transactivation function of a C/EBP alpha serine 248 to alanine point mutant. Interestingly, serine 248 of C/EBP alpha is a protein kinase C (PKC) consensus site, and a PKC inhibitor blocks the activation of C/EB alpha by Ras. Ras signaling leads to phosphorylation of C/EBP alpha in vivo. Finally, mutation of serine 248 to alanine obviates the ability of C/EBP alpha to induce granulocytic differentiation. These data suggest a model where Ras signaling enhances the activity of C/EBP alpha to induce granulocytic differentiation by phosphorylation of serine 248.
Collapse
Affiliation(s)
- Gerhard Behre
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-University Munich and GSF-National Research Center for Environment and Health, D-81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sorrentino R, Porcellini A, Spalletti-Cernia D, Lombari V, Vecchio G, Laccetti P. Inhibition of MAPK activity, cell proliferation, and anchorage-independent growth by N-Ras antisense in an N-ras-transformed human cell line. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2001; 11:349-58. [PMID: 11838636 DOI: 10.1089/108729001753411317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mammalian ras genes encode a family of plasma membrane-bound proteins that function as intermediates in signal transduction pathways involved in cell growth and differentiation. Ras oncogene is frequently involved in neoplastic transformation of different cellular histotypes. In this study, we tested the ability of antisense oligodeoxyribonucleotides (AS-ODN) that have mixed phosphodiester/phosphorothioate backbone, targeted against human N-Ras, to inhibit N-ras gene expression and to specifically interfere with the Ras-dependent activity of mitogen-activated protein kinase (MAPK) in two human cell lines carrying an endogenous N-ras mutated allele at codon 61. Three AS-ODN that inhibit basal MAPK activity have been identified. Moreover, AS-ODN treatment resulted in potent antiproliferative effects in cell culture and great inhibition of N-ras mRNA levels in one of two cell lines. These studies suggest that antisense molecules, targeted against N-Ras, could be of considerable value as a tool to study the N-Ras-specific transduction pathway.
Collapse
Affiliation(s)
- R Sorrentino
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Centro di Endocrinologia ed Oncologia Sperimentale del CNR, Università degli Studi di Napoli Federico II, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
This review discusses laboratory and clinical studies of antisense oligodeoxynucleotides as potential treatments for haematological malignancies and solid tumours. Mechanisms of action, pharmacokinetics, toxicities and potential clinical applications of these agents are described.
Collapse
Affiliation(s)
- W Pawlak
- Department of Oncology, Central Clinical Hospital of Military Medical Academy, Warsaw, Poland
| | | | | | | |
Collapse
|
14
|
Behre G, Whitmarsh AJ, Coghlan MP, Hoang T, Carpenter CL, Zhang DE, Davis RJ, Tenen DG. c-Jun is a JNK-independent coactivator of the PU.1 transcription factor. J Biol Chem 1999; 274:4939-46. [PMID: 9988737 DOI: 10.1074/jbc.274.8.4939] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ETS domain transcription factor PU.1 is necessary for the development of monocytes and regulates, in particular, the expression of the monocyte-specific macrophage colony-stimulating factor (M-CSF) receptor, which is critical for monocytic cell survival, proliferation, and differentiation. The bZIP transcription factor c-Jun, which is part of the AP-1 transcription factor complex, is also important for monocytic differentiation, but the monocyte-specific M-CSF receptor promoter has no AP-1 consensus binding sites. We asked the question of whether c-Jun could promote the induction of the M-CSF receptor by collaborating with PU.1. We demonstrate that c-Jun enhances the ability of PU.1 to transactivate the M-CSF receptor promoter as well as a minimal thymidine kinase promoter containing only PU.1 DNA binding sites. c-Jun does not directly bind to the M-CSF receptor promoter but associates via its basic domain with the ETS domain of PU.1. Consistent with our observation that AP-1 binding does not contribute to c-Jun coactivation is the observation that the activation of PU.1 by c-Jun is blocked by overexpression of c-Fos. Phosphorylation of c-Jun by c-Jun NH2-terminal kinase on Ser-63 and -73 does not alter the ability of c-Jun to enhance PU.1 transactivation. Activated Ras enhances the transcriptional activity of PU.1 by up-regulating c-Jun expression without changing the phosphorylation pattern of PU.1. The activation of PU.1 by Ras is blocked by a mutant c-Jun protein lacking the basic domain. The expression of this mutant form of c-Jun also completely blocks 12-O-tetradecanoylphorbol-13-acetate-induced M-CSF receptor promoter activity during monocytic differentiation. We propose therefore that c-Jun acts as a c-Jun NH2-terminal kinase-independent coactivator of PU.1, resulting in M-CSF receptor expression and development of the monocytic lineage.
Collapse
Affiliation(s)
- G Behre
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gewirtz AM. The c-myb Protooncogene: A Novel Target for Human Gene Therapy. Gene Ther 1999. [DOI: 10.1007/978-3-0348-7011-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Abstract
Prompt reconstitution of hematopoiesis after cytoreductive therapy is essential for patient recovery and may have a positive impact on long-term prognosis. We examined the role of the p53 tumor suppressor gene in hematopoietic recovery in vivo after treatment with the cytotoxic drug 5-fluorouracil (5-FU). We used p53 knock-out (p53−/−) and wild-type (p53+/+) mice injected with 5-FU as the experimental model. Analysis of the repopulation ability and clonogenic activity of hematopoietic stem cells (HSCs) and their lineage-committed descendants showed a greater number of HSCs responsible for reconstitution of lethally irradiated recipients in p53−/− bone marrow cells (BMCs) recovering after 5-FU treatment than in the corresponding p53+/+ BMCs. In post–5-FU recovering BMCs, the percentage of HSC-enriched Lin− Sca-1+c-Kit+ cells was about threefold higher in p53−/− than in p53+/+ cells. Although the percentage of the most primitive HSCs (Lin− Sca-1+ c-Kit+CD34low/−) did not depend on p53, the percentage of multipotential HSCs and committed progenitors (Lin−Sca-1+ c-Kit+ CD34high/+) was almost fourfold higher in post–5-FU recovering p53−/− BMCs than in their p53+/+ counterparts. The pool of HSCs from 5-FU–treated p53−/− BMCs was exhausted more slowly than that from the p53+/+ population as shown in vivo using pre–spleen colony-forming unit (CFU-S) assay and in vitro using long-term culture-initiating cells (LTC-ICs) and methylcellulose replating assays. Clonogenic activity of various lineage-specific descendants was significantly higher in post–5-FU regenerating p53−/− BMCs than in p53+/+ BMCs, probably because of their increased sensitivity to growth factors. Despite all these changes and the dramatic difference in sensitivity of p53−/− and p53+/+ BMCs to 5-FU–induced apoptosis, lineage commitment and differentiation of hematopoietic progenitors appeared to be independent of p53 status. These studies suggest that suppression of p53 function facilitates hematopoietic reconstitution after cytoreductive therapy by: (1) delaying the exhaustion of the most primitive HSC pool, (2) stimulating the production of multipotential HSCs, (3) increasing the sensitivity of hematopoietic cells to growth factors, and (4) decreasing the sensitivity to apoptosis.
Collapse
|
17
|
Zaker F, Darley RL, al Sabah A, Burnett AK. Oncogenic RAS genes impair erythroid differentiation of erythroleukaemia cells. Leuk Res 1997; 21:635-40. [PMID: 9301684 DOI: 10.1016/s0145-2126(97)00022-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RAS mutations occur frequently in acute myeloid leukaemia and myelodysplasia, suggesting a functional role for this oncogene in leukaemogenesis. We show here, for the first time, that both N-RAS and H-RAS can impair erythroid differentiation of erythroleukaemia cells induced with hexamethylene bisacetamide. Transformation by RAS allowed extended proliferation in the presence of inducer and also inhibited maturation as measured by impaired haemoglobinization and reduction in cell size. These data provide an interesting counterpoint to the effect of mutant RAS on monocytic cells, where it has a potentiating effect on differentiation and may indicate a causal link between the activation of RAS and erythroid lineage dysplasia in preleukaemia.
Collapse
Affiliation(s)
- F Zaker
- Department of Haematology, University of Wales College of Medicine, Cardiff, U.K
| | | | | | | |
Collapse
|
18
|
Darley RL, Hoy TG, Baines P, Padua RA, Burnett AK. Mutant N-RAS induces erythroid lineage dysplasia in human CD34+ cells. J Exp Med 1997; 185:1337-47. [PMID: 9104820 PMCID: PMC2196261 DOI: 10.1084/jem.185.7.1337] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/1996] [Revised: 12/26/1996] [Indexed: 02/04/2023] Open
Abstract
RAS mutations arise at high frequency (20-40%) in both acute myeloid leukemia and myelodysplastic syndrome (which is considered to be a manifestation of preleukemic disease). In each case, mutations arise predominantly at the N-RAS locus. These observations suggest a fundamental role for this oncogene in leukemogenesis. However, despite its obvious significance, little is known of how this key oncogene may subvert the process of hematopoiesis in human cells. Using CD34+ progenitor cells, we have modeled the preleukemic state by infecting these cells with amphotropic retrovirus expressing mutant N-RAS together with the selectable marker gene lacZ. Expression of the lacZ gene product, beta-galactosidase, allows direct identification and study of N-RAS-expressing cells by incubating infected cultures with a fluorogenic substrate for beta-galactosidase, which gives rise to a fluorescent signal within the infected cells. By using multiparameter flow cytometry, we have studied the ability of CD34+ cells expressing mutant N-RAS to undergo erythroid differentiation induced by erythropoietin. By this means, we have found that erythroid progenitor cells expressing mutant N-RAS exhibit a proliferative defect resulting in an increased cell doubling time and a decrease in the proportion of cells in S + G2M phase of the cell cycle. This is linked to a slowing in the rate of differentiation as determined by comparative cell-surface marker analysis and ultimate failure of the differentiation program at the late-erythroblast stage of development. The dyserythropoiesis was also linked to an increased tendency of the RAS-expressing cells to undergo programmed cell death during their differentiation program. This erythroid lineage dysplasia recapitulates one of the most common features of myelodysplastic syndrome, and for the first time provides a causative link between mutational activation of N-RAS and the pathogenesis of preleukemia.
Collapse
Affiliation(s)
- R L Darley
- Department of Haematology, University of Wales College of Medicine, Cardiff, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Skorski T, Nieborowska-Skorska M, Wlodarski P, Perrotti D, Martinez R, Wasik MA, Calabretta B. Blastic transformation of p53-deficient bone marrow cells by p210bcr/abl tyrosine kinase. Proc Natl Acad Sci U S A 1996; 93:13137-42. [PMID: 8917557 PMCID: PMC24059 DOI: 10.1073/pnas.93.23.13137] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Blastic transformation of chronic myelogenous leukemia (CML) is characterized by the presence of nonrandom, secondary genetic abnormalities in the majority of Philadelphia1 clones, and loss of p53 tumor suppressor gene function is a consistent finding in 25-30% of CML blast crisis patients. To test whether the functional loss of p53 plays a direct role in the transition of chronic phase to blast crisis, bone marrow cells from p53+/+ or p53-/- mice were infected with a retrovirus carrying either the wild-type BCR/ABL or the inactive kinase-deficient mutant, and were assessed for colony-forming ability. Infection of p53-/- marrow cells with wild-type BCR/ABL, but not with the kinase-deficient mutant, enhanced formation of hematopoietic colonies and induced growth factor independence at high frequency, as compared with p53+/+ marrow cells. These effects were suppressed when p53-/- marrow cells were coinfected with BCR/ ABL and wild-type p53. p53-deficient BCR/ABL-infected marrow cells had a proliferative advantage, as reflected by an increase in the fraction of S+G2 phase cells and a decrease in the number of apoptotic cells. Immunophenotyping and morphological analysis revealed that BCR/ABL-positive p53-/- cells were much less differentiated than their BCR/ABL-positive p53+/+ counterparts. Injection of immunodeficient mice with BCR/ABL-positive p53-/- cells produced a transplantable, highly aggressive, poorly differentiated acute myelogenous leukemia. In marked contrast, the disease process in mice injected with BCR/ABL-positive p53+/+ marrow cells was characterized by cell infiltrates with a more differentiated phenotype and was significantly retarded, as indicated by a much longer survival of leukemic mice. Together, these findings directly demonstrate that loss of p53 function plays an important role in blast transformation in CML.
Collapse
MESH Headings
- Animals
- Antigens, CD34/analysis
- Apoptosis/drug effects
- Blast Crisis
- Bone Marrow/drug effects
- Bone Marrow/pathology
- Bone Marrow Cells
- CD3 Complex/analysis
- Cell Cycle/drug effects
- Fusion Proteins, bcr-abl/biosynthesis
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression
- Genes, p53
- Humans
- Immunophenotyping
- Interleukin-3/pharmacology
- Interleukin-6/pharmacology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukocyte Common Antigens/analysis
- Mice
- Mice, Inbred C57BL
- Mice, SCID
- Protein-Tyrosine Kinases/biosynthesis
- Protein-Tyrosine Kinases/metabolism
- Recombinant Proteins/pharmacology
- Retroviridae
- Spleen/immunology
- Spleen/pathology
- Tumor Suppressor Protein p53/deficiency
Collapse
Affiliation(s)
- T Skorski
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Krautwald S, Büscher D, Kummer V, Buder S, Baccarini M. Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway. Mol Cell Biol 1996; 16:5955-63. [PMID: 8887625 PMCID: PMC231598 DOI: 10.1128/mcb.16.11.5955] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways.
Collapse
Affiliation(s)
- S Krautwald
- Department of Immunobiology, Fraunhofer Institute for Toxicology and Molecular Biology, Hannover, Germany
| | | | | | | | | |
Collapse
|
21
|
Gryaznov S, Skorski T, Cucco C, Nieborowska-Skorska M, Chiu CY, Lloyd D, Chen JK, Koziolkiewicz M, Calabretta B. Oligonucleotide N3'-->P5' phosphoramidates as antisense agents. Nucleic Acids Res 1996; 24:1508-14. [PMID: 8628685 PMCID: PMC145826 DOI: 10.1093/nar/24.8.1508] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Uniformly modified oligonucleotide N3'-->P5' phosphoramidates, where every 3'-oxygen is replaced by a 3'-amino group, were synthesized. These compounds have very high affinity to single-stranded RNAs and thus have potential utility as antisense agents. As was shown in this study, the oligonucleotide phosphoramidates are resistant to digestion with snake venom phosphodiesterase, to nuclease activity in a HeLa cell nuclear extract, or to nuclease activity in 50% human plasma, where no significant hydrolysis was observed after 8 h. These compounds were used in various in vitro cellular systems as antisense compounds addressed to different targeted regions of c-myb, c-myc and bcr-abl mRNAs. C-myb antisense phosphoramidates at 5 microM caused sequence and dose-dependent inhibition of HL-60 cell proliferation and a 75% reduction in c-myb protein and RNA levels, as determined by Western blot and RT-PCR analysis. Analogous results were observed for anti-c-myc phosphoramidates, where a complete cytostatic effect for HL-60 cells was observed at 1 microM concentration for fully complementary, but not for mismatched compounds, which were indistinguishable from untreated controls. This was correlated with a 93% reduction in c-myc protein level. Moreover, colony formation by the primary CML cells was also inhibited 75-95% and up to 99% by anti-c-myc and anti-bcr-abl phosphoramidate oligonucleotides, respectively, in a sequence- and dose-dependent manner within a 0.5 nM-5 microM dose range. At these concentrations the colony-forming ability of normal bone marrow cells was not affected. The presented in vitro data indicate that oligonucleotide N3'-->P5' phosphoramidates could be used as specific and efficient antisense agents.
Collapse
Affiliation(s)
- S Gryaznov
- Lynx Therapeutics, Inc., Hayward, CA 94545, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rothe H, Bosse G, Fischer HG, Kolb H. Generation and characterization of inducible nitric oxide synthase deficient macrophage cell lines. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1996; 377:227-31. [PMID: 8737986 DOI: 10.1515/bchm3.1996.377.4.227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stable inducible nitric oxide synthase deficient mouse macrophage cell lines were generated by the antisense technology. A 666 bp fragment of a mouse inducible nitric oxide synthase cDNA was cloned in antisense orientation into a mammalian expression vector behind the CMV promoter. This construct was transfected into J774.1A cells, a mouse macrophage cell line. The inducible nitric oxide synthase antisense lines showed up to 84% reduction of nitric oxide production in response to lipopolysaccharide stimulation and 66% reduction of nitric oxide production in response to interferon-gamma and a combination of interferon-gamma and lipopolysaccharide stimulation. The deficiency in inducible nitric oxide synthase expression had no impact on lipopolysaccharide induced tumor necrosis factor alpha and interleukin-1 secretion. The stable and specific inhibition of inducible nitric oxide synthase expression by antisense DNA vectors allows a direct analysis of contribution of inducible nitric oxide synthase activity to macrophage regulatory and immune defence functions.
Collapse
Affiliation(s)
- H Rothe
- Diabetes Research Institute, Heinrich-Heine-University of Düsseldorf, Germany
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- J L Tonkinson
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
24
|
Affiliation(s)
- A M Gewirtz
- University of Pennsylvania, School of Medicine, Department of Pathology, Philadelphia 19104-6082, USA
| |
Collapse
|
25
|
Clevenger CV, Ngo W, Sokol DL, Luger SM, Gewirtz AM. Vav is necessary for prolactin-stimulated proliferation and is translocated into the nucleus of a T-cell line. J Biol Chem 1995; 270:13246-53. [PMID: 7768923 DOI: 10.1074/jbc.270.22.13246] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Stimulation of the prolactin receptor (PRLr) with ligand activates multiple kinase cascades. The proximal mediators involved in the activation of the PRL-activated Raf-1 cascade in T-cells, however, remain poorly characterized. The role of one proximal signaling protein, namely p95vav, during PRLr signal transduction was examined in the Nb2 T-cell line. The novel results obtained here indicate that Vav is transiently associated with the PRLr and is necessary for PRL-stimulated proliferation. During PRL stimulation, a rapid and dramatic increase in guanine nucleotide exchange factor (GEF) activity was found to be associated with Vav immunoprecipitates. Concomitantly, an increase in Vav phosphorylation on serine-threonine residues was observed. The Vav-associated GEF activation could be inhibited by staurosporine and calphostin, but not herbimycin, suggesting a modulatory role for phosphorylation at serine-threonine residues. Treatment of Nb2 cells with antisense Vav oligonucleotide ablated Vav expression and blocked PRL-driven proliferation, but failed to inhibit PRL-induced GEF activation within Nb2 lysates. These data indicate that GEF activity may not be intrinsic to Vav as has been previously suggested, but either resides in or is complemented by an associated GEF. Subsequent to the transient activation of associated GEF activity, Vav was found to translocate into the Nb2 cell nucleus. Thus, Vav may utilize two independent mechanisms in T-cells, namely the activation of an associated GEF and direct nuclear internalization, to mediate PRLr signaling.
Collapse
Affiliation(s)
- C V Clevenger
- Department of Pathology, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
26
|
Muszynski KW, Ruscetti FW, Heidecker G, Rapp U, Troppmair J, Gooya JM, Keller JR. Raf-1 protein is required for growth factor-induced proliferation of hematopoietic cells. J Exp Med 1995; 181:2189-99. [PMID: 7539043 PMCID: PMC2192061 DOI: 10.1084/jem.181.6.2189] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Raf-1 is a 74-kD serine/threonine kinase located in the cell cytoplasm that is activated by phosphorylation in cells stimulated with a variety of mitogens and growth factors, including hematopoietic growth factors. Using c-raf antisense oligonucleotides to block Raf-1 expression, we have established that Raf-1 is required for hematopoietic growth factor-induced proliferation of murine cell lines stimulated by growth factors whose receptors are members of several different structural classes: (a) the hematopoietin receptor family, including interleukin (IL)-2, IL-3, IL-4, granulocyte colony-stimulating factor, granulocyte/macrophage colony-stimulating factor (GM-CSF), and erythropoietin; (b) the tyrosine kinase receptor class, including Steel factor and CSF-1; and (c) IL-6, leukemia inhibitory factor, and oncostatin M, whose receptors include the gp130 receptor subunit. Although results of previous experiments had suggested that IL-4 does not phosphorylate or activate the Raf-1 kinase, c-raf antisense oligonucleotides inhibited IL-4-induced proliferation of both myeloid and T cell lines, and IL-4 activated Raf-1 kinase activity in an IL-4-dependent myeloid cell line. In colony assays, c-raf antisense oligonucleotides completely inhibited colony formation of unseparated normal murine bone marrow cells stimulated with either IL-3 or CSF-1 and partially inhibited cells stimulated with GM-CSF. In addition, c-raf antisense oligonucleotides completely inhibited both IL-3- and GM-CSF-induced colony formation of CD34+ purified human progenitors stimulated with these same growth factors. Thus, Raf-1 is required for growth factor-induced proliferation of leukemic murine progenitor cell lines and normal murine and human bone marrow-derived progenitor cells regardless of the growth factor used to stimulate cell growth.
Collapse
Affiliation(s)
- K W Muszynski
- Biological Carcinogenesis and Development Program, Program Resources Inc./DynCorp, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Kuliczkowski K, Darley RL, Jacobs A, Padua RA, Hoy TG. Upregulation of p21 RAS levels in HL-60 cells during differentiation induction with DMSO, all-trans-retinoic acid and TPA. Leuk Res 1995; 19:291-6. [PMID: 7752674 DOI: 10.1016/0145-2126(94)00161-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The role of p21 RAS in the proliferation and differentiation of myeloid cells has been studied by analysing the changes in the level of expression of p21 RAS proteins by flow cytometry upon differentiation down the granulocytic and monocytic pathways. Differentiation resulted in upregulated p21 RAS expression despite a marked decline in the number of dividing cells. On the other hand, growth inhibition, without differentiation, resulted in a decline in expression. Cell cycle analysis showed that the increase in p21 RAS occurred throughout the cell cycle. These results suggest that p21 RAS has a role in the process of myeloid differentiation.
Collapse
Affiliation(s)
- K Kuliczkowski
- Department of Haematology, UWMC, Heath Park, Cardiff, U.K
| | | | | | | | | |
Collapse
|
28
|
Mahdi T, Brizard A, Millet C, Doré P, Tanzer J, Kitzis A. In vitro p53 and/or Rb antisense oligonucleotide treatment in association with growth factors induces the proliferation of peripheral hematopoietic progenitors. J Cell Sci 1995; 108 ( Pt 3):1287-93. [PMID: 7622611 DOI: 10.1242/jcs.108.3.1287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this work we intended to determine whether p53 and/or retinoblastoma (Rb) tumor suppressor genes are involved at specific stages in the process of in vitro human peripheral stem cell hematopoiesis. Mononuclear peripheral blood cells were depleted of adherent cells and T lymphocytes (A-T-PMCs). Cells were then cultured in semisolid medium, under conditions that favor the growth of specific progenitor cell types. A-T-PMCs were exposed to p53 and/or Rb sense, scrambled DNA and antisense oligodeoxynucleotides. p53 and/or Rb antisenses (but not their senses or scrambled DNA) treatment of A-T-PMCs resulted in a significantly increase in the number of granulocyte/macrophage colony-forming units (CFU-GM) in the presence of interleukin-3 (IL-3) and/or granulocyte/macrophage colony-stimulating factor (GM-CSF). After antisense treatment, blast forming units/erythroblasts (BFU-E) derived from A-T-PMCs cultured in the presence of IL-3 + erythropoietin (Epo) were also increased whereas colony forming units/erythroblasts (CFU-E) were not markedly affected in the presence of Epo only. Megakaryocytic colony (CFU-Meg) formation from A-T-PMCs in the presence of interleukin-6 (IL-6) + IL-3 + Epo was also increased after antisense oligodeoxynucleotide treatment. These results are consistent with the hypothesis that p53 and Rb tumor suppressor gene products are involved in the control of distinct signal pathways in different peripheral progenitor cells.
Collapse
Affiliation(s)
- T Mahdi
- Laboratoire de Biologie Cellulaire et Moléculaire, CHU de Poitiers, France
| | | | | | | | | | | |
Collapse
|
29
|
Jin DI, Jameson SB, Reddy MA, Schenkman D, Ostrowski MC. Alterations in differentiation and behavior of monocytic phagocytes in transgenic mice that express dominant suppressors of ras signaling. Mol Cell Biol 1995; 15:693-703. [PMID: 7823938 PMCID: PMC231933 DOI: 10.1128/mcb.15.2.693] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To address the role of ras signaling in monocytic phagocytes in vivo, the expression of two dominant suppressors of in vitro ras signaling pathways, the carboxyl-terminal region of the GTPase-activating protein (GAP-C) and the DNA binding domain of the transcription factor ets-2, were targeted to this cell compartment. A 5-kb portion of the human c-fms proximal promoter was shown to direct expression of the transgenes to the monocytic lineage. As a result of the GAP-C transgene expression, ras-GTP levels were reduced in mature peritoneal macrophages by 70%. The terminal differentiation of monocytes was altered, as evidence by the accumulation of atypical monocytic cells in the blood. Mature peritoneal macrophages exhibited changes in colony-stimulating factor 1-dependent survival and structure. Further, expression of the colony-stimulating factor 1-stimulated gene urokinase plasminogen activator was inhibited in peritoneal macrophages. The results indicate that ras action is critical in monocytic cells after these cells have lost the capacity to traverse the cell cycle.
Collapse
Affiliation(s)
- D I Jin
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | |
Collapse
|
30
|
Giles RV, Spiller DG, Tidd DM. Detection of ribonuclease H-generated mRNA fragments in human leukemia cells following reversible membrane permeabilization in the presence of antisense oligodeoxynucleotides. ANTISENSE RESEARCH AND DEVELOPMENT 1995; 5:23-31. [PMID: 7542045 DOI: 10.1089/ard.1995.5.23] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The involvement of ribonuclease H (RNase H) in antisense phenomena in intact cells has, to date, only been adequately demonstrated for microinjected Xenopus systems. The significance of RNase H for the antisense effects of oligodeoxynucleotides observed in human and other mammalian cell cultures has remained obscure, in part because of inadequate analytic methods. In this report we show that the "reverse ligation-mediated PCR" (RL-PCR) procedure permits amplification of RNA fragments produced by oligodeoxynucleotide-directed RNase H activity. We have used this procedure to demonstrate RNase H-dependent antisense effects in irreversibly permeabilized (dead) cells and reversibly permeabilized (live) cells.
Collapse
Affiliation(s)
- R V Giles
- Department of Biochemistry, University of Liverpool, UK
| | | | | |
Collapse
|
31
|
Skorski T, Kanakaraj P, Ku DH, Nieborowska-Skorska M, Canaani E, Zon G, Perussia B, Calabretta B. Negative regulation of p120GAP GTPase promoting activity by p210bcr/abl: implication for RAS-dependent Philadelphia chromosome positive cell growth. J Exp Med 1994; 179:1855-65. [PMID: 8195713 PMCID: PMC2191514 DOI: 10.1084/jem.179.6.1855] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The p210bcr/abl tyrosine kinase appears to be responsible for initiating and maintaining the leukemic phenotype in chronic myelogenous leukemia (CML) patients. p21ras-p120GAP interactions play a central role in transducing mitogenic signals. Therefore, we investigated whether p21ras and p120GAP are regulated by p210bcr/abl, and whether this activation is functionally significant for CML cell proliferation. We report that transient expression of p210bcr/abl in fibroblast-like cells induces simultaneous activation of p21ras and inhibition of GTPase-promoting activity of p120GAP, and confirm these data showing that downregulation of p210bcr/abl expression in CML cells with bcr/abl antisense oligodeoxynucleotides induces both inhibition of p21ras activation and stimulation of GTPase-promoting activity of p120GAP. Tyrosine phosphorylation of two p120GAP-associated proteins, p190 and p62, which may affect p120GAP activity, also depends on p210bcr/abl tyrosine kinase expression. Direct dependence of these effects on the kinase activity is proven in experiments in which expression of c-MYB protein in fibroblast-like cells or downregulation of c-MYB expression resulting in analogous inhibition of CML cell proliferation does not result in the same changes. Use of specific antisense oligodeoxynucleotides to downregulate p21ras expression revealed a requirement for functional p21ras in the proliferation of Philadelphia chromosome-positive CML primary cells. Thus, the p210bcr/abl-dependent regulation of p120GAP activity is responsible, in part, for the maintenance of p21ras in the active GTP-bound form, a crucial requirement for CML cell proliferation.
Collapse
MESH Headings
- Base Sequence
- Cell Division/drug effects
- Cell Division/physiology
- Cell Line
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 22
- Chromosomes, Human, Pair 9
- Fusion Proteins, bcr-abl/metabolism
- GTP Phosphohydrolases/metabolism
- GTPase-Activating Proteins
- Gene Expression Regulation, Neoplastic/drug effects
- Homeostasis
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Molecular Sequence Data
- Oligonucleotides, Antisense/pharmacology
- Oncogenes/drug effects
- Philadelphia Chromosome
- Proteins/metabolism
- Proto-Oncogene Proteins p21(ras)/metabolism
- Proto-Oncogenes/drug effects
- Signal Transduction
- Translocation, Genetic
- Tumor Cells, Cultured
- ras GTPase-Activating Proteins
Collapse
Affiliation(s)
- T Skorski
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ratajczak MZ, Gewirtz AM. Oligonucleotide-Based Therapeutics of Human Malignancies. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 1994. [DOI: 10.1007/978-3-642-78666-2_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
33
|
Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak M, Szczylik C, Zon G, Arlinghaus RB, Gewirtz A, Perussia B, Calabretta B. p120 GAP requirement in normal and malignant human hematopoiesis. J Exp Med 1993; 178:1923-33. [PMID: 8245773 PMCID: PMC2191281 DOI: 10.1084/jem.178.6.1923] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
There is evidence to suggest that the p120 GAP (GAP), originally described as an inhibitor of p21ras, may also serve as a downstream effector of ras-regulated signal transduction. To determine whether GAP expression is required for the growth of human normal and leukemic hematopoietic cells, we used GAP antisense oligodeoxynucleotides to inhibit it and analyzed the effects of this inhibition on the colony-forming ability of nonadherent, T lymphocyte-depleted mononuclear cells and of highly purified progenitors (CD34+ MNC) obtained from the bone marrow and peripheral blood of healthy volunteers or chronic myeloid leukemia (CML, bcr-abl-positive) patients. The acute myelogenous leukemia cell line MO7, the Philadelphia BV173 cell line, and the acute promyelocytic leukemia NB4 and HL-60 cell lines were similarly examined. GAP antisense treatment inhibited colony formation from normal myelo-, erythro-, and megakaryopoietic progenitor cells as well as from CML progenitor cells. Proliferation of MO7 (growth factor-dependent) and BV173 (bcr-abl-dependent) cells, but not that of NB4 and HL-60 (growth factor-independent) cells, was also inhibited, even though a specific downregulation of GAP was observed in each cell line, as analyzed by either or both mRNA and protein expression. Stimulation of MO7 cells with hematopoietic growth factors increased the expression of GAP as well as the levels of active GTP-bound p21ras. Stimulation of GAP expression was inhibited upon GAP antisense treatment. These data indicate that p120 GAP is involved in human normal and leukemic hemopoiesis and strongly suggest that GAP is not only a p21ras inhibitor (signal terminator), but also a positive signal transducer.
Collapse
Affiliation(s)
- T Skorski
- Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Szczylik C, Skorski T, Ku DH, Nicolaides NC, Wen SC, Rudnicka L, Bonati A, Malaguarnera L, Calabretta B. Regulation of proliferation and cytokine expression of bone marrow fibroblasts: role of c-myb. J Exp Med 1993; 178:997-1005. [PMID: 7688794 PMCID: PMC2191153 DOI: 10.1084/jem.178.3.997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The c-myb protooncogene plays a major role in regulating the process of in vitro and in vivo hematopoiesis via its activity as transcriptional regulator in hematopoietic progenitor cells. Since the bone marrow microenvironment appears to regulate in vivo hematopoiesis by maintaining the growth of multipotent progenitors via secretion of specific cytokines, we asked whether c-myb is also required for the proliferation of and/or cytokine production by stromal cells that generate fibroblast-like colonies (fibroblast colony-forming units [CFU-F]). Using the reverse transcriptase polymerase chain reaction technique, we detected low levels of c-myb mRNA transcripts in human normal bone marrow fibroblasts. Treatment of these cells with c-myb antisense oligodeoxynucleotides caused downregulation of c-myb expression, decreased in the number of marrow CFU-F colonies (approximately 54% inhibition) and in the cell number within residual colonies (approximately 80%), and downregulation of granulocyte/macrophage colony-stimulating factor (GM-CSF) and stem cell factor (SCF) mRNA expression. Transfection of T98G glioblastoma cells, in which expression of c-myb, GM-CSF, and SCF mRNAs is undetectable or barely detectable, with a plasmid containing a full-length c-myb cDNA under the control of the SV40 promoter induced the expression of biologically active SCF and GM-CSF in these cells. Regulation of GM-CSF expression by c-myb was due in part to transactivation of the GM-CSF promoter. These results indicate that, in addition to regulating hematopoietic cell proliferation, c-myb is also required for proliferation of and cytokines synthesis by bone marrow fibroblasts.
Collapse
Affiliation(s)
- C Szczylik
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Because of the specificity of Watson-Crick base pairing, attempts are now being made to use oligodeoxynucleotides (oligos) in the therapy of human disease. However, for a successful outcome, the oligo must meet at least six criteria: (i) the oligos can be synthesized easily and in bulk; (ii) the oligos must be stable in vivo; (iii) the oligos must be able to enter the target cell; (iv) the oligos must be retained by the target cell; (v) the oligos must be able to interact with their cellular targets; and (vi) the oligos should not interact in a non-sequence-specific manner with other macromolecules. Phosphorothioate oligos are examples of oligos that are being considered for clinical therapeutic trials and meet some, but not all, of these criteria. The potential use of phosphorothioate oligos as inhibitors of viral replication is highlighted.
Collapse
Affiliation(s)
- C A Stein
- Department of Medicine, Columbia University, New York, NY 10032
| | | |
Collapse
|
36
|
Skorski T, Nieborowska-Skorska M, Barletta C, Malaguarnera L, Szcyzlik C, Chen ST, Lange B, Calabretta B. Highly efficient elimination of Philadelphia leukemic cells by exposure to bcr/abl antisense oligodeoxynucleotides combined with mafosfamide. J Clin Invest 1993; 92:194-202. [PMID: 8325984 PMCID: PMC293565 DOI: 10.1172/jci116549] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Synthetic oligodeoxynucleotides complementary to the break-point junction of bcr-abl transcripts selectively inhibit the proliferation of Philadelphia-positive leukemic cells, but residual leukemic cells persist in antisense oligodeoxynucleotides-treated cultures. Cyclophosphamide derivatives such as mafosfamide and 4-hydroperoxycyclophosphamide are used at high doses for purging of Philadelphia leukemic cells from marrows but such treatment can be associated with delayed engraftment and prolonged cytopenias. To develop a more effective procedure that might optimize the killing of leukemia cells and the sparing of normal hematopoietic progenitor cells, a 1:1 mixture of Philadelphia leukemic cells and normal bone marrow cells was exposed to a combination of a low dose of mafosfamide and bcr-abl antisense oligodeoxynucleotides and assayed for growth ability in clonogenic assays and in immunodeficient mice. Bcr-abl transcripts were not detected in residual colonies, and cytogenetic analysis of individual colonies revealed a normal karyotype. Normal but not leukemic hematopoietic colonies of human origin were also detected in marrows of immunodeficient mice 1 mo after injection of the treated cells. Our results indicate that a combination of a conventional chemotherapeutic agent and a tumor-specific antisense oligodeoxynucleotide is highly effective in killing leukemic cells and in sparing a much higher number of normal progenitor cells as compared with high-dose mafosfamide treatment. This offers the prospect of a novel and more selective ex vivo treatment of chronic myelogenous leukemia.
Collapse
Affiliation(s)
- T Skorski
- Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- G Carter
- ICRF Oncology Group, Royal Postgraduate Medical School, Hammersmith Hospital, London, UK
| | | |
Collapse
|
38
|
An indexed bibliography of antisense literature, 1992. ANTISENSE RESEARCH AND DEVELOPMENT 1993; 3:95-153. [PMID: 8495109 DOI: 10.1089/ard.1993.3.95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Krieg AM. Applications of antisense oligodeoxynucleotides in immunology and autoimmunity research. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s1058-6687(05)80016-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|