1
|
Kurniyati K, Clark ND, Wang H, Deng Y, Sze CW, Visser MB, Malkowski MG, Li C. A bipartite bacterial virulence factor targets the complement system and neutrophil activation. EMBO J 2025; 44:1154-1184. [PMID: 39753953 PMCID: PMC11833123 DOI: 10.1038/s44318-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The complement system and neutrophils constitute the two main pillars of the host innate immune defense against infection by bacterial pathogens. Here, we identify T-Mac, a novel virulence factor of the periodontal pathogen Treponema denticola that allows bacteria to evade both defense systems. We show that T-Mac is expressed as a pre-protein that is cleaved into two functional units. The N-terminal fragment has two immunoglobulin-like domains and binds with high affinity to the major neutrophil chemokine receptors FPR1 and CXCR1, blocking N-formyl-Met-Leu-Phe- and IL-8-induced neutrophil chemotaxis and activation. The C-terminal fragment functions as a cysteine protease with a unique proteolytic activity and structure, which degrades several components of the complement system, such as C3 and C3b. Murine infection studies further reveal a critical T-Mac role in tissue damage and inflammation caused by bacterial infection. Collectively, these results disclose a novel innate immunity-evasion strategy, and open avenues for investigating the role of cysteine proteases and immunoglobulin-like domains of gram-positive and -negative bacterial pathogens.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicholas D Clark
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, NY, USA
| | - Hongxia Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Yijie Deng
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Ching Wooen Sze
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Michelle B Visser
- Department of Oral Biology, School of Dentistry, University of Buffalo, the State University of New York, Buffalo, NY, USA
| | - Michael G Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, NY, USA.
| | - Chunhao Li
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Miller WE, O'Connor CM. CMV-encoded GPCRs in infection, disease, and pathogenesis. Adv Virus Res 2024; 118:1-75. [PMID: 38461029 DOI: 10.1016/bs.aivir.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
G protein coupled receptors (GPCRs) are seven-transmembrane domain proteins that modulate cellular processes in response to external stimuli. These receptors represent the largest family of membrane proteins, and in mammals, their signaling regulates important physiological functions, such as vision, taste, and olfaction. Many organisms, including yeast, slime molds, and viruses encode GPCRs. Cytomegaloviruses (CMVs) are large, betaherpesviruses, that encode viral GPCRs (vGPCRs). Human CMV (HCMV) encodes four vGPCRs, including UL33, UL78, US27, and US28. Each of these vGPCRs, as well as their rodent and primate orthologues, have been investigated for their contributions to viral infection and disease. Herein, we discuss how the CMV vGPCRs function during lytic and latent infection, as well as our understanding of how they impact viral pathogenesis.
Collapse
Affiliation(s)
- William E Miller
- Department of Molecular and Cellular Bioscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christine M O'Connor
- Infection Biology, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
3
|
Elbaz-Hayoun S, Rinsky B, Hagbi-Levi S, Grunin M, Chowers I. CCR1 mediates Müller cell activation and photoreceptor cell death in macular and retinal degeneration. eLife 2023; 12:e81208. [PMID: 37903056 PMCID: PMC10615370 DOI: 10.7554/elife.81208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
Mononuclear cells are involved in the pathogenesis of retinal diseases, including age-related macular degeneration (AMD). Here, we examined the mechanisms that underlie macrophage-driven retinal cell death. Monocytes were extracted from patients with AMD and differentiated into macrophages (hMdɸs), which were characterized based on proteomics, gene expression, and ex vivo and in vivo properties. Using bioinformatics, we identified the signaling pathway involved in macrophage-driven retinal cell death, and we assessed the therapeutic potential of targeting this pathway. We found that M2a hMdɸs were associated with retinal cell death in retinal explants and following adoptive transfer in a photic injury model. Moreover, M2a hMdɸs express several CCRI (C-C chemokine receptor type 1) ligands. Importantly, CCR1 was upregulated in Müller cells in models of retinal injury and aging, and CCR1 expression was correlated with retinal damage. Lastly, inhibiting CCR1 reduced photic-induced retinal damage, photoreceptor cell apoptosis, and retinal inflammation. These data suggest that hMdɸs, CCR1, and Müller cells work together to drive retinal and macular degeneration, suggesting that CCR1 may serve as a target for treating these sight-threatening conditions.
Collapse
Affiliation(s)
- Sarah Elbaz-Hayoun
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Batya Rinsky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Michelle Grunin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
4
|
Kiyasu Y, Kawada K, Hirai H, Ogawa R, Hanada K, Masui H, Nishikawa G, Yamamoto T, Mizuno R, Itatani Y, Kai M, Taketo MM, Sakai Y. Disruption of CCR1-mediated myeloid cell accumulation suppresses colorectal cancer progression in mice. Cancer Lett 2020; 487:53-62. [PMID: 32473241 DOI: 10.1016/j.canlet.2020.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022]
Abstract
Tumor-stromal interaction is implicated in tumor progression. Although CCR1 expression in myeloid cells could be associated with pro-tumor activity, it remains elusive whether disruption of CCR1-mediated myeloid cell accumulation can suppress tumor progression. Here, we investigated the role of CCR1 depletion in myeloid cells in two syngeneic colorectal cancer mouse models: MC38, a transplanted tumor model and CMT93, a liver metastasis model. Both cells induced tumor accumulation of CCR1+ myeloid cells that express MMP2, MMP9, iNOS, and VEGF. Lack of the Ccr1 gene in host mice dramatically reduced MC38 tumor growth as well as CMT93 liver metastasis. To delineate the contribution of CCR1+ myeloid cells, we performed bone marrow (BM) transfer experiments in which sub-lethally irradiated wild-type mice were reconstituted with BM from either wild-type or Ccr1-/- mice. Mice reconstituted with Ccr1-/- BM exhibited marked suppression of MC38 tumor growth and CMT93 liver metastasis, compared with control mice. Consistent with these results, administration of a neutralizing anti-CCR1 monoclonal antibody, KM5908, significantly suppressed MC38 tumor growth and CMT93 liver metastases. Our findings highlight the importance of the application of CCR1 blockade as a therapeutic strategy.
Collapse
Affiliation(s)
- Yoshiyuki Kiyasu
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenji Kawada
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Hideyo Hirai
- Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Ryotaro Ogawa
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Keita Hanada
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hideyuki Masui
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Gen Nishikawa
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Takamasa Yamamoto
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Rei Mizuno
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yoshiro Itatani
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masayuki Kai
- Oncology Research Laboratories, Oncology R&D Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi-machi, Machida, Tokyo, 194-8533, Japan
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshiharu Sakai
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
5
|
Islam M, Kalita T, Saikia AK, Begum A, Baruah V, Singh N, Borkotoky R, Bose S. Significance of RANTES-CCR5 axis and linked downstream immunomodulation in Dengue pathogenesis: A study from Guwahati, India. J Med Virol 2019; 91:2066-2073. [PMID: 31368534 DOI: 10.1002/jmv.25561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/27/2019] [Indexed: 11/09/2022]
Abstract
We aimed to evaluate the significance of the RANTES-CCR5 axis and resulting immunomodulatory status in Dengue pathogenesis involving a Guwahati, India based population where Dengue cases have increased alarmingly. An increased CC-chemokine receptor type 5 (CCR5) messenger RNA expression and CCR5 positive cell count profile was observed in Dengue cases, the highest being in severe cases. CCR5 ligand RANTES expression was significantly decreased in Dengue cases and inversely correlated with Dengue viremia fold change in severe cases. Monocytes are involved in Dengue virus homing and replication. Its levels and activation profile were higher in Dengue cases. A hyper Th1-biased immunomodulatory profile with upregulated tumor necrosis factor-α levels, and downregulated expression of antiviral cytokine interferon-γ and key regulatory Th2 anti-inflammatory cytokine interleukin 10 was observed in severe Dengue cases compared with mild Dengue cases and controls. The results, therefore, suggest the significance of RANTES-CCR5 axis deregulation and resulting altered immunomodulation in Dengue pathogenesis, and holds prognostic and therapeutic significance.
Collapse
Affiliation(s)
- Mafidul Islam
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Trishna Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Anjan K Saikia
- Gastroenterology and Hepatology, GNRC Hospital, Guwahati, Assam, India
| | - Anjuma Begum
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Vargab Baruah
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Nidhi Singh
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Raktim Borkotoky
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
6
|
Sanchez J, Lane JR, Canals M, Stone MJ. Influence of Chemokine N-Terminal Modification on Biased Agonism at the Chemokine Receptor CCR1. Int J Mol Sci 2019; 20:ijms20102417. [PMID: 31096719 PMCID: PMC6566870 DOI: 10.3390/ijms20102417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/05/2023] Open
Abstract
Leukocyte migration, a hallmark of the inflammatory response, is stimulated by the interactions between chemokines, which are expressed in injured or infected tissues, and chemokine receptors, which are G protein-coupled receptors (GPCRs) expressed in the leukocyte plasma membrane. One mechanism for the regulation of chemokine receptor signaling is biased agonism, the ability of different chemokine ligands to preferentially activate different intracellular signaling pathways via the same receptor. To identify features of chemokines that give rise to biased agonism, we studied the activation of the receptor CCR1 by the chemokines CCL7, CCL8, and CCL15(Δ26). We found that, compared to CCL15(Δ26), CCL7 and CCL8 exhibited biased agonism towards cAMP inhibition and away from β-Arrestin 2 recruitment. Moreover, N-terminal substitution of the CCL15(Δ26) N-terminus with that of CCL7 resulted in a chimera with similar biased agonism to CCL7. Similarly, N-terminal truncation of CCL15(Δ26) also resulted in signaling bias between cAMP inhibition and β-Arrestin 2 recruitment signals. These results show that the interactions of the chemokine N-terminal region with the receptor transmembrane region play a key role in selecting receptor conformations coupled to specific signaling pathways.
Collapse
Affiliation(s)
- Julie Sanchez
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - J Robert Lane
- Centre for Membrane Proteins and Receptors, Nottingham University, Nottingham NG7 2RD, UK.
| | - Meritxell Canals
- Centre for Membrane Proteins and Receptors, Nottingham University, Nottingham NG7 2RD, UK.
| | - Martin J Stone
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
7
|
Sanchez J, E Huma Z, Lane JR, Liu X, Bridgford JL, Payne RJ, Canals M, Stone MJ. Evaluation and extension of the two-site, two-step model for binding and activation of the chemokine receptor CCR1. J Biol Chem 2018; 294:3464-3475. [PMID: 30567735 DOI: 10.1074/jbc.ra118.006535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/07/2018] [Indexed: 11/06/2022] Open
Abstract
Interactions between secreted immune proteins called chemokines and their cognate G protein-coupled receptors regulate the trafficking of leukocytes in inflammatory responses. The two-site, two-step model describes these interactions. It involves initial binding of the chemokine N-loop/β3 region to the receptor's N-terminal region and subsequent insertion of the chemokine N-terminal region into the transmembrane helical bundle of the receptor concurrent with receptor activation. Here, we test aspects of this model with C-C motif chemokine receptor 1 (CCR1) and several chemokine ligands. First, we compared the chemokine-binding affinities of CCR1 with those of peptides corresponding to the CCR1 N-terminal region. Relatively low affinities of the peptides and poor correlations between CCR1 and peptide affinities indicated that other regions of the receptor may contribute to binding affinity. Second, we evaluated the contributions of the two CCR1-interacting regions of the cognate chemokine ligand CCL7 (formerly monocyte chemoattractant protein-3 (MCP-3)) using chimeras between CCL7 and the non-cognate ligand CCL2 (formerly MCP-1). The results revealed that the chemokine N-terminal region contributes significantly to binding affinity but that differences in binding affinity do not completely account for differences in receptor activation. On the basis of these observations, we propose an elaboration of the two-site, two-step model-the "three-step" model-in which initial interactions of the first site result in low-affinity, nonspecific binding; rate-limiting engagement of the second site enables high-affinity, specific binding; and subsequent conformational rearrangement gives rise to receptor activation.
Collapse
Affiliation(s)
- Julie Sanchez
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,the Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Zil E Huma
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,the Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - J Robert Lane
- the Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,the Centre for Membrane Proteins and Receptors, Nottingham University, Nottingham NG7 2UH, United Kingdom
| | - Xuyu Liu
- the School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - Jessica L Bridgford
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,the Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Richard J Payne
- the School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - Meritxell Canals
- the Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia, .,the Centre for Membrane Proteins and Receptors, Nottingham University, Nottingham NG7 2UH, United Kingdom
| | - Martin J Stone
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia,
| |
Collapse
|
8
|
Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr 2016; 4:10.1128/microbiolspec.TBTB2-0018-2016. [PMID: 27763255 PMCID: PMC5205539 DOI: 10.1128/microbiolspec.tbtb2-0018-2016] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 02/06/2023] Open
Abstract
Chemokines and cytokines are critical for initiating and coordinating the organized and sequential recruitment and activation of cells into Mycobacterium tuberculosis-infected lungs. Correct mononuclear cellular recruitment and localization are essential to ensure control of bacterial growth without the development of diffuse and damaging granulocytic inflammation. An important block to our understanding of TB pathogenesis lies in dissecting the critical aspects of the cytokine/chemokine interplay in light of the conditional role these molecules play throughout infection and disease development. Much of the data highlighted in this review appears at first glance to be contradictory, but it is the balance between the cytokines and chemokines that is critical, and the "goldilocks" (not too much and not too little) phenomenon is paramount in any discussion of the role of these molecules in TB. Determination of how the key chemokines/cytokines and their receptors are balanced and how the loss of that balance can promote disease is vital to understanding TB pathogenesis and to identifying novel therapies for effective eradication of this disease.
Collapse
Affiliation(s)
| | - Oliver Prince
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130
| | - Andrea Cooper
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
9
|
Choi J, Selmi C, Leung PSC, Kenny TP, Roskams T, Gershwin ME. Chemokine and chemokine receptors in autoimmunity: the case of primary biliary cholangitis. Expert Rev Clin Immunol 2016; 12:661-72. [PMID: 26821815 DOI: 10.1586/1744666x.2016.1147956] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemokines represent a major mediator of innate immunity and play a key role in the selective recruitment of cells during localized inflammatory responses. Beyond critical extracellular mediators of leukocyte trafficking, chemokines and their cognate receptors are expressed by a variety of resident and infiltrating cells (monocytes, lymphocytes, NK cells, mast cells, and NKT cells). Chemokines represent ideal candidates for mechanistic studies (particularly in murine models) to better understand the pathogenesis of chronic inflammation and possibly become biomarkers of disease. Nonetheless, therapeutic approaches targeting chemokines have led to unsatisfactory results in rheumatoid arthritis, while biologics against pro-inflammatory cytokines are being used worldwide with success. In this comprehensive review we will discuss the evidence supporting the involvement of chemokines and their specific receptors in mediating the effector cell response, utilizing the autoimmune/primary biliary cholangitis setting as a paradigm.
Collapse
Affiliation(s)
- Jinjung Choi
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California Davis , Davis , CA , USA.,b Division of Rheumatology , CHA University Medical Center , Bundang , Korea
| | - Carlo Selmi
- c Rheumatology and Clinical Immunology , Humanitas Research Hospital , Rozzano , Italy.,d BIOMETRA Department , University of Milan , Milano , Italy
| | - Patrick S C Leung
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California Davis , Davis , CA , USA
| | - Thomas P Kenny
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California Davis , Davis , CA , USA
| | - Tania Roskams
- e Translational Cell and Tissue Research , University of Leuven , Leuven , Belgium
| | - M Eric Gershwin
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California Davis , Davis , CA , USA
| |
Collapse
|
10
|
Anderson CA, Solari R, Pease JE. Biased agonism at chemokine receptors: obstacles or opportunities for drug discovery? J Leukoc Biol 2015; 99:901-9. [PMID: 26701135 DOI: 10.1189/jlb.2mr0815-392r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/01/2015] [Indexed: 01/14/2023] Open
Abstract
Chemokine receptors are typically promiscuous, binding more than one ligand, with the ligands themselves often expressed in different spatial localizations by multiple cell types. This is normally a tightly regulated process; however, in a variety of inflammatory disorders, dysregulation results in the excessive or inappropriate expression of chemokines that drives disease progression. Biased agonism, the phenomenon whereby different ligands of the same receptor are able to preferentially activate one signaling pathway over another, adds another level of complexity to an already complex system. In this minireview, we discuss the concept of biased agonism within the chemokine family and report that targeting single signaling axes downstream of chemokine receptors is not only achievable, but may well present novel opportunities to target chemokine receptors, allowing the fine tuning of receptor responses in the context of allergic inflammation and beyond.
Collapse
Affiliation(s)
- Caroline A Anderson
- Receptor Biology Group, Inflammation, Resolution and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom; and
| | - Roberto Solari
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, Norfolk Place, London, United Kingdom
| | - James E Pease
- Receptor Biology Group, Inflammation, Resolution and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom; and
| |
Collapse
|
11
|
Affiliation(s)
- Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
12
|
Khan J, Sharma PK, Mukhopadhaya A. Vibrio cholerae porin OmpU mediates M1-polarization of macrophages/monocytes via TLR1/TLR2 activation. Immunobiology 2015; 220:1199-209. [PMID: 26093918 DOI: 10.1016/j.imbio.2015.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/04/2015] [Accepted: 06/01/2015] [Indexed: 01/01/2023]
Abstract
Polarization of the monocytes and macrophages toward the M1 and M2 states is important for hosts' defense against the pathogens. Moreover, it plays a crucial role to resolve the overwhelming inflammatory responses that can be harmful to the host. Polarization of macrophages/monocytes can be induced by pathogen-associated molecular patterns (PAMPs). PAMP-mediated monocyte/macrophage polarization is important during the infection, as pathogen can suppress host immune system by altering the polarization status of the macrophages/monocytes. OmpU, an outer membrane porin protein of Vibrio cholerae, possesses the ability to induce pro-inflammatory responses in monocytes/macrophages. It is also able to down-regulate the LPS-mediated activation of the monocytes/macrophages. Such observation leads us to believe that OmpU may induce a state that can be called as M1/M2-intermediate state. In the present study, we evaluated a set of M1 and M2 markers in RAW 264.7 murine macrophage cell line, and THP-1 human monocytic cell line, in response to the purified OmpU protein. We observed that OmpU, as a PAMP, induced M1-polarization by activating the Toll-like receptor (TLR) signaling pathway. OmpU induced formation of TLR1/TLR2-heterodimers. OmpU-mediated TLR-activation led to the MyD88 recruitment to the TLR1/TLR2 complex. MyD88, in turn, recruited IRAK1. Ultimately, OmpU-mediated signaling led to the activation and subsequent nuclear translocation of the NFκB p65 subunit. We also observed that blocking of the TLR1, TLR2, IRAK1, and NFκB affected OmpU-mediated production of M1-associated pro-inflammatory cytokines such as TNFα and IL-6.
Collapse
Affiliation(s)
- Junaid Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Praveen K Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
13
|
Marques RE, Guabiraba R, Del Sarto JL, Rocha RF, Queiroz AL, Cisalpino D, Marques PE, Pacca CC, Fagundes CT, Menezes GB, Nogueira ML, Souza DG, Teixeira MM. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development. Immunology 2015; 145:583-96. [PMID: 25939314 DOI: 10.1111/imm.12476] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/26/2023] Open
Abstract
Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5.
Collapse
Affiliation(s)
- Rafael E Marques
- Immunopharmacology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Juliana L Del Sarto
- Immunopharmacology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebeca F Rocha
- Immunopharmacology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Luiza Queiroz
- Immunopharmacology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel Cisalpino
- Microorganism/Host Interaction, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro E Marques
- Immunobiophotonics, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina C Pacca
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Caio T Fagundes
- Microorganism/Host Interaction, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo B Menezes
- Immunobiophotonics, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maurício L Nogueira
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Danielle G Souza
- Microorganism/Host Interaction, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro M Teixeira
- Immunopharmacology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Cadogan S, Miller S. <i>Aspergillus</i> Pneumonia in Adult Patients With Acute Leukemia. Clin J Oncol Nurs 2014; 18:243-6. [DOI: 10.1188/14.cjon.243-246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Roles of the chemokine system in development of obesity, insulin resistance, and cardiovascular disease. J Immunol Res 2014; 2014:181450. [PMID: 24741577 PMCID: PMC3987870 DOI: 10.1155/2014/181450] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/04/2014] [Indexed: 12/13/2022] Open
Abstract
The escalating epidemic of obesity has increased the incidence of obesity-induced complications to historically high levels. Adipose tissue is a dynamic energy depot, which stores energy and mobilizes it during nutrient deficiency. Excess nutrient intake resulting in adipose tissue expansion triggers lipid release and aberrant adipokine, cytokine and chemokine production, and signaling that ultimately lead to adipose tissue inflammation, a hallmark of obesity. This low-grade chronic inflammation is thought to link obesity to insulin resistance and the associated comorbidities of metabolic syndrome such as dyslipidemia and hypertension, which increase risk of type 2 diabetes and cardiovascular disease. In this review, we focus on and discuss members of the chemokine system for which there is clear evidence of participation in the development of obesity and obesity-induced pathologies.
Collapse
|
16
|
Atorvastatin Inhibits the 5-Lipoxygenase Pathway and Expression of CCL3 to Alleviate Atherosclerotic Lesions in Atherosclerotic ApoE Knockout Mice. J Cardiovasc Pharmacol 2013; 62:205-11. [DOI: 10.1097/fjc.0b013e3182967fc0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65:47-89. [PMID: 23300131 DOI: 10.1124/pr.111.005074] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.
Collapse
Affiliation(s)
- Gemma E White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
18
|
Lee MMK, Chui RKS, Tam IYS, Lau AHY, Wong YH. CCR1-mediated STAT3 tyrosine phosphorylation and CXCL8 expression in THP-1 macrophage-like cells involve pertussis toxin-insensitive Gα(14/16) signaling and IL-6 release. THE JOURNAL OF IMMUNOLOGY 2012; 189:5266-76. [PMID: 23125416 DOI: 10.4049/jimmunol.1103359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Agonists of CCR1 contribute to hypersensitivity reactions and atherosclerotic lesions, possibly via the regulation of the transcription factor STAT3. CCR1 was demonstrated to use pertussis toxin-insensitive Gα(14/16) to stimulate phospholipase Cβ and NF-κB, whereas both Gα(14) and Gα(16) are also capable of activating STAT3. The coexpression of CCR1 and Gα(14/16) in human THP-1 macrophage-like cells suggests that CCR1 may use Gα(14/16) to induce STAT3 activation. In this study, we demonstrated that a CCR1 agonist, leukotactin-1 (CCL15), could indeed stimulate STAT3 Tyr(705) and Ser(727) phosphorylation via pertussis toxin-insensitive G proteins in PMA-differentiated THP-1 cells, human erythroleukemia cells, and HEK293 cells overexpressing CCR1 and Gα(14/16). The STAT3 Tyr(705) and Ser(727) phosphorylations were independent of each other and temporally distinct. Subcellular fractionation and confocal microscopy illustrated that Tyr(705)-phosphorylated STAT3 translocated to the nucleus, whereas Ser(727)-phosphorylated STAT3 was retained in the cytosol after CCR1/Gα(14) activation. CCL15 was capable of inducing IL-6 and IL-8 (CXCL8) production in both THP-1 macrophage-like cells and HEK293 cells overexpressing CCR1 and Gα(14/16). Neutralizing Ab to IL-6 inhibited CCL15-mediated STAT3 Tyr(705) phosphorylation, whereas inhibition of STAT3 activity abolished CCL15-activated CXCL8 release. The ability of CCR1 to signal through Gα(14/16) provides a linkage for CCL15 to regulate IL-6/STAT3-signaling cascades, leading to expression of CXCL8, a cytokine that is involved in inflammation and the rupture of atherosclerotic plaque.
Collapse
Affiliation(s)
- Maggie M K Lee
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Increased expression of chemokine receptors CCR1 and CCR3 in nasal polyps: molecular basis for recruitment of the granulocyte infiltrate. Folia Microbiol (Praha) 2012; 58:219-24. [PMID: 23054685 DOI: 10.1007/s12223-012-0194-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 09/03/2012] [Indexed: 01/12/2023]
Abstract
Inflammatory processes play an important role in the development of nasal polyps (NP), but the etiology and, to a high degree also, the pathogenesis of NP are not fully understood. The role of several cytokines and chemokines such as eotaxins, IL-4, IL-5, IL-6, IL-8, and RANTES has been reported in NP. Herewith, we investigated the expression and pattern of distribution of chemokine receptors CCR1 and CCR3 in nasal polyps. Immunohistochemical detection was carried out in frozen sections of biopsies from 22 NP and 18 nasal mucosa specimens in both the epithelial and stromal compartments. Fluorescence microscopy and computerized image analysis revealed a statistically significant increased number of CCR1 (45.2 ± 2.8 vs. 15.1 ± 1.9, p < 0.001)-positive as well as CCR3 (16.4 ± 1.4 vs. 9.7 ± 1.1, p < 0.001)-positive cells in the stroma of NP compared to nasal mucosa. In comparison to healthy nasal mucosa, increased positivity of CCR3 was detected in the epithelial compartment of NP. Our data suggest that increased expression of CCR1 and CCR3 chemokine receptors may, in accord with various chemokines, contribute to the pathogenesis of nasal polyposis by facilitating increased migration and prolonged accumulation of inflammatory cells, e.g., eosinophils, in the inflammatory infiltrate of NP.
Collapse
|
21
|
Granja AG, Carrillo-Salinas F, Pagani A, Gómez-Cañas M, Negri R, Navarrete C, Mecha M, Mestre L, Fiebich BL, Cantarero I, Calzado MA, Bellido ML, Fernandez-Ruiz J, Appendino G, Guaza C, Muñoz E. A cannabigerol quinone alleviates neuroinflammation in a chronic model of multiple sclerosis. J Neuroimmune Pharmacol 2012; 7:1002-16. [PMID: 22971837 DOI: 10.1007/s11481-012-9399-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/02/2012] [Indexed: 12/25/2022]
Abstract
Phytocannabinoids like ∆(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) show a beneficial effect on neuroinflammatory and neurodegenerative processes through cell membrane cannabinoid receptor (CBr)-dependent and -independent mechanisms. Natural and synthetic cannabinoids also target the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ), an attractive molecular target for the treatment of neuroinflammation. As part of a study on the SAR of phytocannabinoids, we have investigated the effect of the oxidation modification in the resorcinol moiety of cannabigerol (CBG) on CB(1), CB(2) and PPARγ binding affinities, identifying cannabigerol quinone (VCE-003) as a potent anti-inflammatory agent. VCE-003 protected neuronal cells from excitotoxicity, activated PPARγ transcriptional activity and inhibited the release of pro-inflammatory mediators in LPS-stimulated microglial cells. Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis (MS) was used to investigate the anti-inflammatory activity of this compound in vivo. Motor function performance was evaluated and the neuroinflammatory response and gene expression pattern in brain and spinal cord were studied by immunostaining and qRT-PCR. We found that VCE-003 ameliorated the symptoms associated to TMEV infection, decreased microglia reactivity and modulated the expression of genes involved in MS pathophysiology. These data lead us to consider VCE-003 to have high potential for drug development against MS and perhaps other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Aitor G Granja
- Vivacell Biotechnology España S.L. Parque Científico Tecnológico Rabanales 21, c/Cecilia Payne, Parcela ID 8.1, 14014, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chemokines: structure, receptors and functions. A new target for inflammation and asthma therapy? Mediators Inflamm 2012; 5:393-416. [PMID: 18475745 PMCID: PMC2365823 DOI: 10.1155/s0962935196000567] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five to 10% of the human population have a disorder of the respiratory tract called 'asthma'. It has been known as a potentially dangerous disease for over 2000 years, as it was already described by Hippocrates and recognized as a disease entity by Egyptian and Hebrew physicians. At the beginning of this decade, there has been a fundamental change in asthma management. The emphasis has shifted from symptom relief with bronchodilator therapies (e.g. beta(2)-agonists) to a much earlier introduction of anti-inflammatory treatment (e.g. corticosteroids). Asthma is now recognized to be a chronic inflammatory disease of the airways, involving various inflammatory cells and their mediators. Although asthma has been the subject of many investigations, the exact role of the different inflammatory cells has not been elucidated completely. Many suggestions have been made and several cells have been implicated in the pathogenesis of asthma, such as the eosinophils, the mast cells, the basophils and the lymphocytes. To date, however, the relative importance of these cells is not completely understood. The cell type predominantly found in the asthmatic lung is the eosinophil and the recruitment of these eosinophils can be seen as a characteristic of asthma. In recent years much attention is given to the role of the newly identified chemokines in asthma pathology. Chemokines are structurally and functionally related 8-10 kDa peptides that are the products of distinct genes clustered on human chromosomes 4 and 17 and can be found at sites of inflammation. They form a superfamily of proinflammatory mediators that promote the recruitment of various kinds of leukocytes and lymphocytes. The chemokine superfamily can be divided into three subgroups based on overall sequence homology. Although the chemokines have highly conserved amino acid sequences, each of the chemokines binds to and induces the chemotaxis of particular classes of white blood cells. Certain chemokines stimulate the recruitment of multiple cell types including monocytes, lymphocytes, basophils, and eosinophils, which are important cells in asthma. Intervention in this process, by the development of chemokine antagonists, might be the key to new therapy. In this review we present an overview of recent developments in the field of chemokines and their role in inflammations as reported in literature.
Collapse
|
23
|
Abstract
Acute renal failure, now referred to as acute kidney injury, is a common and clinically important problem. Acute kidney injury frequently occurs as a result of acute tubular necrosis (ATN), which is often caused by a reduction in systemic blood pressure or renal blood flow (e.g., as observed in severe sepsis or during renal transplantation). The disease course in ATN is variable, including prolonged dialysis-dependence and chronic renal dysfunction, but there is currently no specific therapy for ATN. There is increasing evidence that the inflammatory response in ATN significantly contributes to disease severity and outcome. In this review, we summarize recent developments in the understanding of how the immune system responds to dying cells, and the relevance of these discoveries to ATN. In particular, NLRP3 inflammasome activation and IL-1β-mediated neutrophil recruitment are likely to play a key role and may provide novel therapeutic targets for immunotherapy in ATN.
Collapse
Affiliation(s)
- Miriam Berry
- Division of Renal Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
24
|
Abstract
The chemokine receptor CCR1 has been the target of intensive research for nearly two decades. Small-molecule antagonists were first reported in 1998 and, since then, many inhibitors for CCR1 have been brought forth. Yet, with all the money and time spent, to date, no small-molecule antagonists have successfully moved past Phase II clinical trials. With the current advancement of CCR1 antagonists by Bristol-Myers Squibb and Chemocentrix, there has been renewed interest. In this review, we present an overview of CCR1, its activating ligands, methods of signaling, and downstream response. We discuss studies that indicate CCR1 plays an important role in multiple myeloma and the underlying molecular mechanisms. Finally, we present an overview of the clinical and preclinical compounds for CCR1. We address individual structures, discuss their pharmacological précis, and summarize the published evidence to assess their value for use in multiple myeloma.
Collapse
|
25
|
Ramos MV, Auvynet C, Poupel L, Rodero M, Mejias MP, Panek CA, Vanzulli S, Combadiere C, Palermo M. Chemokine receptor CCR1 disruption limits renal damage in a murine model of hemolytic uremic syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:1040-1048. [PMID: 22203055 DOI: 10.1016/j.ajpath.2011.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/27/2011] [Accepted: 11/11/2011] [Indexed: 11/26/2022]
Abstract
Shiga toxin (Stx)-producing Escherichia coli is the main etiological agent that causes hemolytic uremic syndrome (HUS), a microangiopathic disease characterized by hemolytic anemia, thrombocytopenia, and acute renal failure. Although direct cytotoxic effects on endothelial cells by Stx are the primary pathogenic event, there is evidence that indicates the inflammatory response mediated by polymorphonuclear neutrophils and monocytes as the key event during HUS development. Because the chemokine receptor CCR1 participates in the pathogenesis of several renal diseases by orchestrating myeloid cell kidney infiltration, we specifically addressed the contribution of CCR1 in a murine model of HUS. We showed that Stx type 2-treated CCR1(-/-) mice have an increased survival rate associated with less functional and histological renal damage compared with control mice. Stx type 2-triggered neutrophilia and monocytosis and polymorphonuclear neutrophil and monocyte renal infiltration were significantly reduced and delayed in CCR1(-/-) mice compared with control mice. In addition, the increase of the inflammatory cytokines (tumor necrosis factor-α and IL-6) in plasma was delayed in CCR1(-/-) mice compared with control mice. These data demonstrate that CCR1 participates in cell recruitment to the kidney and amplification of the inflammatory response that contributes to HUS development. Blockade of CCR1 could be important to the design of future therapies to restrain the inflammatory response involved in the development of HUS.
Collapse
Affiliation(s)
- Maria V Ramos
- Division of Immunology, Institute of Experimental Medicine (IMEX-CONICET), National Academy of Medicine, Buenos Aires, Argentina.
| | - Constance Auvynet
- Laboratory of Immunity and Infection, INSERM UMRS 945, University of Pierre and Marie Curie, Paris, France
| | - Lucie Poupel
- Laboratory of Immunity and Infection, INSERM UMRS 945, University of Pierre and Marie Curie, Paris, France
| | - Mathieu Rodero
- Laboratory of Immunity and Infection, INSERM UMRS 945, University of Pierre and Marie Curie, Paris, France
| | - Maria Pilar Mejias
- Division of Immunology, Institute of Experimental Medicine (IMEX-CONICET), National Academy of Medicine, Buenos Aires, Argentina
| | - Cecilia A Panek
- Division of Immunology, Institute of Experimental Medicine (IMEX-CONICET), National Academy of Medicine, Buenos Aires, Argentina
| | - Silvia Vanzulli
- Division of Pathology, Institute of Oncologic Investigation, National Academy of Medicine, Buenos Aires, Argentina
| | - Christophe Combadiere
- Laboratory of Immunity and Infection, INSERM UMRS 945, University of Pierre and Marie Curie, Paris, France
| | - Marina Palermo
- Division of Immunology, Institute of Experimental Medicine (IMEX-CONICET), National Academy of Medicine, Buenos Aires, Argentina
| |
Collapse
|
26
|
Abstract
Monocytes originate from progenitors in the bone marrow and traffic via the bloodstream to peripheral tissues. During both homeostasis and inflammation, circulating monocytes leave the bloodstream and migrate into tissues where, following conditioning by local growth factors, pro-inflammatory cytokines and microbial products, they differentiate into macrophage or dendritic cell populations. Recruitment of monocytes is essential for effective control and clearance of viral, bacterial, fungal and protozoal infections, but recruited monocytes also contribute to the pathogenesis of inflammatory and degenerative diseases. The mechanisms that control monocyte trafficking under homeostatic, infectious and inflammatory conditions are being unravelled and are the focus of this Review.
Collapse
|
27
|
Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat Rev Immunol 2011; 11:355-63. [DOI: 10.1038/nri2972] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Raposo RAS, Thomas B, Ridlova G, James W. Proteomic-based identification of CD4-interacting proteins in human primary macrophages. PLoS One 2011; 6:e18690. [PMID: 21533244 PMCID: PMC3076427 DOI: 10.1371/journal.pone.0018690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 03/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human macrophages (Mφ) express low levels of CD4 glycoprotein, which is constitutively recycled, and 40-50% of its localization is intracellular at steady-state. Although CD4-interacting proteins in lymphoid cells are well characterised, little is known about the CD4 protein interaction-network in human Mφ, which notably lack LCK, a Src family protein tyrosine kinase believed to stabilise CD4 at the surface of T cells. As CD4 is the main cellular receptor used by HIV-1, knowledge of its molecular interactions is important for the understanding of viral infection strategies. METHODOLOGY/PRINCIPAL FINDINGS We performed large-scale anti-CD4 immunoprecipitations in human primary Mφ followed by high-resolution mass spectrometry analysis to elucidate the protein interaction-network involved in induced CD4 internalization and degradation. Proteomic analysis of CD4 co-immunoisolates in resting Mφ showed CD4 association with a range of proteins found in the cellular cortex, membrane rafts and components of clathrin-adaptor proteins, whereas in induced internalization and degradation CD4 is associated with components of specific signal transduction, transport and the proteasome. CONCLUSIONS/SIGNIFICANCE This is the first time that the anti-CD4 co-immunoprecipitation sub-proteome has been analysed in human primary Mφ. Our data have identified important Mφ cell surface CD4-interacting proteins, as well as regulatory proteins involved in internalization and degradation. The data give valuable insights into the molecular pathways involved in the regulation of CD4 expression in Mφ and provide candidates/targets for further biochemical studies.
Collapse
|
29
|
|
30
|
|
31
|
Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, Karin M. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 2011; 470:548-53. [PMID: 21326202 PMCID: PMC3166217 DOI: 10.1038/nature09707] [Citation(s) in RCA: 532] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/25/2010] [Indexed: 12/14/2022]
Abstract
Inflammatory mechanisms influence tumorigenesis and metastatic progression even in cancers whose aetiology does not involve pre-existing inflammation or infection, such as breast and prostate cancers. For instance, prostate cancer metastasis is associated with the infiltration of lymphocytes into advanced tumours and the upregulation of two tumour-necrosis-factor family members: receptor activator of nuclear factor-κB (RANK) ligand (RANKL) and lymphotoxin. But the source of RANKL and its role in metastasis have not been established. RANKL and its receptor RANK control the proliferation of mammary lobuloalveolar cells during pregnancy through inhibitor of nuclear factor-κB (IκB) kinase-α (IKK-α), a protein kinase that is needed for the self-renewal of mammary cancer progenitors and for prostate cancer metastasis. We therefore examined whether RANKL, RANK and IKK-α are also involved in mammary/breast cancer metastasis. Indeed, RANK signalling in mammary carcinoma cells that overexpress the proto-oncogene Erbb2 (also known as Neu), which is frequently amplified in metastatic human breast cancers, was important for pulmonary metastasis. Metastatic spread of Erbb2-transformed carcinoma cells also required CD4(+)CD25(+) T cells, whose major pro-metastatic function was RANKL production. Most RANKL-producing T cells expressed forkhead box P3 (FOXP3), a transcription factor produced by regulatory T cells, and were located next to smooth muscle actin (SMA)(+) stromal cells in mouse and human breast cancers. The dependence of pulmonary metastasis on T cells was replaceable by exogenous RANKL, which also stimulated pulmonary metastasis of RANK(+) human breast cancer cells. These results are consistent with the adverse impact of tumour-infiltrating CD4(+) or FOXP3(+) T cells on human breast cancer prognosis and suggest that the targeting of RANKL-RANK can be used in conjunction with the therapeutic elimination of primary breast tumours to prevent recurrent metastatic disease.
Collapse
Affiliation(s)
- Wei Tan
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, UCSD School of Medicine
| | - Weizhou Zhang
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, UCSD School of Medicine
| | - Amy Strasner
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, UCSD School of Medicine
| | - Sergei Grivennikov
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, UCSD School of Medicine
| | - Jin Q. Cheng
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Robert M. Hoffman
- Department of Surgery, UCSD School of Medicine
- AntiCancer, Inc., San Diego, CA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, UCSD School of Medicine
| |
Collapse
|
32
|
Shimizu H, Monden T, Tomotsune T, Nakatani Y, Domeki N, Matsumura M, Jojima T, Kawagoe Y, Kasai K. A case of myeloma with hypercalcemia caused by high serum concentrations of both parathyroid hormone-related peptide (PTHrP) and macrophage inflammatory protein-1α (MIP-1α). Intern Med 2011; 50:2993-6. [PMID: 22185991 DOI: 10.2169/internalmedicine.50.6096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 62-year-old woman was admitted with dry mouth, general fatigue, and severe back pain. Biochemistry examination showed extreme hypercalcemia (21.2 mg/dL). Bone marrow examination was negative, but needle biopsy of a metastatic lung tumor revealed abnormal plasma cells; thus, multiple myeloma stage III-A was finally diagnosed. Serum concentrations of both parathyroid hormone-related peptide (PTHrP) and macrophage inflammatory protein-1α (MIP-1α) were markedly elevated (PTHrP 7.2 pmol/L, normal <1.1 pmol/L; MIP-1α 84.9 pg/mL, normal <46.9 pg/mL). Her myeloma appeared to have simultaneously caused two mechanisms producing hypercalcemia: humoral hypercalcemia of malignancy (HHM) by PTHrP and local osteolytic hypercalcemia (LOH) by MIP-1α. Therefore, the combination of two calcium-modulating abnormalities likely aggravated her hypercalcemia.
Collapse
Affiliation(s)
- Hiroaki Shimizu
- Department of Endocrinology & Metabolism, Dokkyo Medical University, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
IMPORTANCE OF THE FIELD To date cancer immunotherapy has only achieved limited clinical efficacy, thus more efficient immunotherapeutic approaches need to be explored. The CC chemokine CCL5 plays a role in chemoattraction and activation of immune cells implying its potential clinical application as an adjuvant for boosting anti-tumor immunity, although an effect on carcinogenesis and tumor cell invasiveness is also reported to be associated with CCL5. AREAS COVERED IN THIS REVIEW Recent progress in exploiting CCL5 as an adjuvant for cancer prevention and treatment, and updated understanding on how CCL5 is involved in tumor invasiveness and carcinogenesis. WHAT THE READER WILL GAIN CCL5 represents a natural adjuvant for enhancing anti-tumor immune responses. However, animal experiments and clinical reports suggest that CCL5 plays a role in carcinogenesis and invasiveness of tumor cells. Therefore, a CCL5-based cancer therapeutic approach needs to avoid the CCL5-associated potential detrimental effects. TAKE HOME MESSAGE CCL5 has a pre-eminent role in chemotaxis and activation of a wide spectrum of immune cells. CCL5 functions as an adjuvant to boost anti-tumor immunity by diverse protocols such as co-immunization of recombinant CCL5 protein with tumor-associated antigen, vaccination with CCL-5-expressing tumor cells, or viral vector delivery of CCL5 cDNA into growing tumor. CCL5 may also promote tumor cell survival, proliferation and invasion by different mechanisms.
Collapse
Affiliation(s)
- Natalia Lapteva
- Department Molecular Microbiology & Immunology, 1450 Biggy Street, NRT 7506, Los Angeles, CA 90033, USA
| | | |
Collapse
|
34
|
Proudfoot AEI, Power CA, Schwarz MK. Anti-chemokine small molecule drugs: a promising future? Expert Opin Investig Drugs 2010; 19:345-55. [PMID: 20113217 DOI: 10.1517/13543780903535867] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
IMPORTANCE OF THE FIELD Chemokines have principally been associated with inflammation due to their role in the control of leukocyte migration, but just over a decade ago chemokine receptors were also identified as playing a pivotal role in the entry of the HIV virus into cells. Chemokines activate seven transmembrane G protein-coupled receptors, making them extremely attractive therapeutic targets for the pharmaceutical industry. AREAS COVERED IN THIS REVIEW Although there are now a large number of molecules targeting chemokines and chemokine receptors including neutralizing antibodies in clinical trials for inflammatory diseases, the results to date have not always been positive, which has been disappointing for the field. These failures have often been attributed to redundancy in the chemokine system. However, other difficulties have been encountered in drug discovery processes targeting the chemokine system, and these will be addressed in this review. WHAT THE READER WILL GAIN In this review, the reader will get an insight into the hurdles that have to be overcome, learn about some of the pitfalls that may explain the lack of success, and get a glimpse of the outlook for the future. TAKE HOME MESSAGE In 2007, the FDA approved maraviroc, an inhibitor of CCR5 for the prevention of HIV infection, the first triumph for a small-molecule drug acting on the chemokine system. The time to market, 11 years from discovery of CCR5, was fast by industry standards. A second small-molecule drug, a CXCR4 antagonist for hematopoietic stem cell mobilization, was approved by the FDA at the end of 2008. The results of a Phase III trial with a CCR9 inhibitor for Crohn's disease are also promising. This could herald the first success for a chemokine receptor antagonist as an anti-inflammatory therapeutic and confirms the importance of chemokine receptors as a target class for anti-inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Amanda E I Proudfoot
- Merck Serono Geneva Research Center, Merck Serono International SA, 9 Chemin des Mines, 1202 Geneva, Switzerland.
| | | | | |
Collapse
|
35
|
Pettigrew KA, McKnight AJ, Patterson CC, Kilner J, Sadlier DM, Maxwell AP. Resequencing of the CCL5 and CCR5 genes and investigation of variants for association with diabetic nephropathy. J Hum Genet 2010; 55:248-51. [PMID: 20203694 DOI: 10.1038/jhg.2010.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemokine (C-C motif) ligand 5 (CCL5) and chemokine (C-C motif) receptor 5 are implicated in the pathogenesis of diabetic nephropathy (DN). We hypothesize that variants in these genes may be associated with DN. The CCL5 and chemokine receptor type 5 (CCR5) genes were resequenced, variants identified (n=58), allele frequencies determined in 46 individuals (92 chromosomes) and efficient haplotype tag single-nucleotide polymorphisms (htSNPs) selected to effectively evaluate the common variation in these genes. One reportedly functional gene variant and eight htSNPs were genotyped in a case-control association study involving Caucasian individuals with type 1 diabetes (267 cases with DN and 442 non-nephropathic diabetic controls). Genotyping was performed using MassARRAY iPLEX, TaqMan, gel electrophoresis and direct capillary sequencing. After correction for multiple testing, there were no statistically significant associations between variants in the CCL5 and CCR5 genes and DN.
Collapse
Affiliation(s)
- Kerry A Pettigrew
- Nephrology Research Group, Queens University Belfast, Belfast, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
36
|
Shimizu K, Minami M, Shubiki R, Lopez-Ilasaca M, MacFarlane L, Asami Y, Li Y, Mitchell RN, Libby P. CC chemokine receptor-1 activates intimal smooth muscle-like cells in graft arterial disease. Circulation 2009; 120:1800-13. [PMID: 19841301 PMCID: PMC2996873 DOI: 10.1161/circulationaha.109.859595] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Graft arterial disease (GAD) limits long-term solid-organ allograft survival. The thickened intima in GAD contains smooth muscle-like cells (SMLCs), leukocytes, and extracellular matrix. The intimal SMLCs in mouse GAD lesions differ from medial smooth muscle cells in their function and phenotype. Although intimal SMLCs may originate by migration and modulation of donor medial cells or by recruitment of host-derived precursors, the mechanisms that underlie their localization within grafts and the factors that drive these processes remain unclear. METHODS AND RESULTS This study of aortic transplantation in mice demonstrated an important function for chemokines beyond their traditional role in leukocyte recruitment and activation. Intimal SMLCs, but not medial smooth muscle cells, express functional CC chemokine receptor-1 (CCR1) and respond to RANTES by increased migration and proliferation. Although RANTES infusion in vivo promoted inflammatory cell accumulation in the adventitia of aortic allografts of wild-type and CCR1-deficient recipients, it increased GAD intimal thickening with SMLC proliferation in only the wild-type hosts. Aortic allografts transplanted into CCR1-deficient mice after wild-type bone marrow transplantation did not develop intimal lesions, which indicates that CCR1-bearing inflammatory cells do not contribute to intimal lesion formation. Moreover, RANTES induced SMLC proliferation in vitro but did not promote medial smooth muscle cell growth. Blockade of CCR5 attenuated RANTES-induced T-cell and monocyte/macrophage proliferation but did not affect RANTES-induced SMLC proliferation, consistent with a larger role of CCR1-binding chemokines in SMLC migration and proliferation and GAD development. CONCLUSIONS These studies provide a novel mechanistic insight into the formation of vascular intimal hyperplasia and suggest a novel therapeutic strategy for preventing allograft arteriopathy.
Collapse
Affiliation(s)
- Koichi Shimizu
- Donald W. Reynolds Cardiovascular Clinical Research Center, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
CCR1 knockdown suppresses human non-small cell lung cancer cell invasion. J Cancer Res Clin Oncol 2008; 135:695-701. [PMID: 18972130 DOI: 10.1007/s00432-008-0505-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/10/2008] [Indexed: 01/02/2023]
Abstract
PURPOSE CC chemokine receptor 1 (CCR1) plays a critical role in the recruitment of leukocytes to the site of inflammation. Tumor invasion and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. In this study, we aimed to assess the role of CCR1 in non-small cell lung cancer (NSCLC). METHODS CCR1 expression was determined by Western blotting in two human NSCLC clones (95C and 95D) with different metastatic potential. We silenced CCR1 expression through microRNA-mediated RNA interference, and examined the invasiveness and proliferation of CCR1-silenced NSCLC cell through Matrigel assay and MTT assay. Matrix metalloproteinases (MMPs) activity was determined by gelatin zymography. RESULTS We found that expression of CCR1 was correlated with the aggressive phenotype of the NSCLC cells. CCR1 knockdown significantly suppressed the invasiveness of NSCLC cells, but had only a minor effect on cell proliferation. Moreover, we demonstrated that CCR1 knockdown significantly reduced the expression level of matrix metalloproteinase-9. CONCLUSIONS These findings suggest that CCR1 contributes to NSCLC cell migration by stimulating cell invasion, independent of cell proliferation. CCR1 might be a new target for NSCLC therapy.
Collapse
|
39
|
Tian Y, Lee MM, Yung LY, Allen RA, Slocombe PM, Twomey BM, Wong YH. Differential involvement of Gα16 in CC chemokine-induced stimulation of phospholipase Cβ, ERK, and chemotaxis. Cell Signal 2008; 20:1179-89. [DOI: 10.1016/j.cellsig.2008.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 02/05/2008] [Accepted: 02/13/2008] [Indexed: 01/27/2023]
|
40
|
Hickey MJ, Held KS, Baum E, Gao JL, Murphy PM, Lane TE. CCR1 deficiency increases susceptibility to fatal coronavirus infection of the central nervous system. Viral Immunol 2008; 20:599-608. [PMID: 18158733 DOI: 10.1089/vim.2007.0056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The role of CC chemokine receptor 1 (CCR1) in host defense and disease development was determined in a model of viral-induced neurologic disease. Intracerebral (IC) infection of mice with mouse hepatitis virus (MHV) results in an acute encephalitis followed by a chronic demyelinating disease similar in pathology to the disease multiple sclerosis (MS). No increase in mortality was observed during the acute phase of disease following MHV infection of mice lacking CCR1 (CCR1-/-) as compared to wild-type (CCR1+/+) mice. However, by 21 d post-infection, 74% of CCR1-/- mice had succumbed to death compared to only 32% mortality of CCR1+/+ mice, indicating that chemokine signaling through CCR1 significantly (p <or= 0.04) enhanced survival following IC infection with MHV. Increased mortality in CCR1-/- mice was not associated with increased viral recovery from the CNS, although CCR1 deficiency correlated with reduced T-cell accumulation within the CNS during acute, but not chronic, disease. Despite the reduction in T-cell trafficking into the CNS of CCR1-/- mice during acute disease, components of host defense remained unaltered; T-cell effector functions including cytolytic activity and proliferation and the expression of IFN-gamma within the CNS were not significantly different between CCR1+/+ and CCR1-/- infected mice. In addition, macrophage infiltration into the CNS was unaffected in MHV-infected CCR1-/- mice when compared to CCR1+/+ mice. Furthermore, assessment of neuropathology revealed no difference in the severity of demyelination between CCR1-deficient and wild-type mice. Together, these findings reveal that T-cell and macrophage trafficking are not dependent on CCR1 and highlight an important role for CCR1 signaling in promoting survival during chronic MHV infection.
Collapse
Affiliation(s)
- Michelle J Hickey
- Department of Molecular Biology and Biochemistry, Center for Immunology, University of California, Irvine, California 92697-3900, USA
| | | | | | | | | | | |
Collapse
|
41
|
Altincicek B, Vilcinskas A. Analysis of the immune-related transcriptome of a lophotrochozoan model, the marine annelid Platynereis dumerilii. Front Zool 2007; 4:18. [PMID: 17617895 PMCID: PMC1939704 DOI: 10.1186/1742-9994-4-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 07/06/2007] [Indexed: 12/18/2022] Open
Abstract
Background The marine annelid Platynereis dumerilii (Polychaeta, Nereididae) has been recognized as a slow-evolving lophotrochozoan that attracts increasing attention as a valuable model for evolutionary and developmental research. Here, we analyzed its immune-related transcriptome. For targeted identification of immune-induced genes we injected bacterial lipopolysaccharide, a commonly used elicitor of innate immune responses, and applied the suppression subtractive hybridization technique that selectively amplifies cDNAs of differentially expressed genes. Results Sequence analysis of 288 cDNAs revealed induced expression of numerous genes whose potential homologues from other animals mediate recognition of infection (e.g. complement receptor CD35), signaling (e.g. myc and SOCS), or act as effector molecules like ferritins and the bactericidal permeability-increasing protein. Interestingly, phylogenetic analyses implicate that immune-related genes identified in P. dumerilii are more related to counterparts from Deuterostomia than are those from Ecdysozoa, similarly as recently described for opsin and intron-rich genes. Conclusion Obtained results may allow for a better understanding of Platynereis immunity and support the view that P. dumerilii represents a suitable model for analyzing immune responses of Lophotrochozoa.
Collapse
Affiliation(s)
- Boran Altincicek
- Institute of Phytopathology and Applied Zoology, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute of Phytopathology and Applied Zoology, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
42
|
Corbin ME, Pourciau S, Morgan TW, Boudreaux M, Peterson KE. Ligand up-regulation does not correlate with a role for CCR1 in pathogenesis in a mouse model of non-lymphocyte-mediated neurological disease. J Neurovirol 2006; 12:241-50. [PMID: 16966215 DOI: 10.1080/13550280600851393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CCR1 ligands, including CCL3, CCL5, and CCL7, are up-regulated in a number of neurological disorders in humans and animal models. CCR1 is expressed by multiple cell types in the central nervous system (CNS), suggesting that receptor signaling by neuronal cell types may influence pathogenesis. In the current study, the authors used a mouse model of retrovirus infection to study the contribution of CCR1 to neuropathogenesis in the absence of lymphocyte recruitment to the CNS. In this model, infection of neonatal mice with the neurovirulent retrovirus Fr98 results in increased expression of proinflammatory chemokines in the CNS, activation of glial cells, and development of severe neurological disease. Surprisingly, no difference in neuropathogenesis was observed between CCR1-sufficient and CCR1-deficient mice following infection with the neuropathogenic virus Fr98. CCR1 was also not necessary for control of virus replication in the brain or virus-induced activation of astroglia. Additionally, CCR1 deficiency did not affect the up-regulation of its ligands, CCL3, CCL5, or CCL7. Thus, CCR1 did not appear to have a notable role in Fr98-induced pathogenesis, despite the correlation between ligand expression and disease development. This suggests that in the absence of inflammation, CCR1 may have a very limited role in neuropathogenesis.
Collapse
Affiliation(s)
- Meryll E Corbin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | |
Collapse
|
43
|
Frascaroli G, Varani S, Moepps B, Sinzger C, Landini MP, Mertens T. Human cytomegalovirus subverts the functions of monocytes, impairing chemokine-mediated migration and leukocyte recruitment. J Virol 2006; 80:7578-89. [PMID: 16840337 PMCID: PMC1563711 DOI: 10.1128/jvi.02421-05] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite their role in innate and adaptive immunity, during human cytomegalovirus (HCMV) infection, monocytes are considered to be an important target of infection, a site of latency, and vehicles for virus dissemination. Since chemokine receptors play crucial roles in monocyte activation and trafficking, we investigated the effects of HCMV on their expression and function. By using endotheliotropic strains of HCMV, we obtained high rates (roughly 50%) of in vitro-infected monocytes but only restricted viral gene expression. At 24 h after infection, while the chemokine receptors CX3CR and CCR7 were unaffected, CCR1, CCR2, CCR5, and CXCR4 were downmodulated on the cell surface and retained intracellularly. Structural components of the viral particles, but not viral gene expression or soluble factors released from infected cells, accounted for the changed localization of the receptor molecules and for the block of chemokine-driven migration. HCMV-infected monocytes indeed became unresponsive to inflammatory and homeostatic chemokines, although the basal cell motility and responsiveness to N-formyl-Met-Leu-Phe were unaffected or slightly increased. The production of inflammatory mediators responsible for the recruitment of other immune cells was also hampered by HCMV. Whereas endothelial and fibroblast cells infected by HCMV efficiently recruited leukocytes, infected monocytes were unable to recruit lymphocytes, monocytes, and neutrophils. Our data further highlight the complex level of interference exerted by HCMV on the host immune system.
Collapse
Affiliation(s)
- Giada Frascaroli
- Institute for Virology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Vaidehi N, Schlyer S, Trabanino RJ, Floriano WB, Abrol R, Sharma S, Kochanny M, Koovakat S, Dunning L, Liang M, Fox JM, de Mendonça FL, Pease JE, Goddard WA, Horuk R. Predictions of CCR1 chemokine receptor structure and BX 471 antagonist binding followed by experimental validation. J Biol Chem 2006; 281:27613-20. [PMID: 16837468 DOI: 10.1074/jbc.m601389200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major challenge in the application of structure-based drug design methods to proteins belonging to the superfamily of G protein-coupled receptors (GPCRs) is the paucity of structural information (1). The 19 chemokine receptors, belonging to the Class A family of GPCRs, are important drug targets not only for autoimmune diseases like multiple sclerosis but also for the blockade of human immunodeficiency virus type 1 entry (2). Using the MembStruk computational method (3), we predicted the three-dimensional structure of the human CCR1 receptor. In addition, we predicted the binding site of the small molecule CCR1 antagonist BX 471, which is currently in Phase II clinical trials (4). Based on the predicted antagonist binding site we designed 17 point mutants of CCR1 to validate the predictions. Subsequent competitive ligand binding and chemotaxis experiments with these mutants gave an excellent correlation to these predictions. In particular, we find that Tyr-113 and Tyr-114 on transmembrane domain 3 and Ile-259 on transmembrane 6 contribute significantly to the binding of BX 471. Finally, we used the predicted and validated structure of CCR1 in a virtual screening validation of the Maybridge data base, seeded with selective CCR1 antagonists. The screen identified 63% of CCR1 antagonists in the top 5% of the hits. Our results indicate that rational drug design for GPCR targets is a feasible approach.
Collapse
Affiliation(s)
- Nagarajan Vaidehi
- Department of Immunology, Berlex Biosciences, Richmond, California 94806, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Kim MS, Magno CL, Day CJ, Morrison NA. Induction of chemokines and chemokine receptors CCR2b and CCR4 in authentic human osteoclasts differentiated with RANKL and osteoclast like cells differentiated by MCP-1 and RANTES. J Cell Biochem 2006; 97:512-8. [PMID: 16211583 DOI: 10.1002/jcb.20649] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chemokines MCP-1 and RANTES are induced when authentic bone resorbing human osteoclasts differentiate from monocyte precursors in vitro. In addition, MCP-1 and RANTES can stimulate the differentiation of cells with the visual appearance of osteoclasts, being multinuclear and positive for tartrate resistance acid phosphatase (TRAP +). We show here that MIP1alpha is also potently induced by RANKL during human osteoclast differentiation and that this chemokine also induces the formation of TRAP + multinucleated cells in the absence of RANKL. MIP1alpha was able to overcome the potent inhibition of GM-CSF on osteoclast differentiation, permitting the cells to pass through to TRAP + multinuclear cells, however these were unable to form resorption pits. Chemokine receptors CCR2b and CCR4 were potently induced by RANKL (12.6- and 49-fold, P = 4.0 x 10(-7) and 4.0 x 10(-8), respectively), while CCR1 and CCR5 were not regulated. Chemokine treatment in the absence of RANKL also induced MCP-1, RANTES and MIP1alpha. Unexpectedly, treatment with MCP-1 in the absence of RANKL resulted in 458-fold induction of CCR4 (P = 1.0 x 10(-10)), while RANTES treatment resulted in twofold repression (P = 1.0 x 10(-4)). Since CCR2b and CCR4 are MCP-1 receptors, these data support the existence of an MCP-1 autocrine loop in human osteoclasts differentiated using RANKL.
Collapse
Affiliation(s)
- Michael S Kim
- School of Medical Sciences, Griffith University Gold Coast Campus, Queensland 9726, Australia
| | | | | | | |
Collapse
|
47
|
Gupta S, Schulz-Maronde S, Kutzleb C, Richter R, Forssmann WG, Kapp A, Forssmann U, Elsner J. Cloning, expression, and functional characterization of cynomolgus monkey (Macaca fascicularis) CC chemokine receptor 1. J Leukoc Biol 2005; 78:1175-84. [PMID: 16204626 DOI: 10.1189/jlb.0605326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The CC chemokine receptor 1 (CCR1) has emerged as a relevant factor contributing to inflammatory diseases such as allergic asthma. Commonly used animal models of allergic airway inflammation, especially murine models, have certain limitations. The elaborate, nonhuman, primate models of asthma display the highest comparability with the situation in humans. These models play an important role in the understanding of the pathogenesis of asthma. To improve the understanding in cynomolgus monkey models, we identified and characterized CCR1 in this nonhuman primate. Initially, we cloned the cynomolgus monkey CCR1 (cCCR1) gene, and the sequence analysis revealed high homology at the nucleotide (92%) and amino acid (88.4%) levels with its human counterpart. Human embryonic kidney 293 cells were stably transfected with cCCR1 and used in functional assays. Among those CCR1 ligands tested, CCL14(9-74) was most potent in the induction of intracellular Ca2+ fluxes as observed for human CCR1 (hCCR1). Complete cross-desensitization could be achieved between CCL14(9-74) and CCL15. However, CCL3 could not fully abrogate the response to the potent ligand CCL14(9-74). Competition-binding studies with radiolabeled CCL3 concordantly showed that CCL14(9-74) has a higher affinity to cCCR1 than hCCL3. Moreover, differential tissue-specific expression of cCCR1 was investigated by real-time quantitative polymerase chain reaction, displaying the highest levels in spleen. This study adds basic information needed for the evaluation of the role of CCR1 in the pathophysiology of asthma using the highly relevant cynomolgus monkey model and in addition, aids in the preclinical evaluation of potential novel drugs targeting CCR1.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding, Competitive
- Cell Line
- Chemokines/pharmacology
- Chemokines, CC/pharmacology
- Cloning, Molecular
- Disease Models, Animal
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- Gene Expression Regulation
- Humans
- Ligands
- Macaca fascicularis/genetics
- Mice
- Molecular Sequence Data
- Rats
- Receptors, CCR1
- Receptors, Chemokine/drug effects
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Time Factors
Collapse
Affiliation(s)
- Shipra Gupta
- Department of Dermatology and Allergology, An-Institut, Hannover Medical School, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Chemokines (chemotactic cytokines) are a family of low-molecular-weight proteins that direct the cellular migration of leukocytes by binding to and activating the G protein-coupled receptors displayed on the leukocyte cell surface. The inadvertent or excessive generation of chemokines has been associated with the inflammatory component of several disease processes, and consequently, considerable efforts have been made to characterise chemokine/chemokine receptor interactions with the ultimate aim of therapeutic intervention. This review focuses on the biology of CC chemokine receptor 1, which together with its ligands is thought to recruit leukocytes during the progression of rheumatoid arthritis, multiple sclerosis and organ transplant rejection. The developments made in antagonising this receptor and efficacies of these compounds in the clinical setting are also highlighted.
Collapse
MESH Headings
- Animals
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Drug Evaluation, Preclinical/trends
- Drugs, Investigational/chemistry
- Drugs, Investigational/pharmacology
- Drugs, Investigational/therapeutic use
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Humans
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Receptors, CCR1
- Receptors, Chemokine/antagonists & inhibitors
- Receptors, Chemokine/metabolism
- Technology, Pharmaceutical/trends
Collapse
Affiliation(s)
- James E Pease
- Biomedical Sciences Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, South Kensington Campus, London SW7 2AZ, UK.
| | | |
Collapse
|
49
|
Michel D, Milotić I, Wagner M, Vaida B, Holl J, Ansorge R, Mertens T. The human cytomegalovirus UL78 gene is highly conserved among clinical isolates, but is dispensable for replication in fibroblasts and a renal artery organ-culture system. J Gen Virol 2005; 86:297-306. [PMID: 15659748 DOI: 10.1099/vir.0.80436-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL78 ORF is considered to encode a seven-transmembrane receptor. However, neither the gene nor the UL78 protein has been characterized so far. The objective of this study was to investigate the UL78 gene and to clarify whether it is essential for replication. UL78 transcription was activated early after infection, was inhibited by cycloheximide but not by phosphonoacetic acid, and resulted in a 1.7 kb mRNA. Later in the replication cycle, a second mRNA of 4 kb evolved, comprising the UL77 and UL78 ORFs. The 5' end of the UL78 mRNA initiated 48 bp upstream of the translation start and the polyadenylated tail started 268 bp downstream of the UL78 translation stop codon within the UL79 ORF. By using bacterial artificial chromosome technology, a recombinant HCMV lacking most of the UL78 coding region was constructed. Successful reconstitution of the UL78-deficient virus proved that the gene was not essential for virus replication in fibroblasts. The deletion also did not reduce virus replication in ex vivo-cultured sections of human renal arteries. Analysis of viral proteins at different stages of the replication cycle confirmed these results. Among clinical HCMV isolates, the predicted UL78 protein was highly conserved. However, an accumulation of different single mutations could be found in the N-terminal region and at the very end of the C terminus. Due to the absence of an in vivo HCMV model, the role of UL78 in the pathogenesis of HCMV infection in humans remains unclear.
Collapse
Affiliation(s)
- Detlef Michel
- Abteilung Virologie, Universitätsklinikum, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Irena Milotić
- Clinic for Infectious Diseases, Clinical Hospital Centre, Cambierieva 17, 51000 Rijeka, Croatia
| | - Markus Wagner
- Harvard Medical School, NRB 836, Department of Pathology, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Bianca Vaida
- Abteilung Virologie, Universitätsklinikum, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jens Holl
- Abteilung Virologie, Universitätsklinikum, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ramona Ansorge
- Abteilung Virologie, Universitätsklinikum, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas Mertens
- Abteilung Virologie, Universitätsklinikum, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
50
|
Ulukus M, Ulukus EC, Seval Y, Zheng W, Arici A. Expression of interleukin-8 receptors in endometriosis. Hum Reprod 2005; 20:794-801. [PMID: 15618253 DOI: 10.1093/humrep/deh675] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although the etiology of endometriosis is not well understood, chemokines and their receptors are believed to play a role in its pathogenesis. Therefore, we aimed to investigate the expression and localization of interleukin-8 (IL-8) receptors CXCR1 and CXCR2 in eutopic and ectopic endometrial tissues of women with endometriosis, and in endometrium of women without endometriosis. METHODS Ectopic (n = 27) and homologous eutopic endometrium (n = 25) from women with endometriosis and endometrium from women without endometriosis (n = 27) were used for immunohistochemical analysis of CXCR1 and CXCR2. RESULTS In normal endometrium, epithelial CXCR1 and CXCR2 immunostaining intensities were similar in the proliferative and secretory phase. Stromal CXCR1 expression was less then epithelial expression and did not show cyclical difference. No stromal CXCR2 expression was observed. In eutopic endometrium of women with endometriosis compared to endometrium of women without endometriosis, there was a significant increase in both proliferative and secretory phases for epithelial CXCR2 expression, and in proliferative phase for CXCR1 expression (P < 0.05). Both receptor immunoreactivities were significantly increased in the epithelial cells of ectopic endometrial tissues compared to that of normal endometrium (P < 0.05). CONCLUSIONS These findings suggest that IL-8 and its receptors may be involved in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Murat Ulukus
- Yale University School of Medicine, Department of Obstetrics & Gynecology, New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|