1
|
Sui S, Wei X, Zhu Y, Feng Q, Zha X, Mao L, Huang B, Lei W, Chen G, Zhan H, Chen H, Feng R, Zeng C, Li Y, Luo OJ. Single-Cell Multiomics Reveals TCR Clonotype-Specific Phenotype and Stemness Heterogeneity of T-ALL Cells. Cell Prolif 2025; 58:e13786. [PMID: 39675761 PMCID: PMC11969251 DOI: 10.1111/cpr.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is a heterogeneous malignant disease with high relapse and mortality rates. To characterise the multiomics features of T-ALL, we conducted integrative analyses using single-cell RNA, TCR and chromatin accessibility sequencing on pre- and post-treatment peripheral blood and bone marrow samples of the same patients. We found that there is transcriptional rewiring of gene regulatory networks in T-ALL cells. Some transcription factors, such as TCF3 and KLF3, showed differences in activity and expression levels between T-ALL and normal T cells and were associated with the prognosis of T-ALL patients. Furthermore, we identified multiple malignant TCR clonotypes among the T-ALL cells, where the clonotypes consisted of distinct combinations of the same TCR α and β chain per patient. The T-ALL cells displayed clonotype-specific immature thymocyte cellular characteristics and response to chemotherapy. Remarkably, T-ALL cells with an orphan TCRβ chain displayed the strongest stemness and resistance to chemotherapy. Our study provided transcriptome and epigenome characterisation of T-ALL cells categorised by TCR clonotypes, which may be helpful for the development of novel predictive markers to evaluate treatment effectiveness for T-ALL.
Collapse
MESH Headings
- Humans
- Single-Cell Analysis/methods
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Phenotype
- Gene Regulatory Networks
- Transcriptome
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Male
- Female
- Multiomics
Collapse
Affiliation(s)
- Songnan Sui
- Department of Systems Biomedical Sciences, School of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of MedicineJinan UniversityGuangzhouChina
- Department of Hematology, First Affiliated HospitalJinan UniversityGuangzhouChina
- Central People's Hospital of ZhanjiangZhanjiangChina
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy ResearchZhanjiangChina
| | - Xiaolei Wei
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yue Zhu
- Department of Systems Biomedical Sciences, School of MedicineJinan UniversityGuangzhouChina
| | - Qiuyue Feng
- Department of Systems Biomedical Sciences, School of MedicineJinan UniversityGuangzhouChina
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Lipeng Mao
- Department of Systems Biomedical Sciences, School of MedicineJinan UniversityGuangzhouChina
| | - Boya Huang
- Department of Systems Biomedical Sciences, School of MedicineJinan UniversityGuangzhouChina
| | - Wen Lei
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of MedicineJinan UniversityGuangzhouChina
- Guangdong Second Provincial General Hospital, Integrated Chinese and Western Medicine Postdoctoral Research Station, School of MedicineJinan UniversityGuangzhouChina
| | - Guobing Chen
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of MedicineJinan UniversityGuangzhouChina
| | - Huien Zhan
- Department of Hematology, First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Huan Chen
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ru Feng
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of MedicineJinan UniversityGuangzhouChina
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of MedicineJinan UniversityGuangzhouChina
- Department of Hematology, First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of MedicineJinan UniversityGuangzhouChina
| |
Collapse
|
2
|
Kazansky DB, Kalinina AA, Khromykh LM. Memory T Cells: Investigation of Original Models with Transgenic T Cell Receptors. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:161-172. [PMID: 40254396 DOI: 10.1134/s0006297924603940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 04/22/2025]
Abstract
This review summarizes the research data on original mouse models developed in the laboratory of regulatory mechanisms in immunity of the Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation. Transfer of the genes of individual α- and β-chains of T cell receptors (TCRs) of memory cells has resulted in production of transgenic animal lines valuable for studying T lymphocyte homeostasis and patterns of formation of their activation profile markers. Investigation of the transgenic models revealed new features of immune selection and tumor progression. In particular, the fundamental property of some TCRs, termed "chain-centricity", has been confirmed; it involves dominance of one of the TCR chains during recognition of the MHC (major histocompatibility complex)/peptide complex. This property makes it possible to artificially generate a significant pool of immunocompetent T cells so it could be used in adoptive immunotherapy for oncological and infectious diseases. Transfer of the dominant active TCR α-chains provides the possibility for constructing organisms with innate specific immunological resistance to certain pathogens. The results of recent studies indicate that TCR, determining the T lymphocyte relationship with its MHC microenvironment, has an instructive role in formation of its functions and phenotype. One of these functions may be production of cyclophilin A by the cortisone-resistant memory cells localized in thymus. The evidence has been accumulated that expression of TCR with a certain structure and specificity is a sufficient condition for formation of the functional potential of memory cells in a T cell, regardless of its former interaction with antigenic MHC/peptide complexes.
Collapse
Affiliation(s)
- Dmitry B Kazansky
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia.
| | - Anastasiia A Kalinina
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Ludmila M Khromykh
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| |
Collapse
|
3
|
Xu Y, Yuan Y, Mou L, Hui L, Zhang X, Yao X, Li J. scRNA+TCR-seq reveals the pivotal role of dual receptor T lymphocytes in the pathogenesis of Kawasaki disease and during IVIG treatment. Front Immunol 2024; 15:1457687. [PMID: 39421738 PMCID: PMC11484261 DOI: 10.3389/fimmu.2024.1457687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Kawasaki disease (KD), a common cause of acquired heart disease in children in developed countries, is primarily treated with intravenous immunoglobulin (IVIG), but some children demonstrate IVIG resistance with increased coronary artery injury risk. T cells have been demonstrated to be involved in the pathogenesis of KD and its treatment with IVIG. However, the role and mechanism of dual TCR T lymphocytes in the occurrence of KD and IVIG therapy remain unclear. Methods This study, based on scRNA-seq combined with TCR-seq technology, clustered the peripheral blood mononuclear cells of 3 healthy controls and 6 KD patients before and after IVIG treatment. Comparative analysis was conducted to investigate the differences in the proportion of single/dual receptor T cells, the characteristics of CDR3 repertoires, cell types, and the expression of transcription factors among the three groups. The study aimed to explore the correlation between dual TCR T cells and KD as well as IVIG treatment. Results In our experimental results, we observed the presence of dual TCR T cells in all three groups. However, compared to the healthy control group and the IVIG-treated group, the KD patients before IVIG treatment exhibited a lower proportion of dual TCR T cells, with variability between samples, ranging from 4% to 15%. Notably, after IVIG treatment, the proportion of dual TCR T cells significantly increased, stabilizing above 12%, and these T cells also exhibited clonal expansion and a preference for V gene usage. In addition we found differences in dual TCR T cell subsets among the three groups, for example, IVIG treatment increases the proportion of dual TCR Treg cells, but it still remains below that of healthy control groups, significantly higher proportions of both dual TCR CD8 central and effector memory T cells in IVIG-treated KD patients, and differences in the expression of transcription factors between single and dual TCR T cells. These results suggest dual TCR T cells correlate with KD and IVIG treatment. Conclusion Dual TCR T lymphocytes, especially dual TCR CD8 T cells and Treg cells, play crucial roles in the pathogenesis of KD and during IVIG treatment, providing strong support for further elucidating KD pathogenesis and optimizing treatment strategies.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yi Yuan
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Lanlan Mou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Linhu Hui
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xing Zhang
- Department of Cardiology, Kunming Children’s Hospital, Kunming, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Yuanyuanxu, Qipeng, Qingqingma, Yao X. scRNA + TCR-seq revealed the dual TCR pTh17 and Treg T cells involvement in autoimmune response in ankylosing spondylitis. Int Immunopharmacol 2024; 135:112279. [PMID: 38796963 DOI: 10.1016/j.intimp.2024.112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Th17 and Treg play important roles in AS, but their single and dual TCR pairing types, ratios, and CDR3 characteristics remain unknown. METHODS Single-cell RNA + TCR-seq results from six AS patients were used to cluster T-cell subpopulations and analyze the single and dual TCR T cell ratio, diversity/clonality/overlap of CDR3, and expression of transcription factors. RESULTS 1. AS patients have about 10% of dual TCR T cells, and SFMC have decreased diversity CDR3 libraries and significant clonal proliferation compared to PBMC. 2. Dual TCR ratio: memory T > naive T; pTh 17 > Th17; Treg /Th17/Th1/EM significantly higher than naive CD4 + T/CM, Pathogenic Th17 cells contain clonally proliferating single TCR and dual TCR cells. 3. The expression of single TCR and dual TCR transcription factors of each T cell subpopulation was basically the same, but there was differential expression of characteristic transcription factors, e.g. Foxp3, CTLA4, STAT5B, IL10RB, LAG3 in dual TCR Treg was higher than that of single TCR Treg; TNFSF10/12, TNFRSF4/14, CCL5, KLRB1 in dual TCR pTh17 were significantly higher than those in single TCR pTh17. 4. Between naive CD4 + T, pTh17, Th1 and Treg, there are partially identity identical tcr paired cells. CONCLUSIONS The high proportion of dual TCR T cells such as pTh17 and Treg in AS and the high expression of some transcription factors suggested a close association with self-response in AS; The overlap of CDR3 between Th1, Th17,pTh17, and Treg in AS suggested that the subpopulations may be differentiated from each other to regulate the inflammatory homeostasis and progression.
Collapse
Affiliation(s)
- Yuanyuanxu
- Department of Immunology, Center of Immunomolecular Engineering, Zunyi Medical University, Zunyi, China
| | - Qipeng
- Department of Immunology, Center of Immunomolecular Engineering, Zunyi Medical University, Zunyi, China
| | - Qingqingma
- Aerospace Hospital of Zunyi Medical University (Hospital 417), China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
5
|
Kalinina AA, Khromykh LM, Kazansky DB. T Cell Receptor Chain Centricity: The Phenomenon and Potential Applications in Cancer Immunotherapy. Int J Mol Sci 2023; 24:15211. [PMID: 37894892 PMCID: PMC10607890 DOI: 10.3390/ijms242015211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
T cells are crucial players in adaptive anti-cancer immunity. The gene modification of T cells with tumor antigen-specific T cell receptors (TCRs) was a milestone in personalized cancer immunotherapy. TCR is a heterodimer (either α/β or γ/δ) able to recognize a peptide antigen in a complex with self-MHC molecules. Although traditional concepts assume that an α- and β-chain contribute equally to antigen recognition, mounting data reveal that certain receptors possess chain centricity, i.e., one hemi-chain TCR dominates antigen recognition and dictates its specificity. Chain-centric TCRs are currently poorly understood in terms of their origin and the functional T cell subsets that express them. In addition, the ratio of α- and β-chain-centric TCRs, as well as the exact proportion of chain-centric TCRs in the native repertoire, is generally still unknown today. In this review, we provide a retrospective analysis of studies that evidence chain-centric TCRs, propose patterns of their generation, and discuss the potential applications of such receptors in T cell gene modification for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Dmitry B. Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
6
|
Montemurro A, Povlsen HR, Jessen LE, Nielsen M. Benchmarking data-driven filtering for denoising of TCRpMHC single-cell data. Sci Rep 2023; 13:16147. [PMID: 37752190 PMCID: PMC10522655 DOI: 10.1038/s41598-023-43048-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Pairing of the T cell receptor (TCR) with its cognate peptide-MHC (pMHC) is a cornerstone in T cell-mediated immunity. Recently, single-cell sequencing coupled with DNA-barcoded MHC multimer staining has enabled high-throughput studies of T cell specificities. However, the immense variability of TCR-pMHC interactions combined with the relatively low signal-to-noise ratio in the data generated using current technologies are complicating these studies. Several approaches have been proposed for denoising single-cell TCR-pMHC specificity data. Here, we present a benchmark evaluating two such denoising methods, ICON and ITRAP. We applied and evaluated the methods on publicly available immune profiling data provided by 10x Genomics. We find that both methods identified approximately 75% of the raw data as noise. We analyzed both internal metrics developed for the purpose and performance on independent data using machine learning methods trained on the raw and denoised 10x data. We find an increased signal-to-noise ratio comparing the denoised to the raw data for both methods, and demonstrate an overall superior performance of the ITRAP method in terms of both data consistency and performance. In conclusion, this study demonstrates that Improving the data quality from high throughput studies of TCRpMHC-specificity by denoising is paramount in increasing our understanding of T cell-mediated immunity.
Collapse
Affiliation(s)
- Alessandro Montemurro
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU, 2800, Kgs. Lyngby, Denmark
| | - Helle Rus Povlsen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU, 2800, Kgs. Lyngby, Denmark
| | - Leon Eyrich Jessen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU, 2800, Kgs. Lyngby, Denmark
| | - Morten Nielsen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Li W, Yang Y, Liu S, Zhang D, Ren X, Tang M, Zhang W, Chen X, Huang C, Yu B. Paxbp1 is indispensable for the survival of CD4 and CD8 double-positive thymocytes. Front Immunol 2023; 14:1183367. [PMID: 37404821 PMCID: PMC10315898 DOI: 10.3389/fimmu.2023.1183367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
The lifespan of double-positive (DP) thymocytes is critical for intrathymic development and shaping the peripheral T cell repertoire. However, the molecular mechanisms that control DP thymocyte survival remain poorly understood. Paxbp1 is a conserved nuclear protein that has been reported to play important roles in cell growth and development. Its high expression in T cells suggests a possible role in T cell development. Here, we observed that deletion of Paxbp1 resulted in thymic atrophy in mice lacking Paxbp1 in the early stages of T cell development. Conditional loss of Paxbp1 resulted in fewer CD4+CD8+ DP T cells, CD4 and CD8 single positive (SP) T cells in the thymus, and fewer T cells in the periphery. Meanwhile, Paxbp1 deficiency had limited effects on the CD4-CD8- double negative (DN) or immature single-positive (ISP) cell populations. Instead, we observed a significant increase in the susceptibility of Paxbp1-deficient DP thymocytes to apoptosis. Consistent with this, RNA-Seq analysis revealed a significant enrichment of the apoptotic pathway within differentially expressed genes in Paxbp1-deficient DP cells compared to control DP cells. Together, our results suggest a new function for Paxbp1, which is an important mediator of DP thymocyte survival and critical for proper thymic development.
Collapse
Affiliation(s)
- Wenting Li
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yang Yang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Shenglin Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, China
| | - Dongsheng Zhang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Xuanyao Ren
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Mindan Tang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Wei Zhang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xiaofan Chen
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Cong Huang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Povlsen HR, Bentzen AK, Kadivar M, Jessen LE, Hadrup SR, Nielsen M. Improved T cell receptor antigen pairing through data-driven filtering of sequencing information from single cells. eLife 2023; 12:e81810. [PMID: 37133356 PMCID: PMC10156162 DOI: 10.7554/elife.81810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/13/2023] [Indexed: 05/04/2023] Open
Abstract
Novel single-cell-based technologies hold the promise of matching T cell receptor (TCR) sequences with their cognate peptide-MHC recognition motif in a high-throughput manner. Parallel capture of TCR transcripts and peptide-MHC is enabled through the use of reagents labeled with DNA barcodes. However, analysis and annotation of such single-cell sequencing (SCseq) data are challenged by dropout, random noise, and other technical artifacts that must be carefully handled in the downstream processing steps. We here propose a rational, data-driven method termed ITRAP (improved T cell Receptor Antigen Paring) to deal with these challenges, filtering away likely artifacts, and enable the generation of large sets of TCR-pMHC sequence data with a high degree of specificity and sensitivity, thus outputting the most likely pMHC target per T cell. We have validated this approach across 10 different virus-specific T cell responses in 16 healthy donors. Across these samples, we have identified up to 1494 high-confident TCR-pMHC pairs derived from 4135 single cells.
Collapse
Affiliation(s)
- Helle Rus Povlsen
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Amalie Kai Bentzen
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Mohammad Kadivar
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Leon Eyrich Jessen
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Sine Reker Hadrup
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Morten Nielsen
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
9
|
Duke-Cohan JS, Akitsu A, Mallis RJ, Messier CM, Lizotte PH, Aster JC, Hwang W, Lang MJ, Reinherz EL. Pre-T cell receptor self-MHC sampling restricts thymocyte dedifferentiation. Nature 2023; 613:565-574. [PMID: 36410718 PMCID: PMC9851994 DOI: 10.1038/s41586-022-05555-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/11/2022] [Indexed: 11/22/2022]
Abstract
Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific β chain, is a critical early checkpoint in thymocyte development within the αβ T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αβ T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αβ T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting β chain repertoire broadening for subsequent αβ T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.
Collapse
Affiliation(s)
- Jonathan S Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Aoi Akitsu
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Robert J Mallis
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Cameron M Messier
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick H Lizotte
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
- Department of Physics and Astronomy, Texas A&M University, College Station, TX, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Dauphars DJ, Mihai A, Wang L, Zhuang Y, Krangel MS. Trav15-dv6 family Tcrd rearrangements diversify the Tcra repertoire. J Exp Med 2022; 219:212913. [PMID: 34910107 PMCID: PMC8679779 DOI: 10.1084/jem.20211581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
The Tcra repertoire is generated by multiple rounds of Vα-Jα rearrangement. However, Tcrd recombination precedes Tcra recombination within the complex Tcra-Tcrd locus. Here, by ablating Tcrd recombination, we report that Tcrd rearrangement broadens primary Vα use to diversify the Tcra repertoire in mice. We reveal that use of Trav15-dv6 family V gene segments in Tcrd recombination imparts diversity in the Tcra repertoire by instigating use of central and distal Vα segments. Moreover, disruption of the regions containing these genes and their cis-regulatory elements identifies the Trav15-dv6 family as being responsible for driving central and distal Vα recombinations beyond their roles as substrates for Tcrd recombination. Our study demonstrates an indispensable role for Tcrd recombination in general, and the Trav15-dv6 family in particular, in the generation of a combinatorially diverse Tcra repertoire.
Collapse
Affiliation(s)
| | - Ariana Mihai
- Department of Immunology, Duke University Medical Center, Durham, NC
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC
| |
Collapse
|
11
|
Bulk gDNA Sequencing of Antibody Heavy-Chain Gene Rearrangements for Detection and Analysis of B-Cell Clone Distribution: A Method by the AIRR Community. Methods Mol Biol 2022; 2453:317-343. [PMID: 35622334 PMCID: PMC9374196 DOI: 10.1007/978-1-0716-2115-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this method we illustrate how to amplify, sequence, and analyze antibody/immunoglobulin (IG) heavy-chain gene rearrangements from genomic DNA that is derived from bulk populations of cells by next-generation sequencing (NGS). We focus on human source material and illustrate how bulk gDNA-based sequencing can be used to examine clonal architecture and networks in different samples that are sequenced from the same individual. Although bulk gDNA-based sequencing can be performed on both IG heavy (IGH) or kappa/lambda light (IGK/IGL) chains, we focus here on IGH gene rearrangements because IG heavy chains are more diverse, tend to harbor higher levels of somatic hypermutations (SHM), and are more reliable for clone identification and tracking. We also provide a procedure, including code, and detailed instructions for processing and annotation of the NGS data. From these data we show how to identify expanded clones, visualize the overall clonal landscape, and track clonal lineages in different samples from the same individual. This method has a broad range of applications, including the identification and monitoring of expanded clones, the analysis of blood and tissue-based clonal networks, and the study of immune responses including clonal evolution.
Collapse
|
12
|
Fu J, Khosravi-Maharlooei M, Sykes M. High Throughput Human T Cell Receptor Sequencing: A New Window Into Repertoire Establishment and Alloreactivity. Front Immunol 2021; 12:777756. [PMID: 34804070 PMCID: PMC8604183 DOI: 10.3389/fimmu.2021.777756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Recent advances in high throughput sequencing (HTS) of T cell receptors (TCRs) and in transcriptomic analysis, particularly at the single cell level, have opened the door to a new level of understanding of human immunology and immune-related diseases. In this article, we discuss the use of HTS of TCRs to discern the factors controlling human T cell repertoire development and how this approach can be used in combination with human immune system (HIS) mouse models to understand human repertoire selection in an unprecedented manner. An exceptionally high proportion of human T cells has alloreactive potential, which can best be understood as a consequence of the processes governing thymic selection. High throughput TCR sequencing has allowed assessment of the development, magnitude and nature of the human alloresponse at a new level and has provided a tool for tracking the fate of pre-transplant-defined donor- and host-reactive TCRs following transplantation. New insights into human allograft rejection and tolerance obtained with this method in combination with single cell transcriptional analyses are reviewed here.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
- Department of Microbiology & Immunology, Columbia University, New York, NY, United States
| |
Collapse
|
13
|
Yiu HH, Schoettle LN, Garcia‐Neuer M, Blattman JN, Johnson PLF. Selection influences naive CD8+ TCR-β repertoire sharing. Immunology 2021; 162:464-475. [PMID: 33345304 PMCID: PMC7968400 DOI: 10.1111/imm.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 11/28/2022] Open
Abstract
Within each individual, the adaptive immune system generates a repertoire of cells expressing receptors capable of recognizing diverse potential pathogens. The theoretical diversity of the T-cell receptor (TCR) repertoire exceeds the actual size of the T-cell population in an individual by several orders of magnitude - making the observation of identical TCRs in different individuals extremely improbable if all receptors were equally likely. Despite this disparity between the theoretical and the realized diversity of the repertoire, these 'public' receptor sequences have been identified in autoimmune, cancer and pathogen interaction contexts. Biased generation processes explain the presence of public TCRs in the naive repertoire, but do not adequately explain the different abundances of these public TCRs. We investigate and characterize the distribution of genomic TCR-β sequences of naive CD8+ T cells from three genetically identical mice, comparing non-productive (non-functional sequences) and productive sequences. We find public TCR-β sequences at higher abundances compared with unshared sequences in the productive, but not in the non-productive, repertoire. We show that neutral processes such as recombination biases, codon degeneracy and generation probability do not fully account for these differences, and conclude that thymic or peripheral selection plays an important role in increasing the abundances of public TCR-β sequences.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/physiology
- Cells, Cultured
- Clonal Selection, Antigen-Mediated
- Codon Usage
- Genes, T-Cell Receptor beta/genetics
- Humans
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombination, Genetic
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Hao H. Yiu
- Department of BiologyUniversity of MarylandCollege ParkMDUSA
| | - Louis N. Schoettle
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Marlene Garcia‐Neuer
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Joseph N. Blattman
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | | |
Collapse
|
14
|
TCRα reporter mice reveal contribution of dual TCRα expression to T cell repertoire and function. Proc Natl Acad Sci U S A 2020; 117:32574-32583. [PMID: 33288689 DOI: 10.1073/pnas.2013188117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is known that a subpopulation of T cells expresses two T cell receptor (TCR) clonotypes, though the extent and functional significance of this is not established. To definitively evaluate dual TCRα cells, we generated mice with green fluorescent protein and red fluorescent protein reporters linked to TCRα, revealing that ∼16% of T cells express dual TCRs, notably higher than prior estimates. Importantly, dual TCR expression has functional consequences, as dual TCR cells predominated response to lymphocytic choriomeningitis virus infection, comprising up to 60% of virus-specific CD4+ and CD8+ T cells during acute responses. Dual receptor expression selectively influenced immune memory, as postinfection memory CD4+ populations contained significantly increased frequencies of dual TCR cells. These data reveal a previously unappreciated contribution of dual TCR cells to the immune repertoire and highlight their potential effects on immune responses.
Collapse
|
15
|
Ott JA, Harrison J, Flajnik MF, Criscitiello MF. Nurse shark T-cell receptors employ somatic hypermutation preferentially to alter alpha/delta variable segments associated with alpha constant region. Eur J Immunol 2020; 50:1307-1320. [PMID: 32346855 DOI: 10.1002/eji.201948495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/02/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
In addition to canonical TCR and BCR, cartilaginous fish assemble noncanonical TCR that employ various B-cell components. For example, shark T cells associate alpha (TCR-α) or delta (TCR-δ) constant (C) regions with Ig heavy chain (H) variable (V) segments or TCR-associated Ig-like V (TAILV) segments to form chimeric IgV-TCR, and combine TCRδC with both Ig-like and TCR-like V segments to form the doubly rearranging NAR-TCR. Activation-induced (cytidine) deaminase-catalyzed somatic hypermutation (SHM), typically used for B-cell affinity maturation, also is used by TCR-α during selection in the shark thymus presumably to salvage failing receptors. Here, we found that the use of SHM by nurse shark TCR varies depending on the particular V segment or C region used. First, SHM significantly alters alpha/delta V (TCRαδV) segments using TCR αC but not δC. Second, mutation to IgHV segments associated with TCR δC was reduced compared to mutation to TCR αδV associated with TCR αC. Mutation was present but limited in V segments of all other TCR chains including NAR-TCR. Unexpectedly, we found preferential rearrangement of the noncanonical IgHV-TCRδC over canonical TCR αδV-TCRδC receptors. The differential use of SHM may reveal how activation-induced (cytidine) deaminase targets V regions.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jenna Harrison
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
Patil P, Cieslak A, Bernhart SH, Toprak UH, Wagener R, López C, Wiehle L, Bens S, Altmüller J, Franitza M, Scholz I, Jayne S, Ahearne MJ, Scheffold A, Jebaraj BMC, Schneider C, Costa D, Braun T, Schrader A, Campo E, Dyer MJS, Nürnberg P, Dürig J, Johansson P, Böttcher S, Schlesner M, Herling M, Stilgenbauer S, Macintyre E, Siebert R. Reconstruction of rearranged T-cell receptor loci by whole genome and transcriptome sequencing gives insights into the initial steps of T-cell prolymphocytic leukemia. Genes Chromosomes Cancer 2019; 59:261-267. [PMID: 31677197 DOI: 10.1002/gcc.22821] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is an aggressive tumor with leukemic presentation of mature T-lymphocytes. Here, we aimed at characterizing the initial events in the molecular pathogenesis of T-PLL and particularly, at determining the point in T-cell differentiation when the hallmark oncogenic events, that is, inv(14)(q11q32)/t(14;14)(q11;q32) and t(X;14)(q28;q11) occur. To this end, we mined whole genome and transcriptome sequencing data of 17 and 11 T-PLL cases, respectively. Mapping of the 14q32.1 locus breakpoints identified only TCL1A, which was moreover significantly overexpressed in T-PLL as compared to benign CD4+ and CD8+ T-cells, as the only common oncogenic target of aberrations. In cases with t(14;14), the breakpoints mapped telomeric and in cases with inv(14) centromeric or in the 3'-untranslated region of TCL1A. Regarding the T-cell receptor alpha (TRA) locus-TCL1A breakpoint junctions, all 17 breakpoints involved recombination signal sequences and 15 junctions contained nontemplated (N-) nucleotides. All T-PLL cases studied carried in-frame TRA rearrangements on the intact allele, which skewed significantly toward usage of distal/central TRAV/TRAJ gene segments as compared to the illegitimate TRA rearrangements. Our findings suggest that the oncogenic TRA-TCL1A/MTCP1 rearrangements in T-PLL occur during opening of the TRA locus, that is, during the progression from CD4+ immature single positive to early double positive thymocyte stage, just before physiologic TCL1A expression is silenced. The cell carrying such an oncogenic event continues maturation and rearranges the second TRA allele to achieve a functional T-cell receptor. Thereafter, it switches off RAG and DNTT expression in line with the mature T-cell phenotype at presentation of T-PLL.
Collapse
Affiliation(s)
- Paurnima Patil
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Agata Cieslak
- Diagnostic Haematology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM), Paris, France
| | - Stephan H Bernhart
- Interdisciplinary Center for Bioinformatics, Transcriptome Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Umut H Toprak
- Bioinformatics and Omics Data Analytics, German Cancer Research Center, Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Rabea Wagener
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany.,Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Cristina López
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany.,Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Laura Wiehle
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany.,Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marek Franitza
- Cologne Center for Genomics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Ingrid Scholz
- Omics IT and Data Management Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Sandrine Jayne
- Ernest and Helen Scott Haematological Research Institute, Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Matthew J Ahearne
- Ernest and Helen Scott Haematological Research Institute, Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Annika Scheffold
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Billy M C Jebaraj
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | | | - Dolors Costa
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology Köln Bonn, Deutsche CLL Studiengruppe (DCLLSG), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alexandra Schrader
- Department I of Internal Medicine, Center for Integrated Oncology Köln Bonn, Deutsche CLL Studiengruppe (DCLLSG), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elias Campo
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Martin J S Dyer
- Ernest and Helen Scott Haematological Research Institute, Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Peter Nürnberg
- Cologne Center for Genomics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Jan Dürig
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Patricia Johansson
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Böttcher
- Department III of Internal Medicine, University Hospital Rostock, Rostock, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center, Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology Köln Bonn, Deutsche CLL Studiengruppe (DCLLSG), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Elizabeth Macintyre
- Diagnostic Haematology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM), Paris, France
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany.,Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
17
|
Dupic T, Marcou Q, Walczak AM, Mora T. Genesis of the αβ T-cell receptor. PLoS Comput Biol 2019; 15:e1006874. [PMID: 30830899 PMCID: PMC6417744 DOI: 10.1371/journal.pcbi.1006874] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 03/14/2019] [Accepted: 02/17/2019] [Indexed: 11/18/2022] Open
Abstract
The T-cell (TCR) repertoire relies on the diversity of receptors composed of two chains, called α and β, to recognize pathogens. Using results of high throughput sequencing and computational chain-pairing experiments of human TCR repertoires, we quantitively characterize the αβ generation process. We estimate the probabilities of a rescue recombination of the β chain on the second chromosome upon failure or success on the first chromosome. Unlike β chains, α chains recombine simultaneously on both chromosomes, resulting in correlated statistics of the two genes which we predict using a mechanistic model. We find that ∼35% of cells express both α chains. Altogether, our statistical analysis gives a complete quantitative mechanistic picture that results in the observed correlations in the generative process. We learn that the probability to generate any TCRαβ is lower than 10(-12) and estimate the generation diversity and sharing properties of the αβ TCR repertoire.
Collapse
MESH Headings
- Chromosomes, Human
- Humans
- Probability
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Recombination, Genetic
Collapse
Affiliation(s)
- Thomas Dupic
- Laboratoire de physique théorique et hautes énergies, CNRS and Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- Laboratoire de physique de l’ENS, CNRS, Sorbonne Université, and École normale supérieure (PSL), 24 rue Lhomond, 75005 Paris, France
| | - Quentin Marcou
- Laboratoire de physique de l’ENS, CNRS, Sorbonne Université, and École normale supérieure (PSL), 24 rue Lhomond, 75005 Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’ENS, CNRS, Sorbonne Université, and École normale supérieure (PSL), 24 rue Lhomond, 75005 Paris, France
- * E-mail: (AMW); (TM)
| | - Thierry Mora
- Laboratoire de physique de l’ENS, CNRS, Sorbonne Université, and École normale supérieure (PSL), 24 rue Lhomond, 75005 Paris, France
- * E-mail: (AMW); (TM)
| |
Collapse
|
18
|
Balakrishnan A, Jama B, Morris GP. Endogenous co‐expression of two T cell receptors promotes lymphopenia‐induced proliferation via increased affinity for self‐antigen. J Leukoc Biol 2018; 104:1097-1104. [DOI: 10.1002/jlb.1ab0618-214rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 11/11/2022] Open
Affiliation(s)
- Amritha Balakrishnan
- Department of PathologyUniversity of California San Diego La Jolla California USA
| | - Burhan Jama
- Department of PathologyUniversity of California San Diego La Jolla California USA
| | - Gerald P. Morris
- Department of PathologyUniversity of California San Diego La Jolla California USA
| |
Collapse
|
19
|
Ott JA, Castro CD, Deiss TC, Ohta Y, Flajnik MF, Criscitiello MF. Somatic hypermutation of T cell receptor α chain contributes to selection in nurse shark thymus. eLife 2018; 7:28477. [PMID: 29664399 PMCID: PMC5931798 DOI: 10.7554/elife.28477] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of the T cell receptor (TcR), immunologists have assigned somatic hypermutation (SHM) as a mechanism employed solely by B cells to diversify their antigen receptors. Remarkably, we found SHM acting in the thymus on α chain locus of shark TcR. SHM in developing shark T cells likely is catalyzed by activation-induced cytidine deaminase (AID) and results in both point and tandem mutations that accumulate non-conservative amino acid replacements within complementarity-determining regions (CDRs). Mutation frequency at TcRα was as high as that seen at B cell receptor loci (BcR) in sharks and mammals, and the mechanism of SHM shares unique characteristics first detected at shark BcR loci. Additionally, fluorescence in situ hybridization showed the strongest AID expression in thymic corticomedullary junction and medulla. We suggest that TcRα utilizes SHM to broaden diversification of the primary αβ T cell repertoire in sharks, the first reported use in vertebrates.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, United States
| | - Caitlin D Castro
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, United States
| | - Thaddeus C Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, United States
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, United States
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, United States
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, United States.,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Texas, United States
| |
Collapse
|
20
|
Guo Y, MacIsaac KD, Chen Y, Miller RJ, Jain R, Joyce-Shaikh B, Ferguson H, Wang IM, Cristescu R, Mudgett J, Engstrom L, Piers KJ, Baltus GA, Barr K, Zhang H, Mehmet H, Hegde LG, Hu X, Carter LL, Aicher TD, Glick G, Zaller D, Hawwari A, Correll CC, Jones DC, Cua DJ. Inhibition of RORγT Skews TCRα Gene Rearrangement and Limits T Cell Repertoire Diversity. Cell Rep 2017; 17:3206-3218. [PMID: 28009290 DOI: 10.1016/j.celrep.2016.11.073] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/20/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023] Open
Abstract
Recent studies have elucidated the molecular mechanism of RORγT transcriptional regulation of Th17 differentiation and function. RORγT was initially identified as a transcription factor required for thymopoiesis by maintaining survival of CD4+CD8+ (DP) thymocytes. While RORγ antagonists are currently being developed to treat autoimmunity, it remains unclear how RORγT inhibition may impact thymocyte development. In this study, we show that in addition to regulating DP thymocytes survival, RORγT also controls genes that regulate thymocyte migration, proliferation, and T cell receptor (TCR)α selection. Strikingly, pharmacological inhibition of RORγ skews TCRα gene rearrangement, limits T cell repertoire diversity, and inhibits development of autoimmune encephalomyelitis. Thus, targeting RORγT not only inhibits Th17 cell development and function but also fundamentally alters thymic-emigrant recognition of self and foreign antigens. The analysis of RORγ inhibitors has allowed us to gain a broader perspective of the diverse function of RORγT and its impact on T cell biology.
Collapse
Affiliation(s)
- Yanxia Guo
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA
| | - Kenzie D MacIsaac
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yi Chen
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA
| | - Richard J Miller
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Renu Jain
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA
| | | | - Heidi Ferguson
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - I-Ming Wang
- Merck Research Laboratories, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Razvan Cristescu
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA
| | - John Mudgett
- Merck Research Laboratories, 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Laura Engstrom
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Kyle J Piers
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Gretchen A Baltus
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Kenneth Barr
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Hongjun Zhang
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Huseyin Mehmet
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | - Xiao Hu
- Lycera Corp, 2600 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Laura L Carter
- Lycera Corp, 2600 Plymouth Road, Ann Arbor, MI 48109, USA
| | | | - Gary Glick
- Lycera Corp, 2600 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Dennis Zaller
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Abbas Hawwari
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City Hospital, Ministry of National Guard Health Affairs, Mail Code 520, P.O. Box 6664, Al Hasa 31982, Kingdom of Saudi Arabia
| | - Craig C Correll
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Dallas C Jones
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Daniel J Cua
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA.
| |
Collapse
|
21
|
Bonnet M, Sarmento LM, Martins AC, Sobral D, Silva J, Demengeot J. iRAGu: A Novel Inducible and Reversible Mouse Model for Ubiquitous Recombinase Activity. Front Immunol 2017; 8:1525. [PMID: 29176980 PMCID: PMC5686385 DOI: 10.3389/fimmu.2017.01525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/27/2017] [Indexed: 11/17/2022] Open
Abstract
Developing lymphocytes express the recombination activating genes (RAGs) 1 and 2 products that form a site specific recombinase complex (RAG), introducing double strand DNA breaks (DSBs) at recombination signal sequences (RSSs) flanking the V, D, and J gene segments in the antigen receptor loci. The subsequent steps in the reaction consist in the ligation of DSBs by ubiquitous enzymes of the non-homologous end joining DNA repair pathway. This mutagenesis process is responsible for the generation of the very large clonal diversity of T and B lymphocytes, itself allowing the recognition of a virtually open-ended antigenic universe. Sequences resembling RSS are found at high frequency all over the genome, and involved in RAG mediated illegitimate recombination and translocations. Hence, natural and induced ectopic activity of RAG is a threat to the genome only recently underscored. Here, we report and characterize a novel mouse transgenic system for which ubiquitous expression of the recombinase is inducible. In this system, the RAG1 protein is constitutively expressed and functional, while the RAG2 protein, coupled to the estrogen receptor, becomes functionally active upon 4-hydroxytamoxifen (TAM) administration. We describe two transgenic lines. The first one, when introgressed into an endogenous Rag2−/− genetic background is faithfully recapitulating lymphocyte development, repertoire dynamics and cryptic rearrangements, in a TAM-dependent manner. In this model, deprivation of TAM is followed by lymphocyte development arrest, evidencing the reversibility of the system. The second transgenic line is leaky, as the transgenes promote lymphocyte differentiation in absence of TAM treatment. Upon TAM-induction defects in lymphocytes composition and global health reveals the deleterious effect of uncontrolled RAG activity. Overall, this novel transgenic model provides a tool where RAG activity can be specifically manipulated to assess the dynamics of lymphocyte differentiation and the challenges imposed by the recombinase on the vertebrate genome.
Collapse
Affiliation(s)
- Marie Bonnet
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | - Joana Silva
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
22
|
Daley SR, Teh C, Hu DY, Strasser A, Gray DH. Cell death and thymic tolerance. Immunol Rev 2017; 277:9-20. [DOI: 10.1111/imr.12532] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Stephen R. Daley
- Infection and Immunity Program; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology; Monash University; Melbourne VIC Australia
| | - Charis Teh
- The Walter and Eliza Hall Institute of Medical Research; Melbourne VIC Australia
- Department of Medical Biology; The University of Melbourne; Parkville VIC Australia
| | | | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research; Melbourne VIC Australia
- Department of Medical Biology; The University of Melbourne; Parkville VIC Australia
| | - Daniel H.D. Gray
- The Walter and Eliza Hall Institute of Medical Research; Melbourne VIC Australia
- Department of Medical Biology; The University of Melbourne; Parkville VIC Australia
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW T cells can mediate allograft rejection and graft-versus-host disease (GVHD), but are necessary for tolerance and protective immunity. Identifying T-cell populations differentially responsible for these effects has been a goal in transplant research. This review describes investigation of a small subset of T cells naturally predisposed toward alloreactivity, cells expressing two T-cell receptors (TCRs). RECENT FINDINGS Rare peripheral T cells express two αβTCRs. Their impact on T-cell development and function has been uncertain. Recent work demonstrates an important role for these cells in mouse models and human hematopoietic stem cell transplant patients with acute GVHD. Dual receptor T cells are preferentially activated and expanded in vitro and in vivo by allogeneic stimulation. Genetic elimination of dual TCR expression results in loss of approximately half of the alloreactive repertoire and impedes the earliest steps of GVHD. SUMMARY Identification of dual TCR T cells as predisposed to alloreactivity provides an opportunity to examine responses limiting transplantation. Continued investigation will reveal significant fundamental features of T-cell alloreactivity and important information about the earliest events determining allograft rejection and self-tolerance.
Collapse
|
24
|
Joachims ML, Leehan KM, Lawrence C, Pelikan RC, Moore JS, Pan Z, Rasmussen A, Radfar L, Lewis DM, Grundahl KM, Kelly JA, Wiley GB, Shugay M, Chudakov DM, Lessard CJ, Stone DU, Scofield RH, Montgomery CG, Sivils KL, Thompson LF, Farris AD. Single-cell analysis of glandular T cell receptors in Sjögren's syndrome. JCI Insight 2016; 1. [PMID: 27358913 DOI: 10.1172/jci.insight.85609] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CD4+ T cells predominate in salivary gland (SG) inflammatory lesions in Sjögren's syndrome (SS). However, their antigen specificity, degree of clonal expansion, and relationship to clinical disease features remain unknown. We used multiplex reverse-transcriptase PCR to amplify paired T cell receptor α (TCRα) and β transcripts of single CD4+CD45RA- T cells from SG and peripheral blood (PB) of 10 individuals with primary SS, 9 of whom shared the HLA DR3/DQ2 risk haplotype. TCRα and β sequences were obtained from a median of 91 SG and 107 PB cells per subject. The degree of clonal expansion and frequency of cells expressing two productively rearranged α genes were increased in SG versus PB. Expanded clones from SG exhibited complementary-determining region 3 (CDR3) sequence similarity both within and among subjects, suggesting antigenic selection and shared antigen recognition. CDR3 similarities were shared among expanded clones from individuals discordant for canonical Ro and La autoantibodies, suggesting recognition of alternative SG antigen(s). The extent of SG clonal expansion correlated with reduced saliva production and increased SG fibrosis, linking expanded SG T cells with glandular dysfunction. Knowledge of paired TCRα and β sequences enables further work toward identification of target antigens and development of novel therapies.
Collapse
Affiliation(s)
- Michelle L Joachims
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Kerry M Leehan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA; Department of Pathology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Christina Lawrence
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Richard C Pelikan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Jacen S Moore
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Zijian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Lida Radfar
- Department of Oral Diagnosis and Radiology, College of Dentistry, OUHSC, Oklahoma City, Oklahoma, USA
| | - David M Lewis
- Department of Oral and Maxillofacial Pathology, College of Dentistry, OUHSC, Oklahoma City, Oklahoma, USA
| | - Kiely M Grundahl
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Graham B Wiley
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Christopher J Lessard
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA; Department of Pathology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Donald U Stone
- Department of Ophthalmology, College of Medicine, OUHSC, Oklahoma City, Oklahoma, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA; Department of Pathology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA; Section of Endocrinology and Diabetes, College of Medicine, OUHSC, Oklahoma City, Oklahoma, USA
| | - Courtney G Montgomery
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA; Department of Pathology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Linda F Thompson
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA; Department of Pathology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| |
Collapse
|
25
|
Guselnikov SV, Grayfer L, De Jesús Andino F, Rogozin IB, Robert J, Taranin AV. Retention of duplicated ITAM-containing transmembrane signaling subunits in the tetraploid amphibian species Xenopus laevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:158-68. [PMID: 26170006 PMCID: PMC4536121 DOI: 10.1016/j.dci.2015.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 06/04/2023]
Abstract
The ITAM-bearing transmembrane signaling subunits (TSS) are indispensable components of activating leukocyte receptor complexes. The TSS-encoding genes map to paralogous chromosomal regions, which are thought to arise from ancient genome tetraploidization(s). To assess a possible role of tetraploidization in the TSS evolution, we studied TSS and other functionally linked genes in the amphibian species Xenopus laevis whose genome was duplicated about 40 MYR ago. We found that X. laevis has retained a duplicated set of sixteen TSS genes, all except one being transcribed. Furthermore, duplicated TCRα loci and genes encoding TSS-coupling protein kinases have also been retained. No clear evidence for functional divergence of the TSS paralogs was obtained from gene expression and sequence analyses. We suggest that the main factor of maintenance of duplicated TSS genes in X. laevis was a protein dosage effect and that this effect might have facilitated the TSS set expansion in early vertebrates.
Collapse
Affiliation(s)
- S V Guselnikov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8/2, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russia.
| | - L Grayfer
- University of Rochester, Medical Center, 601 Elmwood Avenue, MRBX, Rochester, NY 14642, USA.
| | - F De Jesús Andino
- University of Rochester, Medical Center, 601 Elmwood Avenue, MRBX, Rochester, NY 14642, USA.
| | - I B Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, 8600 Rockville Pike, Bldg. 38A, Bethesda, MD, USA.
| | - J Robert
- University of Rochester, Medical Center, 601 Elmwood Avenue, MRBX, Rochester, NY 14642, USA.
| | - A V Taranin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8/2, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russia.
| |
Collapse
|
26
|
Jurberg AD, Vasconcelos-Fontes L, Cotta-de-Almeida V. A Tale from TGF-β Superfamily for Thymus Ontogeny and Function. Front Immunol 2015; 6:442. [PMID: 26441956 PMCID: PMC4564722 DOI: 10.3389/fimmu.2015.00442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/14/2015] [Indexed: 12/16/2022] Open
Abstract
Multiple signaling pathways control every aspect of cell behavior, organ formation, and tissue homeostasis throughout the lifespan of any individual. This review takes an ontogenetic view focused on the large superfamily of TGF-β/bone morphogenetic protein ligands to address thymus morphogenesis and function in T cell differentiation. Recent findings on a role of GDF11 for reversing aging-related phenotypes are also discussed.
Collapse
Affiliation(s)
- Arnon Dias Jurberg
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil ; Graduate Program in Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Larissa Vasconcelos-Fontes
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil
| |
Collapse
|
27
|
Cui Y, Onozawa M, Garber HR, Samsel L, Wang Z, McCoy JP, Burkett S, Wu X, Aplan PD, Mackall CL. Thymic expression of a T-cell receptor targeting a tumor-associated antigen coexpressed in the thymus induces T-ALL. Blood 2015; 125:2958-67. [PMID: 25814528 PMCID: PMC4424417 DOI: 10.1182/blood-2014-10-609271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/10/2015] [Indexed: 12/15/2022] Open
Abstract
T-cell receptors (TCRs) and chimeric antigen receptors recognizing tumor-associated antigens (TAAs) can now be engineered to be expressed on a wide array of immune effectors. Engineered receptors targeting TAAs have most commonly been expressed on mature T cells, however, some have postulated that receptor expression on immune progenitors could yield T cells with enhanced potency. We generated mice (survivin-TCR-transgenic [Sur-TCR-Tg]) expressing a TCR recognizing the immunodominant epitope (Sur20-28) of murine survivin during early stages of thymopoiesis. Spontaneous T-cell acute lymphoblastic leukemia (T-ALL) occurred in 100% of Sur-TCR-Tg mice derived from 3 separate founders. The leukemias expressed the Sur-TCR and signaled in response to the Sur20-28 peptide. In preleukemic mice, we observed increased cycling of double-negative thymocytes expressing the Sur-TCR and increased nuclear translocation of nuclear factor of activated T cells, consistent with TCR signaling induced by survivin expression in the murine thymus. β2M(-/-) Sur-TCR-Tg mice, which cannot effectively present survivin peptides on class I major histocompatibility complex, had significantly diminished rates of leukemia. We conclude that TCR signaling during the early stages of thymopoiesis mediates an oncogenic signal, and therefore expression of signaling receptors on developing thymocytes with specificity for TAAs expressed in the thymus could pose a risk for neoplasia, independent of insertional mutagenesis.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Blotting, Western
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Transformation, Neoplastic
- Flow Cytometry
- Fluorescent Antibody Technique
- Homeodomain Proteins/physiology
- Inhibitor of Apoptosis Proteins/physiology
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Peptide Fragments/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/etiology
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Antigen, T-Cell/physiology
- Repressor Proteins/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Survivin
- T-Lymphocyte Subsets/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
| | - Masahiro Onozawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | | | - Leigh Samsel
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - J Philip McCoy
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sandra Burkett
- Molecular Cytogenetics Core, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD; and
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
28
|
Ziegler H, Welker C, Sterk M, Haarer J, Rammensee HG, Handgretinger R, Schilbach K. Human Peripheral CD4(+) Vδ1(+) γδT Cells Can Develop into αβT Cells. Front Immunol 2014; 5:645. [PMID: 25709606 PMCID: PMC4329445 DOI: 10.3389/fimmu.2014.00645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
The lifelong generation of αβT cells enables us to continuously build immunity against pathogens and malignancies despite the loss of thymic function with age. Homeostatic proliferation of post-thymic naïve and memory T cells and their transition into effector and long-lived memory cells balance the decreasing output of naïve T cells, and recent research suggests that also αβT-cell development independent from the thymus may occur. However, the sites and mechanisms of extrathymic T-cell development are not yet understood in detail. γδT cells represent a small fraction of the overall T-cell pool, and are endowed with tremendous phenotypic and functional plasticity. γδT cells that express the Vδ1 gene segment are a minor population in human peripheral blood but predominate in epithelial (and inflamed) tissues. Here, we characterize a CD4+ peripheral Vδ1+ γδT-cell subpopulation that expresses stem-cell and progenitor markers and is able to develop into functional αβT cells ex vivo in a simple culture system and in vivo. The route taken by this process resembles thymic T-cell development. However, it involves the re-organization of the Vδ1+ γδTCR into the αβTCR as a consequence of TCR-γ chain downregulation and the expression of surface Vδ1+Vβ+ TCR components, which we believe function as surrogate pre-TCR. This transdifferentiation process is readily detectable in vivo in inflamed tissue. Our study provides a conceptual framework for extrathymic T-cell development and opens up a new vista in immunology that requires adaptive immune responses in infection, autoimmunity, and cancer to be reconsidered.
Collapse
Affiliation(s)
- Hendrik Ziegler
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Christian Welker
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Marco Sterk
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Jan Haarer
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen , Tübingen , Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Karin Schilbach
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| |
Collapse
|
29
|
Abstract
The thymus is a central lymphoid organ critical for the development and maintenance of an effective peripheral T-cell repertoire. Most important, it provides a specialized environment for the selection of rearranged clones that will function appropriately in the adaptive immune response. Thymic involution has been observed in several model systems; including graft-versus-host disease, aging, viral infection, and tumor development, however, the precise mechanisms involved in this phenomenon remain poorly defined. Here, we review some of our results related to the studies of the cell-mediated immunity in a mammary tumor model; more specifically, those related to the tumor-induced impaired T-cell development and thymic involution. Collectively, the understanding of the mechanisms and pathways associated with the tumor-induced thymic involution is essential for the development of innovative and safe therapies to fight against the immune suppression caused by the tumor development.
Collapse
Affiliation(s)
- Roberto Carrio
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, P.O. Box 016960 (R-138), Miami, FL, 33101, USA,
| | | |
Collapse
|
30
|
Ni PP, Solomon B, Hsieh CS, Allen PM, Morris GP. The ability to rearrange dual TCRs enhances positive selection, leading to increased Allo- and Autoreactive T cell repertoires. THE JOURNAL OF IMMUNOLOGY 2014; 193:1778-86. [PMID: 25015825 DOI: 10.4049/jimmunol.1400532] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thymic selection is designed to ensure TCR reactivity to foreign Ags presented by self-MHC while minimizing reactivity to self-Ags. We hypothesized that the repertoire of T cells with unwanted specificities such as alloreactivity or autoreactivity are a consequence of simultaneous rearrangement of both TCRα loci. We hypothesized that this process helps maximize production of thymocytes capable of successfully completing thymic selection, but results in secondary TCRs that escape stringent selection. In T cells expressing two TCRs, one TCR can mediate positive selection and mask secondary TCR from negative selection. Examination of mice heterozygous for TRAC (TCRα(+/-)), capable of only one functional TCRα rearrangement, demonstrated a defect in generating mature T cells attributable to decreased positive selection. Elimination of secondary TCRs did not broadly alter the peripheral T cell compartment, though deep sequencing of TCRα repertoires of dual TCR T cells and TCRα(+/-) T cells demonstrated unique TCRs in the presence of secondary rearrangements. The functional impact of secondary TCRs on the naive peripheral repertoire was evidenced by reduced frequencies of T cells responding to autoantigen and alloantigen peptide-MHC tetramers in TCRα(+/-) mice. T cell populations with secondary TCRs had significantly increased ability to respond to altered peptide ligands related to their allogeneic ligand as compared with TCRα(+/-) cells, suggesting increased breadth in peptide recognition may be a mechanism for their reactivity. Our results imply that the role of secondary TCRs in forming the T cell repertoire is perhaps more significant than what has been assumed.
Collapse
Affiliation(s)
- Peggy P Ni
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin Solomon
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gerald P Morris
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
31
|
Abstract
The peripheral T cell repertoire is sculpted from prototypic T cells in the thymus bearing randomly generated T cell receptors (TCR) and by a series of developmental and selection steps that remove cells that are unresponsive or overly reactive to self-peptide–MHC complexes. The challenge of understanding how the kinetics of T cell development and the statistics of the selection processes combine to provide a diverse but self-tolerant T cell repertoire has invited quantitative modeling approaches, which are reviewed here.
Collapse
Affiliation(s)
- Andrew J Yates
- Departments of Systems and Computational Biology, Microbiology and Immunology, Albert Einstein College of Medicine , New York, NY , USA
| |
Collapse
|
32
|
Visualization and quantification of monoallelic TCRα gene rearrangement in αβ T cells. Immunol Cell Biol 2014; 92:409-16. [PMID: 24418818 DOI: 10.1038/icb.2013.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/04/2013] [Accepted: 12/04/2013] [Indexed: 11/08/2022]
Abstract
T-cell receptor α (TCRα) chain rearrangement is not constrained by allelic exclusion and thus αβ T cells frequently have rearranged both alleles of this locus. Thereby, stepwise secondary rearrangements of both TCRα loci further increase the odds for generation of an α-chain that can be positively selected in combination with a pre-existing TCRβ chain. Previous studies estimated that approximately 2-12% of murine and human αβ T cells still carry one TCRα locus in germline configuration, which must comprise a partially or even fully rearranged TCRδ locus. However, these estimates are based on a relatively small amount of individual αβ T-cell clones and αβ T-cell hybridomas analyzed to date. To address this issue more accurately, we made use of a mouse model, in which a fluorescent reporter protein is introduced into the constant region of the TCRδ locus. In this TcrdH2BeGFP system, fluorescence emanating from retained TCRδ loci enabled us to quantify monoallelically rearranged αβ T cells on a single-cell basis. Via fluorescence-activated cell sorting analysis, we determined the frequency of monoallelic TCRα rearrangements to be 1.7% in both peripheral CD4(+) and CD8(+) αβ T cells. Furthermore, we found a skewed 5' Jα gene utilization of the rearranged TCRα allele in T cells with monoallelic TCRα rearrangements. This is in line with previous descriptions of a tight interallelic positional coincidence of Jα gene segments used on both TCRα alleles. Finally, analysis of T cells from transgenic mice harboring only one functional TCRα locus implied the existence of very rare unusual translocation or episomal reintegration events of formerly excised TCRδ loci.
Collapse
|
33
|
Zarnitsyna VI, Evavold BD, Schoettle LN, Blattman JN, Antia R. Estimating the diversity, completeness, and cross-reactivity of the T cell repertoire. Front Immunol 2013; 4:485. [PMID: 24421780 PMCID: PMC3872652 DOI: 10.3389/fimmu.2013.00485] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/10/2013] [Indexed: 11/13/2022] Open
Abstract
In order to recognize and combat a diverse array of pathogens the immune system has a large repertoire of T cells having unique T cell receptors (TCRs) with only a few clones specific for any given antigen. We discuss how the number of different possible TCRs encoded in the genome (the potential repertoire) and the number of different TCRs present in an individual (the realized repertoire) can be measured. One puzzle is that the potential repertoire greatly exceeds the realized diversity of naïve T cells within any individual. We show that the existing hypotheses fail to explain why the immune system has the potential to generate far more diversity than is used in an individual, and propose an alternative hypothesis of “evolutionary sloppiness.” Another immunological puzzle is why mice and humans have similar repertoires even though humans have over 1000-fold more T cells. We discuss how the idea of the “protecton,” the smallest unit of protection, might explain this discrepancy and estimate the size of “protecton” based on available precursor frequencies data. We then consider T cell cross-reactivity – the ability of a T cell clone to respond to more than one epitope. We extend existing calculations to estimate the extent of expected cross-reactivity between the responses to different pathogens. Our results are consistent with two observations: a low probability of observing cross-reactivity between the immune responses to two randomly chosen pathogens; and the ensemble of memory cells being sufficiently diverse to generate cross-reactive responses to new pathogens.
Collapse
Affiliation(s)
| | - Brian D Evavold
- Department of Microbiology and Immunology, Emory University , Atlanta, GA , USA
| | - Louis N Schoettle
- Center for Infectious Diseases and Vaccinology, School of Life Sciences, Arizona State University , Tempe, AZ , USA
| | - Joseph N Blattman
- Center for Infectious Diseases and Vaccinology, School of Life Sciences, Arizona State University , Tempe, AZ , USA
| | - Rustom Antia
- Department of Biology, Emory University , Atlanta, GA , USA
| |
Collapse
|
34
|
Winandy S. Ikaros to the rescue of TCR-α chain gene rearrangement. Eur J Immunol 2013; 43:314-7. [PMID: 23299235 DOI: 10.1002/eji.201243272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 12/18/2012] [Accepted: 01/03/2013] [Indexed: 12/15/2022]
Abstract
Ikaros is a transcriptional regulator critical for B- and T-cell development. Recently, it has been shown to play a central role in facilitating rearrangement of antigen-receptor genes in B cells. Whether or not it had a similar function in this process in T cells, however, was a mystery. In this issue of the European Journal of Immunology, a role for Ikaros in T-cell receptor (TCR) rearrangement and expression of TCR-α chain genes is revealed in the study by Collins et al. [Eur. J. Immunol. 2013. 43: 521-532]. Ikaros functions in this capacity as an "accessibility factor," facilitating increased TCR-α chain gene transcription and accessibility of the locus to promote rearrangement. Interestingly, this study has also revealed differences in the mechanisms by which Ikaros promotes antigen-receptor rearrangement in B versus T cells, thereby suggesting that Ikaros may have lineage-specific functions in coordinating antigen-receptor rearrangement.
Collapse
Affiliation(s)
- Susan Winandy
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|
35
|
Vizcardo R, Masuda K, Yamada D, Ikawa T, Shimizu K, Fujii SI, Koseki H, Kawamoto H. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8(+) T cells. Cell Stem Cell 2013; 12:31-6. [PMID: 23290135 DOI: 10.1016/j.stem.2012.12.006] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 11/13/2012] [Accepted: 12/16/2012] [Indexed: 12/20/2022]
Abstract
Antigen-specific T cells represent a potential therapeutic avenue for a variety of conditions, but current approaches for generating such cells for therapeutic purposes are limited. In this study, we established iPSCs from mature cytotoxic T cells specific for the melanoma epitope MART-1. When cocultured with OP9/DLL1 cells, these iPSCs efficiently generated TCRβ(+)CD4(+)CD8(+) double positive (DP) cells expressing a T cell receptor (TCR) specific for the MART-1 epitope. Stimulation of these DP cells with anti-CD3 antibody generated a large number of CD8(+) T cells, and more than 90% of the resulting cells were specific for the original MART-1 epitope. Stimulation of the CD8(+) T cells with MART-1 antigen-presenting cells led to the secretion of IFNγ, demonstrating their specific reactivity. The present study therefore illustrates an approach for cloning and expanding functional antigen-specific CD8(+) T cells that might be applicable in cell-based therapy of cancer.
Collapse
Affiliation(s)
- Raul Vizcardo
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D, Nakayama-Hosoya K, Iriguchi S, Uemura Y, Shimizu T, Takayama N, Yamada D, Nishimura K, Ohtaka M, Watanabe N, Takahashi S, Iwamoto A, Koseki H, Nakanishi M, Eto K, Nakauchi H. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 2013; 12:114-26. [PMID: 23290140 DOI: 10.1016/j.stem.2012.11.002] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/28/2012] [Accepted: 11/06/2012] [Indexed: 12/21/2022]
Abstract
Adoptive immunotherapy with functional T cells is potentially an effective therapeutic strategy for combating many types of cancer and viral infection. However, exhaustion of antigen-specific T cells represents a major challenge to this type of approach. In an effort to overcome this problem, we reprogrammed clonally expanded antigen-specific CD8(+) T cells from an HIV-1-infected patient to pluripotency. The T cell-derived induced pluripotent stem cells were then redifferentiated into CD8(+) T cells that had a high proliferative capacity and elongated telomeres. These "rejuvenated" cells possessed antigen-specific killing activity and exhibited T cell receptor gene-rearrangement patterns identical to those of the original T cell clone from the patient. We also found that this method can be effective for generating specific T cells for other pathology-associated antigens. Thus, this type of approach may have broad applications in the field of adoptive immunotherapy.
Collapse
Affiliation(s)
- Toshinobu Nishimura
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Successful allogeneic hematopoietic stem cell transplantation (HSCT) and solid organ transplantation require development of a degree of immune tolerance against allogeneic antigens. T lymphocytes play a critical role in allograft rejection, graft failure, and graft-versus-host disease (GVHD). T-cell tolerance occurs by two different mechanisms: (1) depletion of self-reactive T cells during their maturation in the thymus (central tolerance), and (2) suppression/elimination of self-reactive mature T cells in the periphery (peripheral tolerance). Induction of transplant tolerance improves transplantation outcomes. Adoptive immunotherapy with immune suppressor cells including regulatory T cells, natural killer (NK)-T cells, veto cells, and facilitating cells are promising therapies for modulation of immune tolerance. Achieving mixed chimerism with the combination of thymic irradiation and T-cell-depleting antibodies, costimulatory molecule blockade with/without inhibitory signal activation, and elimination of alloreactive T cells with varying methods including pre- or post-transplant cyclophosphamide administration appear to be effective in inducing transplant tolerance.
Collapse
Affiliation(s)
- Onder Alpdogan
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | |
Collapse
|
38
|
Thymic nurse cells provide microenvironment for secondary T cell receptor α rearrangement in cortical thymocytes. Proc Natl Acad Sci U S A 2012. [PMID: 23188800 DOI: 10.1073/pnas.1213069109] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Distinct subsets of thymic epithelial cells (TECs) support T-cell development and selection. Isolated TECs contain multicellular complexes that enclose many viable thymocytes. However, the functions of those TECs, termed thymic nurse cells (TNCs), are unclear and the idea that TNCs are present in vivo is questioned. Here, we show that TNCs represent a fraction of cortical (c)TECs that are defined by the expression of thymoproteasomes. Intravital imaging revealed TNCs in the thymic cortex in situ, whereas TNCs were detected neither during embryogenesis nor in the postnatal thymuses of various "positive-selector" T-cell receptor (TCR)-transgenic mice, indicating that TNCs are not essential for T-cell differentiation, including positive selection. Rather, cells within TNCs were enriched for long-lived CD4(+)CD8(+) thymocytes that underwent secondary TCR-Vα rearrangement. Thus, TNC complexes are formed in vivo by persistent cTEC-thymocyte interactions that then provide a microenvironment that optimizes T-cell selection through secondary TCR rearrangement.
Collapse
|
39
|
Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol 2012; 42:102-11. [PMID: 22095454 PMCID: PMC3266166 DOI: 10.1007/s12016-011-8294-7] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A variety of mechanisms have been suggested as the means by which infections can initiate and/or exacerbate autoimmune diseases. One mechanism is molecular mimicry, where a foreign antigen shares sequence or structural similarities with self-antigens. Molecular mimicry has typically been characterized on an antibody or T cell level. However, structural relatedness between pathogen and self does not account for T cell activation in a number of autoimmune diseases. A proposed mechanism that could have been misinterpreted for molecular mimicry is the expression of dual T cell receptors (TCR) on a single T cell. These T cells have dual reactivity to both foreign and self-antigens leaving the host vulnerable to foreign insults capable of triggering an autoimmune response. In this review, we briefly discuss what is known about molecular mimicry followed by a discussion of the current understanding of dual TCRs. Finally, we discuss three mechanisms, including molecular mimicry, dual TCRs, and chimeric TCRs, by which dual reactivity of the T cell may play a role in autoimmune diseases.
Collapse
Affiliation(s)
- Matthew F Cusick
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
40
|
|
41
|
Abstract
The discovery of regulatory T cells (Tregs) as a crucial component of peripheral down-regulation of immunity to self and allogeneic antigens has raised legitimate hope for the development of Treg-based clinical protocols for tolerance to allografts. The present review addresses the question of whether therapeutic Tregs are ready to enter the clinical transplantation arena. In light of recent experimental observations, we will revisit some fundamentals of T cell and Treg biology that stress the need for further studies prior to applications and provide conceptual cues for novel therapeutic approaches.
Collapse
Affiliation(s)
- Christian Leguern
- Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital East, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
42
|
Wang R, Xie H, Huang Z, Ma J, Fang X, Ding Y, Sun Z. T cell factor 1 regulates thymocyte survival via a RORγt-dependent pathway. THE JOURNAL OF IMMUNOLOGY 2011; 187:5964-73. [PMID: 22039299 DOI: 10.4049/jimmunol.1101205] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Survival of CD4(+)CD8(+) double-positive (DP) thymocytes plays a critical role in shaping the peripheral T cell repertoire. However, the mechanisms responsible for the regulation of DP thymocyte lifespan remain poorly understood. In this work, we demonstrate that T cell factor (TCF)-1 regulates DP thymocyte survival by upregulating RORγt. Microarray analysis revealed that RORγt was significantly downregulated in TCF-1(-/-) thymocytes that underwent accelerated apoptosis, whereas RORγt was greatly upregulated in thymocytes that had enhanced survival due to transgenic expression of a stabilized β-catenin (β-cat(Tg)), a TCF-1 activator. Both TCF-1(-/-) and RORγt(-/-) DP thymocytes underwent similar accelerated apoptosis. Forced expression of RORγt successfully rescued TCF-1(-/-) DP thymocytes from apoptosis, whereas ectopically expressed TCF-1 was not able to rescue the defective T cell development because of the lack of RORγt-supported survival. Furthermore, activation of TCF-1 by stabilized β-catenin was able to enhance DP thymocyte survival only in the presence of RORγt, indicating that RORγt acts downstream of TCF-1 in the regulation of DP thymocyte survival. Moreover, β-catenin/TCF-1 directly interacted with the RORγt promoter region and stimulated its activity. Therefore, our data demonstrated that TCF-1 enhances DP thymocyte survival through transcriptional upregulation of RORγt, which we previously showed is an essential prosurvival molecule for DP thymocytes.
Collapse
Affiliation(s)
- Ruiqing Wang
- Division of Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The thymus serves as the central organ of immunologic self-nonself discrimination. Thymocytes undergo both positive and negative selection, resulting in T cells with a broad range of reactivity to foreign antigens but with a lack of reactivity to self-antigens. The thymus is also the source of a subset of regulatory T cells that inhibit autoreactivity of T-cell clones that may escape negative selection. As a result of these functions, the thymus has been shown to be essential for the induction of tolerance in many rodent and large animal models. Proper donor antigen presentation in the thymus after bone marrow, dendritic cell, or solid organ transplantation has been shown to induce tolerance to allografts. The molecular mechanisms of positive and negative selection and regulatory T-cell development must be understood if a tolerance-inducing therapeutic intervention is to be designed effectively. In this brief and selective review, we present some of the known information on T-cell development and on the role of the thymus in experimental models of transplant tolerance. We also cite some clinical attempts to induce tolerance to allografts using pharmacologic or biologic interventions.
Collapse
|
44
|
Kekäläinen E, Hänninen A, Maksimow M, Arstila TP. T cells expressing two different T cell receptors form a heterogeneous population containing autoreactive clones. Mol Immunol 2010; 48:211-8. [PMID: 20828824 DOI: 10.1016/j.molimm.2010.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 01/20/2023]
Abstract
During T cell development both alleles of the T cell receptor (TCR) alpha locus are rearranged. As a result, a sizeable proportion of T cells can express two distinct TCRs, but the functional significance of this phenomenon remains controversial. Studies on transgenic mice with two TCRs have focused on the risk of immunopathology that such cells may pose, while some have suggested that most dual-specific T cells are nonfunctional or even protective. We tracked the fate and TCR repertoire of single- and dual-specific T cells within a normal polyclonal population undergoing lymphopenia-induced proliferation, a setting which has been shown to cause immunopathology and autoimmunity. After the expansion the repertoire of dual-specific T cells had become highly biased, with both prominent clonal expansions and the complete disappearance of other clones. Our results suggest that the normal repertoire of dual-specific T cells contains both nonfunctional cells and a small, 5% fraction of clones which display a much higher than average affinity to antigens normally tolerated as harmless. This heterogeneity may also help in reconciling some of the earlier, conflicting results.
Collapse
Affiliation(s)
- Eliisa Kekäläinen
- Haartman Institute, Department of Immunology, University of Helsinki, P.O. box 21, 00014 University of Helsinki, Finland.
| | | | | | | |
Collapse
|
45
|
Numerical modelling of the V-J combinations of the T cell receptor TRA/TRD locus. PLoS Comput Biol 2010; 6:e1000682. [PMID: 20174554 PMCID: PMC2824756 DOI: 10.1371/journal.pcbi.1000682] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/21/2010] [Indexed: 01/07/2023] Open
Abstract
T-Cell antigen Receptor (TR) repertoire is generated through rearrangements of V and J genes encoding α and β chains. The quantification and frequency for every V-J combination during ontogeny and development of the immune system remain to be precisely established. We have addressed this issue by building a model able to account for Vα-Jα gene rearrangements during thymus development of mice. So we developed a numerical model on the whole TRA/TRD locus, based on experimental data, to estimate how Vα and Jα genes become accessible to rearrangements. The progressive opening of the locus to V-J gene recombinations is modeled through windows of accessibility of different sizes and with different speeds of progression. Furthermore, the possibility of successive secondary V-J rearrangements was included in the modelling. The model points out some unbalanced V-J associations resulting from a preferential access to gene rearrangements and from a non-uniform partition of the accessibility of the J genes, depending on their location in the locus. The model shows that 3 to 4 successive rearrangements are sufficient to explain the use of all the V and J genes of the locus. Finally, the model provides information on both the kinetics of rearrangements and frequencies of each V-J associations. The model accounts for the essential features of the observed rearrangements on the TRA/TRD locus and may provide a reference for the repertoire of the V-J combinatorial diversity. Lymphocytes of the immune system ensure the body defense by the expression of receptors which are specific of targets, termed antigens. Each lymphocyte, deriving from the same original clone, expresses the same unique receptor. To achieve the production of receptors covering the wide variety of antigens, lymphocytes use a specialized genetic mechanism consisting of gene rearrangements. For instance, the genes encoding the receptor of the alpha chain of the T lymphocyte receptor (TRA) spread over a 1500 Kb genetic region which includes around 100 V genes, 60 J genes, and a single C gene. To constitute a functional alpha chain, one of the V and one of the J genes rearrange together to form a single exon. The precise definition of these V-J combinations is essential to understand the repertoire of TRA. We have developed a numerical model simulating all of the V-J combinations of TRA, fitting the available experimental observations obtained from the analysis of TRA in T lymphocytes of the thymus and the blood. Our model gives new insights on the rules controlling the use of V and J genes in providing a dynamic estimation of the total V-J combinations.
Collapse
|
46
|
Nicolás L, Martínez C, Baró C, Rodríguez M, Baroja-Mazo A, Sole F, Flores JM, Ampurdanés C, Dantzer F, Martin-Caballero J, Aparicio P, Yelamos J. Loss of poly(ADP-ribose) polymerase-2 leads to rapid development of spontaneous T-cell lymphomas in p53-deficient mice. Oncogene 2010; 29:2877-83. [PMID: 20154718 DOI: 10.1038/onc.2010.11] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Poly(ADP-ribose) polymerase-2 (Parp-2) belongs to a family of enzymes that catalyse poly(ADP-ribosyl)ation of proteins. Parp-2 deficiency in mice (Parp-2(-/-)) results in reduced thymic cellularity associated with increased apoptosis in thymocytes, defining Parp-2 as an important mediator of T-cell survival during thymopoiesis. To determine whether there is a link between Parp-2 and the p53 DNA-damage-dependent apoptotic response, we have generated Parp-2/p53-double-null mutant mice. We found that p53(-/-) backgrounds completely restored the survival and development of Parp-2(-/-) thymocytes. However, Parp-2-deficient thymocytes accumulated high levels of DNA double-strand breaks (DSB), independently of the p53 status, in line with a function of Parp-2 as a caretaker promoting genomic stability during thymocytes development. Although Parp-2(-/-) mice do not have spontaneous tumours, Parp-2 deficiency accelerated spontaneous tumour development in p53-null mice, mainly T-cell lymphomas. These data suggest a synergistic interaction between Parp-2 and p53 in tumour suppression through the role of Parp-2 in DNA-damage response and genome integrity surveillance, and point to the potential importance of examining human tumours for the status of both genes.
Collapse
Affiliation(s)
- L Nicolás
- Department of Immunology, IMIM-Hospital del Mar, Barcelona Biomedical Research Park, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yuan J, Crittenden RB, Bender TP. c-Myb promotes the survival of CD4+CD8+ double-positive thymocytes through upregulation of Bcl-xL. THE JOURNAL OF IMMUNOLOGY 2010; 184:2793-804. [PMID: 20142358 DOI: 10.4049/jimmunol.0902846] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mechanisms that regulate the lifespan of CD4(+)CD8(+) double-positive (DP) thymocytes help shape the peripheral T cell repertoire. However, the molecular mechanisms controlling DP thymocyte survival remain poorly understood. The Myb proto-oncogene encodes a transcription factor required during multiple stages of T cell development. We demonstrate that Myb mRNA expression is upregulated as thymocytes differentiate from the double-negative into the metabolically quiescent, small, preselection DP stage during T cell development. Using a conditional deletion mouse model, we demonstrate that Myb-deficient DP thymocytes undergo premature apoptosis, resulting in a limited Tcralpha repertoire biased toward 5' Jalpha segment usage. Premature apoptosis occurs specifically in the small preselection DP compartment in an alphabetaTCR-independent manner and is a consequence of decreased Bcl-xL expression. Forced Bcl-xL expression is able to rescue survival, and reintroduction of c-Myb restores both Bcl-xL expression and the small preselection DP compartment. We further demonstrate that c-Myb promotes transcription at the Bcl2l1 locus via a genetic pathway that is independent of the expression of T cell-specific factor-1 or RORgammat, two transcription factors that induce Bcl-xL expression in T cell development. Thus, Bcl-xL is a novel mediator of c-Myb activity during normal T cell development.
Collapse
Affiliation(s)
- Joan Yuan
- Department of Microbiology, Beirne B Carter Center for Immunology Research, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
48
|
Xue L, Sun Y, Chiang L, He B, Kang C, Nolla H, Winoto A. Coupling of the cell cycle and apoptotic machineries in developing T cells. J Biol Chem 2010; 285:7556-65. [PMID: 20068041 DOI: 10.1074/jbc.m109.035535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferation and apoptosis are diametrically opposite processes. Expression of certain genes like c-Myc, however, can induce both, pointing to a possible linkage between them. Developing CD4(+)CD8(+) thymocytes are intrinsically sensitive to apoptosis, but the molecular basis is not known. We have found that these noncycling cells surprisingly express many cell cycle proteins. We generated transgenic mice expressing a CDK2 kinase-dead (CDK2-DN) protein in the T cell compartment. Analysis of these mice showed that the CDK2-DN protein acts as a dominant negative mutant in mature T cells as expected, but surprisingly, it acts as a dominant active protein in CD4(+)CD8(+) thymocytes. The levels of CDK2 kinase activity, cyclin E, cyclin A, and other cell cycle proteins in transgenic CD4(+)CD8(+) thymocytes are increased. Concurrently, caspase levels are elevated, and apoptosis is significantly enhanced in vitro and in vivo. E2F-1, the unique E2F member capable of inducing apoptosis when overexpressed, is specifically up-regulated in transgenic CD4(+)CD8(+) thymocytes but not in other T cell populations. These results demonstrate that the cell cycle and apoptotic machineries are normally linked, and expression of cell cycle proteins in developing T cells contributes to their inherent 1sensitivity to apoptosis.
Collapse
Affiliation(s)
- Ling Xue
- Cancer Research Laboratory and Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
von Boehmer H. Central tolerance: Essential for preventing autoimmune disease? Eur J Immunol 2009; 39:2313-6. [DOI: 10.1002/eji.200939575] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Morris GP, Allen PM. Cutting edge: Highly alloreactive dual TCR T cells play a dominant role in graft-versus-host disease. THE JOURNAL OF IMMUNOLOGY 2009; 182:6639-43. [PMID: 19454656 DOI: 10.4049/jimmunol.0900638] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alloreactivity is the response of T cells to MHC molecules not encountered during thymic development. A small population (1-8%) of peripheral T cells in mice and humans express two TCRs due to incomplete allelic exclusion of TCRalpha, and we hypothesized they are highly alloreactive. FACS analysis of mouse T cell MLR revealed increased dual TCR T cells among alloreactive cells. Quantitative assessment of the alloreactive repertoire demonstrated a nearly 50% reduction in alloreactive T cell frequency among T cells incapable of expressing a secondary TCR. We directly demonstrated expansion of the alloreactive T cell repertoire at the single cell level by identifying a dual TCR T cell with distinct alloreactivities for each TCR. The importance of dual TCR T cells is clearly demonstrated in a parent-into-F(1) model of graft-vs-host disease, where dual TCR T cells comprised up to 60% of peripheral activated T cells, demonstrating a disproportionate contribution to disease.
Collapse
Affiliation(s)
- Gerald P Morris
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|