1
|
Brown AJ, White J, Shaw L, Gross J, Slabodkin A, Kushner E, Greiff V, Matsuda J, Gapin L, Scott-Browne J, Kappler J, Marrack P. MHC heterozygosity limits T cell receptor variability in CD4 T cells. Sci Immunol 2024; 9:eado5295. [PMID: 38996008 DOI: 10.1126/sciimmunol.ado5295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
αβ T cell receptor (TCR) V(D)J genes code for billions of TCR combinations. However, only some appear on peripheral T cells in any individual because, to mature, thymocytes must react with low affinity but not high affinity with thymus expressed major histocompatibility (MHC)/peptides. MHC proteins are very polymorphic. Different alleles bind different peptides. Therefore, any individual might express many different MHC alleles to ensure that some peptides from an invader are bound to MHC and activate T cells. However, most individuals express limited numbers of MHC alleles. To explore this, we compared the TCR repertoires of naïve CD4 T cells in mice expressing one or two MHC alleles. Unexpectedly, the TCRs in heterozygotes were less diverse that those in the sum of their MHC homozygous relatives. Our results suggest that thymus negative selection cancels out the advantages of increased thymic positive selection in the MHC heterozygotes.
Collapse
MESH Headings
- Animals
- Mice
- CD4-Positive T-Lymphocytes/immunology
- Heterozygote
- Major Histocompatibility Complex/immunology
- Major Histocompatibility Complex/genetics
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Alexander J Brown
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Janice White
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Laura Shaw
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Jimmy Gross
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Andrei Slabodkin
- Department of Immunology, University of Oslo and Oslo University Hospital, Postboks 4950 Nydalen OUS HF Rikshospitalet, 0424 Oslo, Norway
| | - Ella Kushner
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Postboks 4950 Nydalen OUS HF Rikshospitalet, 0424 Oslo, Norway
| | - Jennifer Matsuda
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - James Scott-Browne
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - John Kappler
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, 1775 Aurora Ct, Aurora, CO 80045, USA
| | - Philippa Marrack
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Nanaware PP, Jurewicz MM, Clement CC, Lu L, Santambrogio L, Stern LJ. Distinguishing Signal From Noise in Immunopeptidome Studies of Limiting-Abundance Biological Samples: Peptides Presented by I-A b in C57BL/6 Mouse Thymus. Front Immunol 2021; 12:658601. [PMID: 33995376 PMCID: PMC8116589 DOI: 10.3389/fimmu.2021.658601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Antigen presentation by MHC-II proteins in the thymus is central to selection of CD4 T cells, but analysis of the full repertoire of presented peptides responsible for positive and negative selection is complicated by the low abundance of antigen presenting cells. A key challenge in analysis of limiting abundance immunopeptidomes by mass spectrometry is distinguishing true MHC-binding peptides from co-eluting non-specifically bound peptides present in the mixture eluted from immunoaffinity-purified MHC molecules. Herein we tested several approaches to minimize the impact of non-specific background peptides, including analyzing eluates from isotype-control antibody-conjugated beads, considering only peptides present in nested sets, and using predicted binding motif analysis to identify core epitopes. We evaluated these methods using well-understood human cell line samples, and then applied them to analysis of the I-Ab presented immunopeptidome of the thymus of C57BL/6 mice, comparing this to the more easily characterized splenic B cell and dendritic cell populations. We identified a total of 3473 unique peptides eluted from the various tissues, using a data dependent acquisition strategy with a false-discovery rate of <1%. The immunopeptidomes presented in thymus as compared to splenic B cells and DCs identified shared and tissue-specific epitopes. A broader length distribution was observed for peptides presented in the thymus as compared to splenic B cells or DCs. Detailed analysis of 61 differentially presented peptides indicated a wider distribution of I-Ab binding affinities in thymus as compared to splenic B cells. These results suggest different constraints on antigen processing and presentation pathways in central versus peripheral tissues.
Collapse
Affiliation(s)
- Padma P. Nanaware
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mollie M. Jurewicz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Cristina C. Clement
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Liying Lu
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
3
|
Abstract
Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.
Collapse
Affiliation(s)
- Peter A Savage
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - David E J Klawon
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Christine H Miller
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
4
|
Stern LJ, Santambrogio L. The melting pot of the MHC II peptidome. Curr Opin Immunol 2016; 40:70-7. [PMID: 27018930 DOI: 10.1016/j.coi.2016.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
Recent advances in mass spectrometry technology have facilitated detailed examination of MHC-II immunopeptidomes, for example the repertoires of peptides bound to MHC-II molecules expressed in antigen presenting cells. These studies have deepened our view of MHC-II presentation. Other studies have broadened our view of pathways leading up to peptide loading. Here we review these recent studies in the context of earlier work on conventional and non-conventional MHC-II processing. The message that emerges is that sources of antigen beyond conventional endosomal processing of endocytosed proteins are important for generation of cellular immune responses to pathogens and maintenance of central and peripheral tolerance. The multiplicity of pathways results in a broad MHC II immunopeptidome that conveys the sampled environment to patrolling T cells.
Collapse
Affiliation(s)
- Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, United States; Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, United States; Graduate Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, NY 10461, United States; Department of Microbiology & Immunology, Albert Einstein College of Medicine, NY 10461, United States
| |
Collapse
|
5
|
Clement CC, Becerra A, Yin L, Zolla V, Huang L, Merlin S, Follenzi A, Shaffer SA, Stern LJ, Santambrogio L. The Dendritic Cell Major Histocompatibility Complex II (MHC II) Peptidome Derives from a Variety of Processing Pathways and Includes Peptides with a Broad Spectrum of HLA-DM Sensitivity. J Biol Chem 2016; 291:5576-5595. [PMID: 26740625 DOI: 10.1074/jbc.m115.655738] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 12/26/2022] Open
Abstract
The repertoire of peptides displayed in vivo by MHC II molecules derives from a wide spectrum of proteins produced by different cell types. Although intracellular endosomal processing in dendritic cells and B cells has been characterized for a few antigens, the overall range of processing pathways responsible for generating the MHC II peptidome are currently unclear. To determine the contribution of non-endosomal processing pathways, we eluted and sequenced over 3000 HLA-DR1-bound peptides presented in vivo by dendritic cells. The processing enzymes were identified by reference to a database of experimentally determined cleavage sites and experimentally validated for four epitopes derived from complement 3, collagen II, thymosin β4, and gelsolin. We determined that self-antigens processed by tissue-specific proteases, including complement, matrix metalloproteases, caspases, and granzymes, and carried by lymph, contribute significantly to the MHC II self-peptidome presented by conventional dendritic cells in vivo. Additionally, the presented peptides exhibited a wide spectrum of binding affinity and HLA-DM susceptibility. The results indicate that the HLA-DR1-restricted self-peptidome presented under physiological conditions derives from a variety of processing pathways. Non-endosomal processing enzymes add to the number of epitopes cleaved by cathepsins, altogether generating a wider peptide repertoire. Taken together with HLA-DM-dependent and-independent loading pathways, this ensures that a broad self-peptidome is presented by dendritic cells. This work brings attention to the role of "self-recognition" as a dynamic interaction between dendritic cells and the metabolic/catabolic activities ongoing in every parenchymal organ as part of tissue growth, remodeling, and physiological apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Simone Merlin
- the School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Antonia Follenzi
- From the Departments of Pathology and; the School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Scott A Shaffer
- Biochemistry and Molecular Pharmacology and; the Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, Massachusetts 01655, and
| | - Lawrence J Stern
- the Departments of Pathology and; Biochemistry and Molecular Pharmacology and
| | - Laura Santambrogio
- From the Departments of Pathology and; Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York 10461,.
| |
Collapse
|
6
|
Sofron A, Ritz D, Neri D, Fugmann T. High-resolution analysis of the murine MHC class II immunopeptidome. Eur J Immunol 2015; 46:319-28. [PMID: 26495903 DOI: 10.1002/eji.201545930] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/09/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023]
Abstract
The reliable identification of peptides bound to major histocompatibility complex (MHC) class II is fundamental for the study of the host immune response against pathogens and the pathogenesis of autoimmune conditions. Here, we describe an improved methodology combining immuno-affinity enrichment of MHC class II complexes, optimized elution conditions and quadrupole Orbitrap mass spectrometry-based characterization of the immunopeptidome. The methodology allowed the identification of over 1000 peptides with 1% false discovery rate from 10(8) murine A20 lymphoma cells. The study revealed the I-A(d) -specific motif in high resolution after multisequence alignment. The methodology was generally applied to the purification of MHC class II from cell lines and murine spleens. We identified 2963 peptides from BALB/c and 2712 from C57BL/6 mouse spleens. The identification of peptides bound to MHC class II in vitro and in vivo will facilitate the characterization of T-cell specificities, as well as the development of biotherapeutics and vaccines.
Collapse
Affiliation(s)
- Adriana Sofron
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
7
|
Rodriguez SN, Jiang M, Bujo H, Allen PM. Self-pMHCII complexes are variably expressed in the thymus and periphery independent of mRNA expression but dependent on the activation state of the APCs. Mol Immunol 2015; 63:428-36. [PMID: 25451972 PMCID: PMC4254551 DOI: 10.1016/j.molimm.2014.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022]
Abstract
Self-peptide MHCII ligands are critical for selection of CD4+ T cells in the thymus, and maintenance in the periphery. To date, no investigation as to the exact thymic and peripheral expression of a naturally occurring positive selecting self-peptide MHCII (self-pMHCII) complex has taken place. We have generated a sensitive T cell hybridoma to functionally detect the endogenous presentation of a confirmed positive selecting self-pMHCII complex for a CD4+ transgenic T cell. Using this tool to survey and quantify the expression selecting of self-pMHCII, we have shown unequivocal proof that a known CD4+ selecting ligand can be presented on both positive and negative selecting thymic APCs. We also show that peripheral presentation of this same selecting ligand is affected by the activation state of the APCs. Furthermore, discrepancies between the gene expression and self-pMHCII complex presentation of this bona fide selecting ligand suggest that functional detection self-ligand complexes will be required to establish a complete view of the naturally presented endogenous self-pMHC landscape.
Collapse
Affiliation(s)
- Stephanie N Rodriguez
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura, Japan
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura, Japan
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
8
|
Crites TJ, Padhan K, Muller J, Krogsgaard M, Gudla PR, Lockett SJ, Varma R. TCR Microclusters pre-exist and contain molecules necessary for TCR signal transduction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:56-67. [PMID: 24860189 PMCID: PMC4096552 DOI: 10.4049/jimmunol.1400315] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TCR-dependent signaling events have been observed to occur in TCR microclusters. We found that some TCR microclusters are present in unstimulated murine T cells, indicating that the mechanisms leading to microcluster formation do not require ligand binding. These pre-existing microclusters increase in absolute number following engagement by low-potency ligands. This increase is accompanied by an increase in cell spreading, with the result that the density of TCR microclusters on the surface of the T cell is not a strong function of ligand potency. In characterizing their composition, we observed a constant number of TCRs in a microcluster, constitutive exclusion of the phosphatase CD45, and preassociation with the signaling adapters linker for activation of T cells and growth factor receptor-bound protein 2. The existence of TCR microclusters prior to ligand binding in a state that is conducive for the initiation of downstream signaling could explain, in part, the rapid kinetics with which TCR signal transduction occurs.
Collapse
Affiliation(s)
- Travis J Crites
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kartika Padhan
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - James Muller
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016; Department of Pathology, New York University School of Medicine, New York, NY 10026
| | - Michelle Krogsgaard
- Department of Pathology, New York University School of Medicine, New York, NY 10026; New York University Cancer Institute, New York University School of Medicine, New York, NY 10026; and
| | - Prabhakar R Gudla
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Fort Detrick, Frederick, MD 21702
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Fort Detrick, Frederick, MD 21702
| | - Rajat Varma
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
9
|
Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 2014; 14:377-91. [PMID: 24830344 PMCID: PMC4757912 DOI: 10.1038/nri3667] [Citation(s) in RCA: 944] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fate of developing T cells is specified by the interaction of their antigen receptors with self-peptide-MHC complexes that are displayed by thymic antigen-presenting cells (APCs). Various subsets of thymic APCs are strategically positioned in particular thymic microenvironments and they coordinate the selection of a functional and self-tolerant T cell repertoire. In this Review, we discuss the different strategies that these APCs use to sample and process self antigens and to thereby generate partly unique, 'idiosyncratic' peptide-MHC ligandomes. We discuss how the particular composition of the peptide-MHC ligandomes that are presented by specific APC subsets not only shapes the T cell repertoire in the thymus but may also indelibly imprint the behaviour of mature T cells in the periphery.
Collapse
Affiliation(s)
- Ludger Klein
- Institute for Immunology, Ludwig Maximilians University, 80336 Munich, Germany
| | - Bruno Kyewski
- Division of Developmental Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55414, USA
| |
Collapse
|
10
|
Newell EW, Davis MM. Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat Biotechnol 2014; 32:149-57. [PMID: 24441473 PMCID: PMC4001742 DOI: 10.1038/nbt.2783] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/04/2013] [Indexed: 01/02/2023]
Abstract
Adaptive immune responses often begin with the formation of a molecular complex between a T-cell receptor (TCR) and a peptide antigen bound to a major histocompatibility complex (MHC) molecule. These complexes are highly variable, however, due to the polymorphism of MHC genes, the random, inexact recombination of TCR gene segments, and the vast array of possible self and pathogen peptide antigens. As a result, it has been very difficult to comprehensively study the TCR repertoire or identify and track more than a few antigen-specific T cells in mice or humans. For mouse studies, this had led to a reliance on model antigens and TCR transgenes. The study of limited human clinical samples, in contrast, requires techniques that can simultaneously survey TCR phenotype and function, and TCR reactivity to many T-cell epitopes. Thanks to recent advances in single-cell and cytometry methodologies, as well as high-throughput sequencing of the TCR repertoire, we now have or will soon have the tools needed to comprehensively analyze T-cell responses in health and disease.
Collapse
Affiliation(s)
- Evan W. Newell
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore 138648
| | - Mark M. Davis
- Department of Microbiology and Immunology
- Institute for Immunity, Transplantation and Infection
- The Howard Hughes Medical Institute, Stanford, CA 94305
| |
Collapse
|
11
|
Exploring the MHC-peptide matrix of central tolerance in the human thymus. Nat Commun 2013; 4:2039. [PMID: 23783831 DOI: 10.1038/ncomms3039] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/21/2013] [Indexed: 01/22/2023] Open
Abstract
Ever since it was discovered that central tolerance to self is imposed on developing T cells in the thymus through their interaction with self-peptide major histocompatibility complexes on thymic antigen-presenting cells, immunologists have speculated about the nature of these peptides, particularly in humans. Here, to shed light on the so-far unknown human thymic peptide repertoire, we analyse peptides eluted from isolated thymic dendritic cells, dendritic cell-depleted antigen-presenting cells and whole thymus. Bioinformatic analysis of the 842 identified natural major histocompatibility complex I and II ligands reveals significant cross-talk between major histocompatibility complex-class I and II pathways and differences in source protein representation between individuals as well as different antigen-presenting cells. Furthermore, several autoimmune- and tumour-related peptides, from enolase and vimentin for example, are presented in the healthy thymus. 302 peptides are directly derived from negatively selecting dendritic cells, thus providing the first global view of the peptide matrix in the human thymus that imposes self-tolerance in vivo.
Collapse
|
12
|
Collado JA, Guitart C, Ciudad MT, Alvarez I, Jaraquemada D. The Repertoires of Peptides Presented by MHC-II in the Thymus and in Peripheral Tissue: A Clue for Autoimmunity? Front Immunol 2013; 4:442. [PMID: 24381570 PMCID: PMC3865459 DOI: 10.3389/fimmu.2013.00442] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/26/2013] [Indexed: 11/13/2022] Open
Abstract
T-cell tolerance to self-antigens is established in the thymus through the recognition by developing thymocytes of self-peptide-MHC complexes and induced and maintained in the periphery. Efficient negative selection of auto-reactive T cells in the thymus is dependent on the in situ expression of both ubiquitous and tissue-restricted self-antigens and on the presentation of derived peptides. Weak or inadequate intrathymic expression of self-antigens increases the risk to generate an autoimmune-prone T-cell repertoire. Indeed, even small changes of self-antigen expression in the thymus affect negative selection and increase the predisposition to autoimmunity. Together with other mechanisms, tolerance is maintained in the peripheral lymphoid organs via the recognition by mature T cells of a similar set of self-peptides in homeostatic conditions. However, non-lymphoid peripheral tissue, where organ-specific autoimmunity takes place, often have differential functional processes that may lead to the generation of epitopes that are absent or non-presented in the thymus. These putative differences between peptides presented by MHC molecules in the thymus and in peripheral tissues might be a major key to the initiation and maintenance of autoimmune conditions.
Collapse
Affiliation(s)
- Javier A Collado
- Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Carolina Guitart
- Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - M Teresa Ciudad
- Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Iñaki Alvarez
- Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Dolores Jaraquemada
- Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| |
Collapse
|
13
|
Newell EW. Higher throughput methods of identifying T cell epitopes for studying outcomes of altered antigen processing and presentation. Front Immunol 2013; 4:430. [PMID: 24367368 PMCID: PMC3851853 DOI: 10.3389/fimmu.2013.00430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/21/2013] [Indexed: 01/09/2023] Open
Abstract
Variation in the mechanisms that mediate antigen processing, MHC-loading, and presentation of peptides allows cells to significantly modulate the repertoire of peptides presented by both MHC class I or class II. To more quickly determine how these different modes or modulations of presentation translate into altered immune responses, higher throughput methods for identifying T cell epitopes are needed. Proteomics-based comprehensive cataloging of peptides eluted from MHC is a challenging but ideal way of identifying peptide sequences influenced by variable modes of processing and presentation. Several groups have already been successful with this approach and ongoing technical improvements will broaden its applicability. Subsequently, high content combinatorial peptide-MHC tetramer staining using mass cytometry, as we have recently described, should enable the broad assessment of how these changes are perceived by T cells and translated into an altered immune response. The importance of this analysis is highlighted by evidence that physiologically relevant variation in antigen processing and presentation as well as other factors can give rise to unpredictably different T cell responses.
Collapse
Affiliation(s)
- Evan W Newell
- Singapore Immunology Network, Agency for Science Technology and Research , Singapore
| |
Collapse
|
14
|
Espinosa G, Collado JA, Scholz E, Mestre-Ferrer A, Kuse N, Takiguchi M, Carrascal M, Canals F, Pujol-Borrell R, Jaraquemada D, Alvarez I. Peptides presented by HLA class I molecules in the human thymus. J Proteomics 2013; 94:23-36. [PMID: 24029068 DOI: 10.1016/j.jprot.2013.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 12/31/2022]
Abstract
UNLABELLED The thymus is the organ in which T lymphocytes mature. Thymocytes undergo exhaustive selection processes that require interactions between the TCRs and peptide-HLA complexes on thymus antigen-presenting cells. The thymic peptide repertoire associated with HLA molecules must mirror the peptidome that mature T cells will encounter at the periphery, including peptides that arise from tissue-restricted antigens. The transcriptome of specific thymus cell populations has been widely studied, but there are no data on the HLA-I peptidome of the human thymus. Here, we describe the HLA-I-bound peptide repertoire from thymus samples, showing that it is mostly composed of high-affinity ligands from cytosolic and nuclear proteins. Several proteins generated more than one peptide, and some redundant peptides were found in different samples, suggesting the existence of antigen immunodominance during the processes that lead to central tolerance. Three HLA-I ligands were found to be derived from proteins expressed by stromal cells, including one from the protein TBATA (or SPATIAL), which is present in the thymus, brain and testis. The expression of TBATA in medullary thymic epithelial cells has been reported to be AIRE dependent. Thus, this report describes the first identification of a thymus HLA-I natural ligand derived from an AIRE-dependent protein with restricted tissue expression. BIOLOGICAL SIGNIFICANCE We present the first description of the HLA-I-bound peptide repertoire from ex vivo thymus samples. This repertoire is composed of standard ligands from cytosolic and nuclear proteins. Some peptides seem to be dominantly presented to thymocytes in the thymus. Most importantly, some HLA-I associated ligands derived from proteins expressed by stromal cells, including one peptide, restricted by HLA-A*31:01, arising from an AIRE-dependent protein with restricted tissue expression.
Collapse
Affiliation(s)
- Gabriel Espinosa
- Immunology Unit, Department of Cell Biology, Physiology and Immunology and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
van Eden W, van Herwijnen M, Wagenaar J, van Kooten P, Broere F, van der Zee R. Stress proteins are used by the immune system for cognate interactions with anti-inflammatory regulatory T cells. FEBS Lett 2013; 587:1951-8. [PMID: 23707418 DOI: 10.1016/j.febslet.2013.05.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 01/21/2023]
Abstract
Since the initial discovery of the protective role of heat shock protein (HSP) 60 in arthritis, T cell recognition of endogenous HSP was found to be one of the possible underlying mechanisms. Recently we have uncovered potent disease-suppressive Tregs (anti-inflammatory immunosuppressive T cells) recognizing HSP70 self-antigens, and enabling selective targeting of such Tregs to inflamed tissues. HSP70 is a major contributor to the major histocompatibility complex (MHC) Class II ligandome and we have shown that a conserved HSP70-epitope (B29) is abundantly present in murine MHC Class II. Upon transfer, B29-induced CD4+CD25+Foxp3+T cells suppressed established proteoglycan-induced arthritis (PGIA) in mice. These self-antigen specific Tregs were activated in vivo and as little as 4.000 cells sufficed to fully inhibit arthritis. Furthermore, in vivo depletion of transferred Tregs abrogated disease suppression. Given that B29 can be presented by most human MHC class II molecules and that B29 inhibited arthritis in HLA-DQ8 (human MHC) transgenic mice, we feel that therapeutic vaccination with selected HSP peptides can be an effective route for induction of anti-inflammatory Tregs as a novel intervention in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Willem van Eden
- Division of Immunology, Dept. Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Spencer CT, Dragovic SM, Conant SB, Gray JJ, Zheng M, Samir P, Niu X, Moutaftsi M, Van Kaer L, Sette A, Link AJ, Joyce S. Sculpting MHC class II-restricted self and non-self peptidome by the class I Ag-processing machinery and its impact on Th-cell responses. Eur J Immunol 2013; 43:1162-72. [PMID: 23386199 DOI: 10.1002/eji.201243087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/02/2013] [Accepted: 01/30/2013] [Indexed: 01/14/2023]
Abstract
It is generally assumed that the MHC class I antigen (Ag)-processing (CAP) machinery - which supplies peptides for presentation by class I molecules - plays no role in class II-restricted presentation of cytoplasmic Ags. In striking contrast to this assumption, we previously reported that proteasome inhibition, TAP deficiency or ERAAP deficiency led to dramatically altered T helper (Th)-cell responses to allograft (HY) and microbial (Listeria monocytogenes) Ags. Herein, we tested whether altered Ag processing and presentation, altered CD4(+) T-cell repertoire, or both underlay the above finding. We found that TAP deficiency and ERAAP deficiency dramatically altered the quality of class II-associated self peptides suggesting that the CAP machinery impacts class II-restricted Ag processing and presentation. Consistent with altered self peptidomes, the CD4(+) T-cell receptor repertoire of mice deficient in the CAP machinery substantially differed from that of WT animals resulting in altered CD4(+) T-cell Ag recognition patterns. These data suggest that TAP and ERAAP sculpt the class II-restricted peptidome, impacting the CD4(+) T-cell repertoire, and ultimately altering Th-cell responses. Together with our previous findings, these data suggest multiple CAP machinery components sequester or degrade MHC class II-restricted epitopes that would otherwise be capable of eliciting functional Th-cell responses.
Collapse
Affiliation(s)
- Charles T Spencer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Human CD4(+) effector T lymphocytes generated upon TCR engagement with self-peptides respond defectively to IL-7 in their transition to memory cells. Cell Mol Immunol 2013; 10:261-74. [PMID: 23454917 DOI: 10.1038/cmi.2012.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The peripheral repertoire of CD4(+) T lymphocytes contains autoreactive cells that remain tolerant through several mechanisms. However, nonspecific CD4(+) T cells can be activated in physiological conditions as in the course of an ongoing immune response, and their outcome is not yet fully understood. Here, we investigate the fate of human naive CD4(+) lymphocytes activated by dendritic cells (DCs) presenting endogenous self-peptides in comparison with lymphocytes involved in alloresponses. We generated memory cells (Tmem) from primary effectors activated with mature autologous DCs plus interleukin (IL)-2 (Tmauto), simulating the circumstances of an active immune response, or allogeneic DCs (Tmallo). Tmem were generated from effector cells that were rested in the absence of antigenic stimuli, with or without IL-7. Tmem were less activated than effectors (demonstrated by CD25 downregulation) particularly with IL-7, suggesting that this cytokine may favour the transition to quiescence. Tmauto and Tmallo showed an effector memory phenotype, and responded similarly to polyclonal and antigen-specific stimuli. Biochemically, IL-7-treated Tmallo were closely related to conventional memory lymphocytes based on Erk-1/2 activation, whereas Tmauto were more similar to effectors. Autologous effectors exhibited lower responses to IL-7 than allogeneic cells, which were reflected in their reduced proliferation and higher cell death. This was not related to IL-7 receptor expression but rather to signalling deficiencies, according to STAT5 activation These results suggest that ineffective responses to IL-7 could impair the transition to memory cells of naive CD4(+) T lymphocytes recognizing self-peptides in the setting of strong costimulation.
Collapse
|
18
|
Self-peptides in TCR repertoire selection and peripheral T cell function. Curr Top Microbiol Immunol 2013; 373:49-67. [PMID: 23612987 DOI: 10.1007/82_2013_319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The vertebrate antigen receptors are anticipatory in their antigen recognition and display a vast diversity. Antigen receptors are assembled through V(D)J recombination, in which one of each Variable, (Diverse), and Joining gene segment are randomly utilized and recombined. Both gene rearrangement and mutational insertion are generated through randomness; therefore, the process of antigen receptors generation requires a rigorous testing system to select every receptor which is useful to recognize foreign antigens, but which would cause no harm to self cells. In the case of T cell receptors (TCR), such a quality control responsibility rests in thymic positive and negative selection. In this review, we focus on the critical involvement of self-peptides in the generation of a T cell repertoire, discuss the role of T cell thymic development in shaping the specificity of TCR repertoire, and directing function fitness of mature T cells in periphery. Here, we consider thymic positive selection to be not merely a one-time maturing experience for an individual T cell, but a life-long imprinting which influences the function of each individual T cell in periphery.
Collapse
|
19
|
Abstract
Understanding the thymic processes that support the generation of functionally competent and self-tolerant lymphocytes requires dissection of the T-cell receptor (TCR) response to ligands of different affinities. In spatially segregated regions of the thymus, with unique expression of proteases and cytokines, TCR affinity guides a number of cell fate decisions. Yet affinity alone does not explain the selection paradox. Increasing evidence suggests that the 'altered peptide' model of the 1980s together with the affinity model might best explain how the thymus supports conventional and regulatory T-cell development. Development of new tools to study the strength of TCR signals perceived by T cells, novel regulatory T-cell transgenic mice, and tetramer enrichment strategies have provided an insight into the nature of TCR signals perceived during thymocyte development. These topics are discussed and support for the prevailing hypotheses is presented.
Collapse
Affiliation(s)
- Amy E Moran
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA
| | | |
Collapse
|
20
|
Abstract
Autophagy is a specialized cellular pathway involved in maintaining homeostasis by degrading long-lived cellular proteins and organelles. Recent studies have demonstrated that autophagy is utilized by immune systems to protect host cells from invading pathogens and regulate uncontrolled immune responses. During pathogen recognition, induction of autophagy by pattern recognition receptors leads to the promotion or inhibition of consequent signaling pathways. Furthermore, autophagy plays a role in the delivery of pathogen signatures in order to promote the recognition thereof by pattern recognition receptors. In addition to innate recognition, autophagy has been shown to facilitate MHC class II presentation of intracellular antigens to activate CD4 T cells. In this review, we describe the roles of autophagy in innate recognition of pathogens and adaptive immunity, such as antigen presentation, as well as the clinical relevance of autophagy in the treatment of human diseases.
Collapse
Affiliation(s)
- Ji Eun Oh
- Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Heung Kyu Lee
- Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
21
|
Costantino CM, Spooner E, Ploegh HL, Hafler DA. Class II MHC self-antigen presentation in human B and T lymphocytes. PLoS One 2012; 7:e29805. [PMID: 22299025 PMCID: PMC3267721 DOI: 10.1371/journal.pone.0029805] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
Human CD4+ T cells process and present functional class II MHC-peptide complexes, but the endogenous peptide repertoire of these non-classical antigen presenting cells remains unknown. We eluted and sequenced HLA-DR-bound self-peptides presented by CD4+ T cells in order to compare the T cell-derived peptide repertoire to sequences derived from genetically identical B cells. We identified several novel epitopes derived from the T cell-specific proteome, including fragments of CD4 and IL-2. While these data confirm that T cells can present peptides derived from the T-cell specific proteome, the vast majority of peptides sequenced after elution from MHC were derived from the common proteome. From this pool, we identified several identical peptide epitopes in the T and B cell repertoire derived from common endogenous proteins as well as novel endogenous epitopes with promiscuous binding. These findings indicate that the endogenous HLA-DR-bound peptide repertoire, regardless of APC type and across MHC isotype, is largely derived from the same pool of self-protein.
Collapse
Affiliation(s)
| | - Eric Spooner
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Hidde L. Ploegh
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - David A. Hafler
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, United States of America
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
22
|
Caron E, Vincent K, Fortier MH, Laverdure JP, Bramoullé A, Hardy MP, Voisin G, Roux PP, Lemieux S, Thibault P, Perreault C. The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation. Mol Syst Biol 2011; 7:533. [PMID: 21952136 PMCID: PMC3202804 DOI: 10.1038/msb.2011.68] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/23/2011] [Indexed: 01/13/2023] Open
Abstract
Self/non-self discrimination is a fundamental requirement of life. Endogenous peptides presented by major histocompatibility complex class I (MHC I) molecules represent the essence of self for CD8 T lymphocytes. These MHC I peptides (MIPs) are collectively referred to as the immunopeptidome. From a systems-level perspective, very little is known about the origin, composition and plasticity of the immunopeptidome. Here, we show that the immunopeptidome, and therefore the nature of the immune self, is plastic and moulded by cellular metabolic activity. By using a quantitative high-throughput mass spectrometry-based approach, we found that altering cellular metabolism via the inhibition of the mammalian target of rapamycin results in dynamic changes in the cell surface MIPs landscape. Moreover, we provide systems-level evidence that the immunopeptidome projects at the cell surface a representation of biochemical networks and metabolic events regulated at multiple levels inside the cell. Our findings open up new perspectives in systems immunology and predictive biology. Indeed, predicting variations in the immunopeptidome in response to cell-intrinsic and -extrinsic factors could be relevant to the rational design of immunotherapeutic interventions.
Collapse
Affiliation(s)
- Etienne Caron
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Münz C. Antigen processing by macroautophagy for MHC presentation. Front Immunol 2011; 2:42. [PMID: 22566832 PMCID: PMC3342048 DOI: 10.3389/fimmu.2011.00042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/22/2011] [Indexed: 12/16/2022] Open
Abstract
T cells recognize antigen fragments, presented to them by MHC molecules. It lies in the interest of the immune system to display a maximal diversity of these peptides and utilize all catabolic processes to generate them. Macroautophagy, a pathway that delivers cytoplasmic constituents for lysosomal degradation is no exception. In recent years, it has become apparent that macroautophagy assists in intra- and extracellular antigen processing for MHC class II presentation to CD4+ helper T cells. Surprisingly, however, macroautophagy also assists in antigen packaging for better cross-presentation on MHC molecules of bystander cells, which could be consistent with its role in unconventional protein secretion. These three pathways of antigen processing for MHC presentation via macroautophagy will be discussed in this review and cell biological aspects will be high-lighted that might explain, how the molecular machinery of macroautophagy might assist these diverse antigen processing pathways.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich Zürich, Switzerland.
| |
Collapse
|
24
|
Abstract
Autophagy delivers cytoplasmic constituents for lysosomal degradation. This catabolic pathway can be used to deliver intracellular antigens for major histocompatibility complex (MHC) class II presentation. In addition, recent evidence suggests that it also facilitates the processing of extracellular antigens for both MHC class I and II presentation.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University Hospital ZürichWinterthurerstrasse 190, CH-8057 ZürichSwitzerland
| |
Collapse
|
25
|
Münz C. Antigen processing via autophagy--not only for MHC class II presentation anymore? Curr Opin Immunol 2010; 22:89-93. [PMID: 20149615 PMCID: PMC3082731 DOI: 10.1016/j.coi.2010.01.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/25/2010] [Accepted: 01/25/2010] [Indexed: 12/23/2022]
Abstract
T cells monitor intracellular and extracellular protein composition via proteolytic products that are displayed to them on major histocompatibility complex (MHC) molecules. For this purpose it has been documented that MHC class II molecules, which were originally thought to just display lysosomal products of endocytosed proteins to CD4(+) helper T cells, can also present intracellular substrates of autophagic pathways. This has triggered the interest of immunologists into the role of autophagy in antigen processing in general, and recently additional autophagic mechanisms for intracellular and extracellular antigen processing onto MHC class I molecules for presentation to CD8(+) cytolytic T cells have been revealed. Here, I will review the contribution of autophagy for MHC class I and class II antigen processing and presentation to T cells.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University Hospital of Zürich, Switzerland.
| |
Collapse
|
26
|
Ebert PJR, Li QJ, Huppa JB, Davis MM. Functional development of the T cell receptor for antigen. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:65-100. [PMID: 20800817 PMCID: PMC4887107 DOI: 10.1016/s1877-1173(10)92004-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
For over three decades now, the T cell receptor (TCR) for antigen has not ceased to challenge the imaginations of cellular and molecular immunologists alike. T cell antigen recognition transcends every aspect of adaptive immunity: it shapes the T cell repertoire in the thymus and directs T cell-mediated effector functions in the periphery, where it is also central to the induction of peripheral tolerance. Yet, despite its central position, there remain many questions unresolved: how can one TCR be specific for one particular peptide-major histocompatibility complex (pMHC) ligand while also binding other pMHC ligands with an immunologically relevant affinity? And how can a T cell's extreme specificity (alterations of single methyl groups in their ligand can abrogate a response) and sensitivity (single agonist ligands on a cell surface are sufficient to trigger a measurable response) emerge from TCR-ligand interactions that are so low in affinity? Solving these questions is intimately tied to a fundamental understanding of molecular recognition dynamics within the many different contexts of various T cell-antigen presenting cell (APC) contacts: from the thymic APCs that shape the TCR repertoire and guide functional differentiation of developing T cells to the peripheral APCs that support homeostasis and provoke antigen responses in naïve, effector, memory, and regulatory T cells. Here, we discuss our recent findings relating to T cell antigen recognition and how this leads to the thymic development of foreign-antigen-responsive alphabetaT cells.
Collapse
Affiliation(s)
- Peter J R Ebert
- The Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | |
Collapse
|
27
|
Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 2009; 9:833-44. [DOI: 10.1038/nri2669] [Citation(s) in RCA: 373] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Ebert PJR, Jiang S, Xie J, Li QJ, Davis MM. An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. Nat Immunol 2009; 10:1162-9. [PMID: 19801983 PMCID: PMC3762483 DOI: 10.1038/ni.1797] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/01/2009] [Indexed: 11/09/2022]
Abstract
Thymic positive selection is based on the interactions of T cell antigen receptors (TCRs) with self peptide-major histocompatibility complex (MHC) ligands, but the identity of selecting peptides for MHC class II-restricted TCRs and the functional consequences of this peptide specificity are not clear. Here we identify several endogenous self peptides that positively selected the MHC class II-restricted 5C.C7 TCR. The most potent of these also enhanced mature T cell activation, which supports the hypothesis that one function of positive selection is to produce T cells that can use particular self peptide-MHC complexes for activation and/or homeostasis. We also show that inhibiting the microRNA miR-181a resulted in maturation of T cells that overtly reacted toward these erstwhile positively selecting peptides. Therefore, miR-181a helps to guarantee the clonal deletion of particular moderate-affinity clones by modulating the TCR signaling threshold of thymocytes.
Collapse
Affiliation(s)
- Peter J R Ebert
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
29
|
Ebert PJ, Richie Ehrlich LI, Davis MM. Low ligand requirement for deletion and lack of synapses in positive selection enforce the gauntlet of thymic T cell maturation. Immunity 2008; 29:734-45. [PMID: 18993085 PMCID: PMC3762485 DOI: 10.1016/j.immuni.2008.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 07/18/2008] [Accepted: 09/09/2008] [Indexed: 11/16/2022]
Abstract
Immature double-positive (CD4(+)CD8(+)) thymocytes respond to negatively selecting peptide-MHC ligands by forming an immune synapse that sustains contact with the antigen-presenting cell (APC). Using fluorescently labeled peptides, we showed that as few as two agonist ligands could promote APC contact and subsequent apoptosis in reactive thymocytes. Furthermore, we showed that productive signaling for positive selection, as gauged by nuclear translocation of a green fluorescent protein (GFP)-labeled NFATc construct, did not involve formation of a synapse between thymocytes and selecting epithelial cells in reaggregate thymus cultures. Antibody blockade of endogenous positively selecting ligands prevented NFAT nuclear accumulation in such cultures and reversed NFAT accumulation in previously stimulated thymocytes. Together, these data suggest a "gauntlet" model in which thymocytes mature by continually acquiring and reacquiring positively selecting signals without sustained contact with epithelial cells, thereby allowing them to sample many cell surfaces for potentially negatively selecting ligands.
Collapse
Affiliation(s)
- Peter J.R. Ebert
- Howard Hughes Medical Institute and The Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren I. Richie Ehrlich
- Howard Hughes Medical Institute and The Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark M. Davis
- Howard Hughes Medical Institute and The Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Chidgey AR, Boyd RL. Thymic stromal cells and positive selection. APMIS 2008. [DOI: 10.1111/j.1600-0463.2001.907801.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Ma Z, Sharp KA, Janmey PA, Finkel TH. Surface-anchored monomeric agonist pMHCs alone trigger TCR with high sensitivity. PLoS Biol 2008; 6:e43. [PMID: 18303949 PMCID: PMC2253636 DOI: 10.1371/journal.pbio.0060043] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 01/08/2008] [Indexed: 12/03/2022] Open
Abstract
At the interface between T cell and antigen-presenting cell (APC), peptide antigen presented by MHC (pMHC) binds to the T cell receptor (TCR) and initiates signaling. The mechanism of TCR signal initiation, or triggering, remains unclear. An interesting aspect of this puzzle is that although soluble agonist pMHCs cannot trigger TCR even at high concentrations, the same ligands trigger TCR very efficiently on the surface of APCs. Here, using lipid bilayers or plastic-based artificial APCs with defined components, we identify the critical APC-associated factors that confer agonist pMHCs with such potency. We found that CD4+ T cells are triggered by very low numbers of monomeric agonist pMHCs anchored on fluid lipid bilayers or fixed plastic surfaces, in the absence of any other APC surface molecules. Importantly, on bilayers, plastic surfaces, or real APCs, endogenous pMHCs did not enhance TCR triggering. TCR triggering, however, critically depended upon the adhesiveness of the surface and an intact T cell actin cytoskeleton. Based on these observations, we propose the receptor deformation model of TCR triggering to explain the remarkable sensitivity and specificity of TCR triggering.
Collapse
Affiliation(s)
- Zhengyu Ma
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kim A Sharp
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Terri H Finkel
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
32
|
Krogsgaard M, Juang J, Davis MM. A role for "self" in T-cell activation. Semin Immunol 2007; 19:236-44. [PMID: 17548210 PMCID: PMC2731063 DOI: 10.1016/j.smim.2007.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 11/24/2022]
Abstract
The mechanisms by which alphabeta T-cells are selected in the thymus and then recognize peptide MHC (pMHC) complexes in the periphery remain an enigma. Recent work particularly with respect to quantification of T-cell sensitivity and the role of self-ligands in T-cell activation has provided some important clues to the details of how TCR signaling might be initiated. Here, we highlight recent experimental data that provides insights into the initiation of T-cell activation and also discuss the main controversies and uncertainties in this area.
Collapse
Affiliation(s)
- Michelle Krogsgaard
- Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
33
|
Abstract
In light of recent data showing that both helper and cytotoxic T cells can detect even a single molecule of an agonist peptide-MHC, alphabeta T cells are clearly a type of sensory cell, comparable to any in the nervous system. In addition, endogenous (self) peptides bound to MHCs are not just important for thymic selection, but also play an integral role in T cell activation in the response to foreign antigens. With the multitude of specificities available to most T cells, they can thus be considered as a sensory organ, trained on self-peptide-MHCs and primed to detect nonself.
Collapse
Affiliation(s)
- Mark M Davis
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Felix NJ, Donermeyer DL, Horvath S, Walters JJ, Gross ML, Suri A, Allen PM. Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes. Nat Immunol 2007; 8:388-97. [PMID: 17322886 DOI: 10.1038/ni1446] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/31/2007] [Indexed: 01/07/2023]
Abstract
The molecular basis underlying the specificity of alloreactive T cells for peptide-major histocompatibility complex ligands has been elusive. Here we describe a screen of 60 I-E(k)-alloreactive T cells and 83 naturally processed peptides that identified 9 reactive T cells. Three of the T cells responded to multiple, distinct peptides that shared no sequence homology. These T cells recognized each peptide-major histocompatibility complex ligand specifically and used a distinct constellation of I-E(k) contact residues for each interaction. Our studies show that alloreactive T cells have a 'germline-encoded' capacity to recognize multiple, distinct ligands and thus show 'polyspecificity', not degeneracy. Our findings help to explain the high frequency of alloreactive T cells and provide insight into the nature of T cell specificity.
Collapse
Affiliation(s)
- Nathan J Felix
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63130, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Hattotuwagama CK, Toseland CP, Guan P, Taylor DJ, Hemsley SL, Doytchinova IA, Flower DR. Toward prediction of class II mouse major histocompatibility complex peptide binding affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique. J Chem Inf Model 2006; 46:1491-502. [PMID: 16711768 DOI: 10.1021/ci050380d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The accurate identification of T-cell epitopes remains a principal goal of bioinformatics within immunology. As the immunogenicity of peptide epitopes is dependent on their binding to major histocompatibility complex (MHC) molecules, the prediction of binding affinity is a prerequisite to the reliable prediction of epitopes. The iterative self-consistent (ISC) partial-least-squares (PLS)-based additive method is a recently developed bioinformatic approach for predicting class II peptide-MHC binding affinity. The ISC-PLS method overcomes many of the conceptual difficulties inherent in the prediction of class II peptide-MHC affinity, such as the binding of a mixed population of peptide lengths due to the open-ended class II binding site. The method has applications in both the accurate prediction of class II epitopes and the manipulation of affinity for heteroclitic and competitor peptides. The method is applied here to six class II mouse alleles (I-Ab, I-Ad, I-Ak, I-As, I-Ed, and I-Ek) and included peptides up to 25 amino acids in length. A series of regression equations highlighting the quantitative contributions of individual amino acids at each peptide position was established. The initial model for each allele exhibited only moderate predictivity. Once the set of selected peptide subsequences had converged, the final models exhibited a satisfactory predictive power. Convergence was reached between the 4th and 17th iterations, and the leave-one-out cross-validation statistical terms--q2, SEP, and NC--ranged between 0.732 and 0.925, 0.418 and 0.816, and 1 and 6, respectively. The non-cross-validated statistical terms r2 and SEE ranged between 0.98 and 0.995 and 0.089 and 0.180, respectively. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made freely available online (http://www.jenner.ac.uk/MHCPred).
Collapse
|
36
|
Felix NJ, Suri A, Walters JJ, Horvath S, Gross ML, Allen PM. I-Ep-Bound Self-Peptides: Identification, Characterization, and Role in Alloreactivity. THE JOURNAL OF IMMUNOLOGY 2006; 176:1062-71. [PMID: 16393994 DOI: 10.4049/jimmunol.176.2.1062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
T cell recognition of peptide/allogeneic MHC complexes is a major cause of transplant rejection. Both the presented self-peptides and the MHC molecules are involved; however, the molecular basis for alloreactivity and the contribution of self-peptides are still poorly defined. The murine 2.102 T cell is specific for hemoglobin(64-76)/I-Ek and is alloreactive to I-Ep. The natural self-peptide/I-Ep complex recognized by 2.102 remains unknown. In this study, we characterized the peptides that are naturally processed and presented by I-Ep and used this information to define the binding motif for the murine I-Ep class II molecule. Interestingly, we found that the P9 anchor residue preferred by I-Ep is quite distinct from the residues preferred by other I-E molecules, although the P1 anchor residue is conserved. A degree of specificity for the alloresponse was shown by the lack of stimulation of 2.102 T cells by 19 different identified self-peptides. The binding motif was used to search the mouse genome for candidate 2.102 reactive allopeptides that contain strong P1 and P9 anchor residues and possess previously identified allowable TCR contact residues. Two potential allopeptides were identified, but only one of these peptides, G protein-coupled receptor 128, was able to stimulate 2.102 T cells. Thus, the G protein-coupled receptor 128 peptide represents a candidate allopeptide that is specifically recognized by 2.102 T cells bound to I-Ep and was identified using bioinformatics. These studies highlight the specific involvement of self-peptides in alloreactivity.
Collapse
Affiliation(s)
- Nathan J Felix
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
37
|
Nowak I, Pajtasz-Piasecka E, Chmielowski B, Ignatowicz L, Kuśnierczyk P. The specific T-cell response to antigenic peptides is influenced by bystander peptides. Cell Mol Biol Lett 2006; 11:70-9. [PMID: 16847750 PMCID: PMC6275589 DOI: 10.2478/s11658-006-0007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 12/15/2005] [Indexed: 11/20/2022] Open
Abstract
T lymphocytes recognize antigens in the form of peptides presented by major histocompatibility complex (MHC) molecules on the cell surface. Only a small proportion of MHC class I and class II molecules are loaded with foreign antigenic peptides; the vast majority are loaded with thousands of different self peptides. It was suggested that MHC molecules presenting self peptides may serve either to decrease (antagonistic effect) or increase (synergistic effect) the T cell response to a specific antigen. Here, we present our finding that transfected mouse fibroblasts presenting a single antigenic peptide covalently bound to a class II MHC molecule stimulated specific mouse T cell hybridoma cells to an interleukin-2 response less efficiently than fibroblasts presenting a similar amount of antigenic peptide in the presence of class II molecules loaded with heterogenous bystander peptides.
Collapse
Affiliation(s)
- Izabela Nowak
- Laboratory of Immunogenetics, Department of Clinical Immunology, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Elżbieta Pajtasz-Piasecka
- Laboratory of Experimental Antitumor Therapy, Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Bartosz Chmielowski
- Center of Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, Georgia USA
| | - Leszek Ignatowicz
- Center of Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, Georgia USA
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics, Department of Clinical Immunology, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
- Jan Długosz Paedagogical University, Cz77ęstochowa, Poland
| |
Collapse
|
38
|
Abstract
The relative plasticity of peptide binding to class II major histocompatibility complex (MHC) molecules permits formation of multiple conformational isomers by the same peptide and MHC molecule; such conformers are specifically recognized by distinct subsets of T cells. Here, we review current knowledge and recent advances in our understanding of peptide-class II MHC conformational isomerism and the mechanisms that generate distinct MHC-peptide conformers. We focus on our studies of two T-cell subsets, type A and B, which recognize distinct conformers of the dominant epitope of hen egg white lysozyme presented by I-A(k). These conformers form via different pathways and in distinct intracellular vesicles: the type A conformer forms in late endosomes upon processing of native protein, while the more flexible type B conformer forms in early endosomes and at the cell surface. In this process, H2-DM acts as a conformational editor, eliminating the type B conformer in late endosomes. Type B T cells constitute a significant component of the naïve T-cell repertoire; furthermore, self-reactive type B T cells escape negative selection and are present in abundance in the periphery. Ongoing studies should elucidate the role of type B T cells in immunity to pathogens and in autoimmune pathology.
Collapse
Affiliation(s)
- Scott B Lovitch
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
39
|
Krogsgaard M, Li QJ, Sumen C, Huppa JB, Huse M, Davis MM. Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 2005; 434:238-43. [PMID: 15724150 DOI: 10.1038/nature03391] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Accepted: 01/26/2005] [Indexed: 01/09/2023]
Abstract
Alphabeta T lymphocytes are able to detect even a single peptide-major histocompatibility complex (MHC) on the surface of an antigen-presenting cell. This is despite clear evidence, at least with CD4+ T cells, that monomeric ligands are not stimulatory. In an effort to understand how this remarkable sensitivity is achieved, we constructed soluble peptide-MHC heterodimers in which one peptide is an agonist and the other is one of the large number of endogenous peptide-MHCs displayed by presenting cells. We found that some specific combinations of these heterodimers can stimulate specific T cells in a CD4-dependent manner. This activation is severely impaired if the CD4-binding site on the agonist ligand is ablated, but the same mutation on an endogenous ligand has no effect. These data correlate well with analyses of lipid bilayers and cells presenting these ligands, and indicate that the basic unit of helper T cell activation is a heterodimer of agonist peptide- and endogenous peptide-MHC complexes, stabilized by CD4.
Collapse
Affiliation(s)
- Michelle Krogsgaard
- The Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
40
|
Martinez-Soría E, Ibnou-Zekri N, Iwamoto M, Santiago-Raber ML, Kikuchi S, Kosco-Vilbois M, Izui S. Epitope-dependent inhibition of T cell activation by the Ea transgene: an explanation for transgene-mediated protection from murine lupus. THE JOURNAL OF IMMUNOLOGY 2004; 173:2842-8. [PMID: 15295003 DOI: 10.4049/jimmunol.173.4.2842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A high level expression of the Ea(d) transgene encoding the I-E alpha-chain is highly effective in the suppression of lupus autoantibody production in mice. To explore the possible modulation of the Ag-presenting capacity of B cells as a result of the transgene expression, we assessed the ability of the transgenic B cells to activate Ag-specific T cells in vitro. By using four different model Ag-MHC class II combinations, this analysis revealed that a high transgene expression in B cells markedly inhibits the activation of T cells in an epitope-dependent manner, without modulation of the I-E expression. The transgene-mediated suppression of T cell responses is likely to be related to the relative affinity of peptides derived from transgenic I-E alpha-chains (Ealpha peptides) vs antigenic peptides to individual class II molecules. Our results support a model of autoimmunity prevention based on competition for Ag presentation, in which the generation of large amounts of Ealpha peptides with high affinity to I-A molecules decreases the use of I-A for presentation of pathogenic self-peptides by B cells, thereby preventing excessive activation of autoreactive T and B cells.
Collapse
|
41
|
Saito K, Oda M, Sarai A, Azuma T, Kozono H. Bound peptide-dependent thermal stability of major histocompatibility complex class II molecule I-Ek. Biochemistry 2004; 43:10186-91. [PMID: 15287746 DOI: 10.1021/bi049838f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used differential scanning calorimetry to study the thermal denaturation of murine major histocompatibility complex class II, I-E(k), accommodating hemoglobin (Hb) peptide mutants possessing a single amino acid substitution of the chemically conserved amino acids buried in the I-Ek pocket (positions 71 and 73) and exposed to the solvent (position 72). All of the I-Ek-Hb(mut) molecules exhibited greater thermal stability at pH 5.5 than at pH 7.4, as for the I-Ek-Hb(wt) molecule, which can explain the peptide exchange function of MHC II. The thermal stability was strongly dependent on the bound peptide sequences; the I-Ek-Hb(mut) molecules were less stable than the I-Ek-Hb(wt) molecules, in good correlation with the relative affinity of each peptide for I-Ek. This supports the notion that the bound peptide is part of the completely folded MHC II molecule. The thermodynamic parameters for I-Ek-Hb(mut) folding can explain the thermodynamic origin of the stability difference, in correlation with the crystal structural analysis, and the limited contributions of the residues to the overall conformation of the I-Ek-peptide complex. We found a linear relationship between the denaturation temperature and the calorimetric enthalpy change. Thus, although the MHC II-peptide complex could have a diverse thermal stability spectrum, depending on the amino acid sequences of the bound peptides, the conformational perturbations are limited. The variations in the MHC II-peptide complex stability would function in antigen recognition by the T cell receptor by affecting the stability of the MHC II-peptide-T cell receptor ternary complex.
Collapse
Affiliation(s)
- Keigo Saito
- Research Institute for Biological Sciences, Tokyo University of Science, 2669, Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | |
Collapse
|
42
|
Ryan KR, McNeil LK, Dao C, Jensen PE, Evavold BD. Modification of peptide interaction with MHC creates TCR partial agonists. Cell Immunol 2004; 227:70-8. [PMID: 15051516 DOI: 10.1016/j.cellimm.2004.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 01/16/2004] [Indexed: 10/26/2022]
Abstract
We report the creation of TCR partial agonists by the novel approach of manipulating the interaction between immunogenic peptide and MHC. Amino acids at MHC anchor positions of the I-E(k)-restricted hemoglobin (64-76) and moth cytochrome c (88-103) peptides were exchanged with MHC anchor residues from the low affinity class II invariant chain peptide (CLIP), resulting in antigenic peptides with altered affinity for MHC class II. Several low affinity peptides were identified as TCR partial agonists, as defined by the ability to stimulate cytolytic function but not proliferation. For example, a peptide containing methionine substitutions at positions one and nine of the I-E(k) binding motif acted as a partial agonist for two hemoglobin-reactive T cell clones (PL.17 and 3.L2). The identical MHC anchor substitutions in moth cytochrome c (88-103) also created a partial agonist for a mCC-reactive T cell (A.E7). Thus, peptides containing MHC anchor modifications mediated similar T cell responses regardless of TCR fine specificity or antigen reactivity. This data contrasts with the unique specificity among individual clones demonstrated using traditional altered peptide ligands containing substitutions at TCR contact residues. In conclusion, we demonstrate that altering the MHC anchor residues of the immunogenic peptide can be a powerful method to create TCR partial agonists.
Collapse
Affiliation(s)
- Kelli R Ryan
- Graduate Program in Immunology and Molecular Pathogenesis, Department of Microbiology and Immunology, Emory University, 1510 Clifton Rd. Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The role of MHC class II in the control of T-cell responses to self and foreign antigens is still unclear. No unifying principle yet explains how class II molecules repress immunity to self or allogeneic antigens. Our recent data in a model of tolerance to allogeneic grafts, probably induced by allele-specific class II peptides, suggest that it is by presenting themselves [class II peptide(s) docked on self class II, in a complex we have named T-Lo] that class II controls T-cell activity. The engagement of the regulatory T (T-reg)-cell T-cell receptor (TCR) with self T-Lo would explain the beneficial effect of donor-recipient class II matching in clinical transplantation, the correlation between T-cell suppression and class II, and the altered T-reg-cell functions observed in class II-dependent autoimmune pathologies.
Collapse
Affiliation(s)
- Christian LeGuern
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Building 149-9019, Boston, MA 02129, USA.
| |
Collapse
|
44
|
Huseby ES, Crawford F, White J, Kappler J, Marrack P. Negative selection imparts peptide specificity to the mature T cell repertoire. Proc Natl Acad Sci U S A 2003; 100:11565-70. [PMID: 14504410 PMCID: PMC208798 DOI: 10.1073/pnas.1934636100] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The T cell alphabeta receptor (TCR) recognizes foreign peptide antigens bound to proteins encoded in the MHC. The MHC portion of this complex contributes much to the footprint of the TCR on the ligand, yet T cells are usually very specific for individual foreign peptides. Here, we show that the development of peptide-specific T cells is not intrinsic to thymocytes that undergo thymic-positive selection but is an outcome of eliminating, through negative selection, thymocytes bearing TCRs with extensive peptide cross-reactivity. Hence, thymic-negative selection imposes peptide specificity on the mature T cell repertoire.
Collapse
Affiliation(s)
- Eric S Huseby
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
45
|
Lovitch SB, Walters JJ, Gross ML, Unanue ER. APCs present A beta(k)-derived peptides that are autoantigenic to type B T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4155-60. [PMID: 12682247 DOI: 10.4049/jimmunol.170.8.4155] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type B T cells recognize peptide provided exogenously but are ignorant of the same epitope derived from intracellular processing. In this study, we demonstrate the existence of type B T cells to an abundant autologous peptide derived from processing of the I-A(k) beta-chain. T cell hybridomas raised against this peptide fail to recognize syngeneic APC despite abundant presentation of the naturally processed epitope but react in a dose-dependent manner to exogenous peptide. Moreover, these hybridomas respond to Abeta(k) peptide extracted from the surface of I-A(k)-expressing APC. This peptide was isolated from B cell lines where it was found in high abundance; it was also present in lines lacking HLA-DM, but in considerably lower amounts. Therefore, type B T cells exist in the naive repertoire to abundant autologous peptides. We discuss the implications of these findings to the potential biological role of type B T cells in immune responses and autoimmune pathology.
Collapse
Affiliation(s)
- Scott B Lovitch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
46
|
Koonce CH, Wutz G, Robertson EJ, Vogt AB, Kropshofer H, Bikoff EK. DM loss in k haplotype mice reveals isotype-specific chaperone requirements. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3751-61. [PMID: 12646641 DOI: 10.4049/jimmunol.170.7.3751] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DM actions as a class II chaperone promote capture of diverse peptides inside the endocytic compartment(s). DM mutant cells studied to date express class II bound by class II-associated invariant chain-derived peptide (CLIP), a short proteolytic fragment of the invariant chain, and exhibit defective peptide-loading abilities. To evaluate DM functional contributions in k haplotype mice, we engineered a novel mutation at the DMa locus via embryonic stem cell technology. The present experiments demonstrate short-lived A(k)/CLIP complexes, decreased A(k) surface expression, and enhanced A(k) peptide binding activities. Thus, we conclude that DM loss in k haplotype mice creates a substantial pool of empty or loosely occupied A(k) conformers. On the other hand, the mutation hardly affects E(k) activities. The appearance of mature compact E(k) dimers, near normal surface expression, and efficient Ag presentation capabilities strengthen the evidence for isotype-specific DM requirements. In contrast to DM mutants described previously, partial occupancy by wild-type ligands is sufficient to eliminate antiself reactivity. Mass spectrometry profiles reveal A(k)/CLIP and a heterogeneous collection of relatively short peptides bound to E(k) molecules. These experiments demonstrate that DM has distinct roles depending on its specific class II partners.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Crosses, Genetic
- Female
- Gene Deletion
- H-2 Antigens/genetics
- Haplotypes
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/classification
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Molecular Chaperones/classification
- Molecular Chaperones/physiology
- Molecular Sequence Data
- Muramidase/immunology
- Muramidase/metabolism
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- RNA Editing/immunology
- Self Tolerance/genetics
Collapse
Affiliation(s)
- Chad H Koonce
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
In recent years it has become apparent that the long-term survival of T cells requires continuous contact with external stimuli. At least two types of stimuli, namely self antigens and cytokines, are involved in maintaining T cell viability. As discussed here, the factors controlling T cell survival and turnover in vivo differ considerably from one T cell subset to another.
Collapse
Affiliation(s)
- Jonathan Sprent
- Department of Immunology, IMM4, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
48
|
Muntasell A, Carrascal M, Serradell L, Veelen Pv PV, Verreck F, Koning F, Raposo G, Abián J, Jaraquemada D. HLA-DR4 molecules in neuroendocrine epithelial cells associate to a heterogeneous repertoire of cytoplasmic and surface self peptides. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5052-60. [PMID: 12391221 DOI: 10.4049/jimmunol.169.9.5052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of MHC class II genes by epithelial cells is induced in inflammatory conditions such as autoimmunity and organ transplantation. Class II ligands generated by the epithelial cell processing mechanisms are unknown, although some unique epitopes have been described in epithelial cells that B cells could not generate. Epithelial cells are the targets of autoreactive T cell responses in autoimmune diseases and of transplant rejection processes, which may involve recognition of cell type-specific epitopes. In the present report, we have compared the DR4-associated repertoire and the intracellular distribution of class II, invariant chain (Ii), and DM molecules between a human DR4-, Ii-, and DM-transfected rat neuroendocrine epithelial cell line and a homozygous DR4 (DRB1*0401) lymphoblastoid B cell line, by mass spectrometry sequencing techniques, and immunoelectron microscopy. The epithelial cells chosen for transfection, RINm5F, are rat insular cells widely used for human studies of autoimmune diabetes. The results revealed a remarkably heterogeneous pool of self protein-derived peptides from the cell surface and various intracellular compartments, including the cytosol and secretory vesicles in epithelial cells, compared with a very restricted homogeneous repertoire in lymphoblastoid B cell lines, where few epitopes from surface molecules were predominant. The generation of distinct DR4-associated peptide repertoires in these two cell types could be due to the effect of several factors including differences in subcellular location of Ii and DM molecules, differential DO expression, and cell type-specific mechanisms of class II ligand generation. This is specially relevant to processes involving epithelial T cell interactions such as organ-specific autoimmunity and transplant rejection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Autoantigens/genetics
- Autoantigens/immunology
- Autoantigens/isolation & purification
- Autoantigens/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cattle
- Cell Line, Transformed/immunology
- Cell Line, Transformed/metabolism
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cytoplasm/genetics
- Cytoplasm/immunology
- Cytoplasm/metabolism
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- HLA-D Antigens/biosynthesis
- HLA-D Antigens/genetics
- HLA-D Antigens/metabolism
- HLA-DR Antigens/biosynthesis
- HLA-DR Antigens/isolation & purification
- HLA-DR4 Antigen/biosynthesis
- HLA-DR4 Antigen/genetics
- HLA-DR4 Antigen/metabolism
- HLA-DRB1 Chains
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Humans
- Insulinoma/immunology
- Insulinoma/metabolism
- Ligands
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/isolation & purification
- Peptide Fragments/metabolism
- Rats
- Transfection
- Tumor Cells, Cultured/immunology
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- Aura Muntasell
- Immunology Unit and Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lockey TD, Surman S, Brown S, Slobod KS, Coleclough C, Doherty PC, Hurwitz JL. A five-residue HIV envelope helper T cell determinant: does this peptide-MHC interaction leave the binding groove half empty? AIDS Res Hum Retroviruses 2002; 18:1141-4. [PMID: 12402950 DOI: 10.1089/088922202320567888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High-resolution structures have revealed major pockets in the MHC class II peptide binding groove within a region designated Pl-P9. The region can accommodate 9-mer peptides, consistent with the observation that minimal core helper T (Th) cell determinants are usually eight or nine residues in size. Here we describe mouse Th cell hybridomas that are specific for a core peptide of only five residues (NPIIL) in the HIV envelope glycoprotein. Effective Th cell stimulation requires that these MHC class II Ia(b)-presented peptides contain amino acids flanking the minimal pentamer, but the flanking residues may be located on either the N or C terminus. To explain these findings, we suggest that mini-Th cell epitopes may effectively associate with MHC when only five (or possibly fewer) of the P1-P9 positions are filled. The remaining positions may be empty, or may be associated with a second, perhaps unrelated, peptide moiety.
Collapse
Affiliation(s)
- Timothy D Lockey
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu X, Dai S, Crawford F, Fruge R, Marrack P, Kappler J. Alternate interactions define the binding of peptides to the MHC molecule IA(b). Proc Natl Acad Sci U S A 2002; 99:8820-5. [PMID: 12084926 PMCID: PMC124382 DOI: 10.1073/pnas.132272099] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2002] [Indexed: 11/18/2022] Open
Abstract
We have solved the crystal structure of the MHCII molecule, IA(b), containing an antigenic variant of the major IA(b)-binding peptide derived from the MHCII IEalpha chain. The four MHC pockets at p1, p4, p6, and p9 that usually bind peptide side chains are largely empty because of alanines in the peptide at these positions. The complex is nevertheless very stable, apparently because of unique alternate interactions between the IA(b) and peptide. In particular, there are multiple additional hydrogen bonds between the N-terminal end of the peptide and the IA(b) alpha chain and an extensive hydrogen bond network involving an asparagine at p7 position of the peptide and the IA(b) beta chain. By using knowledge of the shape and size of the traditional side chain binding pockets and the additional possible interactions, an IA(b) peptide-binding motif can be deduced that agrees well with the sequences of known IA(b)-binding peptides.
Collapse
Affiliation(s)
- Xinqi Liu
- Integrated Department of Immunology, Zuckerman Family/Canyon Ranch Crystallography Laboratory, Howard Hughes Medical Institute, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|