1
|
Duvvuri B, Wu GE. Gene Conversion-Like Events in the Diversification of Human Rearranged IGHV3-23*01 Gene Sequences. Front Immunol 2012; 3:158. [PMID: 22715339 PMCID: PMC3375636 DOI: 10.3389/fimmu.2012.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/25/2012] [Indexed: 11/13/2022] Open
Abstract
Gene conversion (GCV), a mechanism mediated by activation-induced cytidine deaminase (AID) is well established as a mechanism of immunoglobulin diversification in a few species. However, definitive evidence of GCV-like events in human immunoglobulin genes is scarce. The lack of evidence of GCV in human rearranged immunoglobulin gene sequences is puzzling given the presence of highly similar germline donors and the presence of all the enzymatic machinery required for GCV. In this study, we undertook a computational analysis of rearranged IGHV3-23(*)01 gene sequences from common variable immunodeficiency (CVID) patients, AID-deficient patients, and healthy individuals to survey "GCV-like" activities. We analyzed rearranged IGHV3-23(*)01 gene sequences obtained from total PBMC RNA and single-cell polymerase chain reaction of individual B cell lysates. Our search identified strong evidence of GCV-like activity. We observed that GCV-like tracts are flanked by AID hotspot motifs. Structural modeling of IGHV3-23(*)01 gene sequence revealed that hypermutable bases flanking GCV-like tracts are in the single stranded DNA (ssDNA) of stable stem-loop structures (SLSs). ssDNA is inherently fragile and also an optimal target for AID. We speculate that GCV could have been initiated by the targeting of hypermutable bases in ssDNA state in stable SLSs, plausibly by AID. We have observed that the frequency of GCV-like events is significantly higher in rearranged IGHV3-23-(*)01 sequences from healthy individuals compared to that of CVID patients. We did not observe GCV-like events in rearranged IGHV3-23-(*)01 sequences from AID-deficient patients. GCV, unlike somatic hypermutation (SHM), can result in multiple base substitutions that can alter many amino acids. The extensive changes in antibody affinity by GCV-like events would be instrumental in protecting humans against pathogens that diversify their genome by antigenic shift.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- School of Kinesiology and Health Science, Faculty of Health, York UniversityToronto, ON, Canada
| | - Gillian E. Wu
- School of Kinesiology and Health Science, Faculty of Health, York UniversityToronto, ON, Canada
| |
Collapse
|
2
|
Guth A, Detanico T, Smith D, Tung KS, Bonorino C, Wysocki LJ. Spontaneous autoimmunity in mice that carry an IghV partial transgene: a required arginine in VHCDR3. Lupus 2009; 18:299-308. [PMID: 19276297 PMCID: PMC2892212 DOI: 10.1177/0961203308097480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We describe a unique spontaneous mouse model of autoimmunity, which occurs on a non-autoimmune-prone SWR genetic background. In this model, SWR mice carry an IghV partial transgene (pTg) encoding only the heavy chain variable domain of an antibody directed against chromatin. Autoimmune disease in pTg mice was manifested by some of the features of systemic lupus erythematosus (SLE), including the presence of serum anti-nuclear antibodies, splenomegaly, skin lesions and a moderate degree of kidney pathology, in various combinations among individuals. Autoimmunity was observed in three independent transgenic lines, but not in three control lines carrying a nearly identical pTg, in which a VHCDR3 codon for Arg was replaced by one for Ser to ablate chromatin reactivity. Various features of disease were often but not always accompanied by anti-chromatin antibodies. Unexpectedly, the anti-chromatin antibodies detected in seropositive animals were not encoded by the pTg. These observations strongly implicate a role for the transgene product in disease initiation but not necessarily for end-state pathology, and they raise the possibility that autoreactive B cells may play a previously unappreciated role in initiating the development of systemic autoimmunity.
Collapse
Affiliation(s)
- Amanda Guth
- Integrated Department of Immunology, National Jewish Medical and Research Center, and University of Colorado School of Medicine, Denver, CO 80206, USA
| | - Thiago Detanico
- Integrated Department of Immunology, National Jewish Medical and Research Center, and University of Colorado School of Medicine, Denver, CO 80206, USA
- Faculdade de Biociências and Instituto de Pesquisasx Biomédicas, PUCRS, 90010, Porto Alegre, RS, Brazil
| | - Diana Smith
- Integrated Department of Immunology, National Jewish Medical and Research Center, and University of Colorado School of Medicine, Denver, CO 80206, USA
| | - Kenneth S.K. Tung
- Departments of Microbiology and Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Cristina Bonorino
- Faculdade de Biociências and Instituto de Pesquisasx Biomédicas, PUCRS, 90010, Porto Alegre, RS, Brazil
| | - Lawrence J. Wysocki
- Integrated Department of Immunology, National Jewish Medical and Research Center, and University of Colorado School of Medicine, Denver, CO 80206, USA
| |
Collapse
|
3
|
D'Avirro N, Truong D, Luong M, Kanaar R, Selsing E. Gene conversion-like sequence transfers between transgenic antibody V genes are independent of RAD54. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3069-75. [PMID: 12218123 DOI: 10.4049/jimmunol.169.6.3069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Homology-based Ig gene conversion is a major mechanism for Ab diversification in chickens and the Rad54 DNA repair protein plays an important role in this process. In mice, although gene conversion appears to be rare among endogenous Ig genes, Ab H chain transgenes undergo isotype switching and gene conversion-like sequence transfer processes that also appear to involve homologous recombination or gene conversion. Furthermore, homology-based DNA repair has been suggested to be important for somatic mutation of endogenous mouse Ig genes. To assess the role of Rad54 in these mouse B cell processes, we have analyzed H chain transgene isotype switching, sequence transfer, and somatic hypermutation in mice that lack RAD54. We find that Rad54 is not required for either transgene switching or transgene hypermutation. Furthermore, even transgene sequence transfers that are known to require homology-based recombinations are Rad54 independent. These results indicate that mouse B cells must use factors for promoting homologous recombination that are distinct from the Rad54 proteins important in homology-based chicken Ab gene recombinations. Our findings also suggest that mouse H chain transgene sequence transfers might be more closely related to an error-prone homology-based somatic hypermutational mechanism than to the hyperconversion mechanism that operates in chicken B cells.
Collapse
Affiliation(s)
- Nicole D'Avirro
- Genetics Program, Immunology Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
4
|
Raynard SJ, Read LR, Baker MD. Evidence for the murine IgH mu locus acting as a hot spot for intrachromosomal homologous recombination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2332-9. [PMID: 11859123 DOI: 10.4049/jimmunol.168.5.2332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Homologous recombination accomplishes the exchange of genetic information between two similar or identical DNA duplexes. It can occur either by gene conversion, a process of unidirectional genetic exchange, or by reciprocal crossing over. Homologous recombination is well known for its role in generating genetic diversity in meiosis and, in mitosis, as a DNA repair mechanism. In the immune system, the evidence suggests a role for homologous recombination in Ig gene evolution and in the diversification of Ab function. Previously, we reported the occurrence of homologous recombination between repeated, donor and recipient alleles of the Ig H chain mu gene C (Cmu) region residing at the Ig mu locus in mouse hybridoma cells. In this study, we constructed mouse hybridoma cell lines bearing Cmu region heteroalleles to learn more about the intrachromosomal homologous recombination process. A high frequency of homologous recombination (gene conversion) was observed for markers spanning the entire recipient Cmu region, suggesting that recombination might initiate at random sites within the Cmu region. The Cmu region heteroalleles were equally proficient as either conversion donors or recipients. Remarkably, when the same Cmu heteroalleles were tested for recombination in ectopic genomic positions, the mean frequency of gene conversion was reduced by at least 65-fold. These results are consistent with the murine IgH mu locus behaving as a hot spot for intrachromosomal homologous recombination.
Collapse
Affiliation(s)
- Steven J Raynard
- Department of Molecular Biology and Genetics, College of Biological Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
5
|
Diaz M, Flajnik MF, Klinman N. Evolution and the molecular basis of somatic hypermutation of antigen receptor genes. Philos Trans R Soc Lond B Biol Sci 2001; 356:67-72. [PMID: 11205333 PMCID: PMC1087693 DOI: 10.1098/rstb.2000.0750] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatic hypermutation of immunoglobulin genes occurs in many vertebrates including sharks, frogs, camels, humans and mice. Similarities among species reveal a common mechanism and these include the AGC/T sequence hot spot, preponderance of base substitutions, a bias towards transitions and strand bias. There are some differences among species, however, that may unveil layers of the mechanism. These include a G:C bias in frog and shark IgM but not in nurse shark antigen receptor (NAR), a high frequency of doublets in NAR hypermutation, and the co-occurrence of somatic hypermutation with gene conversion in some species. Here we argue that some of the similarities and differences among species are best explained by error-prone DNA synthesis by the translesion synthesis DNA polymerase zeta (Pol zeta) and, as suggested by others, induction of DNA synthesis by DNA breaks in antigen receptor variable genes. Finally, targeting of the variable genes is probably obtained via transcription-related elements, and it is the targeting phase of somatic hypermutation that is the most likely to reveal molecules unique to adaptive immunity.
Collapse
Affiliation(s)
- M Diaz
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
6
|
Marshall B, Schulz R, Zhou M, Mellor A. Alternative Splicing and Hypermutation of a Nonproductively Rearranged TCR α-Chain in a T Cell Hybridoma. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Like Ig genes, TCR genes are formed by somatic rearrangements of noncontiguous genomic V, J, and C regions. Unlike Ig genes, somatic hypermutation of TCR V regions is an infrequent event. We describe the occurrence of spontaneous hypermutation in a nonproductively rearranged TCR α-chain gene in a clonal T cell hybridoma that had lost its productively rearranged α-chain. The mutating hybridoma was eventually supplanted in culture by a nonmutating variant that had restored an open reading frame in the nonproductively rearranged TCR α-chain through the use of cryptic splice sites in the Vα region. Evidence is presented for the presence of cDNA reverse transcripts of the TCR α-chain within the hybridoma, suggesting a role for reverse transcriptase in the generation of mutations.
Collapse
Affiliation(s)
- Brendan Marshall
- * Institute of Molecular Medicine and Genetics, Program in Molecular Immunology, Medical College of Georgia, Augusta, GA 30912; and
| | - Ruth Schulz
- †Division of Molecular Immunology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Min Zhou
- * Institute of Molecular Medicine and Genetics, Program in Molecular Immunology, Medical College of Georgia, Augusta, GA 30912; and
| | - Andrew Mellor
- * Institute of Molecular Medicine and Genetics, Program in Molecular Immunology, Medical College of Georgia, Augusta, GA 30912; and
| |
Collapse
|
7
|
Kingzette M, Spieker-Polet H, Yam PC, Zhai SK, Knight KL. Trans-chromosomal recombination within the Ig heavy chain switch region in B lymphocytes. Proc Natl Acad Sci U S A 1998; 95:11840-5. [PMID: 9751752 PMCID: PMC21727 DOI: 10.1073/pnas.95.20.11840] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Somatic DNA rearrangements in B lymphocytes, including V(D)J gene rearrangements and isotype switching, generally occur in cis, i. e., intrachromosomally. We showed previously, however, that 3 to 7% of IgA heavy chains have the VH and Calpha regions encoded in trans. To determine whether the trans-association of VH and Calpha occurred by trans-chromosomal recombination, by trans-splicing, or by trans-chromosomal gene conversion, we generated and analyzed eight IgA-secreting rabbit hybridomas with trans-associated VH and Calpha heavy chains. By ELISA and by nucleotide sequence analysis we found that the VH and Calpha regions were encoded by genes that were in trans in the germline. We cloned the rearranged VDJ-Calpha gene from a fosmid library of one hybridoma and found that the expressed VH and Calpha genes were juxtaposed. Moreover, the juxtaposed VH and Calpha genes originated from different IgH alleles. From the same hybridoma, we also identified a fosmid clone with the other expected product of a trans-chromosomal recombination. The recombination breakpoint occurred within the Smicro/Salpha region, indicating that the trans-association of VH and Calpha genes occurred by trans-chromosomal recombination during isotype switching. We conclude that trans-chromosomal recombination occurs at an unexpectedly high frequency (7%) within the IgH locus of B lymphocytes in normal animals, which may explain the high incidence of B-cell tumors that arise from oncogene translocation into the IgH locus.
Collapse
Affiliation(s)
- M Kingzette
- Department of Microbiology and Immunology, Loyola University of Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Examples of somatic hypermutation of antigen receptor genes can be seen in most lineages of vertebrates, including the cartilaginous fish. Analysis of the phylogenetic data reveals that two distinctive features of the mechanism are shared by most species studied: the mutation hot spot sequence AGY, and a preponderance of point mutations. These data suggest that some of the components of the machinery are shared between ectotherms and mammals. However, unique characters in particular species may have occurred by independent recruitment of novel factors onto the mechanism. A spotty phylogenetic distribution of gene conversion has also been revealed and can be explained if the two mechanisms share some characteristics. Both mutation and conversion require transcription-related sequences and/or factors. We theorized that targeting to V genes can be attained by a paused replication fork that has collided with a transcription complex stalled by a defective Ig transcription activator; the paused replication fork results in recruitment of an error-prone translesion synthesis DNA polymerase (somatic hypermutation) or of DNA repair mechanisms with homologous recombination (gene conversion). In addition, the pathway recruited in different species may be directed by the degree of homology among V genes.
Collapse
Affiliation(s)
- M Diaz
- Department of Microbiology and Immunology, University of Miami School of Medicine, Florida, USA
| | | |
Collapse
|
9
|
Manser T, Tumas-Brundage KM, Casson LP, Giusti AM, Hande S, Notidis E, Vora KA. The roles of antibody variable region hypermutation and selection in the development of the memory B-cell compartment. Immunol Rev 1998; 162:183-96. [PMID: 9602364 DOI: 10.1111/j.1600-065x.1998.tb01441.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Somatic hypermutation and selection of immunoglobulin (Ig) variable (V)-region genes, working in concert, appear to be essential for memory B-cell development in mammals. There has been substantial progress on the nature of the cis-acting DNA elements that regulate hypermutation. The data obtained suggest that the mechanisms of Ig gene hypermutation and transcription are intimately intertwined. While it has long been appreciated that stringent phenotypic selection forces are imposed on the somatically mutated Ig V regions generated during a T-cell dependent B-cell response, the mechanisms involved in this selection have remained enigmatic. Our studies have questioned the role of foreign antigen deposited on follicular dendritic cells in affinity-based positive selection of V regions, and have shown that this selection takes place in a "clone-autonomous" fashion. In addition, our data strongly suggest that affinity for antigen alone is not the driving force for selection of B-cell clones into the memory compartment. In contrast, we suggest that a combination of positive selection for increased foreign antigen binding, and negative selection of antibody V regions that are autoreactive at the onset of the response, or have acquired autoreactivity via hypermutation, results in the "specificity maturation" of the memory B-cell response.
Collapse
Affiliation(s)
- T Manser
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson Medical College, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Wysocki LJ, Liu AH, Jena PK. Somatic mutagenesis and evolution of memory B cells. Curr Top Microbiol Immunol 1998; 229:105-31. [PMID: 9479851 DOI: 10.1007/978-3-642-71984-4_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- L J Wysocki
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | |
Collapse
|
11
|
Green NS, Verdugo G, Getman ME, Scharft MD. Ig V region hypermutation in B cell hybrids mimics in vivo mutation and allows for isolation of clonal variants. Mol Immunol 1997; 34:1095-103. [PMID: 9519767 DOI: 10.1016/s0161-5890(97)00131-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to investigate the regulation of Ig hypermutation, we have established a cell culture system in which reversion of a V region stop codon in a stably transfected Ig gene permits the quantitation of mutation rates by fluctuation analysis. Transfected heavy chain V regions associated with the mu constant region undergo low rates of mutation in the NSO plasmacytoma cell line and a moderate rate of mutation in the 18.81 pre-B cell line. Most of the hybrids created by fusing these two cell lines resembled the non-permissive NSO cell line, though a few hybrids had constitutive V region mutation rates that were even higher than 18.81 and similar to the high rates of mutation that occur in vivo (Green, N. S., Rabinowitz, J. L., Zhu, M., Kobrin, B. J. and Scharff, M. D. (1995) Proc. Nat. Acad. Sci. (USA) 92, 6304 6308). Characterization of these hybrids now demonstrates that the transfected genes were integrated outside of the Ig locus. Mutation was due to multiple single base pair replacements in the V region and not the C region, was ongoing and often arose in hot spot motifs described by V region hypermutation in vivo. Subcloning of unstable hybrids allowed for the isolation of highly related clones with 44-70-fold different mutation rates. These results suggest that V region hypermutation in this mode in vitro systems is under both positive and negative regulation.
Collapse
Affiliation(s)
- N S Green
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
12
|
Gerloni M, Billetta R, Xiong S, Zanetti M. Somatic transgene immunization with DNA encoding an immunoglobulin heavy chain. DNA Cell Biol 1997; 16:611-25. [PMID: 9174166 DOI: 10.1089/dna.1997.16.611] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A plasmid DNA containing a chimeric immunoglobulin heavy-chain gene with tissue-specific promoter and enhancer elements was used as a model system to study the events triggered by a single intraspleen DNA inoculation in adult C57Bl/6 mice. A single intraspleen inoculation was followed in a week by secretion of transgene immunoglobulins and production of immunoglobulin M (IgM) anti-immunoglobulins. Their kinetics of serum appearance were almost superimposable. While anti-immunoglobulin antibodies remained detectable for over 6 months, transgene immunoglobulins disappeared after 3-4 weeks. However, transgene mRNA was detected in the spleen for 4 months. A multiplex polymerase chain reaction (PCR) analysis on splenic genomic DNA 17 days after inoculation demonstrated that the transgene was integrated in the host chromosomal DNA. The nucleotide sequence of the rearranged VDJ region from splenic genomic DNA was identical to that of the parental plasmid DNA, hence ruling out that hypermutation had occurred. A booster injection of immunoglobulin encoded by the transgene on day 200 elicited a typical secondary immune response with IgG1 and IgG2b antibodies. These results demonstrate that a single inoculation of an immunoglobulin heavy-chain DNA targeted to spleen lymphocytes leads to spontaneous integration of the transgene into the host DNA, and that this is sufficient to initiate immunity and establish immunologic memory. Our data also show that minute amounts (<100 ng/ml) of an endogenously produced protein secreted in the microenvironment of a lymphoid tissue generate immunity and establish immunologic memory rather than tolerance.
Collapse
Affiliation(s)
- M Gerloni
- Department of Medicine and Cancer Center, University of California, San Diego, La Jolla 92093-0063, USA
| | | | | | | |
Collapse
|
13
|
Richard M, Gusew N, Belmaaza A, Chartrand P. Homologous junctions formed between a vector and human genomic repetitive LINE-1 elements as a result of one-sided invasion. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:75-81. [PMID: 9218003 DOI: 10.1007/bf02679957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Studies on homologous recombination in mammalian cells between an exogenous DNA molecule containing a double-strand break and a homologous genomic sequence have indicated that there were at least two distinct types of homologous recombination processes, one that involved the formation of two homologous junctions and another that involved the formation of one homologous junction and one illegitimate junction. Both types of events are produced in gene targeting experiments. We have proposed a model to account for the later process called one-sided invasion. One-sided invasion has now been reported in numerous species belonging to different phyla and appears to be a universal mechanism. It has also been observed in normal human germ cells. The role of one-sided invasion is still unknown. Using a recombination assay between LINE-1 elements from the human genome and exogenous LINE-1 sequences, we have characterized the process of homologous junction formation in one-sided invasion. We found that at each of the homologous junctions, variable lengths of the vector L1 sequences had been replaced by genomic L1 sequences. We also found a homologous junction that involved three partners, suggesting that the homologous end could be released and become available for a second round of interaction.
Collapse
Affiliation(s)
- M Richard
- Institut du cancer de Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
14
|
Abstract
To determine if rearranged heavy chain variable (VDJ) genes can recombine with each other by crossing over of DNA strands, we constructed a transgene that contained a promoter, VDJ gene, reporter gene to detect crossover events, intron enhancer, matrix attachment region, and constant gene for IgM (C mu). Following immunization of transgenic mice, hybrid molecules were isolated from B cell DNA which contained the transgene recombined with the endogenous IgH locus. Reciprocal products of crossovers were detected by plasmid rescue and PCR amplification, and they were sequenced. Recombination occurred somewhere within 147 bp of homology that contained the JH4 gene segment and 3' flanking DNA. The recombined transgenes had a 20-fold increase in mutation in the VDJ region compared to nonrecombined transgenes, which indicates that DNA sequences 3' of the C mu gene in the endogenous IgH locus are necessary for full activity of the mutator mechanism. The recovery of recombinants between VDJ transgenes and endogenous VDJ genes raises the possibility that reciprocal recombination may somatically diversify rearranged genes between maternal and paternal alleles.
Collapse
Affiliation(s)
- A Umar
- Department of Biochemistry, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
15
|
Green NS, Rabinowitz JL, Zhu M, Kobrin BJ, Scharff MD. Immunoglobulin variable region hypermutation in hybrids derived from a pre-B- and a myeloma cell line. Proc Natl Acad Sci U S A 1995; 92:6304-8. [PMID: 7603987 PMCID: PMC41506 DOI: 10.1073/pnas.92.14.6304] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Somatic mutation of the variable (V) regions of immunoglobulin genes occurs in vivo at rates that have been estimated to be between 10(-3) and 10(-4) per bp per generation. To study this process in vitro, the 18.81 pre-B-cell line and hybrids derived by fusing 18.81 to the NSO myeloma fusion partner were transfected with a mu heavy-chain construct containing a nonsense mutation in the V region (Vn) or the constant region (Cn). Mutation was quantitated by reversion analysis using the ELISA spot assay to detect single cells secreting IgM. Fluctuation analysis revealed that V-region mutations spontaneously occurred in 18.81 cells at an average rate of 5.8 x 10(-6) per bp per cell generation and in selected 18.81-NSO hybrids at greatly increased rates of 1.6 x 10(-3) to 5.8 x 10(-4) per bp per generation. The Vn construct also reverted frequently in transgenic mice, indicating that it contained sufficient information to mutate at high rates both in vivo and in vitro. Sequence analysis of reverted genes revealed that reversion was due to point mutations. Since the rates and nature of the mutations that are occurring in these transfected genes are similar to those reported in vivo, it should be possible to use this system to identify the cis-acting sequences and trans-acting factors that are responsible for V-region somatic hypermutation.
Collapse
Affiliation(s)
- N S Green
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
16
|
Zhu M, Rabinowitz JL, Green NS, Kobrin BJ, Scharff MD. A well-differentiated B-cell line is permissive for somatic mutation of a transfected immunoglobulin heavy-chain gene. Proc Natl Acad Sci U S A 1995; 92:2810-4. [PMID: 7708729 PMCID: PMC42308 DOI: 10.1073/pnas.92.7.2810] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
pSV2neo plasmids containing an IgM heavy-chain gene with nonsense mutations in either the variable (V) or the constant (C) region were transfected into four differentiated mouse plasma cell lines: S107 and the NSO fusion partner (myeloma cell lines) and 2C3 and 36.65 (hybridoma cell lines). The frequencies of reversion of the nonsense mutations in multiple independent transfectants were determined with the spot ELISA and rates of reversion were calculated by fluctuation analysis. Mutations in both V and C regions were confirmed by sequence analyses. In the S107 cell line, spontaneous point mutations occurred in the V region at a rate of approximately 5 x 10(-5)/bp per cell generation, > 400-fold higher than the rate of V-region mutation in the NSO cell line and considerably higher than the rates in 2C3 and 36.65 hybridoma cell lines. These studies suggest that S107 is a relatively permissive cell line in which V-region mutations can occur constitutively, even though it represents a late stage of B-cell differentiation. Further, the results show that the construct used contains sufficient information in its flanking and coding sequences to allow a relatively high rate of V-region mutation, at least in the S107 cell line.
Collapse
Affiliation(s)
- M Zhu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
17
|
Vora KA, Manser T. Altering the antibody repertoire via transgene homologous recombination: evidence for global and clone-autonomous regulation of antigen-driven B cell differentiation. J Exp Med 1995; 181:271-81. [PMID: 7807007 PMCID: PMC2191829 DOI: 10.1084/jem.181.1.271] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Antibody VH transgenes containing small amounts of natural 5' and 3' flanking DNA undergo nonreciprocal homologous recombination with the endogenous Igh locus in B cells. The resulting "hybrid" heavy chain loci are generated at a low frequency but are fully functional, undergoing somatic hypermutation and isotype class switching. We have used this recombination pathway to introduce a somatically mutated variable (V) region with an unusually high affinity for the hapten p-azophenylarsonate (Ars) into the preimmune antibody repertoire. The affinity of this V region for Ars is 100-fold higher than any unmutated anti-Ars antibody previously characterized. Expression of the transgene-encoded V region did not affect many aspects of antigen-driven B cell differentiation, including somatic hypermutation, in either Ars-specific transgene- or endogenous V gene-expressing clones. Thus, the regulation of these processes appears to operate in a "global" fashion, in that the mechanisms involved are imperceptive of the relative affinities for antigen of the antibodies expressed by B cell clones participating in the immune response. In contrast, the selection of V region mutants leading to affinity maturation and memory cell formation was found to be strongly influenced by the transgenic V region, but only in clones expressing this V region. Hybridomas derived from transgene- and endogenous V region-expressing memory cells were isolated at similar frequencies from individual transgenic mice. The V regions expressed by hybridomas in both of these groups had 2- to 30-fold greater affinity for Ars than their unmutated precursors, despite the fact that the transgene-encoded precursors had 100-fold higher affinity than their endogenous counterparts. These results show that the criterion for entry into the memory compartment is established not by the affinity of a B cell's V region relative to all other V regions expressed during the response, but by the affinity of this V region relative to its unmutated precursor. Thus, the development of B cell memory is regulated in a "clone-autonomous" fashion.
Collapse
Affiliation(s)
- K A Vora
- Department of Microbiology and Immunology, Thomas Jefferson Medical College, Philadelphia, Pennsylvania 19107
| | | |
Collapse
|
18
|
Almagro JC, Domínguez-Martinez V, Lara-Ochoa F, Vargas-Madrazo E. Structural repertoire in human VL pseudogenes of immunoglobulins: comparison with functional germline genes and amino acid sequences. Immunogenetics 1995; 43:92-6. [PMID: 8537131 DOI: 10.1007/bf00186612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J C Almagro
- Instituto de Química, Universidad Nacional Autónoma de México, México, D. F
| | | | | | | |
Collapse
|