1
|
Kornberg MD, Calabresi PA. Multiple Sclerosis and Other Acquired Demyelinating Diseases of the Central Nervous System. Cold Spring Harb Perspect Biol 2025; 17:a041374. [PMID: 38806240 PMCID: PMC11875095 DOI: 10.1101/cshperspect.a041374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Acquired demyelinating diseases of the central nervous system (CNS) comprise inflammatory conditions, including multiple sclerosis (MS) and related diseases, as well as noninflammatory conditions caused by toxic, metabolic, infectious, traumatic, and neurodegenerative insults. Here, we review the spectrum of diseases producing acquired CNS demyelination before focusing on the prototypical example of MS, exploring the pathologic mechanisms leading to myelin injury in relapsing and progressive MS and summarizing the mechanisms and modulators of remyelination. We highlight the complex interplay between the immune system, oligodendrocytes and oligodendrocyte progenitor cells (OPCs), and other CNS glia cells such as microglia and astrocytes in the pathogenesis and clinical course of MS. Finally, we review emerging therapeutic strategies that exploit our growing understanding of disease mechanisms to limit progression and promote remyelination.
Collapse
Affiliation(s)
- Michael D Kornberg
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
2
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
3
|
Haque A, Trager NNM, Butler JT, Das A, Zaman V, Banik NL. A novel combination approach to effectively reduce inflammation and neurodegeneration in multiple sclerosis models. Neurochem Int 2024; 175:105697. [PMID: 38364938 PMCID: PMC10994736 DOI: 10.1016/j.neuint.2024.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by immune-mediated attacks on the central nervous system (CNS), resulting in demyelination and recurring T-cell responses. Unfortunately, there is no cure for it. Current therapies that target immunomodulation and/or immunosuppression show only modest beneficial effects, have many side effects, and do not block neurodegeneration or progression of the disease. Since neurodegeneration and in particular axonal degeneration is implicated in disability in progressive MS, development of novel therapeutic strategies to attenuate the neurodegenerative processes is imperative. This study aims to develop new safe and efficacious treatments that address both the inflammatory and neurodegenerative aspects of MS using its animal model, experimental allergic encephalomyelitis (EAE). In EAE, the cysteine protease calpain is upregulated in CNS tissue, and its activity correlates with neurodegeneration. Our immunologic studies on MS have indicated that increased calpain activity promotes pro-inflammatory T helper (Th)1 cells and the severity of the disease in EAE, suggesting that calpain inhibition could be a novel target to combat neurodegeneration in MS/EAE. While calpain inhibition by SNJ1945 reduced disease severity, treatment of EAE animals with a novel protease-resistant altered small peptide ligand (3aza-APL) that mimic myelin basic protein (MBP), also decreased the incidence of EAE, disease severity, infiltration of inflammatory cells, and protected myelin. A reduction in inflammatory T-cells with an increase in Tregs and myeloid suppressor cells is also found in EAE mice treated with SNJ1945 and 3aza-APL. Thus, a novel combination strategy was tested in chronic EAE mouse model in B10 mice which showed multiple pathological mechanisms could be addressed by simultaneous treatment with calpain inhibitor SNJ1945 and protease-resistant 3aza-APL to achieve a stronger therapeutic effect.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, 29401, USA.
| | - Nicole N M Trager
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jonathan T Butler
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Arabinda Das
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, 29401, USA
| | - Naren L Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, 29401, USA.
| |
Collapse
|
4
|
Steinman L, Patarca R, Haseltine W. Experimental encephalomyelitis at age 90, still relevant and elucidating how viruses trigger disease. J Exp Med 2023; 220:213807. [PMID: 36652203 PMCID: PMC9880878 DOI: 10.1084/jem.20221322] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
20 yr ago, a tribute appeared in this journal on the 70th anniversary of an animal model of disseminated encephalomyelitis, abbreviated EAE for experimental autoimmune encephalomyelitis. "Observations on Attempts to Produce Disseminated Encephalomyelitis in Monkeys" appeared in the Journal of Experimental Medicine on February 21, 1933. Rivers and colleagues were trying to understand what caused neurological reactions to viral infections like smallpox, vaccinia, and measles, and what triggered rare instances of encephalomyelitis to smallpox vaccines. The animal model known as EAE continues to display its remarkable utility. Recent research, since the 70th-anniversary tribute, helps explain how Epstein-Barr virus triggers multiple sclerosis via molecular mimicry to a protein known as GlialCAM. Proteins with multiple domains similar to GlialCAM, tenascin, neuregulin, contactin, and protease kinase C inhibitors are present in the poxvirus family. These observations take us a full circle back to Rivers' first paper on EAE, 90 yr ago.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences and Pediatrics, Stanford University, Stanford, CA, USA,Correspondence to Lawrence Steinman:
| | | | | |
Collapse
|
5
|
Mahadik R, Kiptoo P, Tolbert T, Siahaan TJ. Immune Modulation by Antigenic Peptides and Antigenic Peptide Conjugates for Treatment of Multiple Sclerosis. MEDICAL RESEARCH ARCHIVES 2022; 10:10.18103/mra.v10i5.2804. [PMID: 36381196 PMCID: PMC9648198 DOI: 10.18103/mra.v10i5.2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The immune system defends our body by fighting infection from pathogens utilizing both the innate and adaptive immune responses. The innate immune response is generated rapidly as the first line of defense. It is followed by the adaptive immune response that selectively targets infected cells. The adaptive immune response is generated more slowly, but selectively, by targeting a wide range of foreign particles (i.e., viruses or bacteria) or molecules that enter the body, known as antigens. Autoimmune diseases are the results of immune system glitches, where the body's adaptive system recognizes self-antigens as foreign. Thus, the host immune system attacks the self-tissues or organs with a high level of inflammation and causes debilitation in patients. Many current treatments for autoimmune diseases (i.e., multiple sclerosis (MS), rheumatoid arthritis (RA)) have been effective but lead to adverse side effects due to general immune system suppression, which makes patients vulnerable to opportunistic infections. To counter these negative effects, many different avenues of antigen specific treatments are being developed to selectively target the autoreactive immune cells for a specific self-antigen or set of self-antigens while not compromising the general immune system. These approaches include soluble antigenic peptides, bifunctional peptide inhibitors (BPI) including IDAC and Fc-BPI, polymer conjugates, and peptide-drug conjugates. Here, various antigen-specific methods of potential treatments, their efficacy, and limitations will be discussed along with the potential mechanisms of action.
Collapse
Affiliation(s)
- Rucha Mahadik
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | | | - Tom Tolbert
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| |
Collapse
|
6
|
An Overview of Peptide-Based Molecules as Potential Drug Candidates for Multiple Sclerosis. Molecules 2021; 26:molecules26175227. [PMID: 34500662 PMCID: PMC8434400 DOI: 10.3390/molecules26175227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) belongs to demyelinating diseases, which are progressive and highly debilitating pathologies that imply a high burden both on individual patients and on society. Currently, several treatment strategies differ in the route of administration, adverse events, and possible risks. Side effects associated with multiple sclerosis medications range from mild symptoms, such as flu-like or irritation at the injection site, to serious ones, such as progressive multifocal leukoencephalopathy and other life-threatening events. Moreover, the agents so far available have proved incapable of fully preventing disease progression, mostly during the phases that consist of continuous, accumulating disability. Thus, new treatment strategies, able to halt or even reverse disease progression and specific for targeting solely the pathways that contribute to the disease pathogenesis, are highly desirable. Here, we provide an overview of the recent literature about peptide-based systems tested on experimental autoimmune encephalitis (EAE) models. Since peptides are considered a unique therapeutic niche and important elements in the pharmaceutical landscape, they could open up new therapeutic opportunities for the treatment of MS.
Collapse
|
7
|
Derdelinckx J, Cras P, Berneman ZN, Cools N. Antigen-Specific Treatment Modalities in MS: The Past, the Present, and the Future. Front Immunol 2021; 12:624685. [PMID: 33679769 PMCID: PMC7933447 DOI: 10.3389/fimmu.2021.624685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Antigen-specific therapy for multiple sclerosis may lead to a more effective therapy by induction of tolerance to a wide range of myelin-derived antigens without hampering the normal surveillance and effector function of the immune system. Numerous attempts to restore tolerance toward myelin-derived antigens have been made over the past decades, both in animal models of multiple sclerosis and in clinical trials for multiple sclerosis patients. In this review, we will give an overview of the current approaches for antigen-specific therapy that are in clinical development for multiple sclerosis as well provide an insight into the challenges for future antigen-specific treatment strategies for multiple sclerosis.
Collapse
Affiliation(s)
- Judith Derdelinckx
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Division of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Patrick Cras
- Division of Neurology, Antwerp University Hospital, Edegem, Belgium.,Born Bunge Institute, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
8
|
A Journey to the Conformational Analysis of T-Cell Epitope Peptides Involved in Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060356. [PMID: 32521758 PMCID: PMC7349157 DOI: 10.3390/brainsci10060356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/22/2023] Open
Abstract
Multiple sclerosis (MS) is a serious central nervous system (CNS) disease responsible for disability problems and deterioration of the quality of life. Several approaches have been applied to medications entering the market to treat this disease. However, no effective therapy currently exists, and the available drugs simply ameliorate the destructive disability effects of the disease. In this review article, we report on the efforts that have been conducted towards establishing the conformational properties of wild-type myelin basic protein (MBP), myelin proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG) epitopes or altered peptide ligands (ALPs). These efforts have led to the aim of discovering some non-peptide mimetics possessing considerable activity against the disease. These efforts have contributed also to unveiling the molecular basis of the molecular interactions implicated in the trimolecular complex, T-cell receptor (TCR)–peptide–major histocompatibility complex (MHC) or human leucocyte antigen (HLA).
Collapse
|
9
|
Systemic immunization with altered myelin basic protein peptide produces sustained antidepressant-like effects. Mol Psychiatry 2020; 25:1260-1274. [PMID: 31375779 DOI: 10.1038/s41380-019-0470-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022]
Abstract
Immune dysregulation, specifically of inflammatory processes, has been linked to behavioral symptoms of depression in both human and rodent studies. Here, we evaluated the antidepressant effects of immunization with altered peptide ligands of myelin basic protein (MBP)-MBP87-99[A91, A96], MBP87-99[A91], and MBP87-99[R91, A96]-in different models of depression and examined the mechanism by which these peptides protect against stress-induced depression. We found that a single dose of subcutaneously administered MBP87-99[A91, A96] produced antidepressant-like effects by decreasing immobility in the forced swim test and by reducing the escape latency and escape failures in the learned helplessness paradigm. Moreover, immunization with MBP87-99[A91, A96] prevented and reversed depressive-like and anxiety-like behaviors that were induced by chronic unpredictable stress (CUS). However, MBP87-99[R91, A96] tended to aggravate CUS-induced anxiety-like behavior. Chronic stress increased the production of peripheral and central proinflammatory cytokines and induced the activation of microglia in the prelimbic cortex (PrL), which was blocked by MBP87-99[A91, A96]. Immunization with MBP-derived altered peptide ligands also rescued chronic stress-induced deficits in p11, phosphorylated cyclic adenosine monophosphate response element binding protein, and brain-derived neurotrophic factor expression. Moreover, microinjections of recombinant proinflammatory cytokines and the knockdown of p11 in the PrL blunted the antidepressant-like behavioral response to MBP87-99[A91, A96]. Altogether, these findings indicate that immunization with altered MBP peptide produces prolonged antidepressant-like effects in rats, and the behavioral response is mediated by inflammatory factors (particularly interleukin-6), and p11 signaling in the PrL. Immune-neural interactions may impact central nervous system function and alter an individual's response to stress.
Collapse
|
10
|
Metaxakis A, Petratou D, Tavernarakis N. Molecular Interventions towards Multiple Sclerosis Treatment. Brain Sci 2020; 10:brainsci10050299. [PMID: 32429225 PMCID: PMC7287961 DOI: 10.3390/brainsci10050299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune life-threatening disease, afflicting millions of people worldwide. Although the disease is non-curable, considerable therapeutic advances have been achieved through molecular immunotherapeutic approaches, such as peptides vaccination, administration of monoclonal antibodies, and immunogenic copolymers. The main aims of these therapeutic strategies are to shift the MS-related autoimmune response towards a non-inflammatory T helper 2 (Th2) cells response, inactivate or ameliorate cytotoxic autoreactive T cells, induce secretion of anti-inflammatory cytokines, and inhibit recruitment of autoreactive lymphocytes to the central nervous system (CNS). These approaches can efficiently treat autoimmune encephalomyelitis (EAE), an essential system to study MS in animals, but they can only partially inhibit disease progress in humans. Nevertheless, modern immunotherapeutic techniques remain the most promising tools for the development of safe MS treatments, specifically targeting the cellular factors that trigger the initiation of the disease.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Greece; (A.M.); (D.P.)
| | - Dionysia Petratou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Greece; (A.M.); (D.P.)
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Greece; (A.M.); (D.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 71110 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-391066
| |
Collapse
|
11
|
Celarain N, Tomas-Roig J. Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. J Neuroinflammation 2020; 17:21. [PMID: 31937331 PMCID: PMC6961290 DOI: 10.1186/s12974-019-1667-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system characterised by incoordination, sensory loss, weakness, changes in bladder capacity and bowel function, fatigue and cognitive impairment, creating a significant socioeconomic burden. The pathogenesis of MS involves both genetic susceptibility and exposure to distinct environmental risk factors. The gene x environment interaction is regulated by epigenetic mechanisms. Epigenetics refers to a complex system that modifies gene expression without altering the DNA sequence. The most studied epigenetic mechanism is DNA methylation. This epigenetic mark participates in distinct MS pathophysiological processes, including blood-brain barrier breakdown, inflammatory response, demyelination, remyelination failure and neurodegeneration. In this study, we also accurately summarised a list of environmental factors involved in the MS pathogenesis and its clinical course. A literature search was conducted using MEDLINE through PubMED and Scopus. In conclusion, an exhaustive study of DNA methylation might contribute towards new pharmacological interventions in MS by use of epigenetic drugs.
Collapse
Affiliation(s)
- Naiara Celarain
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| | - Jordi Tomas-Roig
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
12
|
Healy LM, Yaqubi M, Ludwin S, Antel JP. Species differences in immune-mediated CNS tissue injury and repair: A (neuro)inflammatory topic. Glia 2019; 68:811-829. [PMID: 31724770 DOI: 10.1002/glia.23746] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
Abstract
Cells of the adaptive and innate immune systems in the brain parenchyma and in the meningeal spaces contribute to physiologic functions and disease states in the central nervous system (CNS). Animal studies have demonstrated the involvement of immune constituents, along with major histocompatibility complex (MHC) molecules, in neural development and rare genetic disorders (e.g., colony stimulating factor 1 receptor [CSF1R] deficiency). Genome wide association studies suggest a comparable role of the immune system in humans. Although the CNS can be the target of primary autoimmune disorders, no current experimental model captures all of the features of the most common human disorder placed in this category, multiple sclerosis (MS). Such features include spontaneous onset, environmental contributions, and a recurrent/progressive disease course in a genetically predisposed host. Numerous therapeutic interventions related to antigen and cytokine specific therapies have demonstrated effectiveness in experimental autoimmune encephalomyelitis (EAE), the animal model used to define principles underlying immune-mediated mechanisms in MS. Despite the similarities in the two diseases, most treatments used to ameliorate EAE have failed to translate to the human disease. As directly demonstrated in animal models and implicated by correlative studies in humans, adaptive and innate immune constituents within the systemic compartment and resident in the CNS contribute to the disease course of neurodegenerative and neurobehavioral disorders. The expanding knowledge of the molecular properties of glial cells provides increasing insights into species related variables. These variables affect glial bidirectional interactions with the immune system as well as their own production of "immune molecules" that mediate tissue injury and repair.
Collapse
Affiliation(s)
- Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Samuel Ludwin
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
13
|
Nandedkar-Kulkarni N, Vartak AR, Sucheck SJ, Wall KA, Quinn A, Morran MP, McInerney MF. Development of a Bioconjugate Platform for Modifying the Immune Response of Autoreactive Cytotoxic T Lymphocytes Involved in Type 1 Diabetes. Bioconjug Chem 2019; 30:2049-2059. [PMID: 31274300 DOI: 10.1021/acs.bioconjchem.9b00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by autoimmune cell mediated destruction of pancreatic beta cells. Pancreatic beta cells are the only source of insulin in the body. T1D patients then have to depend on insulin injections for their lifetime. Insulin injection can modulate the blood sugar levels, but insulin has little effect on the autoimmune process. Altered peptide ligands (APL) derived from known autoantigens in T1D are able to induce tolerance in autoreactive cells in T1D animal models, but are currently unable to elicit this protection in humans. There is a need to improve immunogenicity of the APLs, as these short peptides can be easily degraded by enzymes in the blood. GAD546-554 is a dominant epitope recognized by autoreactive T cells in the nonobese diabetic (NOD) mouse model that can cause destruction of beta cells. Alanine substitution at the eighth position of GAD546-554 peptide (APL9) induced tolerance in a GAD546-554 specific cytotoxic T lymphocyte clone. To improve the antigen presentation and endosomal escape of APL9, we developed a bioconjugate platform that consists of a liposome containing a bioconjugate of APL9 and toll-like receptor 2 ligand Pam3CysSK4 as well as an antibody against macrophage protein F4/80. APL9 bioconjugate liposome with F4/80 antibody was able to induce tolerance in a GAD 546-554 specific clone. Diabetic NOD splenocytes pretreated with APL9 bioconjugate were also not able to transfer diabetes into prediabetic NOD recipient mice. This work is beneficial to prevent T1D as an immunotherapy strategy to render autoreactive immune cells more tolerant of beta cells.
Collapse
Affiliation(s)
- Neha Nandedkar-Kulkarni
- Department of Medicinal and Biological Chemistry , University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Health Science Campus , 3000 Arlington Avenue , Toledo , Ohio 43614 , United States
| | - Abhishek R Vartak
- Department of Chemistry and Biochemistry , University of Toledo, College of Natural Sciences and Mathematics , Main Campus, 2801 West Bancroft Street , Toledo , Ohio 43606 , United States
| | - Steven J Sucheck
- Department of Chemistry and Biochemistry , University of Toledo, College of Natural Sciences and Mathematics , Main Campus, 2801 West Bancroft Street , Toledo , Ohio 43606 , United States
| | - Katherine A Wall
- Department of Medicinal and Biological Chemistry , University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Health Science Campus , 3000 Arlington Avenue , Toledo , Ohio 43614 , United States
| | - Anthony Quinn
- Department of Biological Sciences , University of Toledo, College of Natural Sciences and Mathematics , Main Campus, 2801 West Bancroft Street , Toledo , Ohio 43606 , United States
| | - Michael P Morran
- Department of Medicinal and Biological Chemistry , University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Health Science Campus , 3000 Arlington Avenue , Toledo , Ohio 43614 , United States
| | - Marcia F McInerney
- Department of Medicinal and Biological Chemistry , University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Health Science Campus , 3000 Arlington Avenue , Toledo , Ohio 43614 , United States.,Center for Diabetes and Endocrine Research , University of Toledo, Health Science Campus , 3000 Arlington Avenue , Toledo , Ohio 43614 , United States
| |
Collapse
|
14
|
Trager NNM, Butler JT, Harmon J, Mount J, Podbielska M, Haque A, Banik NL, Beeson CC. A Novel Aza-MBP Altered Peptide Ligand for the Treatment of Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2019; 55:267-275. [PMID: 28889362 DOI: 10.1007/s12035-017-0739-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Myelin basic protein (MBP) is a major target of T cells in lesions of multiple sclerosis (MS) patients and its animal model, experimental autoimmune encephalomyelitis (EAE). Interactions between the major histocompatibility complex II containing antigenic peptides and the T cell receptor activate CD4+ T cells that perpetuate EAE and MS. Previously reported data has shown that treating with an altered peptide ligand (APL) in which the normal antigenic peptide sequence of MBP has been slightly changed at T cell contact positions is helpful in reducing disease in both rodents and humans. The use of natural peptides, which are susceptible to protease degradation, requires high concentrations that can create hypersensitivity reactions. Our hypothesis is that APL containing aza substitutions, CH(R)-N- > N(R)N, could lead to improved protease resistance, reduced clinical disease scores, and a shift in T cell profile. In this study, several aza-APLs and control peptides were synthesized and screened for the best aza-APL candidate (3aza-APL) based on dissociation half time from major histocompatibility complex (MHC) class II, induction of IL-2 response, and resistance to degradation by proteases. The efficacy was then tested in vivo. Results indicate that 3aza-APL is superior to currently available APLs in terms of protease resistance and disease suppression in EAE mice. The 3aza-APL induced anti-inflammatory immune responses by altering key transcription factors and cytokine genes which regulate T cell subpopulations. These data suggest that the novel 3aza-APL has increased protease resistance property and is effective in reducing clinical and physiological signs of disease in EAE animals.
Collapse
Affiliation(s)
- Nicole N M Trager
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Jennifer Harmon
- Department of Drug Discovery and Biomedical Science, Medical University of South Carolina, 280 Calhoun Street, MSC140, Charleston, SC, 29425, USA
| | - Joshua Mount
- Department of Drug Discovery and Biomedical Science, Medical University of South Carolina, 280 Calhoun Street, MSC140, Charleston, SC, 29425, USA
| | - Maria Podbielska
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St, MSC606, Charleston, SC, 29425, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Naren L Banik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St, MSC606, Charleston, SC, 29425, USA. .,Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Science, Medical University of South Carolina, 280 Calhoun Street, MSC140, Charleston, SC, 29425, USA.
| |
Collapse
|
15
|
Lees JR. Targeting antigen presentation in autoimmunity. Cell Immunol 2018; 339:4-9. [PMID: 30554782 DOI: 10.1016/j.cellimm.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Autoimmune diseases are heterogeneous group of disorders that together represent an enormous societal and medical problem. CD4+ T cells have critical roles in the initiation and pathogenesis of autoimmune disease. As such, modulation of T cell activity has proven to have significant therapeutic effects in multiple autoimmune settings. T cell activation is a complex process with multiple potential therapeutic targets, many of which have been successfully utilized to treat human disease. Current pharmacological treatment largely targets T cell intrinsic activities as a means of treating various autoimmune disorders. Here I review extant and potential therapeutic approaches that instead specifically target antigen presentation to CD4+ T cells as a critical checkpoint in autoimmune responses. In addition, the contribution of antigen modulation components in current therapeutic approaches is considered along with the impact of new antigen targeted treatment modalities. Finally, potential challenges are considered in the context of the potential for antigen specific targeting of the antigen presentation process.
Collapse
Affiliation(s)
- Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
16
|
Deraos G, Kritsi E, Matsoukas MT, Christopoulou K, Kalbacher H, Zoumpoulakis P, Apostolopoulos V, Matsoukas J. Design of Linear and Cyclic Mutant Analogues of Dirucotide Peptide (MBP 82⁻98) against Multiple Sclerosis: Conformational and Binding Studies to MHC Class II. Brain Sci 2018; 8:brainsci8120213. [PMID: 30518150 PMCID: PMC6316436 DOI: 10.3390/brainsci8120213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 11/29/2022] Open
Abstract
Background: Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system. MS is a T cell-mediated disease characterized by the proliferation, infiltration, and attack of the myelin sheath by immune cells. Previous studies have shown that cyclization provides molecules with strict conformation that could modulate the immune system. Methods: In this study, we synthesized peptide analogues derived from the myelin basic protein (MBP)82–98 encephalitogenic sequence (dirucotide), the linear altered peptide ligand MBP82–98 (Ala91), and their cyclic counterparts. Results: The synthesized peptides were evaluated for their binding to human leukocyte antigen (HLA)-DR2 and HLA-DR4 alleles, with cyclic MBP82–98 being a strong binder with the HLA-DR2 allele and having lower affinity binding to the HLA-DR4 allele. In a further step, conformational analyses were performed using NMR spectroscopy in solution to describe the conformational space occupied by the functional amino acids of both linear and cyclic peptide analogues. This structural data, in combination with crystallographic data, were used to study the molecular basis of their interaction with HLA-DR2 and HLA-DR4 alleles. Conclusion: The cyclic and APL analogues of dirucotide are promising leads that should be further evaluated for their ability to alter T cell responses for therapeutic benefit against MS.
Collapse
Affiliation(s)
- George Deraos
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
- ELDrug S.A., Patras Science Park, Platani, 26504 Patras, Greece.
| | - Eftichia Kritsi
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | | | - Konstantina Christopoulou
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
- ELDrug S.A., Patras Science Park, Platani, 26504 Patras, Greece.
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tubingen, 72076 Tubingen, Germany.
| | - Panagiotis Zoumpoulakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia.
| | - John Matsoukas
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
- ELDrug S.A., Patras Science Park, Platani, 26504 Patras, Greece.
| |
Collapse
|
17
|
Zheng L, Li J, Lenardo M. Restimulation-induced cell death: new medical and research perspectives. Immunol Rev 2018; 277:44-60. [PMID: 28462523 DOI: 10.1111/imr.12535] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the periphery, homeostasis of the immune system depends on the equilibrium of expanding and contracting T lymphocytes during immune response. An important mechanism of lymphocyte contraction is clonal depletion of activated T cells by cytokine withdrawal induced death (CWID) and TCR restimulation induced cell death (RICD). Deficiencies in signaling components for CWID and RICD leads to autoimmunune lymphoproliferative disorders in mouse and human. The most important feature of CWID and RICD is clonal specificity, which lends great appeal as a strategy for targeted tolerance induction and treatment of autoimmune diseases, allergic disorders, and graft rejection by depleting undesired disease-causing T cells while keeping the overall host immunity intact.
Collapse
Affiliation(s)
- Lixin Zheng
- Laboratory of Immunology and Clinical Genomics Program, Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jian Li
- Laboratory of Immunology and Clinical Genomics Program, Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Michael Lenardo
- Laboratory of Immunology and Clinical Genomics Program, Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Emmanouil M, Tseveleki V, Triantafyllakou I, Nteli A, Tselios T, Probert L. A Cyclic Altered Peptide Analogue Based on Myelin Basic Protein 87-99 Provides Lasting Prophylactic and Therapeutic Protection Against Acute Experimental Autoimmune Encephalomyelitis. Molecules 2018; 23:molecules23020304. [PMID: 29385090 PMCID: PMC6017753 DOI: 10.3390/molecules23020304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/24/2022] Open
Abstract
In this report, amide-linked cyclic peptide analogues of the 87-99 myelin basic protein (MBP) epitope, a candidate autoantigen in multiple sclerosis (MS), are tested for therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE). Cyclic altered peptide analogues of MBP87-99 with substitutions at positions 91 and/or 96 were tested for protective effects when administered using prophylactic or early therapeutic protocols in MBP72-85-induced EAE in Lewis rats. The Lys91 and Pro96 of MBP87-99 are crucial T-cell receptor (TCR) anchors and participate in the formation of trimolecular complex between the TCR-antigen (peptide)-MHC (major histocompability complex) for the stimulation of encephalitogenic T cells that are necessary for EAE induction and are implicated in MS. The cyclic peptides were synthesized using Solid Phase Peptide Synthesis (SPPS) applied on the 9-fluorenylmethyloxycarboxyl/tert-butyl Fmoc/tBu methodology and combined with the 2-chlorotrityl chloride resin (CLTR-Cl). Cyclo(91-99)[Ala96]MBP87-99, cyclo(87-99)[Ala91,96]MBP87-99 and cyclo(87-99)[Arg91, Ala96]MBP87-99, but not wild-type linear MBP87-99, strongly inhibited MBP72-85-induced EAE in Lewis rats when administered using prophylactic and early therapeutic vaccination protocols. In particular, cyclo(87-99)[Arg91, Ala96]MBP87-99 was highly effective in preventing the onset and development of clinical symptoms and spinal cord pathology and providing lasting protection against EAE induction.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Myelin Basic Protein/chemical synthesis
- Myelin Basic Protein/chemistry
- Myelin Basic Protein/pharmacology
- Peptide Fragments/chemical synthesis
- Peptide Fragments/chemistry
- Peptide Fragments/pharmacology
- Peptides, Cyclic/chemical synthesis
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Rats
- Rats, Inbred Lew
Collapse
Affiliation(s)
- Mary Emmanouil
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave., 11521 Athens, Greece.
| | - Vivian Tseveleki
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave., 11521 Athens, Greece.
| | | | - Agathi Nteli
- Department of Chemistry, University of Patras, 26504 Patras, Greece.
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504 Patras, Greece.
| | - Lesley Probert
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave., 11521 Athens, Greece.
| |
Collapse
|
19
|
Blanchfield L, Sabatino JJ, Lawrence L, Evavold BD. NFM Cross-Reactivity to MOG Does Not Expand a Critical Threshold Level of High-Affinity T Cells Necessary for Onset of Demyelinating Disease. THE JOURNAL OF IMMUNOLOGY 2017; 199:2680-2691. [PMID: 28887429 DOI: 10.4049/jimmunol.1700792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/09/2017] [Indexed: 11/19/2022]
Abstract
Of interest to the etiology of demyelinating autoimmune disease is the potential to aberrantly activate CD4+ T cells due to cross-recognition of multiple self-epitopes such as has been suggested for myelin oligodendrocyte glycoprotein epitope 35-55 (MOG35-55) and neurofilament medium protein epitope 15-35 (NFM15-35). NFM15-35 is immunogenic in C57BL/6 mice but fails to induce demyelinating disease by polyclonal T cells despite having the same TCR contact residues as MOG35-55, a known encephalitogenic Ag. Despite reported cross-reactivity with MOG-specific T cells, the polyclonal response to NFM15-35 did not expand threshold numbers of MOG38-49 tetramer-positive T cells. Furthermore, NFM lacked functional synergy with MOG to promote experimental autoimmune encephalomyelitis because NFM-deficient synonymous with knockout mice developed an identical disease course to wild-type mice after challenge with MOG35-55 Single-cell analysis of encephalitogenic T cells using the peptide:MHC monomer-based two-dimensional micropipette adhesion frequency assay confirmed that NFM was not a critical Ag driving demyelinating disease because NFM18-30-specific T cells in the CNS were predominantly reactive to MOG38-49 The absence of NFM contribution to disease allowed mapping of the amino acids required for encephalitogenicity and expansion of high-affinity, MOG-specific T cells that defined the polyclonal response. Alterations of N-terminal residues outside of the NFM15-35 core nonamer promoted expansion of high-affinity, MOG38-49 tetramer-positive T cells and promoted consistent experimental autoimmune encephalomyelitis induction, unlike mice challenged with NFM15-35 Although NFM15-35 is immunogenic and cross-reactive with MOG at the polyclonal level, it fails to expand a threshold level of encephalitogenic, high-affinity MOG-specific T cells.
Collapse
Affiliation(s)
- Lori Blanchfield
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Joseph J Sabatino
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158; and
| | - Laurel Lawrence
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
20
|
Candia M, Kratzer B, Pickl WF. On Peptides and Altered Peptide Ligands: From Origin, Mode of Action and Design to Clinical Application (Immunotherapy). Int Arch Allergy Immunol 2016; 170:211-233. [PMID: 27642756 PMCID: PMC7058415 DOI: 10.1159/000448756] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
T lymphocytes equipped with clonotypic T cell antigen receptors (TCR) recognize immunogenic peptides only when presented in the context of their own major histocompatibility complex (MHC) molecules. Peptide loading to MHC molecules occurs in intracellular compartments (ER for class I and MIIC for class II molecules) and relies on the interaction of the respective peptides and peptide binding pockets on MHC molecules. Those peptide residues not engaged in MHC binding point towards the TCR screening for possible peptide MHC complex binding partners. Natural or intentional modification of both MHC binding registers and TCR interacting residues of peptides - leading to the formation of altered peptide ligands (APLs) - might alter the way peptides interact with TCRs and hence influence subsequent T cell activation events, and consequently T cell effector functions. This review article summarizes how APLs were detected and first described, current concepts of how APLs modify T cellular signaling, which biological mechanisms might force the generation of APLs in vivo, and how peptides and APLs might be used for the benefit of patients suffering from allergic or autoimmune diseases.
Collapse
Affiliation(s)
- Martín Candia
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Immunomodulation, Vienna, Austria
| |
Collapse
|
21
|
Properties of myelin altered peptide ligand cyclo(87-99)(Ala91,Ala96)MBP87-99 render it a promising drug lead for immunotherapy of multiple sclerosis. Eur J Med Chem 2015; 101:13-23. [DOI: 10.1016/j.ejmech.2015.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 12/27/2022]
|
22
|
Effects of active immunisation with myelin basic protein and myelin-derived altered peptide ligand on pain hypersensitivity and neuroinflammation. J Neuroimmunol 2015; 286:59-70. [PMID: 26298325 DOI: 10.1016/j.jneuroim.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/21/2022]
Abstract
Neuropathic pain is a debilitating condition in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Specific myelin basic protein (MBP) peptides are encephalitogenic, and myelin-derived altered peptide ligands (APLs) are capable of preventing and ameliorating EAE. We investigated the effects of active immunisation with a weakly encephalitogenic epitope of MBP (MBP87-99) and its mutant APL (Cyclo-87-99[A(91),A(96)]MBP87-99) on pain hypersensitivity and neuroinflammation in Lewis rats. MBP-treated rats exhibited significant mechanical and thermal pain hypersensitivity associated with infiltration of T cells, MHC class II expression and microglia activation in the spinal cord, without developing clinical signs of paralysis. Co-immunisation with APL significantly decreased pain hypersensitivity and neuroinflammation emphasising the important role of neuroimmune crosstalk in neuropathic pain.
Collapse
|
23
|
Sauer EL, Cloake NC, Greer JM. Taming the TCR: antigen-specific immunotherapeutic agents for autoimmune diseases. Int Rev Immunol 2015; 34:460-85. [PMID: 25970132 DOI: 10.3109/08830185.2015.1027822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current treatments for autoimmune diseases are typically non-specific anti-inflammatory agents that affect not only the autoreactive cells but also the parts of the immune system that are required to maintain health. There is a need for the development of antigen-specific therapeutic agents that can effectively prevent the autoimmune attack while leaving the rest of the immune system functioning as normal. The simplest way to achieve this is using the autoantigen itself as a tolerizing agent; however, there is some risk involved with administering a potentially pathogenic antigen. In this review, we focus instead on the development and use of modified T cell receptor (TCR) ligands, in which the peptide ligand is modified to change the response by the T cell from a disease inducing to a protective response, and still retain the antigen-specificity necessary to target the autoreactive T cells. We review the use of modified TCR ligands as therapeutic agents in animal models of autoimmunity and in human autoimmune disease, and finally consider how they need to be improved in order to use them effectively in patients with autoimmune disease.
Collapse
Affiliation(s)
- Evan L Sauer
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| | - Nancy C Cloake
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| | - Judith M Greer
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| |
Collapse
|
24
|
Perera CJ, Duffy SS, Lees JG, Kim CF, Cameron B, Apostolopoulos V, Moalem-Taylor G. Active immunization with myelin-derived altered peptide ligand reduces mechanical pain hypersensitivity following peripheral nerve injury. J Neuroinflammation 2015; 12:28. [PMID: 25885812 PMCID: PMC4340611 DOI: 10.1186/s12974-015-0253-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background T cells have been implicated in neuropathic pain that is caused by peripheral nerve injury. Immunogenic myelin basic protein (MBP) peptides have been shown to initiate mechanical allodynia in a T cell-dependent manner. Antagonistic altered peptide ligands (APLs) are peptides with substitutions in amino acid residues at T cell receptor contact sites and can inhibit T cell function and modulate inflammatory responses. In the present study, we studied the effects of immunization with MBP-derived APL on pain behavior and neuroinflammation in an animal model of peripheral nerve injury. Methods Lewis rats were immunized subcutaneously at the base of the tail with either a weakly encephalitogenic peptide of MBP (cyclo-MBP87-99) or APL (cyclo-(87-99)[A91,A96]MBP87-99) in complete Freund’s adjuvant (CFA) or CFA only (control), following chronic constriction injury (CCI) of the left sciatic nerve. Pain hypersensitivity was tested by measurements of paw withdrawal threshold to mechanical stimuli, regulatory T cells in spleen and lymph nodes were analyzed by flow cytometry, and immune cell infiltration into the nervous system was assessed by immunohistochemistry (days 10 and 30 post-CCI). Cytokines were measured in serum and nervous tissue of nerve-injured rats (day 10 post-CCI). Results Rats immunized with the APL cyclo-(87-99)[A91,A96]MBP87-99 had significantly reduced mechanical pain hypersensitivity in the ipsilateral hindpaw compared to cyclo-MBP87-99-treated and control rats. This was associated with significantly decreased infiltration of T cells and ED1+ macrophages in the injured nerve of APL-treated animals. The percentage of anti-inflammatory (M2) macrophages was significantly upregulated in the APL-treated rats on day 30 post-CCI. Compared to the control rats, microglial activation in the ipsilateral lumbar spinal cord was significantly increased in the MBP-treated rats, but was not altered in the rats immunized with the MBP-derived APL. In addition, immunization with the APL significantly increased splenic regulatory T cells. Several cytokines were significantly altered after CCI, but no significant difference was observed between the APL-treated and control rats. Conclusions These results suggest that immune deviation by active immunization with a non-encephalitogenic MBP-derived APL mediates an analgesic effect in animals with peripheral nerve injury. Thus, T cell immunomodulation warrants further investigation as a possible therapeutic strategy for the treatment of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Chamini J Perera
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| | - Samuel S Duffy
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| | - Justin G Lees
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| | - Cristina F Kim
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| | - Barbara Cameron
- Centre for Infection and Inflammation Research, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Centre for Chronic Disease Prevention and Management, Victoria University, Melbourne, VIC, Australia.
| | - Gila Moalem-Taylor
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| |
Collapse
|
25
|
Development of therapies for autoimmune disease at Stanford: a tale of multiple shots and one goal. Immunol Res 2015; 58:307-14. [PMID: 24771483 DOI: 10.1007/s12026-014-8509-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The title of this contribution on Immunology at Stanford is purposely ambiguous. One goal is the development of safe and effective therapy for autoimmune diseases. Another definition of goal is to score, and this would ultimately mean the development of an approved drug. Indeed, the efforts in my four decades at Stanford, have included the discovery and subsequent development of a monoclonal antibody to block homing to the inflamed brain, leading to natalizumab, an approved therapeutic for two autoimmune diseases: relapsing-remitting MS and for inflammatory bowel disease. Multiple attempts to develop new therapies for autoimmune disease are described here: The trimolecular complex and the immune synapse serve as one major set of targets, with attempts to inhibit particular major histocompatibility molecules, the variable regions of the T cell receptor, and CD4. Other approaches focusing on antigen-specific tolerance include ongoing attempts with tolerizing DNA vaccines in type 1 diabetes. Finally, the repurposing of popular drugs approved for other indications, including statins and inhibitors of angiotensin converting enzyme is under development and showing promise in the clinic, particularly for secondary progressive multiple sclerosis. The milieu within Stanford Immunology has helped to nurture these efforts to translate discoveries in immunology and to take them from bench to bedside.
Collapse
|
26
|
Abstract
Autoimmune diseases are common chronic disorders that not only have a major impact on the quality of life but are also potentially life-threatening. Treatment modalities that are currently favored have conferred significant clinical benefits, but they may have considerable side effects. An optimal treatment strategy for autoimmune disease would specifically target disease-associated antigens and limit systemic side effects. Similar to allergen-specific immunotherapy for allergic rhinitis, antigen-specific immunotherapy for autoimmune disease aims to induce immune deviation and promote tolerance to specific antigens. In this review, we present the current status of studies and clinical trials in both human and animal hosts that use antigen-based immunotherapy for autoimmune disease.
Collapse
Affiliation(s)
- Darren Lowell Hirsch
- Division of Allergy and Immunology, North Shore-Long Island Jewish Health System/Hofstra North Shore-LIJ School of Medicine, New Hyde Park, NY, USA
| | - Punita Ponda
- Division of Allergy and Immunology, North Shore-Long Island Jewish Health System/Hofstra North Shore-LIJ School of Medicine, New Hyde Park, NY, USA
| |
Collapse
|
27
|
Steinman L, Shoenfeld Y. From defining antigens to new therapies in multiple sclerosis: honoring the contributions of Ruth Arnon and Michael Sela. J Autoimmun 2014; 54:1-7. [PMID: 25308417 DOI: 10.1016/j.jaut.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
Abstract
Ruth Arnon and Michael Sela profoundly influenced the development of a model system to test new therapies in multiple sclerosis (MS). Their application of the animal model, known as experimental autoimmune encephalomyelitis (EAE), for the discovery of Copaxone, opened a new path for testing of drug candidates in MS. By measuring clinical, pathologic, and immunologic outcomes, the biological implications of new drugs could be elucidated. Using EAE they established the efficacy of Copaxone as a therapy for preventing and reducing paralysis and inflammation in the central nervous system without massive immune suppression. This had a huge impact on the field of drug discovery for MS. Much like the use of parabiosis to discover soluble factors associated with obesity, or the replica plating system to probe antibiotic resistance in bacteria, the pioneering research on Copaxone using the EAE model, paved the way for the discovery of other therapeutics in MS, including Natalizumab and Fingolimod. Future applications of this approach may well elucidate novel therapies for the neurodegenerative phase of multiple sclerosis associated with disease progression.
Collapse
Affiliation(s)
- Lawrence Steinman
- Beckman Center for Molecular Medicine, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
28
|
Bowes AL, Yip PK. Modulating inflammatory cell responses to spinal cord injury: all in good time. J Neurotrauma 2014; 31:1753-66. [PMID: 24934600 DOI: 10.1089/neu.2014.3429] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury can have a range of debilitating effects, permanently impacting a patient's quality of life. Initially thought to be an immune privileged site, the spinal cord is able to mount a timely and well organized inflammatory response to injury. Intricate immune cell interactions are triggered, typically consisting of a staggered multiphasic immune cell response, which can become deregulated if left unchecked. Although several immunomodulatory compounds have yielded success in experimental rodent spinal cord injury models, their translation to human clinical studies needs further consideration. Because temporal differences between rodent and human inflammatory responses to spinal cord injury do exist, drug delivery timing will be a crucial component in recovery from spinal cord injury. Given too early, immunomodulatory therapies may impede beneficial inflammatory reactions to the injured spinal cord or even miss the opportunity to dampen delayed harmful autoimmune processes. Therefore, this review aims to summarize the temporal inflammatory response to spinal cord injury, as well as detailing specific immune cell functions. By clearly defining the chronological order of inflammatory events after trauma, immunomodulatory drug delivery timing can be better optimized. Further, we compare spinal cord injury-induced inflammatory responses in rodent and human studies, enabling clinicians to consider these differences when initiating clinical trials. Improved understanding of the cellular immune response after spinal cord injury would enhance the efficacy of immunomodulatory agents, enabling combined therapies to be considered.
Collapse
Affiliation(s)
- Amy L Bowes
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London, United Kingdom
| | | |
Collapse
|
29
|
Belogurov A, Kudriaeva A, Kuzina E, Smirnov I, Bobik T, Ponomarenko N, Kravtsova-Ivantsiv Y, Ciechanover A, Gabibov A. Multiple sclerosis autoantigen myelin basic protein escapes control by ubiquitination during proteasomal degradation. J Biol Chem 2014; 289:17758-66. [PMID: 24739384 PMCID: PMC4067209 DOI: 10.1074/jbc.m113.544247] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The vast majority of cellular proteins are degraded by the 26S proteasome after their ubiquitination. Here, we report that the major component of the myelin multilayered membrane sheath, myelin basic protein (MBP), is hydrolyzed by the 26S proteasome in a ubiquitin-independent manner both in vitro and in mammalian cells. As a proteasomal substrate, MBP reveals a distinct and physiologically relevant concentration range for ubiquitin-independent proteolysis. Enzymatic deimination prevents hydrolysis of MBP by the proteasome, suggesting that an abnormally basic charge contributes to its susceptibility toward proteasome-mediated degradation. To our knowledge, our data reveal the first case of a pathophysiologically important autoantigen as a ubiquitin-independent substrate of the 26S proteasome.
Collapse
Affiliation(s)
- Alexey Belogurov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia, the Institute of Gene Biology, Russian Academy of Sciences, 117334 Moscow, Russia
| | - Anna Kudriaeva
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia
| | - Ekaterina Kuzina
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia, the Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia, and
| | - Ivan Smirnov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia, the Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia, and
| | - Tatyana Bobik
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia
| | - Natalia Ponomarenko
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia
| | - Yelena Kravtsova-Ivantsiv
- the Cancer and Vascular Biology Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Aaron Ciechanover
- the Cancer and Vascular Biology Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Alexander Gabibov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia, the Institute of Gene Biology, Russian Academy of Sciences, 117334 Moscow, Russia, the Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia, and
| |
Collapse
|
30
|
Amelioration of ovalbumin-induced allergic airway disease following Der p 1 peptide immunotherapy is not associated with induction of IL-35. Mucosal Immunol 2014; 7:379-90. [PMID: 23945544 DOI: 10.1038/mi.2013.56] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 07/01/2013] [Indexed: 02/04/2023]
Abstract
In the present study, we show therapeutic amelioration of established ovalbumin (OVA)-induced allergic airway disease following house dust mite (HDM) peptide therapy. Mice were sensitized and challenged with OVA and HDM protein extract (Dermatophagoides species) to induce dual allergen sensitization and allergic airway disease. Treatment of allergic mice with peptides derived from the major allergen Der p 1 suppressed OVA-induced airway hyperresponsiveness, tissue eosinophilia, and goblet cell hyperplasia upon rechallenge with allergen. Peptide treatment also suppressed OVA-specific T-cell proliferation. Resolution of airway pathophysiology was associated with a reduction in recruitment, proliferation, and effector function of T(H)2 cells and decreased interleukin (IL)-17⁺ T cells. Furthermore, peptide immunotherapy induced the regulatory cytokine IL-10 and increased the proportion of Fox p3⁺ cells among those expressing IL-10. Tolerance to OVA was not associated with increased IL-35. In conclusion, our results provide in vivo evidence for the creation of a tolerogenic environment following HDM peptide immunotherapy, leading to the therapeutic amelioration of established OVA-induced allergic airway disease.
Collapse
|
31
|
Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr Top Microbiol Immunol 2014; 380:39-68. [PMID: 25004813 DOI: 10.1007/978-3-662-43492-5_3] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
T regulatory Type 1 (Tr1) cells are adaptive T regulatory cells characterized by the ability to secrete high levels of IL-10 and minimal amounts of IL-4 and IL-17. Recently, CD49b and LAG-3 have been identified as Tr1-cell-specific biomarkers in mice and humans. Tr1 cells suppress T-cell- and antigen-presenting cell- (APC) responses primarily via the secretion of IL-10 and TGF-β. In addition, Tr1 cells release granzyme B and perforin and kill myeloid cells. Tr1 cells inhibit T cell responses also via cell-contact dependent mechanisms mediated by CTLA-4 or PD-1, and by disrupting the metabolic state of T effector cells via the production of the ectoenzymes CD39 and CD73. Tr1 cells were first described in peripheral blood of patients who developed tolerance after HLA-mismatched fetal liver hematopoietic stem cell transplant. Since their discovery, Tr1 cells have been proven to be important in maintaining immunological homeostasis and preventing T-cell-mediated diseases. Furthermore, the possibility to generate and expand Tr1 cells in vitro has led to their utilization as cellular therapy in humans. In this chapter we summarize the unique and distinctive biological properties of Tr1 cells, the well-known and newly discovered Tr1-cell biomarkers, and the different methods to induce Tr1 cells in vitro and in vivo. We also address the role of Tr1 cells in infectious diseases, autoimmunity, and transplant rejection in different pre-clinical disease models and in patients. Finally, we highlight the pathological settings in which Tr1 cells can be beneficial to prevent or to cure the disease.
Collapse
|
32
|
Tian DH, Perera CJ, Apostolopoulos V, Moalem-Taylor G. Effects of vaccination with altered Peptide ligand on chronic pain in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Front Neurol 2013; 4:168. [PMID: 24194728 PMCID: PMC3810649 DOI: 10.3389/fneur.2013.00168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/16/2013] [Indexed: 12/28/2022] Open
Abstract
Neuropathic pain is a chronic symptom of multiple sclerosis (MS) and affects nearly half of all MS sufferers. A key instigator of this pain is the pro-inflammatory response in MS. We investigated the behavioral effects of immunization with a mutant peptide of myelin basic protein (MBP), termed altered peptide ligand (APL), known to initiate immune deviation from a pro-inflammatory state to an anti-inflammatory response in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Male and female Lewis rats were injected with vehicle control or with varying doses of 50 or 100 μg guinea pig MBP in combination with or without APL. APL-treated animals established significantly lower disease severity compared to encephalitogenic MBP-treated animals. Animals with EAE developed mechanical, but not thermal pain hypersensitivity. Mechanical pain sensitivities were either improved or normalized during periods of clinical disease in male and female APL-treated animals as compared to the encephalitogenic group. No significant changes to thermal latency were observed upon co-immunization with APL. Together these data indicate that APL ameliorates disease states and selectively mediates an analgesic effect on EAE animals.
Collapse
Affiliation(s)
- David H Tian
- School of Medical Sciences, University of New South Wales , Sydney, NSW , Australia
| | | | | | | |
Collapse
|
33
|
Badawi AH, Siahaan TJ. Immune modulating peptides for the treatment and suppression of multiple sclerosis. Clin Immunol 2012; 144:127-38. [PMID: 22722227 DOI: 10.1016/j.clim.2012.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease in which the immune system recognizes proteins of the myelin sheath as antigenic, thus initiating an inflammatory reaction in the central nervous system. This leads to demyelination of the axons, breakdown of the blood-brain barrier, and lesion formation. Current therapies for the treatment of MS are generally non-specific and weaken the global immune system, thus making the individual susceptible to opportunistic infections. Antigenic peptides and their derivatives are becoming more prevalent for investigation as therapeutic agents for MS because they possess immune-specific characteristics. In addition, other peptides that target vital components of the inflammatory immune response have also been developed. Therefore, the objectives of this review are to (a) summarize the immunological basis for the development of MS, (b) discuss specific and non-specific peptides tested in EAE and in humans, and (c) briefly address some problems and potential solutions with these novel therapies.
Collapse
Affiliation(s)
- Ahmed H Badawi
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | | |
Collapse
|
34
|
Abstract
T cell recognition of antigen is a crucial aspect of the adaptive immune response. One of the most common means of pathogen immune evasion is mutation of T cell epitopes. T cell recognition of such ligands can result in a variety of outcomes including activation, apoptosis and anergy. The ability of a given T cell to respond to a specific peptide-MHC ligand is regulated by a number of factors, including the affinity, on- and off-rates and half-life of the TCR-peptide-MHC interaction. Interaction of T cells with low-potency ligands results in unique signaling patterns and requires engagement with a larger number of T cell receptors than agonist ligands. This review will address these aspects of T cell interaction with weak ligands and the ways in which these ligands have been utilized therapeutically.
Collapse
Affiliation(s)
- Lindsay J. Edwards
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
35
|
Abstract
Specific immunotherapy (SIT) with extracts containing intact allergen molecules is clinically efficacious, but associated with frequent adverse events related to the allergic sensitization of the patient. As a result, treatment is initiated in an incremental dose fashion which ultimately achieves a plateau (maintenance dose) that may be continued for several years. Reduction of allergic adverse events may allow safer and more rapid treatment Thus, many groups have developed and evaluated strategies to reduce allergenicity whilst maintaining immunogenicity, the latter being required to achieve specific modulation of the immune response. Peptide immunotherapy can be used to target T and/or B cells in an antigen-specific manner. To date, only approaches that target T cells have been clinically evaluated. Short, synthetic peptides representing immunodominant T cell epitopes of major allergens are able to modulate allergen-specific T cell responses in the absence of IgE cross linking and activation of effector cells. Here we review clinical and mechanistic studies associated with peptide immunotherapy targeting allergy to cats or to bee venom.
Collapse
Affiliation(s)
- Mark Larché
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, HSC 4H20, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
36
|
Karin N. The multiple faces of CXCL12 (SDF-1alpha) in the regulation of immunity during health and disease. J Leukoc Biol 2010; 88:463-73. [PMID: 20501749 DOI: 10.1189/jlb.0909602] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemokines are a group of small, structurally related molecules that regulate the trafficking of various types of leukocytes through interactions with a subset of 7-transmembrane G-protein-coupled receptors. As key chemoattractants of inflammatory leukocytes, chemokines have been marked as potential targets for neutralization in autoimmune diseases. Cancer cells also express chemokines, where they function as survival/growth factors and/or angiogenic factors that promote tumor development and angiogenesis. Accordingly, these functions make them attractive targets for therapy of these diseases. Recently, we reported that one of these chemokines CXCL12 (SDF-1alpha) functions as an anti-inflammatory chemokine during autoimmune inflammatory responses and explored the mechanistic basis of this function. As a pleiotropic chemokine, CXCL12 participates in the regulation of tissue homeostasis, immune surveillance, autoimmunity, and cancer. This chemokine is constitutively expressed in the BM and various tissues, which enables it to regulate the trafficking and localization of immature and maturing leukocytes, including BM stem cells, neutrophils, T cells, and monocytic cells. We have shown recently that CXCL12 increases immunological tolerance in autoimmune diseases by polarizing Tregs and by doing so, restrains the progression of these diseases. This finding suggests a possible use of stabilized rCXCL12 as a potential drug for therapy of these diseases and targeted neutralization of CXCL12 for therapy of cancer diseases. The current review explores the different biological properties of CXCL12 and discusses the implications of CXCL12-based therapies for autoimmunity and cancer diseases.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Bruce Rappaport Faculty of Medicine and Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 1 Efron St., Haifa 31096, Israel.
| |
Collapse
|
37
|
Katsara M, Yuriev E, Ramsland PA, Tselios T, Deraos G, Lourbopoulos A, Grigoriadis N, Matsoukas J, Apostolopoulos V. Altered peptide ligands of myelin basic protein ( MBP87-99 ) conjugated to reduced mannan modulate immune responses in mice. Immunology 2010; 128:521-33. [PMID: 19930042 DOI: 10.1111/j.1365-2567.2009.03137.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mutations of peptides to generate altered peptide ligands, capable of switching immune responses from T helper 1 (Th1) to T helper 2 (Th2), are promising candidates for the immunotherapy of autoimmune diseases such as multiple sclerosis (MS). We synthesized two mutant peptides from myelin basic protein 87-99 (MBP(87-99)), an immunodominant peptide epitope identified in MS. Mutations of residues K(91) and P(96), known to be critical T-cell receptor (TCR) contact sites, resulted in the mutant peptides [R(91), A(96)]MBP(87-99) and [A(91), A(96)]MBP(87-99). Immunization of mice with these altered peptide ligands emulsified in complete Freund's adjuvant induced both interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) responses compared with only IFN-gamma responses induced to the native MBP(87-99) peptide. It was of interest that [R(91), A(96)]MBP(87-99) conjugated to reduced mannan induced 70% less IFN-gamma compared with the native MBP(87-99) peptide. However, [A(91), A(96)]MBP(87-99) conjugated to reduced mannan did not induce IFN-gamma-secreting T cells, but elicited very high levels of interleukin-4 (IL-4). Furthermore, antibodies generated to [A(91), A(96)]MBP(87-99) peptide conjugated to reduced mannan did not cross-react with the native MBP(87-99) peptide. By molecular modelling of the mutant peptides in complex with major histocompatibility complex (MHC) class II, I-A(s), novel interactions were noted. It is clear that the double-mutant peptide analogue [A(91), A(96)]MBP(87-99) conjugated to reduced mannan is able to divert immune responses from Th1 to Th2 and is a promising mutant peptide analogue for use in studies investigating potential treatments for MS.
Collapse
Affiliation(s)
- Maria Katsara
- Immunology and Vaccine, and Structural Immunology Laboratories, Burnet Institute, Centre for Immunology, AMREP, Prahran, Vic., Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Manipulating antigenic ligand strength to selectively target myelin-reactive CD4+ T cells in EAE. J Neuroimmune Pharmacol 2009; 5:176-88. [PMID: 19904613 DOI: 10.1007/s11481-009-9181-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
The development of antigen-specific therapies for the selective tolerization of autoreactive T cells remains the Holy Grail for the treatment of T-cell-mediated autoimmune diseases such as multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). This quest remains elusive, however, as the numerous antigen-specific strategies targeting myelin-specific T cells over the years have failed to result in clinical success. In this review, we revisit the antigen-based therapies used in the treatment of myelin-specific CD4+ T cells in the context of the functional avidity and the strength of signal of the encephalitogenic CD4+ T cell repertoire. In light of differences in activation thresholds, we propose that autoreactive T cells are not all equal, and therefore tolerance induction strategies must incorporate ligand strength in order to be successful in treating EAE and ultimately the human disease MS.
Collapse
|
39
|
Iwanami K, Matsumoto I, Yoshiga Y, Inoue A, Kondo Y, Yamamoto K, Tanaka Y, Minami R, Hayashi T, Goto D, Ito S, Nishimura Y, Sumida T. Altered peptide ligands inhibit arthritis induced by glucose-6-phosphate isomerase peptide. Arthritis Res Ther 2009; 11:R167. [PMID: 19900268 PMCID: PMC3003534 DOI: 10.1186/ar2854] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 09/23/2009] [Accepted: 11/09/2009] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Immunosuppressants, including anti-TNFalpha antibodies, have remarkable effects in rheumatoid arthritis; however, they increase infectious events. The present study was designed to examine the effects and immunological change of action of altered peptide ligands (APLs) on glucose-6-phosphate isomerase (GPI) peptide-induced arthritis. METHODS DBA/1 mice were immunized with hGPI325-339, and cells of draining lymph node (DLN) were stimulated with hGPI325-339 to investigate the T-cell receptor (TCR) repertoire of antigen-specific CD4+ T cells by flow cytometry. Twenty types of APLs with one amino acid substitution at a TCR contact site of hGPI325-339 were synthesized. CD4+ T cells primed with human GPI and antigen-presenting cells were co-cultured with each APL and cytokine production was measured by ELISA to identify antagonistic APLs. Antagonistic APLs were co-immunized with hGPI325-339 to investigate whether arthritis could be antigen-specifically inhibited by APL. After co-immunization, DLN cells were stimulated with hGPI325-339 or APL to investigate Th17 and regulatory T-cell population by flow cytometry, and anti-mouse GPI antibodies were measured by ELISA. RESULTS Human GPI325-339-specific Th17 cells showed predominant usage of TCRVbeta8.1 8.2. Among the 20 synthesized APLs, four (APL 6; N329S, APL 7; N329T, APL 12; G332A, APL 13; G332V) significantly reduced IL-17 production by CD4+ T cells in the presence of hGPI325-339. Co-immunization with each antagonistic APL markedly prevented the development of arthritis, especially APL 13 (G332V). Although co-immunization with APL did not affect the population of Th17 and regulatory T cells, the titers of anti-mouse GPI antibodies in mice co-immunized with APL were significantly lower than in those without APL. CONCLUSIONS We prepared antagonistic APLs that antigen-specifically inhibited the development of experimental arthritis. Understanding the inhibitory mechanisms of APLs may pave the way for the development of novel therapies for arthritis induced by autoimmune responses to ubiquitous antigens.
Collapse
Affiliation(s)
- Keiichi Iwanami
- Department of Clinical Immunology, Doctoral Program in Clinical Science, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Katsara M, Minigo G, Plebanski M, Apostolopoulos V. The good, the bad and the ugly: how altered peptide ligands modulate immunity. Expert Opin Biol Ther 2009; 8:1873-84. [PMID: 18990075 DOI: 10.1517/14712590802494501] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The basis of T cell immune responses is the specific recognition of an immunogenic peptide epitope by a T cell receptor. Peptide alterations of such T cell epitopes with single or few amino acid variations can have drastic effects on the outcome of this recognition. These altered peptide ligands can act as modulators of immune responses as they are capable of downregulating or upregulating responses. OBJECTIVE/METHODS We review how altered peptide ligands can have 'good' 'bad' and 'ugly' outcomes in treating diseases. RESULTS/CONCLUSION Altered peptide ligands have been used as immunotherapeutics in autoimmune (and allergic) diseases, infectious diseases and cancer. In the next five years we anticipate seeing a number of altered peptide ligands in clinical trials, progressing from contradictory classifications of good, bad or ugly, to the exciting outcome of 'useful'.
Collapse
Affiliation(s)
- Maria Katsara
- Immunology and Vaccine Laboratory, The Macfarlane Burnet Institute incorporating The Austin Research Institute, Studley Road, Heidelberg, VIC 3084, Australia
| | | | | | | |
Collapse
|
41
|
A double mutation of MBP(83-99) peptide induces IL-4 responses and antagonizes IFN-gamma responses. J Neuroimmunol 2008; 200:77-89. [PMID: 18675465 DOI: 10.1016/j.jneuroim.2008.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/05/2008] [Accepted: 06/09/2008] [Indexed: 11/20/2022]
Abstract
A number of treatment options are available to multiple sclerosis patients, however this needs to be improved. Herein, we designed and synthesized a number of peptides by mutating principal TCR contact residues based on MBP(83-99) peptide epitope. Immunization of SJL/J mice with MBP(83-99) and mutant [A(91)]MBP(83-99), [E(91)]MBP(83-99), [F(91)]MBP(83-99), [Y(91)]MBP(83-99), and [R(91), A(96)]MBP(83-99) peptides, induced IFN-gamma, and only [R(91), A(96)]MBP(83-99) mutant peptide was able to induce IL-4 secretion by T cells. T cells against the native MBP(83-99) peptide cross-reacted with all peptides except [Y(91)]MBP(83-99) and [R(91),A(96)]MBP(83-99). The double mutant [R(91), A(96)]MBP(83-99) was able to antagonize IFN-gamma production in vitro by T cells against the native MBP(83-99) peptide. Antibodies generated to [R(91), A(96)]MBP(83-99) did not cross-react with whole MBP protein. Molecular modeling between peptide analogs and H2 I-A(s) demonstrated novel interactions. The [R(91), A(96)]MBP(83-99) double mutant peptide analog is the most promising for further therapeutic studies.
Collapse
|
42
|
|
43
|
Spack EG. Clinical Trials Report: Central & Peripheral Nervous Systems: Drugs in development for the treatment of multiple sclerosis: antigen-specific therapies. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.10.1331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Croxford JL, Pryce G, Jackson SJ, Ledent C, Giovannoni G, Pertwee RG, Yamamura T, Baker D. Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. J Neuroimmunol 2008; 193:120-9. [PMID: 18037503 DOI: 10.1016/j.jneuroim.2007.10.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 10/26/2007] [Accepted: 10/29/2007] [Indexed: 11/20/2022]
Abstract
Cannabinoids may exhibit symptom control in multiple sclerosis (MS). We show here that cannabinoid receptor (CBR) agonists can also be immunosuppressive and neuroprotective in models of MS. Immunosuppression was associated with reduced: myelin-specific T cell responses; central nervous system infiltration and reduced clinical disease. This was found to be largely CB(1)R-dependent and only occurred at doses that induced significant cannabimimetic effects that would not be achieved clinically. Lower, non-immunosuppressive doses of cannabinoids however, slowed the accumulation of nerve loss and disability, despite failing to inhibit relapses. This further highlights the neuroprotective potential of cannabinoids to slow the progression of MS.
Collapse
Affiliation(s)
- J Ludovic Croxford
- Department of Neuroinflammation, Institute of Neurology, University College London, London WC1N 1PJ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The adaptive immune response in multiple sclerosis (MS) targets various myelin proteins and even some inducible heat shock proteins. A few attempts have been made to tolerize relapsing-remitting patients with MS to either full-length myelin basic protein or to a key peptide epitope between residues 83-99. These trials have demonstrated that this approach may potentially provide benefit to patients with relapsing- remitting MS. However, manipulation of responses to myelin proteins can have deleterious effects. The immune response to myelin components is positioned at a key tipping point in the pathophysiology of the disease. Clarification of the key target antigens in MS, and better understanding of practical methods to attain tolerance to a wide variety of myelin and neuronal molecules will provide the basis for the ultimately successful antigen specific therapy.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Miller SD, Turley DM, Podojil JR. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat Rev Immunol 2007; 7:665-77. [PMID: 17690713 DOI: 10.1038/nri2153] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of safe and effective antigen-specific therapies is needed to treat patients with autoimmune diseases. These therapies must allow for the specific tolerization of self-reactive immune cells without altering host immunity to infectious insults. Experimental models and clinical trials for the treatment of autoimmune disease have identified putative mechanisms by which antigen-specific therapies induce tolerance. Although advances have been made in the development of efficient antigen-specific therapies, translating these therapies from bench to bedside has remained difficult. Here, we discuss the recent advances in our understanding of antigen-specific therapies for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
47
|
Kobayashi N, Kobayashi H, Gu L, Malefyt T, Siahaan TJ. Antigen-specific suppression of experimental autoimmune encephalomyelitis by a novel bifunctional peptide inhibitor. J Pharmacol Exp Ther 2007; 322:879-86. [PMID: 17522343 DOI: 10.1124/jpet.107.123257] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study is to evaluate the activity of a novel peptide, i.e., bifunctional peptide inhibitor (BPI), which targets the immunological synapse and inhibits autoimmune responses in an antigen-specific manner. Proteolipid protein (PLP)-BPI was designed by conjugating two peptides, an encephalitogenic epitope of proteolipid protein (PLP(139-151)) and an intercellular adhesion molecule-1-binding peptide derived from alpha(L) integrin (CD11a(237-246)), via a spacer peptide. The therapeutic effect of PLP-BPI was studied in experimental autoimmune encephalomyelitis (EAE) in female SJL/J mice as a model for human multiple sclerosis. Mice that received i.v. injections of PLP-BPI showed significantly lower EAE disease scores and incidence than those treated with vehicle, PLP(139-151) peptide only, CD11a(237-246) peptide only, unlinked mixture of PLP(139-151), and CD11a(237-246) peptides, or other control peptides. Multiple injections of antigenic peptide can produce anaphylactic responses; interestingly, PLP-BPI-treated animals have significantly lower anaphylactic response than do the PLP(139-151)-treated group. Therefore, PLP-BPI can effectively inhibit the disease severity and incidence of EAE with a lower possibility of inducing fatal anaphylaxis. These results suggest that BPI-type molecules can be used to treat different autoimmune diseases in which antigenic epitopes have been identified.
Collapse
MESH Headings
- Amino Acid Sequence
- Anaphylaxis/chemically induced
- Anaphylaxis/immunology
- Animals
- Antigens/chemistry
- Antigens/immunology
- Antigens/therapeutic use
- Body Weight/drug effects
- CD11a Antigen/chemistry
- Capsid Proteins/chemistry
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Interferon-gamma/metabolism
- Interleukin-10/metabolism
- Interleukin-4/metabolism
- Mice
- Mice, Inbred Strains
- Models, Immunological
- Molecular Sequence Data
- Myelin Proteolipid Protein/chemistry
- Myelin Proteolipid Protein/immunology
- Ovalbumin/chemistry
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Peptides/immunology
- Peptides/therapeutic use
- Peptides/toxicity
- Spleen/cytology
- Spleen/immunology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Time Factors
- Transforming Growth Factor beta/metabolism
- Vaccination
Collapse
Affiliation(s)
- Naoki Kobayashi
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047-3729, USA
| | | | | | | | | |
Collapse
|
48
|
Mantzourani ED, Platts JA, Brancale A, Mavromoustakos TM, Tselios TV. Molecular dynamics at the receptor level of immunodominant myelin basic protein epitope 87-99 implicated in multiple sclerosis and its antagonists altered peptide ligands: triggering of immune response. J Mol Graph Model 2007; 26:471-81. [PMID: 17392002 DOI: 10.1016/j.jmgm.2007.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/14/2007] [Accepted: 02/20/2007] [Indexed: 11/18/2022]
Abstract
This work reports molecular dynamics studies at the receptor level of the immunodominant myelin basic protein (MBP) epitope 87-99 implicated in multiple sclerosis, and its antagonists altered peptide ligands (APLs), namely [Arg91, Ala96] MBP87-99 and [Ala91,96] MBP87-99. The interaction of each peptide ligand with the receptor human leukocyte antigen HLA-DR2b was studied, starting from X-ray structure with pdb code: 1ymm. This is the first such study of APL-HLA-DR2b complexes, and hence the first attempt to gain a better understanding of the molecular recognition mechanisms that underlie TCR antagonism by these APLs. The amino acids His88 and Phe89 serve as T-cell receptor (TCR) anchors in the formation of the trimolecular complex TCR-peptide-HLA-DR2b, where the TCR binds in a diagonal, off-centered mode to the peptide-HLA complex. The present findings indicate that these two amino acids have a different orientation in the APLs [Arg91, Ala96] MBP87-99 and [Ala91,96] MBP87-99: His88 and Phe89 remain buried in HLA grooves and are not available for interaction with the TCR. We propose that this different topology could provide a possible mechanism of action for TCR antagonism.
Collapse
Affiliation(s)
- Efthimia D Mantzourani
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35 Athens, Greece
| | | | | | | | | |
Collapse
|
49
|
Abstract
T lymphocytes play a central role in the pathogenesis of multiple sclerosis (MS) (Zhang et al., 1992). Both CD4+ and CD8+ T cells have been demonstrated in MS lesions, with CD4+ T cells predominating in acute lesions and CD8+ T cells being observed more frequently in chronic lesions (Raine, 1994). Additionally, T cells are found in all four of the described histopathologic subtypes of MS (Lucchinetti et al., 2000). Activated myelin-reactive CD4+ T cells are present in the blood and cerebrospinal fluid (CSF) of MS patients; in contrast, only nonactivated myelin-reactive T cells are present in the blood of controls (Zhang et al., 1994). The success of several T-cell-targeted therapies in MS reinforces the importance of the role of the T cell in MS pathogenesis. Here, we outline basic concepts in CD4+ T-cell immunology and summarize the current understanding of the role of CD4+ T cells in the pathogenesis of MS.
Collapse
Affiliation(s)
- Tanuja Chitnis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
50
|
|