1
|
Shah M, Rafiq S, Woo HG. Challenges and considerations in multi-epitope vaccine design surrounding toll-like receptors. Trends Pharmacol Sci 2024; 45:1104-1118. [PMID: 39603961 DOI: 10.1016/j.tips.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/18/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Epitope-based peptide vaccines elicit targeted immune responses, making them effective for diseases requiring focused immune activation, such as targeting cancer-associated antigens. Strategies like peptide cocktails and mRNA-based epitope vaccines have revolutionized the field; however, the term 'multi-epitope peptide vaccine' has been overextended, especially concerning the use of toll-like receptors (TLRs), their ligands, and peptide linkers. TLRs are often conflated with T cell receptors (TCRs) and B cell receptors (BCRs), which recognize immunogenic peptides within vaccines. This Opinion clarifies the role of TLRs and highlights challenges linked to their indiscriminate use in multi-epitope vaccine design. While peptide linkers are crucial in creating multivalent vaccines, their unsupervised application is increasing and warrants attention. After highlighting their role in advancing peptide vaccines, we discuss critical factors in linker implementation and caution against their misuse, which could undermine vaccines' efficacy.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Sobia Rafiq
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hyun G Woo
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea; Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
2
|
Shah SA, Oakes RS, Jewell CM. Advancing immunotherapy using biomaterials to control tissue, cellular, and molecular level immune signaling in skin. Adv Drug Deliv Rev 2024; 209:115315. [PMID: 38670230 PMCID: PMC11111363 DOI: 10.1016/j.addr.2024.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Immunotherapies have been transformative in many areas, including cancer treatments, allergies, and autoimmune diseases. However, significant challenges persist in extending the reach of these technologies to new indications and patients. Some of the major hurdles include narrow applicability to patient groups, transient efficacy, high cost burdens, poor immunogenicity, and side effects or off-target toxicity that results from lack of disease-specificity and inefficient delivery. Thus, there is a significant need for strategies that control immune responses generated by immunotherapies while targeting infection, cancer, allergy, and autoimmunity. Being the outermost barrier of the body and the first line of host defense, the skin presents a unique immunological interface to achieve these goals. The skin contains a high concentration of specialized immune cells, such as antigen-presenting cells and tissue-resident memory T cells. These cells feature diverse and potent combinations of immune receptors, providing access to cellular and molecular level control to modulate immune responses. Thus, skin provides accessible tissue, cellular, and molecular level controls that can be harnessed to improve immunotherapies. Biomaterial platforms - microneedles, nano- and micro-particles, scaffolds, and other technologies - are uniquely capable of modulating the specialized immunological niche in skin by targeting these distinct biological levels of control. This review highlights recent pre-clinical and clinical advances in biomaterial-based approaches to target and modulate immune signaling in the skin at the tissue, cellular, and molecular levels for immunotherapeutic applications. We begin by discussing skin cytoarchitecture and resident immune cells to establish the biological rationale for skin-targeting immunotherapies. This is followed by a critical presentation of biomaterial-based pre-clinical and clinical studies aimed at controlling the immune response in the skin for immunotherapy and therapeutic vaccine applications in cancer, allergy, and autoimmunity.
Collapse
Affiliation(s)
- Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD, 21201, USA.
| |
Collapse
|
3
|
Izosimova AV, Shabalkina AV, Myshkin MY, Shurganova EV, Myalik DS, Ryzhichenko EO, Samitova AF, Barsova EV, Shagina IA, Britanova OV, Yuzhakova DV, Sharonov GV. Local Enrichment with Convergence of Enriched T-Cell Clones Are Hallmarks of Effective Peptide Vaccination against B16 Melanoma. Vaccines (Basel) 2024; 12:345. [PMID: 38675728 PMCID: PMC11487401 DOI: 10.3390/vaccines12040345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Some peptide anticancer vaccines elicit a strong T-cell memory response but fail to suppress tumor growth. To gain insight into tumor resistance, we compared two peptide vaccines, p20 and p30, against B16 melanoma, with both exhibiting good in vitro T-cell responses but different tumor suppression abilities. METHODS We compared activation markers and repertoires of T-lymphocytes from tumor-draining (dLN) and non-draining (ndLN) lymph nodes for the two peptide vaccines. RESULTS We showed that the p30 vaccine had better tumor control as opposed to p20. p20 vaccine induced better in vitro T-cell responsiveness but failed to suppress tumor growth. Efficient antitumor vaccination is associated with a higher clonality of cytotoxic T-cells (CTLs) in dLNs compared with ndLNs and the convergence of most of the enriched clones. With the inefficient p20 vaccine, the most expanded and converged were clones of the bystander T-cells without an LN preference. CONCLUSIONS Here, we show that the clonality and convergence of the T-cell response are the hallmarks of efficient antitumor vaccination. The high individual and methodological dependencies of these parameters can be avoided by comparing dLNs and ndLNs.
Collapse
Affiliation(s)
- Anna Vyacheslavovna Izosimova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod 603950, Russia; (A.V.I.); (E.V.S.); (D.S.M.); (D.V.Y.)
| | - Alexandra Valerievna Shabalkina
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; (A.V.S.); (E.O.R.); (E.V.B.); (I.A.S.); (O.V.B.)
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia;
| | - Mikhail Yurevich Myshkin
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia;
| | - Elizaveta Viktorovna Shurganova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod 603950, Russia; (A.V.I.); (E.V.S.); (D.S.M.); (D.V.Y.)
| | - Daria Sergeevna Myalik
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod 603950, Russia; (A.V.I.); (E.V.S.); (D.S.M.); (D.V.Y.)
- Pathoanatomical Department, Nizhny Novgorod Regional Clinical Cancer Hospital, Nizhny Novgorod 603126, Russia
| | - Ekaterina Olegovna Ryzhichenko
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; (A.V.S.); (E.O.R.); (E.V.B.); (I.A.S.); (O.V.B.)
| | - Alina Faritovna Samitova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia;
| | - Ekaterina Vladimirovna Barsova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; (A.V.S.); (E.O.R.); (E.V.B.); (I.A.S.); (O.V.B.)
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia;
| | - Irina Aleksandrovna Shagina
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; (A.V.S.); (E.O.R.); (E.V.B.); (I.A.S.); (O.V.B.)
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia;
| | - Olga Vladimirovna Britanova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; (A.V.S.); (E.O.R.); (E.V.B.); (I.A.S.); (O.V.B.)
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia;
| | - Diana Vladimirovna Yuzhakova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod 603950, Russia; (A.V.I.); (E.V.S.); (D.S.M.); (D.V.Y.)
| | - George Vladimirovich Sharonov
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod 603950, Russia; (A.V.I.); (E.V.S.); (D.S.M.); (D.V.Y.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; (A.V.S.); (E.O.R.); (E.V.B.); (I.A.S.); (O.V.B.)
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia;
| |
Collapse
|
4
|
Katsikis PD, Ishii KJ, Schliehe C. Challenges in developing personalized neoantigen cancer vaccines. Nat Rev Immunol 2024; 24:213-227. [PMID: 37783860 PMCID: PMC12001822 DOI: 10.1038/s41577-023-00937-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/04/2023]
Abstract
The recent success of cancer immunotherapies has highlighted the benefit of harnessing the immune system for cancer treatment. Vaccines have a long history of promoting immunity to pathogens and, consequently, vaccines targeting cancer neoantigens have been championed as a tool to direct and amplify immune responses against tumours while sparing healthy tissue. In recent years, extensive preclinical research and more than one hundred clinical trials have tested different strategies of neoantigen discovery and vaccine formulations. However, despite the enthusiasm for neoantigen vaccines, proof of unequivocal efficacy has remained beyond reach for the majority of clinical trials. In this Review, we focus on the key obstacles pertaining to vaccine design and tumour environment that remain to be overcome in order to unleash the true potential of neoantigen vaccines in cancer therapy.
Collapse
Affiliation(s)
- Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Christopher Schliehe
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
5
|
Khazaei S, Varela-Calviño R, Rad-Malekshahi M, Quattrini F, Jokar S, Rezaei N, Balalaie S, Haririan I, Csaba N, Garcia-Fuentes M. Self-assembled peptide/polymer hybrid nanoplatform for cancer immunostimulating therapies. Drug Deliv Transl Res 2024; 14:455-473. [PMID: 37721693 PMCID: PMC10761384 DOI: 10.1007/s13346-023-01410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/19/2023]
Abstract
Integrating peptide epitopes in self-assembling materials is a successful strategy to obtain nanovaccines with high antigen density and improved efficacy. In this study, self-assembling peptides containing MAGE-A3/PADRE epitopes were designed to generate functional therapeutic nanovaccines. To achieve higher stability, peptide/polymer hybrid nanoparticles were formulated by controlled self-assembly of the engineered peptides. The nanoparticles showed good biocompatibility to both human red blood- and dendritic cells. Incubation of the nanoparticles with immature dendritic cells triggered immune effects that ultimately activated CD8 + cells. The antigen-specific and IgG antibody responses of healthy C57BL/6 mice vaccinated with the nanoparticles were analyzed. The in vivo results indicate a specific response to the nanovaccines, mainly mediated through a cellular pathway. This research indicates that the immunogenicity of peptide epitope vaccines can be effectively enhanced by developing self-assembled peptide-polymer hybrid nanostructures.
Collapse
Affiliation(s)
- Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ruben Varela-Calviño
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Federico Quattrini
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Noemi Csaba
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Edwards C, Shah SA, Gebhardt T, Jewell CM. Exploiting Unique Features of Microneedles to Modulate Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302410. [PMID: 37380199 PMCID: PMC10753036 DOI: 10.1002/adma.202302410] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Microneedle arrays (MNAs) are small patches containing hundreds of short projections that deliver signals directly to dermal layers without causing pain. These technologies are of special interest for immunotherapy and vaccine delivery because they directly target immune cells concentrated in the skin. The targeting abilities of MNAs result in efficient immune responses-often more protective or therapeutic-compared to conventional needle delivery. MNAs also offer logistical benefits, such as self-administration and transportation without refrigeration. Thus, numerous preclinical and clinical studies are exploring these technologies. Here the unique advantages of MNA, as well as critical challenges-such as manufacturing and sterility issues-the field faces to enable widespread deployment are discussed. How MNA design parameters can be exploited for controlled release of vaccines and immunotherapies, and the application to preclinical models of infection, cancer, autoimmunity, and allergies are explained. Specific strategies are also discussed to reduce off-target effects compared to conventional vaccine delivery routes, and novel chemical and manufacturing controls that enable cargo stability in MNAs across flexible intervals and temperatures. Clinical research using MNAs is then examined. Drawbacks of MNAs and the implications, and emerging opportunities to exploit MNAs for immune engineering and clinical use are concluded.
Collapse
Affiliation(s)
- Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Thomas Gebhardt
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC, 3000, Australia
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA
| |
Collapse
|
7
|
MINGFU N, QIANG G, YANG L, YING H, CHENGSHUI L, CUILI Q. The antimicrobial peptide MetchnikowinII enhances Ptfa antigen immune responses against avian Pasteurella multocida in chickens. J Vet Med Sci 2023; 85:964-971. [PMID: 37407447 PMCID: PMC10539814 DOI: 10.1292/jvms.22-0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
Immunostimulants and vaccines are the main means for controlling infectious diseases and searching highly effective and low toxic immunestimulants has always been the focus of researchers. The MetchnikowinII (MetII) had been expressed by us and exhibited both antibacterial and antifungal activities, in this study, we evaluated its potential for an adjuvant effect. In chickens, antigen-specific immunoglobulin Gs (IgGs) were increased after MetII adjuvanted vaccination using the Ptfa protein. Compared to group Ptfa + iFA, which was only adjuvanted with incomplete Freund's adjuvant (iFA), the antibody titers of the group Ptfa + iFA + Met20 μg·mL-1 (PFM20) and Ptfa + iFA + Propolis (PFP) significantly increased (P<0.05). Likewise, Interleukin-2 (IL-2) and Interferon-γ (IFN-γ) cytokines in group Ptfa + iFA + Met20 μg·mL-1 (PFM20) and Ptfa + iFA + Propolis (PFP) were significantly higher than those of the other three experimental groups (P<0.05). The stimulation index (SI) value in chickens of group PFM20 was significantly higher than that of the other four experimental groups (P<0.05). Chickens that received MetII adjuvanted vaccinations benefitted from higher protection rate (88%) when challenged with Pasteurella multocida (P. multocida), which was significantly higher than those of group PF and PFP (P<0.05). These results suggested that the antimicrobial peptide MetII may play an adjuvant role in the immune response in chickens but need a proper usage, because the higher usage of 40 μg·mL-1 and 60 μg·mL-1 resulted poor effect. Whether MetII could be a potential adjuvant or a biomolecule as part of a complex adjuvant for vaccines needs more experimental evidence, the study still provides an examples for understanding vaccine adjuvants.
Collapse
Affiliation(s)
- Niu MINGFU
- Henan University of Science and Technology, Luoyang, China
| | - Gong QIANG
- Henan University of Science and Technology, Luoyang, China
| | - Li YANG
- Henan University of Science and Technology, Luoyang, China
| | - Hou YING
- Henan University of Science and Technology, Luoyang, China
| | - Liao CHENGSHUI
- Henan University of Science and Technology, Luoyang, China
| | - Qin CUILI
- Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
8
|
Buonaguro L, Tagliamonte M. Peptide-based vaccine for cancer therapies. Front Immunol 2023; 14:1210044. [PMID: 37654484 PMCID: PMC10467431 DOI: 10.3389/fimmu.2023.1210044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Different strategies based on peptides are available for cancer treatment, in particular to counter-act the progression of tumor growth and disease relapse. In the last decade, in the context of therapeutic strategies against cancer, peptide-based vaccines have been evaluated in different tumor models. The peptides selected for cancer vaccine development can be classified in two main type: tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), which are captured, internalized, processed and presented by antigen-presenting cells (APCs) to cell-mediated immunity. Peptides loaded onto MHC class I are recognized by a specific TCR of CD8+ T cells, which are activated to exert their cytotoxic activity against tumor cells presenting the same peptide-MHC-I complex. This process is defined as active immunotherapy as the host's immune system is either de novo activated or restimulated to mount an effective, tumor-specific immune reaction that may ultimately lead to tu-mor regression. However, while the preclinical data have frequently shown encouraging results, therapeutic cancer vaccines clinical trials, including those based on peptides have not provided satisfactory data to date. The limited efficacy of peptide-based cancer vaccines is the consequence of several factors, including the identification of specific target tumor antigens, the limited immunogenicity of peptides and the highly immunosuppressive tumor microenvironment (TME). An effective cancer vaccine can be developed only by addressing all such different aspects. The present review describes the state of the art for each of such factors.
Collapse
Affiliation(s)
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - “Fond G. Pascale”, Naples, Italy
| |
Collapse
|
9
|
Long M, Mims AS, Li Z. Factors Affecting the Cancer Immunotherapeutic Efficacy of T Cell Bispecific Antibodies and Strategies for Improvement. Immunol Invest 2022; 51:2176-2214. [PMID: 36259611 DOI: 10.1080/08820139.2022.2131569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T-cell bispecific antibodies (T-BsAbs) are a new class of cancer immunotherapy drugs that can simultaneously bind to tumor-associated antigens on target cells and to the CD3 subunit of the T-cell receptor (TCR) on T cells. In the last decade, numerous T-BsAbs have been developed for the treatment of both hematological malignancies and solid tumors. Among them, blinatumomab has been successfully used to treat CD19 positive malignancies and has been approved by the FDA as standard care for acute lymphoblastic leukemia (ALL). However, in many clinical scenarios, the efficacy of T-BsAbs remains unsatisfactory. To further improve T-BsAb therapy, it will be crucial to better understand the factors affecting treatment efficacy and the nature of the T-BsAb-induced immune response. Herein, we first review the studies on the potential mechanisms by which T-BsAbs activate T-cells and how they elicit efficient target killing despite suboptimal costimulatory support. We focus on analyzing reports from clinical trials and preclinical studies, and summarize the factors that have been identified to impact the efficacy of T-BsAbs. Lastly, we review current and propose new approaches to improve the clinical efficacy of T-BsAbs.
Collapse
Affiliation(s)
- Meixiao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
10
|
Therapeutic Effect of Nile Tilapia Type II Collagen on Rigidity in CD8 + Cells by Alleviating Inflammation and Rheumatoid Arthritis in Rats by Oral Tolerance. Polymers (Basel) 2022; 14:polym14071284. [PMID: 35406158 PMCID: PMC9003223 DOI: 10.3390/polym14071284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022] Open
Abstract
Fibrillins are microfibril-associated macro glycoproteins found in connective tissues and structurally related to latent TGF-β-binding proteins (LTBPs). The special cellular immunity and blocking glycoprotein receptors IIb and IIIa of fibrillins are emerging topics in recent years. In this study, Nile Tilapia type IIcollagen (NTCII) was extracted and purified from the skull cartilages by a pepsin-soluble method. Amino acid analysis indicated that NTCII consisted of 315/1000 glycine residues, 72/1000 hydroxyproline residues and 108/1000 proline residues. SDS-PAGE analysis showed that NTCII was composed of three identical 130 kDa α-chains. The results of glycoprotein/carbohydrate assay indicated that the total polysaccharide content of NTCII was 5.6–19.0%. The IR spectrum of NTCII displayed five characteristic peaks of amide I, II, III, A, B. NTCII at 10–100 μg/mL concentration downregulated the content of cytokines in the presence or absence of LPS, especially the secretion of cytokines IL-6, IL-1β and TNF-α. Interestingly, NTCII promoted the secretion of Fas/Apo-1 compared to the control group and 25 μg/mL of NTCII resulted in a higher Fas/Apo-1 secretion level in CD8+ T cells. FITC-TCII fluorescence images confirmed that NTCII could bind to the membrane surface of CD8+ T cells, leading to the induction of rigidity. NTCII could bind to the membrane surface of CD8+ T cells that leads to the induction of rigidity, as evidenced by the FITC-NTCII fluorescence images. The qRT-PCR gene expression analysis of caspase-8 collected with Fas/Apo-1 was upregulated significantly in the 1 and 50 μg/mL NTCII-treated groups compared with the control group. Overall, the results conclude that the rigidity did not lead to an increase in inflammatory factors in CD8+ T cells treated with NTCII. The oral administration of NTCII 3 mg/kg dosage caused more prominent repair of damaged ankle cartilage than the 1 mg/kg dosage in Freund’s adjuvant-induced model of arthritis in rats. Therefore, this study disclosed the immunological and anti-arthritic effect of fibrillar collagen, which could be a potential biomaterial for practical applications with lower toxicity.
Collapse
|
11
|
Nelde A, Rammensee HG, Walz JS. The Peptide Vaccine of the Future. Mol Cell Proteomics 2021; 20:100022. [PMID: 33583769 PMCID: PMC7950068 DOI: 10.1074/mcp.r120.002309] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
The approach of peptide-based anticancer vaccination has proven the ability to induce cancer-specific immune responses in multiple studies for various cancer entities. However, clinical responses remain so far limited to single patients and broad clinical applicability was not achieved. Therefore, further efforts are required to improve peptide vaccination in order to integrate this low-side-effect therapy into the clinical routine of cancer therapy. To design clinically effective peptide vaccines in the future, different issues have to be addressed and optimized comprising antigen target selection as well as choice of optimal adjuvants and vaccination schedules. Furthermore, the combination of peptide-based vaccines with other immuno- and molecular targeted therapies as well as the development of predictive biomarkers could further improve efficacy. In this review, current approaches in the development of peptide-based vaccines and critical implications for optimal vaccine design are discussed.
Collapse
Affiliation(s)
- Annika Nelde
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany; Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Zhao Q, Duck LW, Huang F, Alexander KL, Maynard CL, Mannon PJ, Elson CO. CD4 + T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis. Sci Immunol 2020; 5:5/54/eabc6373. [PMID: 33310866 DOI: 10.1126/sciimmunol.abc6373] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Microbiota-reactive CD4+ T memory (TM) cells are generated during intestinal infections and inflammation, and can revert to pathogenic CD4+ T effector (TE) cells, resulting in chronicity of inflammatory bowel disease (IBD). Unlike TE cells, TM cells have a low rate of metabolism unless they are activated by reencountering cognate antigen. Here, we show that the combination of cell activation and metabolic checkpoint inhibition (CAMCI), by targeting key metabolic regulators mTORC and AMPK, resulted in cell death and anergy, but enhanced the induction of the regulatory subset. Parenteral application of this treatment with a synthetic peptide containing multiple flagellin T cell epitopes (MEP1) and metabolic inhibition successfully prevented the development of CD4+ T cell-driven colitis. Microbiota-specific CD4+ T cells, especially the pathogenic TE subsets, were decreased 10-fold in the intestinal lamina propria. Furthermore, using the CAMCI strategy, we were able to prevent antigen-specific TM cell formation upon initial antigen encounter, and ablate existing TM cells upon reactivation in mice, leading to an altered transcriptome in the remaining CD4+ T cells after ablation. Microbiota flagellin-specific CD4+ T cells from patients with Crohn's disease were ablated in a similar manner after CAMCI in vitro, with half of the antigen-specific T cells undergoing cell death. These results indicate that parenteral activation of microbiota-specific CD4+ T cells with concomitant metabolic inhibition is an effective way to ablate pathogenic CD4+ TM cells and to induce T regulatory (Treg) cells that provide antigen-specific and bystander suppression, supporting a potential immunotherapy to prevent or ameliorate IBD.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lennard W Duck
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fengyuan Huang
- Department of Genetics, Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katie L Alexander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Peter J Mannon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Charles O Elson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
13
|
Chen X, Yang J, Wang L, Liu B. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives. Theranostics 2020; 10:6011-6023. [PMID: 32483434 PMCID: PMC7255011 DOI: 10.7150/thno.38742] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Therapeutic cancer vaccines are one of the most promising strategies of immunotherapy. Traditional vaccines consisting of tumor-associated antigens have met with limited success. Recently, neoantigens derived from nonsynonymous mutations in tumor cells have emerged as alternatives that can improve tumor-specificity and reduce on-target off-tumor toxicity. Synthetic peptides are a common platform for neoantigen vaccines. It has been suggested that extending short peptides into long peptides can overcome immune tolerance and induce both CD4+ and CD8+ T cell responses. This review will introduce the history of long peptide-based neoantigen vaccines, discuss their advantages, summarize current preclinical and clinical developments, and propose future perspectives.
Collapse
|
14
|
Improved Induction of Anti-Melanoma T Cells by Adenovirus-5/3 Fiber Modification to Target Human DCs. Vaccines (Basel) 2018; 6:vaccines6030042. [PMID: 30022005 PMCID: PMC6161112 DOI: 10.3390/vaccines6030042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
To mount a strong anti-tumor immune response, non T cell inflamed (cold) tumors may require combination treatment encompassing vaccine strategies preceding checkpoint inhibition. In vivo targeted delivery of tumor-associated antigens (TAA) to dendritic cells (DCs), relying on the natural functions of primary DCs in situ, represents an attractive vaccination strategy. In this study we made use of a full-length MART-1 expressing C/B-chimeric adenoviral vector, consisting of the Ad5 capsid and the Ad3 knob (Ad5/3), which we previously showed to selectively transduce DCs in human skin and lymph nodes. Our data demonstrate that chimeric Ad5/3 vectors encoding TAA, and able to target human DCs in situ, can be used to efficiently induce expansion of functional tumor-specific CD8+ effector T cells, either from a naïve T cell pool or from previously primed T cells residing in the melanoma-draining sentinel lymph nodes (SLN). These data support the use of Ad3-knob containing viruses as vaccine vehicles for in vivo delivery. “Off-the-shelf” DC-targeted Ad vaccines encoding TAA could clearly benefit future immunotherapeutic approaches.
Collapse
|
15
|
Moynihan KD, Holden RL, Mehta NK, Wang C, Karver MR, Dinter J, Liang S, Abraham W, Melo MB, Zhang AQ, Li N, Gall SL, Pentelute BL, Irvine DJ. Enhancement of Peptide Vaccine Immunogenicity by Increasing Lymphatic Drainage and Boosting Serum Stability. Cancer Immunol Res 2018; 6:1025-1038. [PMID: 29915023 DOI: 10.1158/2326-6066.cir-17-0607] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/17/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022]
Abstract
Antitumor T-cell responses have the potential to be curative in cancer patients, but the induction of potent T-cell immunity through vaccination remains a largely unmet goal of immunotherapy. We previously reported that the immunogenicity of peptide vaccines could be increased by maximizing delivery to lymph nodes (LNs), where T-cell responses are generated. This was achieved by conjugating the peptide to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG (DSPE-PEG) to promote albumin binding, which resulted in enhanced lymphatic drainage and improved T-cell responses. Here, we expanded upon these findings and mechanistically dissected the properties that contribute to the potency of this amphiphile-vaccine (amph-vaccine). We found that multiple linkage chemistries could be used to link peptides with DSPE-PEG, and further, that multiple albumin-binding moieties conjugated to peptide antigens enhanced LN accumulation and subsequent T-cell priming. In addition to enhancing lymphatic trafficking, DSPE-PEG conjugation increased the stability of peptides in serum. DSPE-PEG peptides trafficked beyond immediate draining LNs to reach distal nodes, with antigen presented for at least a week in vivo, whereas soluble peptide presentation quickly decayed. Responses to amph-vaccines were not altered in mice deficient in the albumin-binding neonatal Fc receptor (FcRn), but required Batf3-dependent dendritic cells (DCs). Amph-peptides were processed by human DCs equivalently to unmodified peptides. These data define design criteria for enhancing the immunogenicity of molecular vaccines to guide the design of next-generation peptide vaccines. Cancer Immunol Res; 6(9); 1025-38. ©2018 AACR.
Collapse
Affiliation(s)
- Kelly D Moynihan
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts.,Department of Biological Engineering, MIT, Cambridge, Massachusetts.,Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, Massachusetts
| | | | - Naveen K Mehta
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts.,Department of Biological Engineering, MIT, Cambridge, Massachusetts
| | - Chensu Wang
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Mark R Karver
- Simpson Querrey Institute for BioNanotechnology, Evanston, Illinois
| | - Jens Dinter
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, Massachusetts
| | - Simon Liang
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Wuhbet Abraham
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Angela Q Zhang
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts.,Department of Health, Science, and Technology, MIT, Cambridge, Massachusetts
| | - Na Li
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Sylvie Le Gall
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, Massachusetts
| | | | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts. .,Department of Biological Engineering, MIT, Cambridge, Massachusetts.,Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, Massachusetts.,Department of Materials Science and Engineering, MIT, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
16
|
Rad-Malekshahi M, Fransen MF, Krawczyk M, Mansourian M, Bourajjaj M, Chen J, Ossendorp F, Hennink WE, Mastrobattista E, Amidi M. Self-Assembling Peptide Epitopes as Novel Platform for Anticancer Vaccination. Mol Pharm 2017; 14:1482-1493. [PMID: 28088862 PMCID: PMC5415879 DOI: 10.1021/acs.molpharmaceut.6b01003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/29/2016] [Accepted: 01/14/2017] [Indexed: 12/17/2022]
Abstract
The aim of the present study was to improve the immunogenicity of peptide epitope vaccines using novel nanocarriers based on self-assembling materials. Several studies demonstrated that peptide antigens in nanoparticulate form induce stronger immune responses than their soluble forms. However, several issues such as poor loading and risk of inducing T cell anergy due to premature release of antigenic epitopes have challenged the clinical success of such systems. In the present study, we developed two vaccine delivery systems by appending a self-assembling peptide (Ac-AAVVLLLW-COOH) or a thermosensitive polymer poly(N-isopropylacrylamide (pNIPAm) to the N-terminus of different peptide antigens (OVA250-264, HPV-E743-57) to generate self-assembling peptide epitopes (SAPEs). The obtained results showed that the SAPEs were able to form nanostructures with a diameter from 20 to 200 nm. The SAPEs adjuvanted with CpG induced and expanded antigen-specific CD8+ T cells in mice. Furthermore, tumor-bearing mice vaccinated with SAPEs harboring the HPV E743-57 peptide showed a delayed tumor growth and an increased survival compared to sham-treated mice. In conclusion, self-assembling peptide based systems increase the immunogenicity of peptide epitope vaccines and therefore warrants further development toward clinical use.
Collapse
Affiliation(s)
- Mazda Rad-Malekshahi
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department
of Pharmaceutical Biomaterials and Medical Biomaterials Research Center,
Faculty of Pharmacy, Tehran University of
Medical Sciences, Tehran, Iran
| | - Marieke F. Fransen
- Department
of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Małgorzata Krawczyk
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mercedeh Mansourian
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Meriem Bourajjaj
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jian Chen
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ferry Ossendorp
- Department
of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maryam Amidi
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Hettich M, Lahoti J, Prasad S, Niedermann G. Checkpoint Antibodies but not T Cell-Recruiting Diabodies Effectively Synergize with TIL-Inducing γ-Irradiation. Cancer Res 2016; 76:4673-83. [PMID: 27302161 DOI: 10.1158/0008-5472.can-15-3451] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/01/2016] [Indexed: 11/16/2022]
Abstract
T cell-recruiting bispecific antibodies (bsAb) show promise in hematologic malignancies and are also being evaluated in solid tumors. In this study, we investigated whether T cell-recruiting bsAbs synergize with hypofractionated tumor radiotherapy (hRT) and/or blockade of the programmed death-1 (PD-1) immune checkpoint, both of which can increase tumor-infiltrating lymphocyte (TIL) numbers. Unexpectedly, large melanomas treated with hRT plus bsAb (AC133×CD3) relapsed faster than those treated with hRT alone, accompanied by massive TIL apoptosis. This fast relapse was delayed by the further addition of anti-PD-1. Mechanistic investigations revealed restimulation-induced cell death mediated by BIM and FAS as an additional cause of bsAb-mediated TIL depletion. In contrast, the double combination of hRT and anti-PD-1 strongly increased TIL numbers, and even very large tumors were completely eradicated. Our study reveals the risk that CD3-engaging bsAbs can induce apoptotic TIL depletion followed by rapid tumor regrowth, reminiscent of tolerance induction by CD3 mAb-mediated T-cell depletion, warranting caution in their use for the treatment of solid tumors. Our findings also argue that combining radiotherapy and anti-PD-1 can be quite potent, including against very large tumors. Cancer Res; 76(16); 4673-83. ©2016 AACR.
Collapse
Affiliation(s)
- Michael Hettich
- Department of Radiation Oncology, Medical Center-University of Freiburg, Freiburg, Germany. Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jayashree Lahoti
- Department of Radiation Oncology, Medical Center-University of Freiburg, Freiburg, Germany. Faculty of Biology, University of Freiburg, Freiburg, Germany. German Cancer Consortium (DKTK), Freiburg, Germany. German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shruthi Prasad
- Department of Radiation Oncology, Medical Center-University of Freiburg, Freiburg, Germany. Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Freiburg, Germany. German Cancer Consortium (DKTK), Freiburg, Germany. German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
18
|
Xiang K, Ying G, Yan Z, Shanshan Y, Lei Z, Hongjun L, Maosheng S. Progress on adenovirus-vectored universal influenza vaccines. Hum Vaccin Immunother 2016; 11:1209-22. [PMID: 25876176 DOI: 10.1080/21645515.2015.1016674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- APC, antigen-presenting cell
- Ad: adenovirus
- CAR, Coxsackie-Adenovirus Receptor
- CTLs, cytotoxic T lymphocytes
- DC, lung dendritic cells
- DVD, drug–vaccine duo
- FcγRs, Fc receptors for IgG
- HA, hemagglutinin
- HDAd, helper-dependent adenoviral
- HEK293, human embryonic kidney 293 cell
- HI, hemagglutination inhibition
- HLA, human leukocyte antigen
- IF-γ, interferon-γ
- IFV, Influenza virus
- IIVV, inactivated influenza virus vaccine
- IL-2, interleukin-2
- ITRs, inverted terminal repeats
- LAIV, live attenuated influenza vaccine
- M1, matrix protein 1
- M2, matrix protein 2
- MHC-I, major histocompatibility complex class I
- NA, neuraminidase
- NP, nucleoprotein
- RCA, replication competent adenovirus
- VAERD, vaccine-associated enhanced respiratory disease
- adenovirus vector
- broadly neutralizing antibodies
- cellular immunity
- flu, influenza
- hemagglutinin
- humoral immunity
- influenza
- mAbs, monoclonal antibodies
- mucosal immunity
- rAd, recombinant adenovirus
- universal vaccine
Collapse
Affiliation(s)
- Kui Xiang
- a Department of Molecular Biology; Institute of Medical Biology; Chinese Academy of Medical Sciences; Peking Union Medical College ; Kunming , Yunnan , PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Deficiency of the B cell-activating factor receptor results in limited CD169+ macrophage function during viral infection. J Virol 2015; 89:4748-59. [PMID: 25673724 DOI: 10.1128/jvi.02976-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The B cell-activating factor (BAFF) is critical for B cell development and humoral immunity in mice and humans. While the role of BAFF in B cells has been widely described, its role in innate immunity remains unknown. Using BAFF receptor (BAFFR)-deficient mice, we characterized BAFFR-related innate and adaptive immune functions following infection with vesicular stomatitis virus (VSV) and lymphocytic choriomeningitis virus (LCMV). We identified a critical role for BAFFR signaling in the generation and maintenance of the CD169(+) macrophage compartment. Consequently, Baffr(-) (/) (-) mice exhibited limited induction of innate type I interferon production after viral infection. Lack of BAFFR signaling reduced virus amplification and presentation following viral infection, resulting in highly reduced antiviral adaptive immune responses. As a consequence, BAFFR-deficient mice showed exacerbated and fatal disease after viral infection. Mechanistically, transient lack of B cells in Baffr(-) (/) (-) animals resulted in limited lymphotoxin expression, which is critical for maintenance of CD169(+) cells. In conclusion, BAFFR signaling affects both innate and adaptive immune activation during viral infections. IMPORTANCE Viruses cause acute and chronic infections in humans resulting in millions of deaths every year. Innate immunity is critical for the outcome of a viral infection. Innate type I interferon production can limit viral replication, while adaptive immune priming by innate immune cells induces pathogen-specific immunity with long-term protection. Here, we show that BAFFR deficiency not only perturbed B cells, but also resulted in limited CD169(+) macrophages. These macrophages are critical in amplifying viral particles to trigger type I interferon production and initiate adaptive immune priming. Consequently, BAFFR deficiency resulted in reduced enforced viral replication, limited type I interferon production, and reduced adaptive immunity compared to BAFFR-competent controls. As a result, BAFFR-deficient mice were predisposed to fatal viral infections. Thus, BAFFR expression is critical for innate immune activation and antiviral immunity.
Collapse
|
20
|
Pompano RR, Chen J, Verbus EA, Han H, Fridman A, McNeely T, Collier JH, Chong AS. Titrating T-cell epitopes within self-assembled vaccines optimizes CD4+ helper T cell and antibody outputs. Adv Healthc Mater 2014; 3:1898-908. [PMID: 24923735 PMCID: PMC4227912 DOI: 10.1002/adhm.201400137] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/12/2014] [Indexed: 12/14/2022]
Abstract
Epitope content plays a critical role in determining T-cell and antibody responses to vaccines, biomaterials, and protein therapeutics, but its effects are nonlinear and difficult to isolate. Here, molecular self-assembly is used to build a vaccine with precise control over epitope content, in order to finely tune the magnitude and phenotype of T helper and antibody responses. Self-adjuvanting peptide nanofibers are formed by co-assembling a high-affinity universal CD4+ T-cell epitope (PADRE) and a B-cell epitope from Staphylococcus aureus at specifiable concentrations. Increasing the PADRE concentration from micromolar to millimolar elicited bell-shaped dose-responses that are unique to different T-cell populations. Notably, the epitope ratios that maximize T follicular helper and antibody responses differed by an order of magnitude from those that maximized Th1 or Th2 responses. Thus, modular materials assembly provides a means of controlling epitope content and efficiently skewing the adaptive immune response in the absence of exogenous adjuvant; this approach may contribute to the development of improved vaccines and immunotherapies.
Collapse
Affiliation(s)
- Rebecca R. Pompano
- Department of Surgery, Committee of Immunology, University of Chicago, 5841 S. Maryland Avenue, MC5032, Chicago, IL 60637 USA
| | - Jianjun Chen
- Department of Surgery, Committee of Immunology, University of Chicago, 5841 S. Maryland Avenue, MC5032, Chicago, IL 60637 USA
| | - Emily A. Verbus
- Department of Surgery, Committee of Immunology, University of Chicago, 5841 S. Maryland Avenue, MC5032, Chicago, IL 60637 USA
| | - Huifang Han
- Department of Surgery, Committee of Immunology, University of Chicago, 5841 S. Maryland Avenue, MC5032, Chicago, IL 60637 USA
| | | | | | - Joel H. Collier
- Department of Surgery, Committee of Immunology, University of Chicago, 5841 S. Maryland Avenue, MC5032, Chicago, IL 60637 USA
| | - Anita S. Chong
- Department of Surgery, Committee of Immunology, University of Chicago, 5841 S. Maryland Avenue, MC5032, Chicago, IL 60637 USA
| |
Collapse
|
21
|
Peptide Vaccine: Progress and Challenges. Vaccines (Basel) 2014; 2:515-36. [PMID: 26344743 PMCID: PMC4494216 DOI: 10.3390/vaccines2030515] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/17/2022] Open
Abstract
Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.
Collapse
|
22
|
Fujiyama T, Oze I, Yagi H, Hashizume H, Matsuo K, Hino R, Kamo R, Imayama S, Hirakawa S, Ito T, Takigawa M, Tokura Y. Induction of cytotoxic T cells as a novel independent survival factor in malignant melanoma with percutaneous peptide immunization. J Dermatol Sci 2014; 75:43-8. [PMID: 24802712 DOI: 10.1016/j.jdermsci.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Malignant melanoma (MM) often shows multiple chemo-resistance, leading to poor prognosis of the patients. Therapeutic anti-cancer vaccination may be a feasible way to prolong the survival of patients. We have demonstrated that application of antigenic peptides via the tape-stripped, horny layer-removed skin, known as percutaneous peptide immunization (PPI), induces tumor cell-specific cytotoxic T lymphocytes (CTLs) in rodents and humans. OBJECTIVE To evaluate clinical significance of PPI in advanced MM patients. METHODS We performed PPI in 59 patients undergoing advanced MM with Melan-A, tyrosinase, MAGE-2, MAGE-3 and gp-100 peptides based on HLA typing in individuals. The induction of CTLs was assessed by the tetramer or pentamer flow cytometry in 35 patients. Patients showing positive CTL responses to all antigens were defined as complete responder (n=18), and those showing negative responses to at least one applied antigen were classified as incomplete responder (n=17). The primary endpoint of the study was overall survival (OS). For statistical analysis, log-rank test, univariate and multivariate Cox proportional hazard model were used. RESULTS OS of the complete responders was longer than that of the incomplete responders (median survival time: 55.8 vs 20.3 months, log rank P=0.089). A hazard ratio for the complete responders relative to the incomplete responders was 0.23 (95% confidence interval: 0.06-0.93, P=0.039) in a multivariate Cox proportional hazard model. CONCLUSION The induction of CTLs was a novel independent survival factor, and the induction of peptide-specific CTLs by PPI contributes to the prolonged survival and represents an impact on therapeutic approaches in MM. Unique trial number: UMIN000005706.
Collapse
Affiliation(s)
- Toshiharu Fujiyama
- Department of Dermatology, Hamamatsu University School of Medicine, Japan.
| | - Isao Oze
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Japan
| | - Hiroaki Yagi
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Hideo Hashizume
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Keitaro Matsuo
- Department of Preventive Medicine, Kyusyu University, Japan
| | - Ryosuke Hino
- Department of Dermatology, University of Occupational and Environmental Health, Japan
| | - Riei Kamo
- Department of Dermatology, Osaka City University Graduate School of Medicine, Japan
| | | | - Satoshi Hirakawa
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Taisuke Ito
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Masahiro Takigawa
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| |
Collapse
|
23
|
Chesson CB, Huelsmann EJ, Lacek AT, Kohlhapp FJ, Webb MF, Nabatiyan A, Zloza A, Rudra JS. Antigenic peptide nanofibers elicit adjuvant-free CD8⁺ T cell responses. Vaccine 2013; 32:1174-80. [PMID: 24308959 DOI: 10.1016/j.vaccine.2013.11.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/12/2013] [Accepted: 11/14/2013] [Indexed: 01/08/2023]
Abstract
Vaccines that elicit robust CD8⁺ T cell responses are desirable for protection against infectious diseases and cancers. However, most vaccine adjuvants fail to elicit robust CD8⁺ T cell responses without inflammation and associated toxicity. We recently reported that self-assembling peptides that form nanofibers in physiological buffers elicited strong adjuvant-free and antigen-specific antibody responses in mice. However, whether or not such nanofibers likewise can elicit strong CD8⁺ T cell responses is unknown. Here, we demonstrate that the self-assembling peptide Q11 conjugated to a CD8⁺ T cell epitope of ovalbumin (Q11-OVA), elicits strong antigen-specific primary and recall responses, and in a vaccination regimen protects against subsequent infection. Importantly, we show that these antigenic peptide nanofibers do not persist as an inflammatory antigen depot at the injection site. Our results demonstrate for the first time that self-assembling peptides may be useful as carriers for vaccines where CD8⁺ T cell-mediated protection is needed.
Collapse
Affiliation(s)
- Charles B Chesson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston 77555, TX, USA
| | - Erica J Huelsmann
- Departments of Immunology/Microbiology and Internal Medicine, Rush University Cancer Center, Developmental Center for AIDS Research, Rush University Medical Center, Chicago 60612, IL, USA
| | - Andrew T Lacek
- Departments of Immunology/Microbiology and Internal Medicine, Rush University Cancer Center, Developmental Center for AIDS Research, Rush University Medical Center, Chicago 60612, IL, USA
| | - Frederick J Kohlhapp
- Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA
| | - Matthew F Webb
- Departments of Immunology/Microbiology and Internal Medicine, Rush University Cancer Center, Developmental Center for AIDS Research, Rush University Medical Center, Chicago 60612, IL, USA
| | - Arman Nabatiyan
- Departments of Immunology/Microbiology and Internal Medicine, Rush University Cancer Center, Developmental Center for AIDS Research, Rush University Medical Center, Chicago 60612, IL, USA
| | - Andrew Zloza
- Departments of Immunology/Microbiology and Internal Medicine, Rush University Cancer Center, Developmental Center for AIDS Research, Rush University Medical Center, Chicago 60612, IL, USA.
| | - Jai S Rudra
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston 77555, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston 77555, TX, USA.
| |
Collapse
|
24
|
Honke N, Shaabani N, Zhang DE, Iliakis G, Xu HC, Häussinger D, Recher M, Löhning M, Lang PA, Lang KS. Usp18 driven enforced viral replication in dendritic cells contributes to break of immunological tolerance in autoimmune diabetes. PLoS Pathog 2013; 9:e1003650. [PMID: 24204252 PMCID: PMC3812017 DOI: 10.1371/journal.ppat.1003650] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022] Open
Abstract
Infection with viruses carrying cross-reactive antigens is associated with break of immunological tolerance and induction of autoimmune disease. Dendritic cells play an important role in this process. However, it remains unclear why autoimmune-tolerance is broken during virus infection, but usually not during exposure to non-replicating cross-reactive antigens. Here we show that antigen derived from replicating virus but not from non-replicating sources undergoes a multiplication process in dendritic cells in spleen and lymph nodes. This enforced viral replication was dependent on Usp18 and was essential for expansion of autoreactive CD8+ T cells. Preventing enforced virus replication by depletion of CD11c+ cells, genetically deleting Usp18, or pharmacologically inhibiting of viral replication blunted the expansion of autoreactive CD8+ T cells and prevented autoimmune diabetes. In conclusion, Usp18-driven enforced viral replication in dendritic cells can break immunological tolerance and critically influences induction of autoimmunity. Autoimmune diabetes in humans is linked to infection with viruses, which carry cross-reactive antigens. Virus derived cross-reactive antigens break immunological tolerance to pancreatic islets, which initiates disease. Several other non-viral sources of cross-reactive antigens are known, however they usually fail to induce diabetes. Here we found that viral antigen underwent an Usp18 dependent replication in dendritic cells. This mechanism was essential to generate sufficient amounts of cross-reactive antigen and to expand autoreactive CD8+ T cells. Blocking of virus replication by either depletion of dendritic cells, genetic depletion of Usp18 or pharmacological inhibition of replication blunted expansion of autoreactive CD8+ T cells and prevented diabetes. In conclusion we found that enforced virus replication broke the tolerance to self-antigen, which partially explains the strong association of autoimmune diseases with virus infections.
Collapse
Affiliation(s)
- Nadine Honke
- Institute of Immunology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Namir Shaabani
- Institute of Immunology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dong-Er Zhang
- Department of Pathology, Division of Biological Sciences and Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California, United States of America
| | - George Iliakis
- Institute of Medical Radiation Biology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Haifeng C. Xu
- Institute of Immunology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mike Recher
- Clinic for Primary Immunodeficiencies, Medical Outpatient Unit, and Immunobiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Max Löhning
- Department of Rheumatology and Clinical Immunology, Charité – University Medicine Berlin and German Rheumatism Research Center (DRFZ), Berlin, Germany
| | - Philipp A. Lang
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Karl S. Lang
- Institute of Immunology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
25
|
Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF, Dorta-Estremera SM, Greeley NR, Nitti G, Peng W, Liu C, Lou Y, Wang Z, Ma W, Rabinovich B, Sowell RT, Schluns KS, Davis RE, Hwu P, Overwijk WW. Persistent antigen at vaccination sites induces tumor-specific CD8⁺ T cell sequestration, dysfunction and deletion. Nat Med 2013; 19:465-72. [PMID: 23455713 PMCID: PMC3618499 DOI: 10.1038/nm.3105] [Citation(s) in RCA: 356] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/25/2013] [Indexed: 12/22/2022]
Abstract
To understand why cancer vaccine-induced T cells often fail to eradicate tumors, we studied immune responses in mice vaccinated with gp100 melanoma peptide in incomplete Freund’s adjuvant (IFA), commonly used in clinical cancer vaccine trials. Peptide/IFA vaccination primed tumor-specific CD8+ T cells, which accumulated not in tumors but at the persisting, antigen-rich vaccination site. Once there, primed T cells became dysfunctional and underwent antigen-driven, Interferon-γ (IFN-γ) and Fas ligand (FasL)-mediated apoptosis, resulting in hyporesponsiveness to subsequent vaccination. Provision of anti-CD40 antibody, Toll-like receptor 7 (TLR7) agonist and interleukin-2 (IL-2) reduced T cell apoptosis but did not prevent vaccination site sequestration. A non-persisting vaccine formulation shifted T cell localization towards tumors, inducing superior anti-tumor activity while reducing systemic T cell dysfunction and promoting memory formation. Persisting peptide/IFA vaccine depots can induce specific T cell sequestration, dysfunction and deletion at vaccination sites; short-lived formulations may overcome these limitations and result in greater therapeutic efficacy of peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Yared Hailemichael
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hangalapura BN, Timares L, Oosterhoff D, Scheper RJ, Curiel DT, de Gruijl TD. CD40-targeted adenoviral cancer vaccines: the long and winding road to the clinic. J Gene Med 2012; 14:416-27. [PMID: 22228547 DOI: 10.1002/jgm.1648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The ability of dendritic cells (DCs) to orchestrate innate and adaptive immune responses has been exploited to develop potent anti-cancer immunotherapies. Recent clinical trials exploring the efficacy of ex vivo modified autologous DC-based vaccines have reported some promising results. However, in vitro generation of autologous DCs for clinical administration, their loading with tumor associated antigens (TAAs) and their activation, is laborious and expensive, and, as a result of inter-individual variability in the personalized vaccines, remains poorly standardized. An attractive alternative approach is to load resident DCs in vivo by targeted delivery of TAAs, using viral vectors and activating them simultaneously. To this end, we have constructed genetically-modified adenoviral (Ad) vectors and bispecific adaptor molecules to retarget Ad vectors encoding TAAs to the CD40 receptor on DCs. Pre-clinical human and murine studies conducted so far have clearly demonstrated the suitability of a 'two-component' (i.e. Ad and adaptor molecule) configuration for targeted modification of DCs in vivo for cancer immunotherapy. This review summarizes recent progress in the development of CD40-targeted Ad-based cancer vaccines and highlights pre-clinical issues in the clinical translation of this approach.
Collapse
Affiliation(s)
- Basav N Hangalapura
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Lambe T. Novel viral vectored vaccines for the prevention of influenza. Mol Med 2012; 18:1153-60. [PMID: 22735755 PMCID: PMC3510293 DOI: 10.2119/molmed.2012.00147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/19/2012] [Indexed: 01/29/2023] Open
Abstract
Influenza represents a substantial global healthcare burden, with annual epidemics resulting in 3-5 million cases of severe illness with a significant associated mortality. In addition, the risk of a virulent and lethal influenza pandemic has generated widespread and warranted concern. Currently licensed influenza vaccines are limited in their ability to induce efficacious and long-lasting herd immunity. In addition, and as evidenced by the H1N1 pandemic in 2009, there can be a significant delay between the emergence of a pandemic influenza and an effective, antibody-inducing vaccine. There is, therefore, a continued need for new, efficacious vaccines conferring cross-clade protection-obviating the need for biannual reformulation of seasonal influenza vaccines. Development of such a vaccine would yield enormous health benefits to society and also greatly reduce the associated global healthcare burden. There are a number of alternative influenza vaccine technologies being assessed both preclinically and clinically. In this review we discuss viral vectored vaccines, either recombinant live-attenuated or replication-deficient viruses, which are current lead candidates for inducing efficacious and long-lasting immunity toward influenza viruses. These alternate influenza vaccines offer real promise to deliver viable alternatives to currently deployed vaccines and more importantly may confer long-lasting and universal protection against influenza viral infection.
Collapse
Affiliation(s)
- Teresa Lambe
- Jenner Institute, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
28
|
Brentville VA, Metheringham RL, Gunn B, Durrant LG. High avidity cytotoxic T lymphocytes can be selected into the memory pool but they are exquisitely sensitive to functional impairment. PLoS One 2012; 7:e41112. [PMID: 22829916 PMCID: PMC3400594 DOI: 10.1371/journal.pone.0041112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 06/18/2012] [Indexed: 12/04/2022] Open
Abstract
High avidity cytotoxic T lymphocytes (CTL) are important in viral clearance and anti-tumor immunity, however, mechanisms for their optimal generation and maintenance in vivo remain unclear. Immunizing mice with an antibody-DNA vaccine encoding a single CTL epitope, induces a 100 fold higher avidity response than peptide vaccination with the identical epitope. The high avidity response is retained into memory and can be efficiently reactivated with an antibody-DNA boost. In contrast, reactivation of high avidity CTL with peptide, stimulated responses with a significant drop in avidity, suggesting loss or conversion of the high avidity CTL to lower avidity. Similarly, high avidity T cells maintained ex vivo were exquisitely sensitive to signaling with low doses of peptide (1 ng/ml) giving optimal TCR stimulation and resulting in retained avidity, proliferation and ability to kill specific targets. In contrast, high avidity T cells maintained ex vivo with supraoptimal TCR stimulation (10 µg/ml peptide) resulted in reduced avidity and failure to kill tumor cells. They also failed to proliferate, showed a significant increase in apoptosis and expressed high levels of the exhaustion marker programmed death-1 (PD-1) and low levels of the lymphocyte-activation gene 3 (LAG-3). This suggests high avidity T cells are recruited to the memory pool but can be lost by supraoptimal stimulation in vitro and in vivo. This is characterized by loss of function and an increase in cell death. The remaining CTL, exhibit low functional avidity that is reflected in reduced anti-tumor activity. This could contribute to failure of the immune system to control the growth of tumors and has implications for vaccination strategies and adoptive transfer of T cells.
Collapse
Affiliation(s)
- Victoria A. Brentville
- Scancell Holdings plc, Academic Department of Clinical Oncology, City Hospital Campus, University of Nottingham, Nottingham, United Kingdom
| | - Rachael L. Metheringham
- Scancell Holdings plc, Academic Department of Clinical Oncology, City Hospital Campus, University of Nottingham, Nottingham, United Kingdom
| | - Barbara Gunn
- Scancell Holdings plc, Academic Department of Clinical Oncology, City Hospital Campus, University of Nottingham, Nottingham, United Kingdom
| | - Lindy G. Durrant
- Scancell Holdings plc, Academic Department of Clinical Oncology, City Hospital Campus, University of Nottingham, Nottingham, United Kingdom
- Academic Department of Clinical Oncology, City Hospital Campus, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Smyth K, Garcia K, Sun Z, Tuo W, Xiao Z. Repetitive peptide boosting progressively enhances functional memory CTLs. Biochem Biophys Res Commun 2012; 424:635-40. [PMID: 22809501 DOI: 10.1016/j.bbrc.2012.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/07/2012] [Indexed: 12/22/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) play a critical role in controlling intracellular pathogens and cancer cells, and induction of memory CTLs holds promise for developing effective vaccines against critical virus infections. However, generating memory CTLs remains a major challenge for conventional vector-based, prime-boost vaccinations. Thus, it is imperative that we explore nonconventional alternatives, such as boosting without vectors. We show here that repetitive intravenous boosting with peptide and adjuvant generates memory CD8 T cells of sufficient quality and quantity to protect against infection in mice. The resulting memory CTLs possess a unique and long-lasting effector memory phenotype, characterized by decreased interferon-γ but increased granzyme B production. These results are observed in both transgenic and endogenous models. Overall, our findings have important implications for future vaccine development, as they suggest that intravenous peptide boosting with adjuvant following priming can induce long-term functional memory CTLs.
Collapse
Affiliation(s)
- Kendra Smyth
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
30
|
van Hall T, van der Burg SH. Mechanisms of peptide vaccination in mouse models: tolerance, immunity, and hyperreactivity. Adv Immunol 2012; 114:51-76. [PMID: 22449778 DOI: 10.1016/b978-0-12-396548-6.00003-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of synthetic peptide vaccines capable of inducing strong and protective T-cell immunity has taken more than 20 years. Peptide vaccines come in many flavors and although their design is simple, their use is more complicated as the success of a particular peptide vaccine is influenced by many parameters. In fact, peptide vaccination may lead to tolerance, immunity or even hyper-reactivity causing death of the animals. Here we systematically dissect the parameters that influence the final outcome of peptide vaccines as examined in mouse models and this will guide the rational design of new vaccines in the future.
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Clinical Oncology, Experimental Cancer Immunology and Therapy, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
31
|
Honke N, Shaabani N, Cadeddu G, Sorg UR, Zhang DE, Trilling M, Klingel K, Sauter M, Kandolf R, Gailus N, van Rooijen N, Burkart C, Baldus SE, Grusdat M, Löhning M, Hengel H, Pfeffer K, Tanaka M, Häussinger D, Recher M, Lang PA, Lang KS. Enforced viral replication activates adaptive immunity and is essential for the control of a cytopathic virus. Nat Immunol 2011; 13:51-7. [PMID: 22101728 DOI: 10.1038/ni.2169] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/19/2011] [Indexed: 12/20/2022]
Abstract
The innate immune system limits viral replication via type I interferon and also induces the presentation of viral antigens to cells of the adaptive immune response. Using infection of mice with vesicular stomatitis virus, we analyzed how the innate immune system inhibits viral propagation but still allows the presentation of antigen to cells of the adaptive immune response. We found that expression of the gene encoding the inhibitory protein Usp18 in metallophilic macrophages led to lower type I interferon responsiveness, thereby allowing locally restricted replication of virus. This was essential for the induction of adaptive antiviral immune responses and, therefore, for preventing the fatal outcome of infection. In conclusion, we found that enforced viral replication in marginal zone macrophages was an immunological mechanism that ensured the production of sufficient antigen for effective activation of the adaptive immune response.
Collapse
Affiliation(s)
- Nadine Honke
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kemmler CB, Clambey ET, Kedl RM, Slansky JE. Elevated tumor-associated antigen expression suppresses variant peptide vaccine responses. THE JOURNAL OF IMMUNOLOGY 2011; 187:4431-9. [PMID: 21940675 DOI: 10.4049/jimmunol.1101555] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Variant peptide vaccines are used clinically to expand T cells that cross-react with tumor-associated Ags (TAA). To investigate the effects of elevated endogenous TAA expression on variant peptide-induced responses, we used the GP70 TAA model. Although young BALB/c mice display T cell tolerance to the TAA GP70(423-431) (AH1), expression of GP70 and suppression of AH1-specific responses increases with age. We hypothesized that as TAA expression increases, the AH1 cross-reactivity of variant peptide-elicited T cell responses diminishes. Controlling for immunosenescence, we showed that elevated GP70 expression suppressed AH1 cross-reactive responses elicited by two AH1 peptide variants. A variant that elicited almost exclusively AH1 cross-reactive T cells in young mice elicited few or no T cells in aging mice with Ab-detectable GP70 expression. In contrast, a variant that elicited a less AH1 cross-reactive T cell response in young mice successfully expanded AH1 cross-reactive T cells in all aging mice tested. However, these T cells bound the AH1/MHC complex with a relatively short half-life and responded poorly to ex vivo stimulation with the AH1 peptide. Variant peptide vaccine responses were also suppressed when AH1 peptide is administered tolerogenically to young mice before vaccination. Analyses of variant-specific precursor T cells from naive mice with Ab-detectable GP70 expression determined that these T cells expressed PD-1 and had downregulated IL-7Rα expression, suggesting they were anergic or undergoing deletion. Although variant peptide vaccines were less effective as TAA expression increases, data presented in this article also suggest that complementary immunotherapies may induce the expansion of T cells with functional TAA recognition.
Collapse
Affiliation(s)
- Charles B Kemmler
- Integrated Department of Immunology, School of Medicine, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
33
|
Ertelt JM, Rowe JH, Mysz MA, Singh C, Roychowdhury M, Aguilera MN, Way SS. Foxp3+ regulatory T cells impede the priming of protective CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2569-77. [PMID: 21810602 DOI: 10.4049/jimmunol.1100374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
T cell activation is controlled by incompletely defined opposing stimulation and suppression signals that together sustain the balance between optimal host defense against infection and peripheral tolerance. In this article, we explore the impacts of Foxp3(+) regulatory T cell (Treg) suppression in priming Ag-specific T cell activation under conditions of noninfection and infection. We find the transient ablation of Foxp3(+) Tregs unleashes the robust expansion and activation of peptide-stimulated CD8(+) T cells that provide protection against Listeria monocytogenes infection in an Ag-specific fashion. By contrast, Treg ablation had nonsignificant impacts on the CD8(+) T cell response primed by infection with recombinant L. monocytogenes. Similarly, nonrecombinant L. monocytogenes administered with peptide stimulated the expansion and activation of CD8(+) T cells that paralleled the response primed by Treg ablation. Interestingly, these adjuvant properties of L. monocytogenes did not require CD8(+) T cell stimulation by IL-12 produced in response to infection, but instead were associated with sharp reductions in Foxp3(+) Treg suppressive potency. Therefore, Foxp3(+) Tregs impose critical barriers that, when overcome naturally during infection or artificially with ablation, allow the priming of protective Ag-specific CD8(+) T cells.
Collapse
Affiliation(s)
- James M Ertelt
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
T cell responses in experimental viral retinitis: Mechanisms, peculiarities and implications for gene therapy with viral vectors. Prog Retin Eye Res 2011; 30:275-84. [DOI: 10.1016/j.preteyeres.2011.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/17/2011] [Accepted: 04/18/2011] [Indexed: 11/20/2022]
|
35
|
Kuball J, de Boer K, Wagner E, Wattad M, Antunes E, Weeratna RD, Vicari AP, Lotz C, van Dorp S, Hol S, Greenberg PD, Heit W, Davis HL, Theobald M. Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909. Cancer Immunol Immunother 2010; 60:161-71. [PMID: 20963411 PMCID: PMC3024516 DOI: 10.1007/s00262-010-0929-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/06/2010] [Indexed: 12/24/2022]
Abstract
T cells with specificity for antigens derived from Wilms Tumor gene (WT1), Proteinase3 (Pr3), and mucin1 (MUC1) have been demonstrated to lyse acute myeloid leukemia (AML) blasts and multiple-myeloma (MM) cells, and strategies to enhance or induce such tumor-specific T cells by vaccination are currently being explored in multiple clinical trials. To test safety and immunogenicity of a vaccine composed of WT1-, Pr3-, and MUC1-derived Class I-restricted peptides and the pan HLA-DR T helper cell epitope (PADRE) or MUC1-helper epitopes in combination with CpG7909 and MontanideISA51, four patients with AML and five with MM were repetitively vaccinated. No clinical responses were observed. Neither pre-existing nor naive WT1-/Pr3-/MUC1-specific CD8+ T cells expanded in vivo by vaccination. In contrast, a significant decline in vaccine-specific CD8+ T cells was observed. An increase in PADRE-specific CD4+ T helper cells was observed after vaccination but these appeared unable to produce IL2, and CD4+ T cells with a regulatory phenotype increased. Taken into considerations that multiple clinical trials with identical antigens but different adjuvants induced vaccine-specific T cell responses, our data caution that a vaccination with leukemia-associated antigens can be detrimental when combined with MontanideISA51 and CpG7909. Reflecting the time-consuming efforts of clinical trials and the fact that 1/3 of ongoing peptide vaccination trails use CpG and/or Montanide, our data need to be taken into consideration.
Collapse
Affiliation(s)
- Jürgen Kuball
- Department of Hematology, University Medical Center Utrecht, Lundlaan 6, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ait-Tahar K, Liggins AP, Collins GP, Campbell A, Barnardo M, Cabes M, Lawrie CH, Moir D, Hatton C, Banham AH, Pulford K. CD4-positive T-helper cell responses to the PASD1 protein in patients with diffuse large B-cell lymphoma. Haematologica 2010; 96:78-86. [PMID: 20851862 DOI: 10.3324/haematol.2010.028241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Vaccine development targeting the novel immunogenic Per ARNT Sim Domain containing 1 (PASD1) cancer testis antigen represents an attractive therapeutic approach for the significant number of patients with diffuse large B-cell lymphoma who are refractory to conventional treatment. Since CD4-positive T helper cells have crucial roles in promoting and maintaining immune responses to tumor antigens, the presence of a CD4-positive T-helper immune response to the PASD1 antigen in patients with diffuse large B-cell lymphoma was investigated in the current study. DESIGN AND METHODS Thirty-one patients with diffuse large B-cell lymphoma (25 with de novo, five with transformed and one with T-cell-rich B-cell lymphoma) were studied. Five immunogenic PASD1 peptides predicted to bind to several major histocompatibiliy complex, class II DR beta 1 alleles were identified using web-based algorithms. Peripheral blood mononuclear cells from patients were used to investigate the immunogenicity of these DR beta 1-restricted peptides in vitro using both gamma-interferon release enzyme-linked immunospot and cytolytic assays. RESULTS Two of the five PASD1 peptides, PASD1(6) and PASD1(7), were shown to be immunogenic in 14 out of 32 patients studied in a gamma-interferon release assay. CD4-positive T-helper cell lines from two patients raised against PASD1 peptides were able to lyse cell lines derived from hematologic malignancies expressing endogenous PASD1 protein. CONCLUSIONS This is the first report of a CD4-positive T-helper response to the PASD1 protein in patients with lymphoma. The immunogenic peptides described here represent valuable additional candidates for inclusion in a vaccine to treat patients with PASD1-positive diffuse large B-cell lymphoma whose disease is refractory to conventional therapies.
Collapse
Affiliation(s)
- Kamel Ait-Tahar
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gurung P, Kucaba TA, Schoenberger SP, Ferguson TA, Griffith TS. TRAIL-expressing CD8+ T cells mediate tolerance following soluble peptide-induced peripheral T cell deletion. J Leukoc Biol 2010; 88:1217-25. [PMID: 20807702 DOI: 10.1189/jlb.0610343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Peripheral tolerance controls the action of self-reactive T cells that escape thymic deletion. We showed previously that deletion of Ag-specific CD4+ T cells induced a CD8+ T(reg) population that maintained tolerance by deleting T cells with the same Ag specificity. The present study explored the mechanism of action of these CD8+ T(reg). Following OT-II T cell deletion by soluble OVA₃₂₃₋₃₃₉, B6 mice were unresponsive to challenge after CFA/OVA immunization, and Trail⁻/⁻ or Dr5⁻/⁻ mice were immune, although all strains displayed similar OT-II peripheral deletion. Interestingly, B6 mice remained tolerant to OVA even after a second infusion of OT-II T cells. Tolerance could be transferred to naïve recipients using CD8+ T cells from B6 or Dr5⁻/⁻ mice that experienced peptide-induced peripheral OT-II deletion but not from Trail⁻/⁻ mice. Subsequent investigation found that the mechanism of action of the CD8+ T(reg) was TRAIL-mediated OT-II T cell deletion in a TCR-specific manner. Furthermore, the tolerance was transient, as it was established by 14 days after peptide injection but lost by Day 56. Together, these data provide evidence to suggest that the mechanism behind transient peripheral tolerance induced following T cell deletion is the cytotoxic activity of TRAIL-expressing CD8+ T(reg).
Collapse
Affiliation(s)
- Prajwal Gurung
- Department of Urology, University of Iowa, Iowa City, Iowa 52242-1089, USA
| | | | | | | | | |
Collapse
|
38
|
Muraoka D, Kato T, Wang L, Maeda Y, Noguchi T, Harada N, Takeda K, Yagita H, Guillaume P, Luescher I, Old LJ, Shiku H, Nishikawa H. Peptide Vaccine Induces Enhanced Tumor Growth Associated with Apoptosis Induction in CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:3768-76. [DOI: 10.4049/jimmunol.0903649] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Miyagawa F, Gutermuth J, Zhang H, Katz SI. The use of mouse models to better understand mechanisms of autoimmunity and tolerance. J Autoimmun 2010; 35:192-8. [PMID: 20655706 DOI: 10.1016/j.jaut.2010.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major emphasis of our studies has been on developing a better understanding of how and why the skin serves as a target for immune reactions as well as how the skin evades becoming a target for destruction. For these studies we developed transgenic mice that express a membrane-tethered form of a model self antigen, chicken ovalbumin (mOVA), under the control of a keratin 14 (K14) promoter. K14-mOVA transgenic mice that express OVA mRNA and protein in the epithelia have been assessed for their immune responsiveness to OVA and are being used as targets for T cells obtained from OT-1 transgenic mice whose CD8+ T cells carry a Vα2/Vβ5-transgenic T cell receptor with specificity for the OVA(257-264)-peptides (OVAp) in association with class I MHC antigens. Some of the K14-mOVA transgenic mice develop a graft-versus-host-like disease (GvHD) when the OT-1 cells are injected while others appear to be tolerant to the OT-1 cells. We found that γc cytokines, especially IL-15, determine whether autoimmunity or tolerance ensues in K14-mOVA Tg mice. We also developed transgenic mice that express soluble OVA under the control of a K14 promoter (K14-sOVA) that die within 5-8 days after adoptive transfer of OT-1 cells and identified these mice as a model for more acute GvHD-like reactions. Spontaneous autoimmunity occurs when these K14-sOVA mice are crossed with the OT-I mice. In contrast, we found that preventive or therapeutic OVAp injections induced a dose-dependent increase in survival. In this review the characterization of 5 strains of K14-OVATg mice and underlying mechanisms involved in autoimmune reactions in these Tg mice are discussed. We also describe a strategy to break tolerance and describe how the autoimmunity can be obviated using OVAp. Finally, a historical overview of using transgenic mice to assess the mechanisms of tolerance is also provided.
Collapse
Affiliation(s)
- Fumi Miyagawa
- Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
40
|
Overstreet MG, Freyberger H, Cockburn IA, Chen YC, Tse SW, Zavala F. CpG-enhanced CD8+ T-cell responses to peptide immunization are severely inhibited by B cells. Eur J Immunol 2010; 40:124-33. [PMID: 19830730 DOI: 10.1002/eji.200939493] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synthetic peptides encoding protective pathogen-derived epitopes represent--in principle--an ideal approach to T-cell vaccination. Empirically, however, these strategies have not been successful. In the current study, we profiled the early activation of CD8+ T cells by MHC class I-restricted peptide immunization to better understand the biology of this response. We found that CD8+ T cells proliferated robustly in response to low doses of short synthetic peptides in PBS, but failed to acquire effector function or form memory populations in the absence of the TLR ligand CpG. CpG was unique among TLR ligands in its ability to enhance the response to peptide and its adjuvant effects had strict temporal requirements. Interestingly, CpG treatment modulated T-cell expression of the surface receptors PD-1 and CD25, providing insight into its possible adjuvant mechanism. The effects of CpG on peptide immunization were dramatically enhanced in the absence of B cells, demonstrating a unique system of regulation of T-cell responses by these lymphocytes. The results reported here provide insight into the complex response to a simple vaccination regimen, as well as a framework for a rational peptide-based vaccine design to both exploit and overcome targeted aspects of the immune response.
Collapse
Affiliation(s)
- Michael G Overstreet
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
41
|
Cho HI, Celis E. Optimized peptide vaccines eliciting extensive CD8 T-cell responses with therapeutic antitumor effects. Cancer Res 2009; 69:9012-9. [PMID: 19903852 DOI: 10.1158/0008-5472.can-09-2019] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A major challenge for developing effective therapeutic vaccines against cancer is overcoming immunologic tolerance to tumor-associated antigens that are expressed on both malignant cells and normal tissues. Herein, we describe a novel vaccination approach, TriVax, that uses synthetic peptides representing CD8 T-cell epitopes, Toll-like receptor agonists that function as potent immunologic adjuvants and costimulatory anti-CD40 antibodies to generate large numbers of high-avidity antigen-reactive T cells capable of recognizing and killing tumor cells. Our results show that TriVax induced huge numbers of long-lasting antigen-specific CD8 T cells that displayed significant antitumor effects in vivo. The administration of a TriVax formulation containing a CD8 T-cell epitope derived from a melanosomal antigen (Trp2(180-188)) elicited antigen-specific CD8 T cells that induced systemic autoimmunity (vitiligo). More important, TriVax immunization was effective in eliciting potent protective antitumor immunity as well as remarkable therapeutic effects against established B16 melanoma. This therapeutic effect was mediated by CD8 T cells via perforin-mediated lysis and required the participation of type-I IFN but not IFNgamma. These results suggest that similar strategies would be applicable for the design of effective vaccination for conducting clinical studies in cancer patients.
Collapse
Affiliation(s)
- Hyun-Il Cho
- Immunology Program, Moffitt Cancer Center, and Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | | |
Collapse
|
42
|
Jeong W, Kweon CH, Kang SW, Lee HS, Xu Y, Lu C, Zhang S, Nene V. Adjuvant effect of bovine heat shock protein 70 on piroplasm surface protein, p33, of Theileria sergenti. Biologicals 2009; 37:282-7. [DOI: 10.1016/j.biologicals.2009.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/31/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022] Open
|
43
|
Highly efficient antiviral CD8+ T-cell induction by peptides coupled to the surfaces of liposomes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1383-92. [PMID: 19675224 DOI: 10.1128/cvi.00116-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In previous studies, we have demonstrated that liposomes with differential lipid components display differential adjuvant effects when antigens (Ags) are chemically coupled to their surfaces. When ovalbumin was coupled to liposomes made by using unsaturated fatty acids, it was found to be presented not only to CD4(+) T cells but also to CD8(+) T cells and induced cytotoxic T lymphocytes (CTLs) which effectively eradicated the tumor from mice. In this study, we coupled liposomes to immunodominant CTL epitope peptides derived from lymphocytic choriomeningitis virus (LCMV) and evaluated its potency as an antiviral vaccine. The intramuscular immunization of mice with the peptide-liposome conjugates along with CpG resulted in the efficient induction of antiviral CD8(+) T-cell responses which conferred complete protection against not only LCMV Armstrong but also a highly virulent mutant strain, clone 13, that establishes persistent infections in immunocompetent mice. The intranasal vaccination induced mucosal immunity effective enough to protect mice from the virus challenge via the same route. Complete protection was achieved in mice even when the Ag dose was reduced to as low as 280 ng of liposomal peptide. This form of vaccination with a single CTL epitope induced Ag-specific memory CD8(+) T cells in the absence of CD4(+) T-cell help, which could be shown by the complete protection of CD4-knockout mice in 10 weeks as well as by the analysis of recall responses. Thus, surface-linked liposomal peptide might have a potential advantage for the induction of antiviral immunity.
Collapse
|
44
|
E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad Sci U S A 2009; 106:6250-5. [PMID: 19332800 DOI: 10.1073/pnas.0901166106] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Preclinical animal models have largely ignored the immune-suppressive mechanisms that are important in human cancers. The identification and use of such models should allow better predictions of successful human responses to immunotherapy. As a model for changes induced in nonmalignant cells by cancer, we examined T-cell function in the chronic lymphocytic leukemia (CLL) Emu-TCL1 transgenic mouse model. With development of leukemia, Emu-TCL1 transgenic mice developed functional T-cell defects and alteration of gene and protein expression closely resembling changes seen in CLL human patients. Furthermore, infusion of CLL cells into young Emu-TCL1 mice induced defects comparable to those seen in mice with developed leukemia, demonstrating a causal relationship between leukemia and the T-cell defects. Altered pathways involved genes regulating actin remodeling, and T cells exhibited dysfunctional immunological synapse formation and T-cell signaling, which was reversed by the immunomodulatory drug lenalidomide. These results further demonstrate the utility of this animal model of CLL and define a versatile model to investigate both the molecular mechanisms of cancer-induced immune suppression and immunotherapeutic repair strategies.
Collapse
|
45
|
Abel K. The rhesus macaque pediatric SIV infection model - a valuable tool in understanding infant HIV-1 pathogenesis and for designing pediatric HIV-1 prevention strategies. Curr HIV Res 2009; 7:2-11. [PMID: 19149549 DOI: 10.2174/157016209787048528] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Worldwide, the AIDS pandemic continues almost relentlessly. Women are now representing the fastest growing group of newly infected HIV-1 infected patients. The risk of mother-to-child-transmission (MTCT) of HIV-1 increases proportionally as many of these women are of childbearing age. The screening of pregnant women, the early diagnosis of HIV-1 infection, and the administration of antiretroviral therapy (ART) have helped to reduce MTCT significantly. However, this holds true only for developed countries. In many resource-poor countries, access to ART is limited, and breastfeeding, a major route of HIV-1 transmission, is essential to protect the infant from other infectious diseases preponderant in those geographic regions. HIV-1 infected children, in contrast to adult patients, have higher levels of virus replication that decline only slowly, and a subset progresses to AIDS within the first two years. Thus, it is imperative to understand pediatric HIV-1 pathogenesis to design effective prevention strategies and/or a successful pediatric HIV-1 vaccine. The review summarizes how MTCT of HIV-1 in humans can be modeled in the infant macaque model of SIV infection. Importantly, the infant macaque model of SIV infection provides the opportunity to study early virus-host interactions in multiple anatomic compartments. Furthermore, the review underlines the importance of evaluating SIV/HIV immune responses in the context of the normal developmental changes the immune system undergoes in the newborn. Thus, the pediatric SIV infection model provides a unique resource for preclinical studies of novel intervention therapies and vaccine strategies to stop MTCT of HIV-1.
Collapse
Affiliation(s)
- Kristina Abel
- California National Primate Research Center, and Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, CA, USA.
| |
Collapse
|
46
|
Peripheral CD8+ T cell tolerance to self-proteins is regulated proximally at the T cell receptor. Immunity 2008; 28:662-74. [PMID: 18424189 DOI: 10.1016/j.immuni.2008.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/12/2008] [Accepted: 03/04/2008] [Indexed: 11/20/2022]
Abstract
CD8(+) T cell tolerance, although essential for preventing autoimmunity, poses substantial obstacles to eliciting immune responses to tumor antigens, which are generally overexpressed normal proteins. Development of effective strategies to overcome tolerance for clinical applications would benefit from elucidation of the immunologic mechanism(s) regulating T cell tolerance to self. To examine how tolerance is maintained in vivo, we engineered dual-T cell receptor (TCR) transgenic mice in which CD8(+) T cells recognize two distinct antigens: a foreign viral-protein and a tolerizing self-tumor protein. Encounter with peripheral self-antigen rendered dual-TCR T cells tolerant to self, but these cells responded normally through the virus-specific TCR. Moreover, proliferation induced by virus rescued function of tolerized self-tumor-reactive TCR, restoring anti-tumor activity. These studies demonstrate that peripheral CD8(+) T cell tolerance to self-proteins can be regulated at the level of the self-reactive TCR complex rather than by central cellular inactivation and suggest an alternate strategy to enhance adoptive T cell immunotherapy.
Collapse
|
47
|
Bijker MS, van den Eeden SJF, Franken KL, Melief CJM, van der Burg SH, Offringa R. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur J Immunol 2008; 38:1033-42. [PMID: 18350546 DOI: 10.1002/eji.200737995] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Anti-tumor vaccines consisting of extended CTL peptides in combination with CpG-ODN were shown to be superior to those comprising minimal CTL epitopes and CpG-ODN, in that they elicit stronger effector CTL responses with greater tumoricidal potential. We now demonstrate that this improved performance is primarily due to the focusing of CTL epitope presentation onto activated DC in the inflamed lymph nodes draining the vaccination site. In the case of vaccination with minimal peptides, additional APC including T and B cells are also loaded with CTL epitopes. Our data suggest that circulation of these peptide-loaded lymphocytes leads to epitope presentation in non-inflamed lymphoid organs distal from the vaccination site, in the absence of potent costimulatory signals required for efficient CTL priming. The resulting blend of pro-immunogenic and tolerogenic signals, which results in suboptimal activation of the CTL response, is avoided by vaccinating with extended CTL peptides. An additional advantage of extended CTL peptide vaccines is an increased duration of in vivo epitope presentation.
Collapse
Affiliation(s)
- Martijn S Bijker
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Hammerbeck CD, Mescher MF. Antigen controls IL-7R alpha expression levels on CD8 T cells during full activation or tolerance induction. THE JOURNAL OF IMMUNOLOGY 2008; 180:2107-16. [PMID: 18250416 DOI: 10.4049/jimmunol.180.4.2107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The high-affinity chain of the IL-7 receptor, IL-7Ralpha (CD127), is expressed by effector CD8 T cells that have the capacity to become memory cells. IL-7Ralpha expression is uniformly high on naive CD8 T cells, and the majority of these cells down-regulate expression upon antigenic challenge. At the peak of expansion, the fraction of effectors expressing high IL-7Ralpha varies depending on the response examined. The signals that a CD8 T cell receives during a response to Ag that lead to altered expression of IL-7Ralpha have not been fully defined. In vitro experiments demonstrated that Ag alone is sufficient to down-regulate IL-7Ralpha on all cells and most of the cells rapidly re-express the receptor upon removal from Ag. Expression was not altered by the B7.1 costimulatory ligand or when IL-12 was present to provide the signal needed for development of effector functions, indicating that TCR engagement is sufficient to regulate IL-7Ralpha expression. Consistent with this, in vivo priming with peptide Ag resulted in IL-7Ralpha expression that inversely correlated with Ag levels, and expression levels were not changed when IL-12 or adjuvant were administered with Ag. A large fraction of the cells present at the peak of expansion had re-expressed IL-7Ralpha, but most of these cells failed to survive; those that did survive expressed high IL-7Ralpha levels. Thus, Ag-dependent signals regulate IL-7Ralpha levels on responding CD8 T cells, and this occurs whether the responding cells become fully activated or are rendered tolerant by administration of peptide Ag alone.
Collapse
Affiliation(s)
- Christopher D Hammerbeck
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | | |
Collapse
|
49
|
Bijker MS, van den Eeden SJF, Franken KL, Melief CJM, Offringa R, van der Burg SH. CD8+ CTL priming by exact peptide epitopes in incomplete Freund's adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. THE JOURNAL OF IMMUNOLOGY 2007; 179:5033-40. [PMID: 17911588 DOI: 10.4049/jimmunol.179.8.5033] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Therapeutic vaccination trials, in which patients with cancer were vaccinated with minimal CTL peptide in oil-in-water formulations, have met with limited success. Many of these studies were based on the promising data of mice studies, showing that vaccination with a short synthetic peptide in IFA results in protective CD8(+) T cell immunity. By use of the highly immunogenic OVA CTL peptide in IFA as a model peptide-based vaccine, we investigated why minimal CTL peptide vaccines in IFA performed so inadequately to allow full optimization of peptide vaccination. Injection of the minimal MHC class I-binding OVA(257-264) peptide in IFA transiently activated CD8(+) effector T cells, which eventually failed to undergo secondary expansion or to kill target cells, as a result of a sustained and systemic presentation of the CTL peptides gradually leaking out of the IFA depot without systemic danger signals. Complementation of this vaccine with the MHC class II-binding Th peptide (OVA(323-339)) restored both secondary expansion and in vivo effector functions of CD8(+) T cells. Simply extending the CTL peptide to a length of 30 aa also preserved these CD8(+) T cell functions, independent of T cell help, because the longer CTL peptide was predominantly presented in the locally inflamed draining lymph node. Importantly, these functional differences were reproduced in two additional model Ag systems. Our data clearly show why priming of CTL with minimal peptide epitopes in IFA is suboptimal, and demonstrate that the use of longer versions of these CTL peptide epitopes ensures the induction of sustained effector CD8(+) T cell reactivity in vivo.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
- Freund's Adjuvant/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Ovalbumin/metabolism
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Time Factors
- Vaccination
Collapse
Affiliation(s)
- Martijn S Bijker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Lang KS, Hegazy AN, Lang PA, Eschli B, Löhning M, Hengartner H, Zinkernagel RM, Recher M. "Negative vaccination" by specific CD4 T cell tolerisation enhances virus-specific protective antibody responses. PLoS One 2007; 2:e1162. [PMID: 18000535 PMCID: PMC2048666 DOI: 10.1371/journal.pone.0001162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 10/13/2007] [Indexed: 12/02/2022] Open
Abstract
Background Cooperation of CD4+ T helper cells with specific B cells is crucial for protective vaccination against pathogens by inducing long-lived neutralizing antibody responses. During infection with persistence-prone viruses, prolonged virus replication correlates with low neutralizing antibody responses. We recently described that a viral mutant of lymphocytic choriomeningitis virus (LCMV), which lacks a T helper epitope, counterintuitively induced an enhanced protective antibody response. Likewise, partial depletion of the CD4+ T cell compartment by using anti-CD4 antibodies enhanced protective antibodies. Principal Findings Here we have developed a protocol to selectively reduce the CD4+ T cell response against viral CD4+ T cell epitopes. We demonstrate that in vivo treatment with LCMV-derived MHC-II peptides induced non-responsiveness of specific CD4+ T cells without affecting CD4+ T cell reactivity towards other antigens. This was associated with accelerated virus-specific neutralizing IgG-antibody responses. In contrast to a complete absence of CD4+ T cell help, tolerisation did not impair CD8+ T cell responses. Conclusions This result reveals a novel “negative vaccination” strategy where specific CD4+ T cell unresponsiveness may be used to enhance the delayed protective antibody responses in chronic virus infections.
Collapse
Affiliation(s)
- Karl S Lang
- Institute of Experimental Immunology, Department of Pathology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|