1
|
Zhao W, Qian J, Li J, Su T, Deng X, Fu Y, Liang X, Cui H. From death to birth: how osteocyte death promotes osteoclast formation. Front Immunol 2025; 16:1551542. [PMID: 40165960 PMCID: PMC11955613 DOI: 10.3389/fimmu.2025.1551542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Bone remodeling is a dynamic and continuous process involving three components: bone formation mediated by osteoblasts, bone resorption mediated by osteoclasts, and bone formation-resorption balancing regulated by osteocytes. Excessive osteocyte death is found in various bone diseases, such as postmenopausal osteoporosis (PMOP), and osteoclasts are found increased and activated at osteocyte death sites. Currently, apart from apoptosis and necrosis as previously established, more forms of cell death are reported, including necroptosis, ferroptosis and pyroptosis. These forms of cell death play important role in the development of inflammatory diseases and bone diseases. Increasing studies have revealed that various forms of osteocyte death promote osteoclast formation via different mechanism, including actively secreting pro-inflammatory and pro-osteoclastogenic cytokines, such as tumor necrosis factor alpha (TNF-α) and receptor activator of nuclear factor-kappa B ligand (RANKL), or passively releasing pro-inflammatory damage associated molecule patterns (DAMPs), such as high mobility group box 1 (HMGB1). This review summarizes the established and potential mechanisms by which various forms of osteocyte death regulate osteoclast formation, aiming to provide better understanding of bone disease development and therapeutic target.
Collapse
Affiliation(s)
- Weijie Zhao
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jiale Qian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ji Li
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tian Su
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of pharmacy, Hainan Medical University, Haikou, China
| | - Xiaozhong Deng
- Department of Pain Treatment, Nanxi Shan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yonghua Fu
- Department of Hand and Foot Microsurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xuelong Liang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongwang Cui
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Kirk B, Lombardi G, Duque G. Bone and muscle crosstalk in ageing and disease. Nat Rev Endocrinol 2025:10.1038/s41574-025-01088-x. [PMID: 40011751 DOI: 10.1038/s41574-025-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Interorgan communication between bone and skeletal muscle is central to human health. A dysregulation of bone-muscle crosstalk is implicated in several age-related diseases. Ageing-associated changes in endocrine, inflammatory, nutritional and biomechanical stimuli can influence the differentiation capacity, function and survival of mesenchymal stem cells and bone-forming and muscle-forming cells. Consequently, the secretome phenotype of bone and muscle cells is altered, leading to impaired crosstalk and, ultimately, catabolism of both tissues. Adipose tissue acts as a third player in the bone-muscle interaction by secreting factors that affect bone and muscle cells. Physical exercise remains the key biological stimulus for bone-muscle crosstalk, either directly via the release of cytokines from bone, muscle or adipocytes, or indirectly through extracellular vesicles. Overall, bone-muscle crosstalk is considered an inherent process necessary to maintain the structure and function of both tissues across the life cycle. This Review summarizes the latest biomedical advances in bone-muscle crosstalk as it pertains to human ageing and disease. We also outline future research priorities to accommodate the understanding of this rapidly emerging field.
Collapse
Affiliation(s)
- Ben Kirk
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Gustavo Duque
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia.
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Abuohashish H, Omar O, Alrayes N, AlQahtani N, Muhamood M, Alhawaj H, Alkhamis T, Almas K. Exacerbating effects of Western dietary habits on experimentally induced periodontitis in rats. Odontology 2025:10.1007/s10266-025-01067-8. [PMID: 39937328 DOI: 10.1007/s10266-025-01067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
This study explored the impact of western diet (WD) on a ligature-induced periodontitis (PD) model. After either control diet (CD) or WD feeding for 16 weeks, male Wistar rats were allocated in six groups (n = 6). The first and second groups had no PD. The third and fourth groups had ligature-induced PD for 10 days, while the fifth and sixth groups had ligature-induced PD for 10 days, followed by ligature removal healing period for another 10 days. The CD contained 13.71% protein, 75.98% carbohydrate, and 10.31% fat, though WD composed of 14.7% protein, 40.7% carbohydrate, and 44.6% fat. After clinical evaluation, the maxillary alveolar bone and gingival tissues were collected for morphometric, microstructural, histological, and gene expression analyses. There were significant increases in the gingival bleeding index, periodontal probing depth, and tooth mobility in WD animals with PD and in the healing groups. The WD groups had a greater alveolar crest height, indicating greater bone resorption. Disruption of the bone microarchitecture by PD was exacerbated in WD-fed animals. The histological evaluation demonstrated a greater extent of gingival inflammation in the PD groups. The Tnf, Il6, Ctsk, and Tnfsf11/RANKL gene expression levels were increased in the WD groups, while the Bglap and Hif1a gene expression levels were decreased in the WD groups. Findings of the study are compelling preclinical evidence that WD deteriorates periodontal health and exacerbates periodontal disease and alveolar bone loss in experimental animals. Future clinical research is warranted to translate these preclinical findings.
Collapse
Affiliation(s)
- Hatem Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Nabras Alrayes
- College of Dentistry, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Norah AlQahtani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Muhaseena Muhamood
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Hussain Alhawaj
- Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Taleb Alkhamis
- Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Khalid Almas
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
4
|
von Stade D, Meyers M, Johnson J, Schlegel T, Romeo A, Regan D, McGilvray K. Primary Human Macrophage and Tenocyte Tendon Healing Phenotypes Changed by Exosomes Per Cell Origin. Tissue Eng Part A 2025. [PMID: 39761039 DOI: 10.1089/ten.tea.2024.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing. To this end, we investigated the differential regulation of human primary macrophage transcriptomic responses and cytokine secretion by tenocyte-derived EVs (TdEVs) compared with MSCdEVs. Compared with MSCdEVs, TdEVs upregulated TNFa-NFkB and TGFB signaling and pathways associated with osteoclast differentiation in macrophages while decreasing secretion of several pro-inflammatory cytokines. Conditioned media of these TdEV educated macrophages drove increased tenocyte migration and decreased MMP3 and MMP13 expression. In contrast, MSCdEV education of macrophages drove increased gene expression pathways related to INFa, INFg and protection against oxidative stress while increasing cytokine expression of MCP1 and IL6. These data demonstrate that EV cell source differentially impacts the function of key effector cells in tendon healing and that TdEVs, compared with MSCdEVs, promote a more favorable tendon healing phenotype within these cells.
Collapse
Affiliation(s)
- Devin von Stade
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Melinda Meyers
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - James Johnson
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | | | - Anthony Romeo
- Shoulder Elbow Sports Medicine, Chicago, Illinois, USA
| | - Daniel Regan
- Flint Animal Cancer Center and Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kirk McGilvray
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
5
|
Morado-Urbina CE, Kato J, Sandor K, Vazquez-Mora JA, Ängeby Möller K, Simon N, Salcido J, Martinez-Martinez A, Munoz-Islas E, Jimenez-Andrade JM, Svensson CI. Sex-dependent effects of the targeted nerve growth factor mutation (R100E) on pain behavior, joint inflammation, and bone erosion in mice. Pain 2024; 165:2814-2828. [PMID: 39324959 PMCID: PMC11562760 DOI: 10.1097/j.pain.0000000000003343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 09/27/2024]
Abstract
ABSTRACT Nerve growth factor (NGF)-R100E is a mutated form of human recombinant NGF that reduces the binding of NGF to its p75NTR receptor while retaining its affinity toward the TrkA receptor. Here, we used human wild type NGF and NGF-R100E knock-in mice to investigate the effects of this NGF mutation on inflammation-induced pain-related behaviors and bone loss. The hNGF-R100E mutation did not alter the nerve fiber density in the sciatic nerve, ankle joint synovium, and skin of naïve mice. Withdrawal responses to mechanical, thermal, and cold stimuli before and after joint inflammation induced by intra-articular injection of complete Freund adjuvant (CFA) were similar between human recombinant nerve growth factor-wild type and hNGF-R100E male and female mice while weight bearing and gait analysis revealed significant differences. Intriguingly, hNGF-R100E male and female mice showed only mild changes, indicating lower degrees of deep joint-related pain compared to their wild type counterparts. Furthermore, micro-CT analysis demonstrated that hNGF-R100E female mice, but not males, were protected from CFA-induced bone loss, and mRNA analysis showed a different gene regulation indicating a sex-dependent relationship between NGF, inflammation, and bone loss. In conclusion, our study reveals that the hNGF-R100E mutation renders mice insensitive to inflammation-induced impact on joint loading and gait while preserving the development of the peripheral nociceptive neurons and sensitivity to punctate stimulation of the skin. Notably, the mutation uncovers a sex-dependent relationship between NGF and inflammation-induced bone loss. These findings offer valuable insights into NGF as a target for pain management and the interplay between NGF and bone architecture.
Collapse
Affiliation(s)
- Carlos E. Morado-Urbina
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Jungo Kato
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Juan Antonio Vazquez-Mora
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Kristina Ängeby Möller
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Jaira Salcido
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | - Arisai Martinez-Martinez
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | - Enriqueta Munoz-Islas
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | | | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
Abbass MMS, Rady D, El Moshy S, Ahmed Radwan I, Wadan AHS, Dörfer CE, El-Sayed KMF. The Temporomandibular Joint and the Human Body: A New Perspective on Cross Talk. Dent J (Basel) 2024; 12:357. [PMID: 39590407 PMCID: PMC11592717 DOI: 10.3390/dj12110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Background: As a unique joint that facilitates the articulation of the upper and lower jaws, the temporomandibular joint (TMJ) is concerned with several critical functions, such as speech and mastication. Pain that can become incapacitating is a result of temporomandibular disorders (TMDs), which are complex disorders affecting the masticatory muscles and the TMJ. Several anomalies and TMDs have an interdisciplinary relationship. Complementary and concurrent disorders may be caused by occlusal anomalies, psychological disorders, and changes in spine posture. Methods: This article examines the clinical characteristics of TMDs, their classification, their etiological factors, and the impact of TMJ disorders on the human body with reference to their anatomies and histological structures. Results: The clinical picture of some TMJ pathologies may be unknown, so certain biomarkers, such as cytokines, may be useful for an accurate diagnosis as they are frequently seen in TMJ disorders. Furthermore, novel therapeutic approaches that target pro-inflammatory cytokines and treat TMDs by using tissue engineering and regenerative medicine while permitting TMJ cartilage and bone regeneration may offer numerous benefits that require clinical translation. Conclusions: Implementation of recent modalities such as microvesicles and platelet-rich plasma in growth factors may provide a promising approach to enhance bone formation. In addition, we target different biological markers that give insights into the introduction of new pharmaceutical agents for therapy.
Collapse
Affiliation(s)
- Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11435, Egypt; (M.M.S.A.); (D.R.); (S.E.M.); (I.A.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11435, Egypt
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11435, Egypt; (M.M.S.A.); (D.R.); (S.E.M.); (I.A.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11435, Egypt
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11435, Egypt; (M.M.S.A.); (D.R.); (S.E.M.); (I.A.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11435, Egypt
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11435, Egypt; (M.M.S.A.); (D.R.); (S.E.M.); (I.A.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11435, Egypt
| | | | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 43517 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11435, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 43517 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 24105, Egypt
| |
Collapse
|
7
|
Wen YH, Lin YX, Zhou L, Lin C, Zhang L. The immune landscape in apical periodontitis: From mechanism to therapy. Int Endod J 2024; 57:1526-1545. [PMID: 39087849 DOI: 10.1111/iej.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Apical periodontitis (AP) is featured by a persistent inflammatory response and alveolar bone resorption initiated by microorganisms, posing risks to both dental and systemic health. Nonsurgical endodontic treatment is the recommended treatment plan for AP with a high success rate, but in some cases, periapical lesions may persist despite standard endodontic treatment. Better comprehension of the AP inflammatory microenvironment can help develop adjunct therapies to improve the outcome of endodontic treatment. This review presents an overview of the immune landscape in AP, elucidating how microbial invasion triggers host immune activation and shapes the inflammatory microenvironment, ultimately impacting bone homeostasis. The destructive effect of excessive immune activation on periapical tissues is emphasized. This review aimed to systematically discuss the immunological basis of AP, the inflammatory bone resorption and the immune cell network in AP, thereby providing insights into potential immunotherapeutic strategies such as targeted therapy, antioxidant therapy, adoptive cell therapy and cytokine therapy to mitigate AP-associated tissue destruction.
Collapse
Affiliation(s)
- Yuan-Hao Wen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu-Xiu Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chen Lin
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Shehabeldin M, Gao J, Cho Y, Chong R, Tabib T, Li L, Smardz M, Gaffen SL, Diaz PI, Lafyatis R, Little SR, Sfeir C. Therapeutic delivery of CCL2 modulates immune response and restores host-microbe homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2400528121. [PMID: 39186644 PMCID: PMC11388407 DOI: 10.1073/pnas.2400528121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/11/2024] [Indexed: 08/28/2024] Open
Abstract
Many chronic inflammatory diseases are attributed to disturbances in host-microbe interactions, which drive immune-mediated tissue damage. Depending on the anatomic setting, a chronic inflammatory disease can exert unique local and systemic influences, which provide an exceptional opportunity for understanding disease mechanism and testing therapeutic interventions. The oral cavity is an easily accessible environment that allows for protective interventions aiming at modulating the immune response to control disease processes driven by a breakdown of host-microbe homeostasis. Periodontal disease (PD) is a prevalent condition in which quantitative and qualitative changes of the oral microbiota (dysbiosis) trigger nonresolving chronic inflammation, progressive bone loss, and ultimately tooth loss. Here, we demonstrate the therapeutic benefit of local sustained delivery of the myeloid-recruiting chemokine (C-C motif) ligand 2 (CCL2) in murine ligature-induced PD using clinically relevant models as a preventive, interventional, or reparative therapy. Local delivery of CCL2 into the periodontium inhibited bone loss and accelerated bone gain that could be ascribed to reduced osteoclasts numbers. CCL2 treatment up-regulated M2-macrophage and downregulated proinflammatory and pro-osteoclastic markers. Furthermore, single-cell ribonucleic acid (RNA) sequencing indicated that CCL2 therapy reversed disease-associated transcriptomic profiles of murine gingival macrophages via inhibiting the triggering receptor expressed on myeloid cells-1 (TREM-1) signaling in classically activated macrophages and inducing protein kinase A (PKA) signaling in infiltrating macrophages. Finally, 16S ribosomal ribonucleic acid (rRNA) sequencing showed mitigation of microbial dysbiosis in the periodontium that correlated with a reduction in microbial load in CCL2-treated mice. This study reveals a novel protective effect of CCL2 local delivery in PD as a model for chronic inflammatory diseases caused by a disturbance in host-microbe homeostasis.
Collapse
Affiliation(s)
- Mostafa Shehabeldin
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Jin Gao
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Yejin Cho
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Rong Chong
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA15261
| | - Lu Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214
- University at Buffalo Microbiome Center, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214
| | - Matthew Smardz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214
- University at Buffalo Microbiome Center, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA15261
| | - Patricia I. Diaz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214
- University at Buffalo Microbiome Center, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA15261
| | - Steven R. Little
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA15219
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA15261
| | - Charles Sfeir
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA15219
| |
Collapse
|
9
|
Roh T, Jo H, Kim JY. Maxillary Bone Necrosis in Post-COVID-19 Patients: Possibility of Medication-Related Osteonecrosis of Jaws (MRONJ) Induced by Tocilizumab. J Craniofac Surg 2024; 35:e454-e457. [PMID: 38709024 DOI: 10.1097/scs.0000000000010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024] Open
Abstract
Medication-related osteonecrosis of the jaws (MRONJ) is a serious condition often linked with antiresorptive, immune modulating, and antiangiogenic drugs, initially associated with bisphosphonates but now including a broader range of medications. Tocilizumab, an interleukin-6 (IL-6) receptor-inhibiting monoclonal antibody used for conditions like rheumatoid arthritis and recently for COVID-19 to reduce IL-6 activity and alleviate symptoms, has raised concerns over its potential to induce MRONJ, particularly in post-COVID-19 patients. A case involving a 36-year-old male who developed tooth mobility and pain in the right maxillary posterior region after COVID-19 treatment with tocilizumab and dexamethasone is highlighted. Despite treatments like antibiotics, the necrosis persisted until more extensive surgery was performed, leading to improvement without recurrence over 2 years. This case emphasizes the need for awareness and research into the risk of MRONJ in patients treated with tocilizumab after COVID-19, underlining the importance for healthcare professionals to recognize and manage this complication.
Collapse
Affiliation(s)
- Taeho Roh
- Department of Oral and Maxillofacial Surgery and Oral Science Research Center, Yonsei University College of Dentistry
| | - Hyeongyu Jo
- Department of Oral and Maxillofacial Surgery and Oral Science Research Center, Yonsei University College of Dentistry
| | - Jun-Young Kim
- Department of Oral and Maxillofacial Surgery and Oral Science Research Center, Yonsei University College of Dentistry
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Korea
| |
Collapse
|
10
|
Zhang H, Gu W, Wu G, Yu Y. Aging and Autophagy: Roles in Musculoskeletal System Injury. Aging Dis 2024:AD.2024.0362. [PMID: 38913046 DOI: 10.14336/ad.2024.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Aging is a multifactorial process that ultimately leads to a decline in physiological function and a consequent reduction in the health span, and quality of life in elderly population. In musculoskeletal diseases, aging is often associated with a gradual loss of skeletal muscle mass and strength, resulting in reduced functional capacity and an increased risk of chronic metabolic diseases, leading to impaired function and increased mortality. Autophagy is a highly conserved physiological process by which cells, under the regulation of autophagy-related genes, degrade their own organelles and large molecules by lysosomal degradation. This process is unique to eukaryotic cells and is a strict regulator of homeostasis, the maintenance of energy and substance balance. Autophagy plays an important role in a wide range of physiological and pathological processes such as cell homeostasis, aging, immunity, tumorigenesis and neurodegenerative diseases. On the one hand, under mild stress conditions, autophagy mediates the restoration of homeostasis and proliferation, reduction of the rate of aging and delay of the aging process. On the other hand, under more intense stress conditions, an inadequate suppression of autophagy can lead to cellular aging. Conversely, autophagy activity decreases during aging. Due to the interrelationship between aging and autophagy, limited literature exists on this topic. Therefore, the objective of this review is to summarize the current concepts on aging and autophagy in the musculoskeletal system. The aim is to better understand the mechanisms of age-related changes in bone, joint and muscle, as well as the interaction relationship between autophagy and aging. Its goal is to provide a comprehensive perspective for the improvement of diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Gu
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Genbin Wu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinxian Yu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Wang T, Xiong K, He Y, Feng B, Guo L, Gu J, Zhang M, Wang H, Wu X. Chronic pancreatitis-associated metabolic bone diseases: epidemiology, mechanisms, and clinical advances. Am J Physiol Endocrinol Metab 2024; 326:E856-E868. [PMID: 38656128 DOI: 10.1152/ajpendo.00113.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Chronic pancreatitis (CP) is a progressive inflammatory disease with an increasing global prevalence. In recent years, a strong association between CP and metabolic bone diseases (MBDs), especially osteoporosis, has been identified, attracting significant attention in the research field. Epidemiological data suggest a rising trend in the incidence of MBDs among CP patients. Notably, recent studies have highlighted a profound interplay between CP and altered nutritional and immune profiles, offering insights into its linkage with MBDs. At the molecular level, CP introduces a series of biochemical disturbances that compromise bone homeostasis. One critical observation is the disrupted metabolism of vitamin D and vitamin K, both essential micronutrients for maintaining bone integrity, in CP patients. In this review, we provide physio-pathological perspectives on the development and mechanisms of CP-related MBDs. We also outline some of the latest therapeutic strategies for treating patients with CP-associated MBDs, including stem cell transplantation, monoclonal antibodies, and probiotic therapy. In summary, CP-associated MBDs represent a rising medical challenge, involving multiple tissues and organs, complex disease mechanisms, and diverse treatment approaches. More in-depth studies are required to understand the complex interplay between CP and MBDs to facilitate the development of more specific and effective therapeutic approaches.
Collapse
Affiliation(s)
- Tianlin Wang
- Department of Emergency, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ke Xiong
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanli He
- Department of General Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Binbin Feng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - LinBin Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingliang Gu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengrui Zhang
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, California, United States
- Division of Immunology and Rheumatology, Stanford University, Stanford, California, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| | - Hong Wang
- Department of General Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohao Wu
- Division of Immunology and Rheumatology, Stanford University, Stanford, California, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| |
Collapse
|
12
|
Zhou Y, Zhang Y, Qian Y, Tang L, Zhou T, Xie Y, Hu L, Ma C, Dong Q, Sun P. Ziyuglycoside II attenuated OVX mice bone loss via inflammatory responses and regulation of gut microbiota and SCFAs. Int Immunopharmacol 2024; 132:112027. [PMID: 38603860 DOI: 10.1016/j.intimp.2024.112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND PURPOSE Osteoporosis (OP) is a frequent clinical problem for the elderly. Traditional Chinese Medicine (TCM) has achieved beneficial results in the treatment of OP. Ziyuglycoside II (ZGS II) is a major active compound of Sanguisorba officinalis L. that has shown anti-inflammation and antioxidation properties, but little information concerning its anti-OP potential is available. Our research aims to investigate the mechanism of ZGS II in ameliorating bone loss by inflammatory responses and regulation of gut microbiota and short chain fatty acids (SCFAs) in ovariectomized (OVX) mice. METHODS We predicted the mode of ZGS II action on OP through network pharmacology and molecular docking, and an OVX mouse model was employed to validate its anti-OP efficacy. Then we analyzed its impact on bone microstructure, the levels of inflammatory cytokines and pain mediators in serum, inflammation in colon, intestinal barrier, gut microbiota composition and SCFAs in feces. RESULTS Network pharmacology identified 55 intersecting targets of ZGS II related to OP. Of these, we predicted IGF1 may be the core target, which was successfully docked with ZGS II and showed excellent binding ability. Our in vivo results showed that ZGS II alleviated bone loss in OVX mice, attenuated systemic inflammation, enhanced intestinal barrier, reduced the pain threshold, modulated the abundance of gut microbiota involving norank_f__Muribaculaceae and Dubosiella, and increased the content of acetic acid and propanoic acid in SCFAs. CONCLUSIONS Our data indicated that ZGS II attenuated bone loss in OVX mice by relieving inflammation and regulating gut microbiota and SCFAs.
Collapse
Affiliation(s)
- Yilin Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Yingtong Zhang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Yafei Qian
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Lin Tang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Tianyu Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Youhong Xie
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Li Hu
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Chenghong Ma
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Qunwei Dong
- Department of Orthopedics, Yunfu Hospital of Traditional Chinese Medicine, Yunfu, Guangdong 527300, China.
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
13
|
Tang Y, Su S, Yu R, Liao C, Dong Z, Jia C, Yau V, Wu L, Guo W, Zheng J. Unraveling ferroptosis in osteogenic lineages: implications for dysregulated bone remodeling during periodontitis progression. Cell Death Discov 2024; 10:195. [PMID: 38670955 PMCID: PMC11053120 DOI: 10.1038/s41420-024-01969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Periodontitis is a highly prevalent disease characterized by inflammation and destruction of tooth-supporting tissues that leads to tooth loss in extreme situations. Elucidating the underlying mechanisms of periodontitis pathogenesis and progression will establish the groundwork for developing effective treatment strategies. Recently, evidence concerning the role of ferroptosis in periodontitis progression has emerged. Osteogenic lineage cells are key regulators of bone remodeling. Osteogenic cell death, as observed in experimental periodontitis models, disrupts the balance between bone resorption and bone formation. However, whether the osteogenic lineage undergoes ferroptosis during periodontitis and the corresponding effect on periodontitis progression remain elusive. Here, we investigated cell-specific ferroptosis within the alveolar bone in a murine periodontitis model. Through immunofluorescence double staining and immunohistochemistry, we identified ferroptotic osteocytes and osteoblasts in inflammatory alveolar bone. Next, in vivo administration of erastin or liproxstatin-1 was conducted to either induce or inhibit ferroptosis, respectively. Severe bone resorption and inflammation, accompanied by increased osteoclast formation and impaired osteogenic potential were detected following ferroptosis activation. Subsequently, we carried out in vitro experiments on osteocytes and further verified that ferroptosis enhanced the osteocytic expression of RANKL and IL-6. These findings suggest that ferroptosis occurring within the osteogenic lineage acts as a catalyst in the progression of periodontitis by stimulating osteoclastogenesis through the secretion of inflammatory cytokines and inhibiting osteoblastic function, providing insights into ferroptosis-induced alterations in microenvironment-based intercellular communication. Ferroptosis is a promising target for controlling inflammation and preventing bone resorption in periodontitis.
Collapse
Affiliation(s)
- Yiqi Tang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
| | - Sihui Su
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
| | - Rongcheng Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
| | - Chenxi Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
| | - Zhili Dong
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
| | - Chengyao Jia
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
| | - Vicky Yau
- Department of Oral and Maxillofacial Surgery, University at Buffalo, Buffalo, NY, 14214, USA
| | - Liping Wu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Weimin Guo
- Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China.
| | - Jinxuan Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| |
Collapse
|
14
|
Yamashita E, Negishi S, Kikuta J, Shimizu M, Senpuku H. Effects of Improper Mechanical Force on the Production of Sonic Hedgehog, RANKL, and IL-6 in Human Periodontal Ligament Cells In Vitro. Dent J (Basel) 2024; 12:108. [PMID: 38668020 PMCID: PMC11049549 DOI: 10.3390/dj12040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Improper mechanical stress may induce side effects during orthodontic treatment. If the roots and alveolar bones are extensively resorbed following excess mechanical stress, unplanned tooth mobility and inflammation can occur. Although multiple factors are believed to contribute to the development of side effects, the cause is still unknown. Sonic hedgehog (Shh), one of the hedgehog signals significantly associated with cell growth and cancer development, promotes osteoclast formation in the jawbone. Shh may be associated with root and bone resorptions during orthodontic treatment. In this study, we investigated the relationships between Shh, RANKL, and IL-6 in human periodontal ligament (hPDL) cells exposed to improper mechanical force. Weights were placed on hPDL cells and human gingival fibroblasts (HGFs) for an optimal orthodontic force group (1.0 g/cm2) and a heavy orthodontic force group (4.0 g/cm2). A group with no orthodontic force was used as a control group. Real-time PCR, SDS-PAGE, and Western blotting were performed to examine the effects of orthodontic forces on the expression of Shh, RANKL, and IL-6 at 2, 4, 6, 8, 12, and 24 h after the addition of pressure. The protein expression of Shh was not clearly induced by orthodontic forces of 1.0 and 4.0 g/cm2 compared with the control in HGFs and hPDL cells. In contrast, RANKL and IL-6 gene and protein expression was significantly induced by 1.0 and 4.0 g/cm2 in hPDL cells for forces lasting 6~24 h. However, neither protein was expressed in HGFs. RANKL and IL-6 expressions in response to orthodontic forces and in the control were clearly inhibited by Shh inhibitor RU-SKI 43. Shh did not directly link to RANKL and IL-6 for root and bone resorptions by orthodontic force but was associated with cell activities to be finally guided by the production of cytokines in hPDL cells.
Collapse
Affiliation(s)
- Erika Yamashita
- Department of Orthodontics, Nihon University of School at Matsudo, Matsudo 271-8587, Japan; (E.Y.); (S.N.); (J.K.)
| | - Shinichi Negishi
- Department of Orthodontics, Nihon University of School at Matsudo, Matsudo 271-8587, Japan; (E.Y.); (S.N.); (J.K.)
| | - Jun Kikuta
- Department of Orthodontics, Nihon University of School at Matsudo, Matsudo 271-8587, Japan; (E.Y.); (S.N.); (J.K.)
| | - Mami Shimizu
- Department of Orthodontics, Nihon University of School at Matsudo, Matsudo 271-8587, Japan; (E.Y.); (S.N.); (J.K.)
| | - Hidenobu Senpuku
- Department of Microbiology and Immunology, Nihon University of School at Matsudo, Matsudo 271-8587, Japan
| |
Collapse
|
15
|
Ozawa Y, Takegami Y, Osawa Y, Asamoto T, Tanaka S, Imagama S. Anti-sclerostin antibody therapy prevents post-ischemic osteonecrosis bone collapse via interleukin-6 association. Bone 2024; 181:117030. [PMID: 38309414 DOI: 10.1016/j.bone.2024.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Osteonecrosis of the femoral head (ONFH) is a debilitating condition characterized by subchondral bone necrosis, which frequently culminates in joint destruction. Although total hip arthroplasty is conventionally practiced to remediate ONFH, for patients under the age of 60, the outcomes can be suboptimal. Chronic inflammation, particularly that mediated by interleukin-6 (IL-6), has been conjectured to be a potential mechanism underlying the etiology of ONFH. This study aimed at exploring the interplay between IL-6, the canonical Wnt signaling pathway, and ONFH to provide insights for potential therapeutic interventions. Human ONFH specimens depicted an elevation in β-catenin expression in the transitional layer, while IL-6 levels were pronounced in the same region. Subsequently, mouse models of ischemic osteonecrosis were treated with an anti-sclerostin antibody to assess its effects on bone metabolism and cellular processes. Histological analysis revealed that the administration of anti-sclerostin antibodies effectuated early recovery from bone necrosis, reduced empty lacunae, and suppressed IL-6 expression. The treatment evidently initiated the activation of the Wnt/β-catenin signaling pathway, presenting a potential mechanism associated with IL-6-mediated inflammation. Furthermore, the antibody upregulated osteoblast formation, downregulated osteoclast formation, and increased bone volume. Micro-CT imaging demonstrated increased bone volume, prevented epiphyseal deformity, and improved compression strength. Therefore, this study yields significant findings, indicating the potency of anti-sclerostin antibodies in effectively modulating the Wnt/β-catenin pathway, associating with IL-6 expression, and preventing post-ONFH bone collapse. Additionally, this preclinical investigation in mouse models offers an avenue for prospective research on potential therapeutic interventions against human ONFH.
Collapse
Affiliation(s)
- Yuto Ozawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, 8 Showa-ku, Nagoya, Japan
| | - Yasuhiko Takegami
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, 8 Showa-ku, Nagoya, Japan.
| | - Yusuke Osawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, 8 Showa-ku, Nagoya, Japan
| | - Takamune Asamoto
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, 8 Showa-ku, Nagoya, Japan
| | - Shinya Tanaka
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, 8 Showa-ku, Nagoya, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, 8 Showa-ku, Nagoya, Japan
| |
Collapse
|
16
|
Sui H, Dou J, Shi B, Cheng X. The reciprocity of skeletal muscle and bone: an evolving view from mechanical coupling, secretory crosstalk to stem cell exchange. Front Physiol 2024; 15:1349253. [PMID: 38505709 PMCID: PMC10949226 DOI: 10.3389/fphys.2024.1349253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction: Muscle and bone constitute the two main parts of the musculoskeletal system and generate an intricately coordinated motion system. The crosstalk between muscle and bone has been under investigation, leading to revolutionary perspectives in recent years. Method and results: In this review, the evolving concept of muscle-bone interaction from mechanical coupling, secretory crosstalk to stem cell exchange was explained in sequence. The theory of mechanical coupling stems from the observation that the development and maintenance of bone mass are largely dependent on muscle-derived mechanical loads, which was later proved by Wolff's law, Utah paradigm and Mechanostat hypothesis. Then bone and muscle are gradually recognized as endocrine organs, which can secrete various cytokines to modulate the tissue homeostasis and remodeling to each other. The latest view presented muscle-bone interaction in a more direct way: the resident mesenchymal stromal cell in the skeletal muscle, i.e., fibro-adipogenic progenitors (FAPs), could migrate to the bone injury site and contribute to bone regeneration. Emerging evidence even reveals the ectopic source of FAPs from tissue outside the musculoskeletal system, highlighting its dynamic property. Conclusion: FAPs have been established as the critical cell connecting muscle and bone, which provides a new modality to study inter-tissue communication. A comprehensive and integrated perspective of muscle and bone will facilitate in-depth research in the musculoskeletal system and promote novel therapeutic avenues in treating musculoskeletal disorders.
Collapse
Affiliation(s)
| | | | | | - Xu Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Nakamura A, Towheed T. Pathogenesis, assessment, and management of bone loss in axial spondyloarthritis. Semin Arthritis Rheum 2024; 64:152345. [PMID: 38103486 DOI: 10.1016/j.semarthrit.2023.152345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Axial spondyloarthritis (axSpA) presents a complex scenario where both new bone formation in entheseal tissues and significant trabecular bone loss coexist, emphasizing the intricate nature of bone dynamics in this context. METHODS A search of the literature was conducted to compose a narrative review exploring the pathogenesis, possible assessment methods, and potential management options for axSpA. RESULTS While chronic systemic and local inflammation contribute to bone loss, the mechanisms behind axSpA-associated bone loss exhibit distinct characteristics influenced by factors like mechanical stress and the gut microbiome. These factors directly or indirectly stimulate osteoclast differentiation and activation through the RANK-RANKL axis, while simultaneously impeding osteoblast differentiation via negative regulation of bone anabolic pathways, including the Wnt signaling pathway. This disruption in the balance between bone-resorbing osteoclasts and bone-forming osteoblasts contributes to overall bone loss in axSpA. Early evaluation at diagnosis is prudent for detecting bone changes. While traditional dual x-ray absorptiometry (DXA) has limitations due to potential overestimation from spinal new bone formation, alternative methods like trabecular bone score (TBS), quantitative CT (QCT), and quantitative ultrasound (QUS) show promise. However, their integration into routine clinical practice remains limited. In addition to approved anti-inflammatory drugs, lifestyle adjustments like regular exercise play a key role in preserving bone health. Tailoring interventions based on individual risk profiles holds potential for mitigating bone loss progression. CONCLUSION Recognizing the pivotal role of bone loss in axSpA underscores the importance of integrating regular assessments and effective management strategies into clinical practice. Given the multifaceted contributors to bone loss in axSpA, a multidisciplinary approach is essential.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada; Translational Institute of Medicine, School of Medicine, Queen's University, Ontario, Canada; Kingston Health Science Centre, Kingston, Ontario, Canada.
| | - Tanveer Towheed
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada; Translational Institute of Medicine, School of Medicine, Queen's University, Ontario, Canada; Kingston Health Science Centre, Kingston, Ontario, Canada.
| |
Collapse
|
18
|
Tsuchiya A, Suzuki M, Ito R, Batubara I, Yamauchi K, Mitsunaga T. New flavan trimer from Daemonorops draco as osteoclastogenesis inhibitor. Fitoterapia 2024; 172:105757. [PMID: 38008129 DOI: 10.1016/j.fitote.2023.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Dragon's blood is a red resin obtained from different plants and is considered highly efficacious and used in medicine owing its wound healing function. Two new compounds (7 and 8) were isolated from the dragon's blood of Daemonorops draco fruits, along with eight known compounds (1-6, 9, and 10). Their structures, including their absolute configurations, were elucidated by nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and electronic circular dichroism (ECD) analysis. According to the spectroscopic data, 8 was determined to be a quinone methide derivative of flavan and 7 was deduced to be a flavan trimer. All compounds were evaluated for their anti-osteoclastogenesis activity, compound 1 and 7 exhibited anti-osteoclastogenesis activity with IC50 values of 31.3 and 36.8 μM, respectively.
Collapse
Affiliation(s)
- Ayaka Tsuchiya
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Maki Suzuki
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Ryotaro Ito
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Irmanida Batubara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Gedung Kimia Wing 1 Lantai 3, Jalan Tanjung Kampus IPB, Dramaga, Babakan, Kec. Dramaga, Bogor, Jawa Barat 16680, Indonesia
| | - Kosei Yamauchi
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Tohru Mitsunaga
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| |
Collapse
|
19
|
Kuroyanagi G, Kamiya N, Yamaguchi R, Kim HK. Interleukin-6 receptor blockade improves bone healing following ischemic osteonecrosis in adolescent mice. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100386. [PMID: 37600923 PMCID: PMC10432805 DOI: 10.1016/j.ocarto.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Objective Juvenile ischemic osteonecrosis (JIO) of the femoral head is one of the most serious hip disorders causing a permanent deformity of the femoral head in childhood. We recently reported that interleukin 6 (IL-6) is significantly increased in the hip synovial fluid of patients with JIO and that articular chondrocytes are primary source of IL-6. Adolescent JIO is particularly challenging to treat and has poor outcome. This study determined if IL-6 receptor blockade prevents bone loss and improves the bone healing in adolescent JIO. Method Adolescent mice (12-week-old) surgically induced with JIO were treated with either saline or MR16-1, an IL-6 receptor blocker. Results Micro-CT assessment showed significantly increased bone volume (p < 0.001, Cohen's d = 2.0) and trabecular bone thickness (p < 0.001, d = 2.3) after the MR16-1 treatment. Histomorphometric assessment showed significantly increased osteoblast number (p < 0.01, d = 2.3), bone formation rate (p < 0.01, d = 4.3), and mineral apposition rate (p < 0.01, d = 4.1) after the MR16-1 treatment. The number of osteoclasts was unchanged. Histologic assessment showed significantly increased revascularization (p < 0.01) and restoration of the necrotic marrow with new hematopoietic bone marrow (p < 0.01). Vascular endothelial growth factor (VEGF) expression was increased in the revascularized area and the articular cartilage, and in the cultured chondrocytes treated with IL-6 receptor inhibitor. Conclusion IL-6 blockade in adolescent mice with JIO enhanced bone formation and revascularization. The findings suggest IL-6 receptor blocker as a potential medical therapy for adolescent JIO.
Collapse
Affiliation(s)
- Gen Kuroyanagi
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Nobuhiro Kamiya
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA
- Faculty of Budo and Sport Studies, Tenri University, Nara 6320071, Japan
| | - Ryosuke Yamaguchi
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Harry K.W. Kim
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390-8883, USA
| |
Collapse
|
20
|
Sellin ML, Klinder A, Bergschmidt P, Bader R, Jonitz-Heincke A. IL-6-induced response of human osteoblasts from patients with rheumatoid arthritis after inhibition of the signaling pathway. Clin Exp Med 2023; 23:3479-3499. [PMID: 37280473 PMCID: PMC10618393 DOI: 10.1007/s10238-023-01103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Interleukin (IL-) 6 is a critical factor in inflammatory processes of rheumatoid arthritis (RA). This is of high interest as the progression of RA may lead to the implantation of joint endoprostheses, which is associated with a pro-inflammatory increase in IL-6 in the periprosthetic tissue. Biological agents such as sarilumab have been developed to inhibit IL-6-mediated signaling. However, IL-6 signaling blockade should consider the inhibition of inflammatory processes and the regenerative functions of IL-6. This in vitro study investigated whether inhibiting IL-6 receptors can affect the differentiation of osteoblasts isolated from patients with RA. Since wear particles can be generated at the articular surfaces of endoprostheses leading to osteolysis and implant loosening, the potential of sarilumab to inhibit wear particle-induced pro-inflammatory processes should be investigated. Both in monocultures and indirect co-cultures with osteoclast-like cells (OLCs), human osteoblasts were stimulated with 50 ng/mL each of IL-6 + sIL-6R and in combination with sarilumab (250 nM) to characterize cell viability and osteogenic differentiation capacity. Furthermore, the influence of IL-6 + sIL-6R or sarilumab on viability, differentiation, and inflammation was evaluated in osteoblasts exposed to particles. Stimulation with IL-6 + sIL-6R and sarilumab did not affect cell viability. Except for the significant induction of RUNX2 mRNA by IL-6 + sIL-6R and a significant reduction with sarilumab, no effects on cell differentiation and mineralization could be detected. Furthermore, the different stimulations did not affect the osteogenic and osteoclastic differentiation of co-cultured cells. Compared to the osteoblastic monocultures, a decreased release of IL-8 was triggered in the co-culture. Among these, treatment with sarilumab alone resulted in the greatest reduction of IL-8. The co-culture also showed clearly increased OPN concentrations than the respective monocultures, with OPN secretion apparently triggered by the OLCs. Particle exposure demonstrated decreased osteogenic differentiation using different treatment strategies. However, sarilumab administration caused a trend toward a decrease in IL-8 production after stimulation with IL-6 + sIL-6R. The blockade of IL-6 and its pathway have no significant effect on the osteogenic and osteoclastic differentiation of bone cells derived from patients with RA. Nonetheless, observed effects on the reduced IL-8 secretion need further investigation.
Collapse
Affiliation(s)
- Marie-Luise Sellin
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Annett Klinder
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Philipp Bergschmidt
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
- Department for Orthopaedic Surgery, Trauma Surgery and Hand Surgery, Suedstadt Hospital Rostock, Suedring 81, 18059, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany.
| |
Collapse
|
21
|
Ciryam P, Gerzanich V, Simard JM. Interleukin-6 in Traumatic Brain Injury: A Janus-Faced Player in Damage and Repair. J Neurotrauma 2023; 40:2249-2269. [PMID: 37166354 PMCID: PMC10649197 DOI: 10.1089/neu.2023.0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a common and often devastating illness, with wide-ranging public health implications. In addition to the primary injury, victims of TBI are at risk for secondary neurological injury by numerous mechanisms. Current treatments are limited and do not target the profound immune response associated with injury. This immune response reflects a convergence of peripheral and central nervous system-resident immune cells whose interaction is mediated in part by a disruption in the blood-brain barrier (BBB). The diverse family of cytokines helps to govern this communication and among these, Interleukin (IL)-6 is a notable player in the immune response to acute neurological injury. It is also a well-established pharmacological target in a variety of other disease contexts. In TBI, elevated IL-6 levels are associated with worse outcomes, but the role of IL-6 in response to injury is double-edged. IL-6 promotes neurogenesis and wound healing in animal models of TBI, but it may also contribute to disruptions in the BBB and the progression of cerebral edema. Here, we review IL-6 biology in the context of TBI, with an eye to clarifying its controversial role and understanding its potential as a target for modulating the immune response in this disease.
Collapse
Affiliation(s)
- Prajwal Ciryam
- Shock Trauma Neurocritical Care, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Nakai Y, Praneetpong N, Ono W, Ono N. Mechanisms of Osteoclastogenesis in Orthodontic Tooth Movement and Orthodontically Induced Tooth Root Resorption. J Bone Metab 2023; 30:297-310. [PMID: 38073263 PMCID: PMC10721376 DOI: 10.11005/jbm.2023.30.4.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 12/17/2023] Open
Abstract
Orthodontic tooth movement (OTM) is achieved by the simultaneous activation of bone resorption by osteoclasts and bone formation by osteoblasts. When orthodontic forces are applied, osteoclast-mediated bone resorption occurs in the alveolar bone on the compression side, creating space for tooth movement. Therefore, controlling osteoclastogenesis is the fundamental tenet of orthodontic treatment. Orthodontic forces are sensed by osteoblast lineage cells such as periodontal ligament (PDL) cells and osteocytes. Of several cytokines produced by these cells, the most important cytokine promoting osteoclastogenesis is the receptor activator of nuclear factor-κB ligand (RANKL), which is mainly supplied by osteoblasts. Additionally, osteocytes embedded within the bone matrix, T lymphocytes in inflammatory conditions, and PDL cells produce RANKL. Besides RANKL, inflammatory cytokines, such as interleukin-1, tumor necrosis factor-α, and prostaglandin E2 promote osteoclastogenesis under OTM. On the downside, excessive osteoclastogenesis activation triggers orthodontically-induced external root resorption (ERR) through pro-osteoclastic inflammatory cytokines. Therefore, understanding the mechanisms of osteoclastogenesis during OTM is essential in reducing the adverse effects of orthodontic treatment. Here, we review the current concepts of the mechanisms underlying osteoclastogenesis in OTM and orthodontically induced ERR.
Collapse
Affiliation(s)
- Yuta Nakai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Natnicha Praneetpong
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| |
Collapse
|
23
|
Jiménez C, Fernández J, Aroca M, Bordagaray MJ, Pellegrini E, Contador J, Hernández M, Valenzuela F, Fernández A. Association of Periodontitis and Atopic Dermatitis with the Levels of IL-13, IL-31, and TSLP in the Gingival Crevicular Fluid. Int J Mol Sci 2023; 24:15592. [PMID: 37958576 PMCID: PMC10650793 DOI: 10.3390/ijms242115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Emerging epidemiological evidence links atopic dermatitis (AD) and periodontitis, although the mechanisms remain unclear. Th2-derived cytokines are key in the development of both diseases, and different gingival crevicular fluid (GCF) profiles among healthy and diseased subjects have been previously reported. This case-control study examined the GCF levels of interleukins (IL)-13, IL-31, and thymic stromal lymphopoietin (TSLP) in 29 subjects with moderate-to-severe AD and 33 controls. All subjects underwent comprehensive clinical and oral evaluations, followed by GCF collection. GCF levels of IL-13, IL-31, and TSLP were assessed using a multiplex-bead immunoassay. Demographic and periodontal parameters were similar among groups (p > 0.05). The GCF levels of IL-31 and TSLP were higher in AD subjects compared to controls (p < 0.05), whereas no significant differences in the GCF levels of IL-13 were noticed (p = 0.377). Moderate-to-severe AD was positively associated with the GCF levels of IL-31 and TSLP, whereas severe periodontitis was negatively associated with IL-31 (p < 0.05). The GCF levels of IL-13 showed no significant associations with either condition (p = 0.689). There was no significant interaction between AD and periodontitis for IL-31 (p < 0.869). These results suggest that AD and periodontitis independently influence the GCF levels of IL-31 in opposing ways, whereas AD alone influences the levels of TSLP.
Collapse
Affiliation(s)
- Constanza Jiménez
- Faculty of Dentistry, Universidad Andres Bello, Echaurren 237, Santiago 8370133, Chile; (C.J.); (M.A.)
| | - Javier Fernández
- International Center for Clinical Studies (CIEC), Probity Medical Research, Manzano 343, Santiago 8420383, Chile;
| | - Marcela Aroca
- Faculty of Dentistry, Universidad Andres Bello, Echaurren 237, Santiago 8370133, Chile; (C.J.); (M.A.)
| | - María José Bordagaray
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Olivos 943, Santiago 8380544, Chile; (M.J.B.); (E.P.); (M.H.)
| | - Elizabeth Pellegrini
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Olivos 943, Santiago 8380544, Chile; (M.J.B.); (E.P.); (M.H.)
| | - Javier Contador
- Department of Dermatology, Faculty of Medicine, Universidad de Los Andes, Av. Plaza 2501, Santiago 7620157, Chile;
| | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Olivos 943, Santiago 8380544, Chile; (M.J.B.); (E.P.); (M.H.)
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, 943 Olivos Street, Santiago 8380544, Chile
| | - Fernando Valenzuela
- Department of Dermatology, Faculty of Medicine, Universidad de Los Andes, Av. Plaza 2501, Santiago 7620157, Chile;
| | - Alejandra Fernández
- Faculty of Dentistry, Universidad Andres Bello, Echaurren 237, Santiago 8370133, Chile; (C.J.); (M.A.)
| |
Collapse
|
24
|
Maduka CV, Habeeb OM, Kuhnert MM, Hakun M, Goodman SB, Contag CH. Glycolytic reprogramming underlies immune cell activation by polyethylene wear particles. BIOMATERIALS ADVANCES 2023; 152:213495. [PMID: 37301057 DOI: 10.1016/j.bioadv.2023.213495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/20/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Primary total joint arthroplasties (TJAs) are widely and successfully applied reconstructive procedures to treat end-stage arthritis. Nearly 50 % of TJAs are now performed in young patients, posing a new challenge: performing TJAs which last a lifetime. The urgency is justified because subsequent TJAs are costlier and fraught with higher complication rates, not to mention the toll taken on patients and their families. Polyethylene particles, generated by wear at joint articulations, drive aseptic loosening by inciting insidious inflammation associated with surrounding bone loss. Down modulating polyethylene particle-induced inflammation enhances integration of implants to bone (osseointegration), preventing loosening. A promising immunomodulation strategy could leverage immune cell metabolism, however, the role of immunometabolism in polyethylene particle-induced inflammation is unknown. Our findings reveal that immune cells exposed to sterile or contaminated polyethylene particles show fundamentally altered metabolism, resulting in glycolytic reprogramming. Inhibiting glycolysis controlled inflammation, inducing a pro-regenerative phenotype that could enhance osseointegration.
Collapse
Affiliation(s)
- Chima V Maduka
- Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Oluwatosin M Habeeb
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Maxwell M Kuhnert
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Maxwell Hakun
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University, CA 94063, USA; Department of Bioengineering, Stanford University, CA 94305, USA
| | - Christopher H Contag
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48864, USA.
| |
Collapse
|
25
|
Whitlock JM, de Castro LF, Collins MT, Chernomordik LV, Boyce AM. An inducible explant model of osteoclast-osteoprogenitor coordination in exacerbated osteoclastogenesis. iScience 2023; 26:106470. [PMID: 37091244 PMCID: PMC10119607 DOI: 10.1016/j.isci.2023.106470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 03/19/2023] [Indexed: 04/25/2023] Open
Abstract
Elucidating a basic blueprint of osteoclast-osteoblast coordination in skeletal remodeling and understanding how this coordination breaks down with age and disease is essential for addressing the growing skeletal health problem in our aging population. The paucity of simple, activatable, biologically relevant models of osteoclast-osteoblast coordination has hindered our understanding of how skeletal remolding is regulated. Here, we describe an inducible ex vivo model of osteoclast-osteoblast progenitor coordination. Induction activates the release of osteoclastogenic factors from osteoprogenitors, which elicits the differentiation and fusion of neighboring preosteoclasts. In turn, multinucleated osteoclasts release soluble coupling factors, RANK+ extracellular vesicles and promote osteoprogenitor proliferation, recapitulating aspects of perturbed coordination in diseases underpinned by excessive osteoclast formation. We expect this model to expedite the investigation of cell-cell fusion, osteoclast-osteoblast progenitor coordination, and extracellular vesicle signaling during bone remodeling and offer a powerful tool for evaluating signaling cascades and novel therapeutic interventions in osteoclast-linked skeletal disease.
Collapse
Affiliation(s)
- Jarred M. Whitlock
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author
| | - Luis F. de Castro
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD20892, USA
| | - Michael T. Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD20892, USA
| | - Leonid V. Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alison M. Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD20892, USA
| |
Collapse
|
26
|
Kuroyanagi G, Hioki T, Tachi J, Matsushima-Nishiwaki R, Iida H, Kozawa O, Tokuda H. Oncostatin M stimulates prostaglandin D 2-induced osteoprotegerin and interleukin-6 synthesis in osteoblasts. Prostaglandins Leukot Essent Fatty Acids 2023; 192:102575. [PMID: 37094446 DOI: 10.1016/j.plefa.2023.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Oncostatin M produced by osteal macrophages plays a significant role in fracture healing. Osteoprotegerin (OPG) secreted by osteoblasts, binds to the receptor activator of nuclear factor-κB (RANK) ligand (RANKL) as a decoy receptor and prevents RANKL from binding to RANK, resulting in bone resorption suppression. Interleukin-6 (IL-6) is a pro-inflammatory cytokine and generally regulates bone resorption. However, accumulating evidence suggests that IL-6 plays pivotal roles in bone formation. We previously showed that prostaglandin D2 (PGD2) induces OPG synthesis by activating p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells. Furthermore, we demonstrated that PGD2 stimulates IL-6 synthesis by activating p38 MAP kinase and p44/p42 MAP kinase in MC3T3-E1 cells. In the present study, we investigated whether oncostatin M affects PGD2-stimulated OPG and IL-6 synthesis in MC3T3-E1 cells through MAP kinase activation. The osteoblast-like MC3T3-E1 cells and normal human osteoblasts were treated with oncostatin M and subsequently stimulated with PGD2. Consequently, oncostatin M significantly increased the PGD2-stimulated OPG and IL-6 release in both cells. Oncostatin M significantly enhanced mRNA expression levels of OPG and IL-6 induced by PGD2 similarly in both cells. Regarding the signaling mechanism, oncostatin M did not affect the phosphorylation of p38 MAP kinase, SAPK/JNK, and p44/p42 MAP kinase. Our results suggest that oncostatin M upregulates the PGD2-stimulated OPG and IL-6 synthesis in osteoblasts and therefore affects bone remodeling. However, OPG and IL-6 synthesis are not mediated through p38 MAP kinase, p44/p42 MAP kinase, or SAPK/JNK pathways.
Collapse
Affiliation(s)
- Gen Kuroyanagi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan; Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| | - Tomoyuki Hioki
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan; Department of Dermatology, Central Japan International Medical Center, Minokamo, 505-8510, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Junko Tachi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan; Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | | | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan; Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| |
Collapse
|
27
|
Is central sarcopenia a predictor of prognosis for patients with pathological fracture? Surgeon 2023; 21:108-118. [PMID: 35430110 DOI: 10.1016/j.surge.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION We aimed to investigate the relationship between central sarcopenia and survival in patients with pathological fracture. METHODS We reviewed records of patients who were treated for pathological fracture of axial and appendicular skeleton in our clinic between 2011 and 2020. We used the psoas: lumbar vertebral index (PLVI) on axial computer tomographic evaluation to assess for central sarcopenia. A multivariate Cox algorithm was applied to recognize these factors independently associated with one month, six months, one year, and overall survival. RESULTS A total of 147 patients [61 (41.4%) male and 86 (58.6%) female] were included, with an average age of 62.4 years. During the study, 108 (73.4%) patients died, and 39 (26.6%) were alive. The survival rates at 1 month, 6 months, and 1 year after surgery were 94.6%, 68.7%, and 53.1%, respectively. PLVI values ranged from 0.21 to 1.20 with a mean of 0.536 and a median of 0.520. According to the median value of PLVI, 68 patients with sarcopenia had low PLVI and 79 patients without sarcopenia had high PLVI. For the first month, only the preoperative albumin level was identified as a prognostic factor. Eastern Cooperative Oncology Group Performance Status (ECOG), American Society of Anesthesia (ASA) scores and primary malignancy (rapid grade) were strong predictor of poor survival. The PLVI was independent significant predictor of first month (HR, 0.083 [95% CI, 0.011-0.649], p = 0.018) and overall survival (HR, 0.129 [95% CI, 0.034-0.492], p = 0.003). CONCLUSION The PLVI was a strong predictor of first year, and overall survival in patients with pathological fracture.
Collapse
|
28
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
29
|
Wong L, McMahon LP. Crosstalk between bone and muscle in chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1146868. [PMID: 37033253 PMCID: PMC10076741 DOI: 10.3389/fendo.2023.1146868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
With increasing life expectancy, the related disorders of bone loss, metabolic dysregulation and sarcopenia have become major health threats to the elderly. Each of these conditions is prevalent in patients with chronic kidney disease (CKD), particularly in more advanced stages. Our current understanding of the bone-muscle interaction is beyond mechanical coupling, where bone and muscle have been identified as interrelated secretory organs, and regulation of both bone and muscle metabolism occurs through osteokines and myokines via autocrine, paracrine and endocrine systems. This review appraises the current knowledge regarding biochemical crosstalk between bone and muscle, and considers recent progress related to the role of osteokines and myokines in CKD, including modulatory effects of physical exercise and potential therapeutic targets to improve musculoskeletal health in CKD patients.
Collapse
Affiliation(s)
- Limy Wong
- Department of Renal Medicine, Monash University Eastern Health Clinical School, Box Hill, VIC, Australia
- Department of Renal Medicine, Eastern Health, Box Hill, VIC, Australia
- *Correspondence: Limy Wong,
| | - Lawrence P. McMahon
- Department of Renal Medicine, Monash University Eastern Health Clinical School, Box Hill, VIC, Australia
- Department of Renal Medicine, Eastern Health, Box Hill, VIC, Australia
| |
Collapse
|
30
|
Aoki T, Hiura F, Li A, Yang N, Takakura-Hino N, Mukai S, Matsuda M, Nishimura F, Jimi E. Inhibition of non-canonical NF-κB signaling suppresses periodontal inflammation and bone loss. Front Immunol 2023; 14:1179007. [PMID: 37143646 PMCID: PMC10151688 DOI: 10.3389/fimmu.2023.1179007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Periodontal disease is an infectious disease that affects many people worldwide. Disease progression destroys the alveolar bone and causes tooth loss. We have previously shown that alymphoplasia (aly/aly) mice harboring a loss-of-function mutation in the map3k14 gene, which is involved in p100 to p52 processing of the alternative NF-κB pathway, exhibited mild osteopetrosis due to decreased number of osteoclasts, suggesting the alternative NF-κB pathway as a potential drug target for the amelioration of bone disease. In the present study, wild-type (WT) and aly/aly mice were subjected to silk ligation to establish a periodontitis model. Alveolar bone resorption was suppressed in aly/aly mice by decreased numbers of osteoclasts in the alveolar bone in comparison to WT mice. Furthermore, the expression of receptor activator of NF-κB ligand (RANKL) and TNFα (cytokines involved in osteoclast induction in periligative gingival tissue) was decreased. When primary osteoblasts (POBs) and bone marrow cells (BMCs) derived from WT and aly/aly mice were prepared and co-cultured, osteoclasts were induced from WT-derived BMCs, regardless of the origin of the POBs, but hardly formed from aly/aly mouse-derived BMCs. Furthermore, the local administration of an NIK inhibitor, Cpd33, inhibited osteoclast formation and thereby inhibited alveolar bone resorption in the periodontitis model. Therefore, the NIK-mediated NF-κB alternative pathway can be a therapeutic target for periodontal disease.
Collapse
Affiliation(s)
- Tsukasa Aoki
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fumitaka Hiura
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Aonan Li
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Nan Yang
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Nana Takakura-Hino
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Satoru Mukai
- Department of Health and Nutrition Care, Faculty of Allied Health Sciences, University of East Asia, Shimonoseki, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- *Correspondence: Eijiro Jimi,
| |
Collapse
|
31
|
Kuroyanagi G, Tachi J, Fujita K, Kawabata T, Sakai G, Nakashima D, Kim W, Tanabe K, Matsushima-Nishiwaki R, Otsuka T, Iida H, Kozawa O, Tokuda H. HSP70 inhibitors upregulate prostaglandin E1-induced synthesis of interleukin-6 in osteoblasts. PLoS One 2022; 17:e0279134. [PMID: 36520821 PMCID: PMC9754267 DOI: 10.1371/journal.pone.0279134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Interleukin-6 (IL-6) is a pro-inflammatory and bone-resorptive cytokine that also regulates bone formation. We previously showed that prostaglandin E1 (PGE1) induces the synthesis of IL-6 by activating p44/p42 mitogen-activated protein kinase (MAPK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 MAPK in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether heat shock protein 70 (HSP70), a molecular chaperone that coordinates protein folding and homeostasis, affects PGE1-stimulated IL-6 synthesis in MC3T3-E1 cells through the MAPK activation. The osteoblast-like MC3T3-E1 cells were treated with HSP70 inhibitors-VER-155008 and YM-08-, PD98059, SB203580 or SP600125 and then stimulated with PGE1. IL-6 synthesis was evaluated using an IL-6 enzyme-linked immunosorbent assay kit. IL-6 mRNA expression was measured by real-time RT-PCR. The phosphorylation of p38 MAPK was evaluated by Western blotting. We found that VER-155008, an HSP70 inhibitor, enhanced the PGE1-stimulated IL-6 release and IL-6 mRNA expression. YM-08, another HSP70 inhibitor, also enhanced PGE1-stimulated IL-6 release. PD98059, a p44/p42 MAPK inhibitor, and SP600125, a SAPK/JNK inhibitor, upregulated PGE1-stimulated IL-6 release. On the other hand, SB203580, a p38 MAPK inhibitor, suppressed PGE1-stimulated IL-6 release. YM-08 stimulated the PGE1-induced phosphorylation of p38 MAPK. SB203580 suppressed the amplification by YM-08 of the PGE1-stimulated IL-6 release. Our results suggest that HSP70 inhibitors upregulate the PGE1-stimulated IL-6 synthesis through p38 MAPK in osteoblasts and therefore affect bone remodeling.
Collapse
Affiliation(s)
- Gen Kuroyanagi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| | - Junko Tachi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiko Fujita
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tetsu Kawabata
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Go Sakai
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daiki Nakashima
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Woo Kim
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Clinical Laboratory/Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
32
|
Chen X, Wang J, Tang L, Ye Q, Dong Q, Li Z, Hu L, Ma C, Xu J, Sun P. The therapeutic effect of Fufang Zhenshu Tiaozhi (FTZ) on osteoclastogenesis and ovariectomized-induced bone loss: evidence from network pharmacology, molecular docking and experimental validation. Aging (Albany NY) 2022; 14:5727-5748. [PMID: 35832025 PMCID: PMC9365554 DOI: 10.18632/aging.204172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Fufang Zhenshu Tiaozhi (FTZ) has been widely used in clinical practice and proven to be effective against aging-induced osteoporosis in mice. This study aimed to explore the mechanism of FTZ against osteoclastogenesis and ovariectomized-induced (OVX) bone loss through the network pharmacology approach. The ingredients of FTZ were collected from the previous UPLC results, and their putative targets were obtained through multiple databases. Differentially expressed genes (DEGs) during osteoclastogenesis were identified through multi-microarrays analysis. The common genes between FTZ targets and DEGs were used to perform enrichment analyses through the clusterProfier package. The affinity between all FTZ compounds and enriched genes was validated by molecular docking. The effects of FTZ on osteoclastogenesis and bone resorption were evaluated by TRAP staining, bone resorption assay and RT-qPCR in vitro, while its effects on bone loss by ELISA and Micro-CT in vivo. Enrichment analyses indicated that the inhibitory effects of FTZ may primarily involve the regulation of inflammation, osteoclastogenesis, as well as TNF-α signaling pathway. 130 pairs docking results confirmed FTZ ingredients have good binding activities with TNF-α pathway enriched genes. FTZ treatment significantly reduced TRAP, TNF-α, IL-6 serum levels and increased bone volume in OVX mice. Consistently, in vitro experiments revealed that FTZ-containing serum significantly inhibited osteoclast differentiation, bone resorption, and osteoclast related mRNA expression. This study revealed the candidate targets of FTZ and its potential mechanism in inhibiting osteoclastogenesis and bone loss induced by OVX, which will pave the way for the application of FTZ in the postmenopausal osteoporosis treatment.
Collapse
Affiliation(s)
- Xiaojun Chen
- School of Molecular Sciences, University of Western Australia, Perth 6009, Western Australia, Australia
| | - Jiangyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Lin Tang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Qiuying Ye
- College of Food and Medicine, Qingyuan Polytechnic, Qingyuan 511510, Guangdong, China
| | - Qunwei Dong
- Department of Orthopedic, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
- Department of Orthopedic, Yunfu Hospital of Traditional Chinese Medicine, Yunfu 527300, Guangdong, China
| | - Zhangwei Li
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Li Hu
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Chenghong Ma
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth 6009, Western Australia, Australia
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| |
Collapse
|
33
|
Zhang X, Yang J, Chen S, Liu C, Wang Z, Ren H, Zhou L. Pre-existing hypertension is associated with poor progression-free survival in newly diagnosed multiple myeloma patients. J Thromb Thrombolysis 2022; 54:542-549. [PMID: 35445377 DOI: 10.1007/s11239-022-02653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 11/29/2022]
Abstract
Approximately 31% of patients diagnosed with multiple myeloma (MM) have pre-existing hypertension, but its effects on patient survival have not been investigated. We collected data from 228 newly diagnosed patients with MM and found that 71 (31.1%) had pre-existing hypertension. The impact of pre-existing hypertension on MM patients was determined by evaluating progression-free survival (PFS). Kaplan-Meier analyses revealed a significantly lower PFS in the pre-existing hypertension group than their non-hypertensive counterparts (median 22.6 vs 34.8 months, respectively). The multivariable Cox proportional hazards model showed that pre-existing hypertension was an independent risk factor for PFS reduction in MM patients. Moreover, the risk of disease progression in MM patients with pre-existing hypertension was higher than in non-hypertension comparator patients (hazard ratio 1.735, 95% confidence interval 1.261-2.387). In MM patients with pre-existing hypertension, Kaplan-Meier analyses found that those with a higher risk of hypertension had a significantly shorter PFS than those with lower risk (median 19.3 vs 25.4 months, respectively). However, multivariate Cox regression analysis showed that the risk stratification of hypertension was not an independent risk factor for poor PFS in MM patients with pre-existing hypertension. Our study demonstrates that pre-existing hypertension was significantly associated with a lower PFS in newly diagnosed MM patients.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jieli Yang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Sai Chen
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Chang Liu
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Zhenhua Wang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Hefei Ren
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Lin Zhou
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
34
|
Guadarrama-Ortíz P, Montes de Oca-Vargas I, Choreño-Parra JA, Gallegos-Garza C, Sánchez-Garibay C, Garibay-Gracián A, Salinas-Lara C, Guinto G. Expression of IL-6 and matrix metalloproteinases in a convexity meningiomas with hyperostosis: Case report. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2021.101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Ding N, Luo M, Wen YH, Li RY, Bao QY. The Effects of Non-Surgical Periodontitis Therapy on the Clinical Features and Serological Parameters of Patients Suffering from Rheumatoid Arthritis as Well as Chronic Periodontitis. J Inflamm Res 2022; 15:177-185. [PMID: 35046692 PMCID: PMC8760992 DOI: 10.2147/jir.s326896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/09/2021] [Indexed: 01/22/2023] Open
Affiliation(s)
- Nan Ding
- Department of Stomatology, Beijing LuHe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
- Correspondence: Nan Ding Department of Stomatology, Beijing LuHe Hospital, Capital Medical University, No. 82 of Xinhua South Road, Tongzhou District, Beijing, 101149, People’s Republic of ChinaTel/Fax +86 10 69543901 Email
| | - Mei Luo
- Department of Central Laboratory, Beijing LuHe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Ya-Hui Wen
- Department of Internal Medicine, Beijing LuHe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Rong-Yin Li
- Department of Stomatology, Beijing LuHe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Qi-Yan Bao
- Department of Stomatology, Beijing LuHe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| |
Collapse
|
36
|
Ma TL, Zhu P, Ke ZR, Chen JX, Hu YH, Xie J. Focusing on OB-OC-MΦ Axis and miR-23a to Explore the Pathogenesis and Treatment Strategy of Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:891313. [PMID: 35909545 PMCID: PMC9329542 DOI: 10.3389/fendo.2022.891313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Osteoporosis is a bone metabolic disorder characterized by decreased bone density and deteriorated microstructure, which increases the risk of fractures. The imbalance between bone formation and bone resorption results in the occurrence and progression of osteoporosis. Osteoblast-mediated bone formation, osteoclast-mediated bone resorption and macrophage-regulated inflammatory response play a central role in the process of bone remodeling, which together maintain the balance of the osteoblast-osteoclast-macrophage (OB-OC-MΦ) axis under physiological conditions. Bone formation and bone resorption disorders caused by the imbalance of OB-OC-MΦ axis contribute to osteoporosis. Many microRNAs are involved in the regulation of OB-OC-MΦ axis homeostasis, with microRNA-23a (miR-23a) being particularly crucial. MiR-23a is highly expressed in the pathological process of osteoporosis, which eventually leads to the occurrence and further progression of osteoporosis by inhibiting osteogenesis, promoting bone resorption and inflammatory polarization of macrophages. This review focuses on the role and mechanism of miR-23a in regulating the OB-OC-MΦ axis to provide new clinical strategies for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Tian-Liang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Peng Zhu
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Zhuo-Ran Ke
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Jing-Xian Chen
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Yi-He Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi-He Hu, ; Jie Xie,
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi-He Hu, ; Jie Xie,
| |
Collapse
|
37
|
Cameron ME, Underwood PW, Williams IE, George TJ, Judge SM, Yarrow JF, Trevino JG, Judge AR. Osteopenia is associated with wasting in pancreatic adenocarcinoma and predicts survival after surgery. Cancer Med 2022; 11:50-60. [PMID: 34791809 PMCID: PMC8704155 DOI: 10.1002/cam4.4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 11/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest of all common malignancies. Treatment is difficult and often complicated by the presence of cachexia. The clinical portrait of cachexia contributes to the poor prognosis experienced by PDAC patients and worsens therapeutic outcomes. We propose that low bone mineral density is a component of cachexia, which we explore herein through a retrospective review of all patients at our facility that underwent surgery for PDAC between 2011 and 2018 and compared to sex-, age- and comorbidity-matched control individuals. Data were abstracted from the medical record and pre-operative computed tomography scans. Muscle mass and quality were measured at the L3 level and bone mineral density was measured as the radiation attenuation of the lumbar vertebral bodies. Patients with PDAC displayed typical signs of cachexia such as weight loss and radiologically appreciable deterioration of skeletal muscle. Critically, PDAC patients had significantly lower bone mineral density than controls, with 61.2% of PDAC patients categorized as osteopenic compared to 36.8% of controls. PDAC patients classified as osteopenic had significantly reduced survival (1.01 years) compared to patients without osteopenia (2.77 years). The presence of osteopenia was the strongest clinical predictor of 1- and 2-year disease-specific mortality, increasing the risk of death by 107% and 80%, respectively. Osteopenia serves as a test of 2-year mortality with sensitivity of 76% and specificity of 58%. These data therefore identify impaired bone mineral density as a key component of cachexia and predictor of postoperative survival in patients with PDAC. The mechanisms that lead to bone wasting in tumor-bearing hosts deserve further study.
Collapse
Affiliation(s)
- Miles E. Cameron
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
- Department of SurgeryUniversity of FloridaGainesvilleFloridaUSA
- MD‐PhD Training ProgramUniversity of FloridaGainesvilleFloridaUSA
| | | | | | - Thomas J. George
- Department of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Sarah M. Judge
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
| | | | - Jose G. Trevino
- Department of SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Andrew R. Judge
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
38
|
Aaron N, Costa S, Rosen CJ, Qiang L. The Implications of Bone Marrow Adipose Tissue on Inflammaging. Front Endocrinol (Lausanne) 2022; 13:853765. [PMID: 35360075 PMCID: PMC8962663 DOI: 10.3389/fendo.2022.853765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
Once considered an inert filler of the bone cavity, bone marrow adipose tissue (BMAT) is now regarded as a metabolically active organ that plays versatile roles in endocrine function, hematopoiesis, bone homeostasis and metabolism, and, potentially, energy conservation. While the regulation of BMAT is inadequately understood, it is recognized as a unique and dynamic fat depot that is distinct from peripheral fat. As we age, bone marrow adipocytes (BMAds) accumulate throughout the bone marrow (BM) milieu to influence the microenvironment. This process is conceivably signaled by the secretion of adipocyte-derived factors including pro-inflammatory cytokines and adipokines. Adipokines participate in the development of a chronic state of low-grade systemic inflammation (inflammaging), which trigger changes in the immune system that are characterized by declining fidelity and efficiency and cause an imbalance between pro-inflammatory and anti-inflammatory networks. In this review, we discuss the local effects of BMAT on bone homeostasis and the hematopoietic niche, age-related inflammatory changes associated with BMAT accrual, and the downstream effect on endocrine function, energy expenditure, and metabolism. Furthermore, we address therapeutic strategies to prevent BMAT accumulation and associated dysfunction during aging. In sum, BMAT is emerging as a critical player in aging and its explicit characterization still requires further research.
Collapse
Affiliation(s)
- Nicole Aaron
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pharmacology, Columbia University, New York, NY, United States
| | - Samantha Costa
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Clifford J. Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
- *Correspondence: Clifford J. Rosen, ; Li Qiang,
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology, Columbia University, New York, NY, United States
- *Correspondence: Clifford J. Rosen, ; Li Qiang,
| |
Collapse
|
39
|
Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups. Front Immunol 2021; 12:778078. [PMID: 34925351 PMCID: PMC8672114 DOI: 10.3389/fimmu.2021.778078] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular associations in the bone microenvironment are involved in modulating the balance between bone remodeling and resorption, which is necessary for maintaining a normal bone morphology. Macrophages and osteoclasts are both vital components of the bone marrow. Macrophages can interact with osteoclasts and regulate bone metabolism by secreting a variety of cytokines, which make a significant contribution to the associations. Although, recent studies have fully explored either macrophages or osteoclasts, indicating the significance of these two types of cells. However, it is of high importance to report the latest discoveries on the relationships between these two myeloid-derived cells in the field of osteoimmunology. Therefore, this paper reviews this topic from three novel aspects of the origin, polarization, and subgroups based on the previous work, to provide a reference for future research and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Xie
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Zhenjiang Sui
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Singh AK, Haque M, Madarampalli B, Shi Y, Wildman BJ, Basit A, Khuder SA, Prasad B, Hassan Q, Ahmed S, Ouseph MM. Ets-2 Propagates IL-6 Trans-Signaling Mediated Osteoclast-Like Changes in Human Rheumatoid Arthritis Synovial Fibroblast. Front Immunol 2021; 12:746503. [PMID: 34795667 PMCID: PMC8593237 DOI: 10.3389/fimmu.2021.746503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis synovial fibroblasts (RASFs) contribute to synovial inflammation and bone destruction by producing a pleiotropic cytokine interleukin-6 (IL-6). However, the molecular mechanisms through which IL-6 propels RASFs to contribute to bone loss are not fully understood. In the present study, we investigated the effect of IL-6 and IL-6 receptor (IL-6/IL-6R)-induced trans-signaling in human RASFs. IL-6 trans-signaling caused a significant increase in tartrate-resistant acid phosphatase (TRAP)-positive staining in RASFs and enhanced pit formation by ~3-fold in the osteogenic surface in vitro. IL-6/IL-6R caused dose-dependent increase in expression and nuclear translocation of transcription factor Ets2, which correlated with the expression of osteoclast-specific signature proteins RANKL, cathepsin B (CTSB), and cathepsin K (CTSK) in RASFs. Chromatin immunoprecipitation (ChIP) analysis of CTSB and CTSK promoters showed direct Ets2 binding and transcriptional activation upon IL-6/IL-6R stimulation. Knockdown of Ets2 significantly inhibited IL-6/IL-6R-induced RANKL, CTSB, and CTSK expression and TRAP staining in RASFs and suppressed markers of RASF invasive phenotype such as Thy1 and podoplanin (PDPN). Mass spectrometry analysis of the secretome identified 113 proteins produced by RASFs uniquely in response to IL-6/IL-6R that bioinformatically predicted its impact on metabolic reprogramming towards an osteoclast-like phenotype. These findings identified the role of Ets2 in IL-6 trans-signaling induced molecular reprogramming of RASFs to osteoclast-like cells and may contribute to RASF heterogeneity.
Collapse
Affiliation(s)
- Anil K Singh
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, United States
| | - Mahamudul Haque
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, United States
| | - Bhanupriya Madarampalli
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, United States
| | - Yuanyuan Shi
- Department of Pharmaceutics, University of Washington School of Medicine, Seattle, WA, United States
| | - Benjamin J Wildman
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, United States
| | - Sadik A Khuder
- Department of Medicine and Public Health, University of Toledo, Toledo, OH, United States
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, United States
| | - Quamarul Hassan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, United States.,Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, United States
| | - Madhu M Ouseph
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
41
|
Usui M, Onizuka S, Sato T, Kokabu S, Ariyoshi W, Nakashima K. Mechanism of alveolar bone destruction in periodontitis - Periodontal bacteria and inflammation. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:201-208. [PMID: 34703508 PMCID: PMC8524191 DOI: 10.1016/j.jdsr.2021.09.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Periodontal disease is an inflammatory disease caused by periodontopathogenic bacteria, which eventually leads to bone tissue (alveolar bone) destruction as inflammation persists. Periodontal tissues have an immune system against the invasion of these bacteria, however, due to the persistent infection by periodontopathogenic bacteria, the host innate and acquired immunity is impaired, and tissue destruction, including bone tissue destruction, occurs. Osteoclasts are essential for bone destruction. Osteoclast progenitor cells derived from hematopoietic stem cells differentiate into osteoclasts. In addition, bone loss occurs when bone resorption by osteoclasts exceeds bone formation by osteoblasts. In inflammatory bone disease, inflammatory cytokines act on osteoblasts and receptor activator of nuclear factor-κB ligand (RANKL)-producing cells, resulting in osteoclast differentiation and activation. In addition to this mechanism, pathogenic factors of periodontal bacteria and mechanical stress activate osteoclasts and destruct alveolar bone in periodontitis. In this review, we focused on the mechanism of osteoclast activation in periodontitis and provide an overview based on the latest findings.
Collapse
Affiliation(s)
- Michihiko Usui
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Satoru Onizuka
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, 38 Moro-hongou, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Wataru Ariyoshi
- Division of Infection and Molecular Biology, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Keisuke Nakashima
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| |
Collapse
|
42
|
Henning P, Movérare-Skrtic S, Westerlund A, Chaves de Souza PP, Floriano-Marcelino T, Nilsson KH, El Shahawy M, Ohlsson C, Lerner UH. WNT16 is Robustly Increased by Oncostatin M in Mouse Calvarial Osteoblasts and Acts as a Negative Feedback Regulator of Osteoclast Formation Induced by Oncostatin M. J Inflamm Res 2021; 14:4723-4741. [PMID: 34566421 PMCID: PMC8457865 DOI: 10.2147/jir.s323435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/02/2021] [Indexed: 01/22/2023] Open
Abstract
Background Bone loss is often observed adjacent to inflammatory processes. The WNT signaling pathways have been implicated as novel regulators of both immune responses and bone metabolism. WNT16 is important for cortical bone mass by inhibiting osteoclast differentiation, and we have here investigated the regulation of WNT16 by several members of the pro-inflammatory gp130 cytokine family. Methods The expression and regulation of Wnt16 in primary murine cells were studied by qPCR, scRNAseq and in situ hybridization. Signaling pathways were studied by siRNA silencing. The importance of oncostatin M (OSM)-induced WNT16 expression for osteoclastogenesis was studied in cells from Wnt16-deficient and wild-type mice. Results We found that IL-6/sIL-6R and OSM induce the expression of Wnt16 in primary mouse calvarial osteoblasts, with OSM being the most robust stimulator. The induction of Wnt16 by OSM was dependent on gp130 and OSM receptor (OSMR), and downstream signaling by the SHC1/STAT3 pathway, but independent of ERK. Stimulation of the calvarial cells with OSM resulted in enhanced numbers of mature, oversized osteoclasts when cells were isolated from Wnt16 deficient mice compared to cells from wild-type mice. OSM did not affect Wnt16 mRNA expression in bone marrow cell cultures, explained by the finding that Wnt16 and Osmr are expressed in distinctly different cells in bone marrow, nor was osteoclast differentiation different in OSM-stimulated bone marrow cell cultures isolated from Wnt16−/- or wild-type mice. Furthermore, we found that Wnt16 expression is substantially lower in cells from bone marrow compared to calvarial osteoblasts. Conclusion These findings demonstrate that OSM is a robust stimulator of Wnt16 mRNA in calvarial osteoblasts and that WNT16 acts as a negative feedback regulator of OSM-induced osteoclast formation in the calvarial bone cells, but not in the bone marrow.
Collapse
Affiliation(s)
- Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Westerlund
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pedro Paulo Chaves de Souza
- The Innovation in Biomaterials Laboratory, School of Dentistry, Federal University of Goiás, Goiânia, Brazil.,Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Thais Floriano-Marcelino
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Karin H Nilsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maha El Shahawy
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oral Biology, Faculty of Dentistry, Minia University, Minia, 61511, Egypt
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf H Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
43
|
Mayr A, Marciniak J, Eggers B, Blawat K, Wildenhof J, Bastos Craveiro R, Wolf M, Deschner J, Jäger A, Beisel-Memmert S. Autophagy Induces Expression of IL-6 in Human Periodontal Ligament Fibroblasts Under Mechanical Load and Overload and Effects Osteoclastogenesis in vitro. Front Physiol 2021; 12:716441. [PMID: 34512388 PMCID: PMC8430222 DOI: 10.3389/fphys.2021.716441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Objective: Autophagy is an important cellular adaptation mechanism to mechanical stress. In animal experiments, inhibition of autophagy during orthodontic tooth movement triggered increased expression of inflammation-related genes and decreased bone density. The aim of this study was to investigate how autophagy affects cytokine levels of interleukin 6 (IL-6) in human periodontal ligament (hPDL) fibroblasts under mechanical pressure and the resulting influence on osteoblast communication. Methods: hPDL fibroblasts were subjected to physiologic mechanical load, constant overload, or rapamycin treatment for 16 to 24 h ± autophagy inhibitor 3-MA. Autophagosomes were quantified by flow cytometry. Gene expression of il-6 as well as IL-6 levels in the supernatant were determined with rtPCR and ELISA. To investigate the influence of mechanically-induced autophagy on cell-cell communication, an osteoblast-culture was subjected to supernatant from stimulated hPDL fibroblasts ± soluble IL-6 receptor (sIL-6R). After 24 h, osteoprotegerin (opg) and receptor activator of nuclear factor κB ligand (rankl) gene expressions were detected with rtPCR. Gene expression of a disintegrin and metalloproteinases (adam) 10 and 17 in stimulated hPDL fibroblasts was examined via rtPCR. Results: Autophagy was induced by biomechanical stress in hPDL fibroblasts in a dose-dependent manner. Mechanical load and overload increased IL-6 expression at gene and protein level. Autophagy inhibition further enhanced the effects of mechanical stimulation on IL-6 expression. Mechanical stimulation of hPDL fibroblasts downregulated adam10 and adam17 expressions. Inhibition of autophagy had stimulus-intensity depending effects: autophagy inhibition alone or additional application of physiological stress enhanced adam10 and adam17 expressions, whereas mechanical overload had adverse effects. Osteoblasts showed significantly reduced opg expression in the presence of supernatant derived of hPDL fibroblasts treated with autophagy inhibitor and sIL-6R. Conclusion: IL-6 levels were increased in response to pressure in hPDL fibroblasts, which was further enhanced by autophagy inhibition. This caused a decrease in opg expression in osteoblasts. This may serve as an explanatory model for accelerated tooth movement observed under autophagy inhibition, but may also represent a risk factor for uncontrolled bone loss.
Collapse
Affiliation(s)
- Alexandra Mayr
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Jana Marciniak
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, Center of Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Kim Blawat
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Jan Wildenhof
- Private Clinic Schloss Schellenstein, Olsberg, Germany
| | - Rogerio Bastos Craveiro
- Department of Orthodontics, Faculty of Medicine, University Hospital Aachen, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Faculty of Medicine, University Hospital Aachen, Aachen, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Jäger
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Svenja Beisel-Memmert
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
44
|
Peng CH, Lin WY, Yeh KT, Chen IH, Wu WT, Lin MD. The molecular etiology and treatment of glucocorticoid-induced osteoporosis. Tzu Chi Med J 2021; 33:212-223. [PMID: 34386357 PMCID: PMC8323641 DOI: 10.4103/tcmj.tcmj_233_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common form of secondary osteoporosis, accounting for 20% of osteoporosis diagnoses. Using glucocorticoids for >6 months leads to osteoporosis in 50% of patients, resulting in an increased risk of fracture and death. Osteoblasts, osteocytes, and osteoclasts work together to maintain bone homeostasis. When bone formation and resorption are out of balance, abnormalities in bone structure or function may occur. Excess glucocorticoids disrupt the bone homeostasis by promoting osteoclast formation and prolonging osteoclasts' lifespan, leading to an increase in bone resorption. On the other hand, glucocorticoids inhibit osteoblasts' formation and facilitate apoptosis of osteoblasts and osteocytes, resulting in a reduction of bone formation. Several signaling pathways, signaling modulators, endocrines, and cytokines are involved in the molecular etiology of GIOP. Clinically, adults ≥40 years of age using glucocorticoids chronically with a high fracture risk are considered to have medical intervention. In addition to vitamin D and calcium tablet supplementations, the major therapeutic options approved for GIOP treatment include antiresorption drug bisphosphonates, parathyroid hormone N-terminal fragment teriparatide, and the monoclonal antibody denosumab. The selective estrogen receptor modulator can only be used under specific condition for postmenopausal women who have GIOP but fail to the regular GIOP treatment or have specific therapeutic contraindications. In this review, we focus on the molecular etiology of GIOP and the molecular pharmacology of the therapeutic drugs used for GIOP treatment.
Collapse
Affiliation(s)
- Cheng-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Ying Lin
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuang-Ting Yeh
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ing-Ho Chen
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Tien Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Der Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
45
|
Influences of the IL-6 cytokine family on bone structure and function. Cytokine 2021; 146:155655. [PMID: 34332274 DOI: 10.1016/j.cyto.2021.155655] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
The IL-6 family of cytokines comprises a large group of cytokines that all act via the formation of a signaling complex that includes the glycoprotein 130 (gp130) receptor. Despite this, many of these cytokines have unique roles that regulate the activity of bone forming osteoblasts, bone resorbing osteoclasts, bone-resident osteocytes, and cartilage cells (chondrocytes). These include specific functions in craniofacial development, longitudinal bone growth, and the maintenance of trabecular and cortical bone structure, and have been implicated in musculoskeletal pathologies such as craniosynostosis, osteoporosis, rheumatoid arthritis, osteoarthritis, and heterotopic ossifications. This review will work systematically through each member of this family and provide an overview and an update on the expression patterns and functions of each of these cytokines in the skeleton, as well as their negative feedback pathways, particularly suppressor of cytokine signaling 3 (SOCS3). The specific cytokines described are interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM), leukemia inhibitory factor (LIF), cardiotrophin 1 (CT-1), ciliary neurotrophic factor (CNTF), cardiotrophin-like cytokine factor 1 (CLCF1), neuropoietin, humanin and interleukin 27 (IL-27).
Collapse
|
46
|
Takeuchi T, Yoshida H, Tanaka S. Role of interleukin-6 in bone destruction and bone repair in rheumatoid arthritis. Autoimmun Rev 2021; 20:102884. [PMID: 34229044 DOI: 10.1016/j.autrev.2021.102884] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is a common inflammatory form of arthritis leading to the progressive bone and joint destruction. Many factors are closely involved in the pathology of RA, in particular bone-related cells and inflammatory cytokines such as TNF-α and interleukin-6 (IL-6). Because RA patients with progressive bone destruction experience accelerated deterioration of their quality of life, inhibition of disease progression and joint destruction has become an important clinical goal. Recent studies have also found that drug intervention targeting proinflammatory cytokines such as IL-6 results in bone repair in addition to suppression of bone and joint destruction, and these results suggest the potential for new therapeutic goals. Regarding the relationship between IL-6 and bone destruction, essential roles of osteoclasts have been reported over many years; however, more recent studies have explored the relationship of IL-6 with osteoblasts and osteocytes. In this review, we highlight the perspectives of basic and clinical research, adding new findings on the relationships between IL-6 and bone-related cells associated with inflammation, and the possibility of bone repair by blocking IL-6.
Collapse
Affiliation(s)
- Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hiroto Yoshida
- Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura City, Kanagawa, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
47
|
Barker AJ, Arthur A, DeNichilo MO, Panagopoulos R, Gronthos S, Anderson PJ, Zannettino AC, Evdokiou A, Panagopoulos V. Plant-derived soybean peroxidase stimulates osteoblast collagen biosynthesis, matrix mineralization, and accelerates bone regeneration in a sheep model. Bone Rep 2021; 14:101096. [PMID: 34136591 PMCID: PMC8178086 DOI: 10.1016/j.bonr.2021.101096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
Bone defects arising from fractures or disease represent a significant problem for surgeons to manage and are a substantial economic burden on the healthcare economy. Recent advances in the development of biomaterial substitutes provides an attractive alternative to the current "gold standard" autologous bone grafting. Despite on-going research, we are yet to identify cost effective biocompatible, osteo-inductive factors that stimulate controlled, accelerated bone regeneration.We have recently reported that enzymes with peroxidase activity possess previously unrecognised roles in extracellular matrix biosynthesis, angiogenesis and osteoclastogenesis, which are essential processes in bone remodelling and repair. Here, we report for the first time, that plant-derived soybean peroxidase (SBP) possesses pro-osteogenic ability by promoting collagen I biosynthesis and matrix mineralization of human osteoblasts in vitro. Mechanistically, SBP regulates osteogenic genes responsible for inflammation, extracellular matrix remodelling and ossification, which are necessary for normal bone healing. Furthermore, SBP was shown to have osteo-inductive properties, that when combined with commercially available biphasic calcium phosphate (BCP) granules can accelerate bone repair in a critical size long bone defect ovine model. Micro-CT analysis showed that SBP when combined with commercially available biphasic calcium phosphate (BCP) granules significantly increased bone formation within the defects as early as 4 weeks compared to BCP alone. Histomorphometric assessment demonstrated accelerated bone formation prominent at the defect margins and surrounding individual BCP granules, with evidence of intramembranous ossification. These results highlight the capacity of SBP to be an effective regulator of osteoblastic function and may be beneficial as a new and cost effective osteo-inductive agent to accelerate repair of large bone defects.
Collapse
Affiliation(s)
- Alexandra J. Barker
- Musculoskeletal Biology Research Laboratory, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Agnes Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Mark O. DeNichilo
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Romana Panagopoulos
- Breast Cancer Research Unit, School of Medicine, Discipline of Surgery and Orthopaedics, Basil Hetzel Institute, University of Adelaide, Adelaide, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Peter J. Anderson
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
- Australian Craniofacial Unit, Women's and Children's Hospital, Department of Paediatrics and Dentistry, University of Adelaide, Adelaide, Australia
- Central Adelaide Local Health Network, Adelaide, Australia
| | - Andrew C.W. Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, Australia
- Central Adelaide Local Health Network, Adelaide, Australia
| | - Andreas Evdokiou
- Breast Cancer Research Unit, School of Medicine, Discipline of Surgery and Orthopaedics, Basil Hetzel Institute, University of Adelaide, Adelaide, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Breast Cancer Research Unit, School of Medicine, Discipline of Surgery and Orthopaedics, Basil Hetzel Institute, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Corresponding author at: Myeloma Research Laboratory, Level 5 South, South Australian Health and Medical Research Institute, Adelaide SA 500, Australia.
| |
Collapse
|
48
|
Fontanella RA, Sideri S, Di Stefano C, Catizone A, Di Agostino S, Angelini DF, Guerrera G, Battistini L, Battafarano G, Del Fattore A, Campese AF, Padula F, De Cesaris P, Filippini A, Riccioli A. CD44v8-10 is a marker for malignant traits and a potential driver of bone metastasis in a subpopulation of prostate cancer cells. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0495. [PMID: 34018387 PMCID: PMC8330537 DOI: 10.20892/j.issn.2095-3941.2020.0495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Bone metastasis is a clinically important outcome of prostate carcinoma (PC). We focused on the phenotypic and functional characterization of a particularly aggressive phenotype within the androgen-independent bone metastasis-derived PC3 cell line. These cells, originated from the spontaneous conversion of a CD44-negative subpopulation, stably express the CD44v8-10 isoform (CD44v8-10pos) and display stem cell-like features and a marked invasive phenotype in vitro that is lost upon CD44v8-10 silencing. METHODS Flow cytometry, enzyme-linked immunoassay, immunofluorescence, and Western blot were used for phenotypic and immunologic characterization. Real-time quantitative polymerase chain reaction and functional assays were used to assess osteomimicry. RESULTS Analysis of epithelial-mesenchymal transition markers showed that CD44v8-10pos PC3 cells surprisingly display epithelial phenotype and can undergo osteomimicry, acquiring bone cell phenotypic and behavioral traits. Use of specific siRNA evidenced the ability of CD44v8-10 variant to confer osteomimetic features, hence the potential to form bone-specific metastasis. Moreover, the ability of tumors to activate immunosuppressive mechanisms which counteract effective immune responses is a sign of the aggressiveness of a tumor. Here we report that CD44v8-10pos cells express programmed death ligand 1, a negative regulator of anticancer immunity, and secrete exceptionally high amounts of interleukin-6, favoring osteoclastogenesis and immunosuppression in bone microenvironment. Notably, we identified a novel pathway activated by CD44v8-10, involving tafazzin (TAZ) and likely the Wnt/TAZ axis, known to play a role in upregulating osteomimetic genes. CONCLUSIONS CD44v8-10 could represent a marker of a more aggressive bone metastatic PC population exerting a driver role in osteomimicry in bone. A novel link between TAZ and CD44v8-10 is also shown.
Collapse
Affiliation(s)
- Rosaria A. Fontanella
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Silvia Sideri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Chiara Di Stefano
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Angiolina Catizone
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Silvia Di Agostino
- Department of Health Sciences School of Medicine – “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
| | | | | | | | - Giulia Battafarano
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome 00146, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome 00146, Italy
| | | | - Fabrizio Padula
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Paola De Cesaris
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila 67100, Italy
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Anna Riccioli
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| |
Collapse
|
49
|
Exploring the Biomaterial-Induced Secretome: Physical Bone Substitute Characteristics Influence the Cytokine Expression of Macrophages. Int J Mol Sci 2021; 22:ijms22094442. [PMID: 33923149 PMCID: PMC8123010 DOI: 10.3390/ijms22094442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
In addition to their chemical composition various physical properties of synthetic bone substitute materials have been shown to influence their regenerative potential and to influence the expression of cytokines produced by monocytes, the key cell-type responsible for tissue reaction to biomaterials in vivo. In the present study both the regenerative potential and the inflammatory response to five bone substitute materials all based on β-tricalcium phosphate (β-TCP), but which differed in their physical characteristics (i.e., granule size, granule shape and porosity) were analyzed for their effects on monocyte cytokine expression. To determine the effects of the physical characteristics of the different materials, the proliferation of primary human osteoblasts growing on the materials was analyzed. To determine the immunogenic effects of the different materials on human peripheral blood monocytes, cells cultured on the materials were evaluated for the expression of 14 pro- and anti-inflammatory cytokines, i.e., IL-6, IL-10, IL-1β, VEGF, RANTES, IL-12p40, I-CAM, IL-4, V-CAM, TNF-α, GM-CSF, MIP-1α, Il-8 and MCP-1 using a Bio-Plex® Multiplex System. The granular shape of bone substitutes showed a significant influence on the osteoblast proliferation. Moreover, smaller pore sizes, round granular shape and larger granule size increased the expression of GM-CSF, RANTES, IL-10 and IL-12 by monocytes, while polygonal shape and the larger pore sizes increased the expression of V-CAM. The physical characteristics of a bone biomaterial can influence the proliferation rate of osteoblasts and has an influence on the cytokine gene expression of monocytes in vitro. These results indicate that the physical structure of a biomaterial has a significant effect of how cells interact with the material. Thus, specific characteristics of a material may strongly affect the regenerative potential in vivo.
Collapse
|
50
|
Parker E, Hamrick MW. Role of fibro-adipogenic progenitor cells in muscle atrophy and musculoskeletal diseases. Curr Opin Pharmacol 2021; 58:1-7. [PMID: 33839480 DOI: 10.1016/j.coph.2021.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/16/2021] [Accepted: 03/06/2021] [Indexed: 01/01/2023]
Abstract
Maintaining muscle mass is clinically important as muscle helps to regulate metabolic systems of the body as well as support activities of daily living that require mobility, strength, and power. Losing muscle mass decreases an individual's independence and quality of life, and at the same time increases the risk of disease burden. Fibro-adipogenic progenitor (FAP) cells are a group of muscle progenitor cells that play an important role in muscle regeneration and maintenance of skeletal muscle fiber size. These important functions of FAPs are mediated by a complex secretome that interacts in a paracrine manner to stimulate muscle satellite cells to divide and differentiate. Dysregulation of FAP differentiation leads to fibrosis, fatty infiltration, muscle atrophy, and impaired muscle regeneration. Functional deficits in skeletal muscle resulting from atrophy, fibrosis, or fatty infiltration will reduce biomechanical stresses on the skeleton, and both FAP-derived adipocytes and FAPs themselves are likely to secrete factors that can induce bone loss. These findings suggest that FAPs represent a cell population to be targeted therapeutically to improve both muscle and bone health in settings of aging, injury, and disease.
Collapse
Affiliation(s)
- Emily Parker
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mark W Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|