1
|
Boehme L, Roels J, Taghon T. Development of γδ T cells in the thymus - A human perspective. Semin Immunol 2022; 61-64:101662. [PMID: 36374779 DOI: 10.1016/j.smim.2022.101662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
γδ T cells are increasingly emerging as crucial immune regulators that can take on innate and adaptive roles in the defence against pathogens. Although they arise within the thymus from the same hematopoietic precursors as conventional αβ T cells, the development of γδ T cells is less well understood. In this review, we focus on summarising the current state of knowledge about the cellular and molecular processes involved in the generation of γδ T cells in human.
Collapse
Affiliation(s)
- Lena Boehme
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
2
|
Rodríguez-Caparrós A, Tani-ichi S, Casal Á, López-Ros J, Suñé C, Ikuta K, Hernández-Munain C. Interleukin-7 receptor signaling is crucial for enhancer-dependent TCRδ germline transcription mediated through STAT5 recruitment. Front Immunol 2022; 13:943510. [PMID: 36059467 PMCID: PMC9437428 DOI: 10.3389/fimmu.2022.943510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
γδ T cells play important roles in immune responses by rapidly producing large quantities of cytokines. Recently, γδ T cells have been found to be involved in tissue homeostatic regulation, playing roles in thermogenesis, bone regeneration and synaptic plasticity. Nonetheless, the mechanisms involved in γδ T-cell development, especially the regulation of TCRδ gene transcription, have not yet been clarified. Previous studies have established that NOTCH1 signaling plays an important role in the Tcrg and Tcrd germline transcriptional regulation induced by enhancer activation, which is mediated through the recruitment of RUNX1 and MYB. In addition, interleukin-7 signaling has been shown to be required for Tcrg germline transcription, VγJγ rearrangement and γδ T-lymphocyte generation as well as for promoting T-cell survival. In this study, we discovered that interleukin-7 is required for the activation of enhancer-dependent Tcrd germline transcription during thymocyte development. These results indicate that the activation of both Tcrg and Tcrd enhancers during γδ T-cell development in the thymus depends on the same NOTCH1- and interleukin-7-mediated signaling pathways. Understanding the regulation of the Tcrd enhancer during thymocyte development might lead to a better understanding of the enhancer-dependent mechanisms involved in the genomic instability and chromosomal translocations that cause leukemia.
Collapse
Affiliation(s)
- Alonso Rodríguez-Caparrós
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
| | - Shizue Tani-ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Áurea Casal
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
| | - Jennifer López-Ros
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
| | - Carlos Suñé
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Cristina Hernández-Munain
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
- *Correspondence: Cristina Hernández-Munain,
| |
Collapse
|
3
|
Rodríguez-Caparrós A, Álvarez-Santiago J, del Valle-Pastor MJ, Suñé C, López-Ros J, Hernández-Munain C. Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function. Int J Mol Sci 2020; 21:E8478. [PMID: 33187197 PMCID: PMC7696796 DOI: 10.3390/ijms21228478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Cristina Hernández-Munain
- Institute of Parasitology and Biomedicine “López-Neyra”—Spanish Scientific Research Council (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud (PTS), 18016 Granada, Spain; (A.R.-C.); (J.Á.-S.); (M.J.d.V.-P.); (C.S.); (J.L.-R.)
| |
Collapse
|
4
|
Rodríguez-Caparrós A, García V, Casal Á, López-Ros J, García-Mariscal A, Tani-ichi S, Ikuta K, Hernández-Munain C. Notch Signaling Controls Transcription via the Recruitment of RUNX1 and MYB to Enhancers during T Cell Development. THE JOURNAL OF IMMUNOLOGY 2019; 202:2460-2472. [DOI: 10.4049/jimmunol.1801650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
|
5
|
Hernández-Munain C. Recent insights into the transcriptional control of the Tcra/Tcrd locus by distant enhancers during the development of T-lymphocytes. Transcription 2015; 6:65-73. [PMID: 26230488 DOI: 10.1080/21541264.2015.1078429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tcra/Tcrd includes 2 genes with distinct developmental programs controlled by 2 distant enhancers, Eα and Eδ. These enhancers work as a developmental switch during thymocyte development and they are essential for generation of αβ and γδ T-lymphocytes. Tcra and Tcrd transit from an unrearranged configuration to a rearranged configuration during T-cell development. Eα and Eδ are responsible for transcription of their respective unrearranged genes in thymocytes but are dispensable for such functions in the context of the rearranged genes in mature T-cells. Interestingly, Eα activates transcription of the rearranged Tcrd in γδ T-lymphocytes but it is inactive in αβ T-lymphocytes.
Collapse
Affiliation(s)
- Cristina Hernández-Munain
- a Department of Cellular Biology and Immunology ; Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC); Parque Tecnológico de Ciencias de la Salud (PTS) ; Armilla , Granada , Spain
| |
Collapse
|
6
|
Carico Z, Krangel MS. Chromatin Dynamics and the Development of the TCRα and TCRδ Repertoires. Adv Immunol 2015; 128:307-61. [DOI: 10.1016/bs.ai.2015.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Fenstermaker RA, Ciesielski MJ. EGFR Intron Recombination in Human Gliomas: Inappropriate Diversion of V(D)J Recombination? Curr Genomics 2011; 8:163-70. [PMID: 18645600 DOI: 10.2174/138920207780833838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 02/26/2007] [Accepted: 03/26/2007] [Indexed: 12/25/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a membrane-bound, 170 kDa, protein tyrosine kinase that plays an important role in tumorigenesis. The EGFR gene, which is composed of over 168 kb of sequence, including a 123-kb first intron, is frequently amplified and rearranged in malignant gliomas leading to the expression of oncogenic deletion (DM) and tandem duplication (TDM) mutants. The most common DM in gliomas is EGFRvIII, which arises from recombination between introns 1 and 7 with deletion of exons 2 through 7 and intervening introns. In addition, some human gliomas express 180- to 190-kDa TDM, which are constitutively active and highly oncogenic. Both DM and TDM arise by recombination of introns that contain sequences with homology to the recombination signal sequence (RSS) heptamers and nonamers present in the V(D)J region of the immunoglobin and T lymphocyte antigen receptor genes. V(D)J RSS have also been identified in certain proto-oncogenes like bcl-2 that are involved in translocations associated with the development of human lymphomas and in other genes such as hypoxanthine-guainine phosphoribosyl transferase (HPRT) in which deletion mutations and intron rearrangements are a common phenomenon. Together with the expression of recombination associated gene (RAG) and nonhomologous end-joining (NHEJ) proteins in gliomas, these observation suggest that aberrant activity of the V(D)J recombinase may be involved in the activation of proto-oncogenes in both liquid and solid tumors.
Collapse
Affiliation(s)
- Robert A Fenstermaker
- Department of Neurosurgery, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | |
Collapse
|
8
|
Hu T, Simmons A, Yuan J, Bender TP, Alberola-Ila J. The transcription factor c-Myb primes CD4+CD8+ immature thymocytes for selection into the iNKT lineage. Nat Immunol 2010; 11:435-41. [PMID: 20383148 PMCID: PMC2857587 DOI: 10.1038/ni.1865] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/09/2010] [Indexed: 12/21/2022]
Abstract
Type I invariant NKT cells (iNKT cells) are a subset of alphabeta T cells characterized by the expression of an invariant alpha-chain variable region 14-alpha-chain joining region 18 (V(alpha)14J(alpha)18) T cell antigen receptor (TCR) alpha-chain. The iNKT cells derive from CD4(+)CD8(+) double-positive (DP) thymocytes, and their generation requires a long half-life of DP thymocytes to allow V(alpha)14-J(alpha)18 rearrangements, expression of glycolipid-loaded CD1d on DP thymocytes, and signaling through the signaling-activation molecule SLAM-adaptor SAP pathway. Here we show that the transcription factor c-Myb has a central role in priming DP thymocytes to enter the iNKT lineage by simultaneously regulating CD1d expression, the half-life of DP cells and expression of SLAMF1, SLAMF6 and SAP.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD1d/genetics
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Bone Marrow Transplantation
- CD4 Antigens/biosynthesis
- CD8 Antigens/biosynthesis
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cell Survival/genetics
- Cell Survival/immunology
- GATA3 Transcription Factor/genetics
- Gene Rearrangement, T-Lymphocyte/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Natural Killer T-Cells/cytology
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Precursor Cells, T-Lymphoid/cytology
- Precursor Cells, T-Lymphoid/immunology
- Precursor Cells, T-Lymphoid/metabolism
- Proto-Oncogene Proteins c-myb/genetics
- Proto-Oncogene Proteins c-myb/immunology
- Proto-Oncogene Proteins c-myb/metabolism
- Radiation Chimera
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Saposins/genetics
- Saposins/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Signaling Lymphocytic Activation Molecule Family
- Signaling Lymphocytic Activation Molecule Family Member 1
- Thymus Gland/cytology
- bcl-X Protein/genetics
- bcl-X Protein/immunology
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Taishan Hu
- Immunobiology and Cancer Research Program. Oklahoma Medical Research Foundation. Department of Cell Biology. University of Oklahoma Health Sciences Center
| | - Amie Simmons
- Immunobiology and Cancer Research Program. Oklahoma Medical Research Foundation. Department of Cell Biology. University of Oklahoma Health Sciences Center
| | - Joan Yuan
- Dept.of Microbiology.University of Virginia
| | | | - Jose Alberola-Ila
- Immunobiology and Cancer Research Program. Oklahoma Medical Research Foundation. Department of Cell Biology. University of Oklahoma Health Sciences Center
| |
Collapse
|
9
|
del Blanco B, Roberts JL, Zamarreño N, Balmelle-Devaux N, Hernández-Munain C. Flexible Stereospecific Interactions and Composition within Nucleoprotein Complexes Assembled on the TCRα Gene Enhancer. THE JOURNAL OF IMMUNOLOGY 2009; 183:1871-83. [DOI: 10.4049/jimmunol.0803351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Greig KT, Carotta S, Nutt SL. Critical roles for c-Myb in hematopoietic progenitor cells. Semin Immunol 2008; 20:247-56. [PMID: 18585056 DOI: 10.1016/j.smim.2008.05.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Accepted: 05/14/2008] [Indexed: 11/16/2022]
Abstract
While it has long been known that the transcription factor c-Myb is an essential regulator of hematopoiesis, its precise molecular targets have remained elusive. Cell line studies suggest that c-Myb promotes proliferation and at the same time inhibits differentiation, however the early lethality of c-Myb deficient embryos precluded analysis of its role in adult hematopoiesis. Here we review insights derived from recently developed mouse models of c-Myb deficiency that are viable as adults. These studies reveal a complex array of functions for c-Myb in multiple hematopoietic cell types that will redefine our understanding of this crucial transcription factor.
Collapse
Affiliation(s)
- Kylie T Greig
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | |
Collapse
|
11
|
Maurice D, Hooper J, Lang G, Weston K. c-Myb regulates lineage choice in developing thymocytes via its target gene Gata3. EMBO J 2007; 26:3629-40. [PMID: 17641686 PMCID: PMC1949015 DOI: 10.1038/sj.emboj.7601801] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 06/26/2007] [Indexed: 01/01/2023] Open
Abstract
During T-cell development, thymocytes with intermediate avidity for antigen-MHC complexes are positively selected and then differentiate into functional cytotoxic and helper T cells. This process is controlled by signalling from the T-cell receptor (TCR). Here, we show that the c-Myb transcription factor is a critical downstream regulator of positive selection, promoting the development of helper T cells and blocking the development of cytotoxic T cells. A gain-of-function c-Myb transgene stops development of cytotoxic T cells, instead causing accumulation of a precursor population. Conversely, loss of c-Myb in selecting cells results in significantly fewer helper T cells. In c-Myb-null thymocytes, Gata3, a critical inducer of T-helper cell fate, is not upregulated in response to T-cell receptor signaling, following selection. We show that Gata3 is a direct target of c-Myb, and propose that c-Myb is an important regulator of Gata3, required for transduction of the T-cell receptor signal for subsequent helper cell lineage differentiation.
Collapse
Affiliation(s)
- Diane Maurice
- Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, London, UK
| | - Joel Hooper
- Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, London, UK
| | - Georgina Lang
- Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, London, UK
| | - Kathleen Weston
- Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, London, UK
- Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, 237 Fulham Road, London SW3 6JB, UK. Tel.: +44 207 153 5253; Fax: +44 207 352 3299; E-mail:
| |
Collapse
|
12
|
Abstract
Mammals contend with a universe of evolving pathogens by generating an enormous diversity of antigen receptors during lymphocyte development. Precursor B and T cells assemble functional immunoglobulin (Ig) and T cell receptor (TCR) genes via recombination of numerous variable (V), diversity (D), and joining (J) gene segments. Although this combinatorial process generates significant diversity, genetic reorganization is inherently dangerous. Thus, V(D)J recombination must be tightly regulated to ensure proper lymphocyte development and avoid chromosomal translocations that cause lymphoid tumors. Each genomic rearrangement is mediated by a common V(D)J recombinase that recognizes sequences flanking all antigen receptor gene segments. The specificity of V(D)J recombination is due, in large part, to changes in the accessibility of chromatin at target gene segments, which either permits or restricts access to recombinase. The chromatin configuration of antigen receptor loci is governed by the concerted action of enhancers and promoters, which function as accessibility control elements (ACEs). In general, ACEs act as conduits for transcription factors, which in turn recruit enzymes that covalently modify or remodel nucleosomes. These ACE-mediated alterations are critical for activation of gene segment transcription and for opening chromatin associated with recombinase target sequences. In this chapter, we describe advances in understanding the mechanisms that control V(D)J recombination at the level of chromatin accessibility. The discussion will focus on cis-acting regulation by ACEs, the nuclear factors that control ACE function, and the epigenetic modifications that establish recombinase accessibility.
Collapse
Affiliation(s)
- Robin Milley Cobb
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
13
|
Thomas MD, Kremer CS, Ravichandran KS, Rajewsky K, Bender TP. c-Myb Is Critical for B Cell Development and Maintenance of Follicular B Cells. Immunity 2005; 23:275-86. [PMID: 16169500 DOI: 10.1016/j.immuni.2005.08.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 07/28/2005] [Accepted: 08/03/2005] [Indexed: 01/01/2023]
Abstract
The c-Myb transcription factor is crucial during definitive hematopoiesis. However, the embryonic lethality of Myb traditional null mutations has precluded analysis of c-Myb function in lymphocytes. Using tissue-specific inactivation at the Myb locus, we demonstrate that loss of Myb causes a partial block during B cell development at the pro-B to pre-B cell transition, resulting in greatly decreased output of new B cells from the bone marrow. Furthermore, we demonstrate that Myb is not essential for the proliferation of splenic B cells, but that loss of c-Myb function prevents normal B cell homeostasis due to decreased splenic B cell survival. Decreased survival is accompanied by hyporesponsiveness to the B cell survival factor BLyS (also termed BAFF), decreased expression of the BLyS receptor 3 (BR3), and altered regulation of PKCdelta nuclear accumulation. Thus, c-Myb is important during multiple stages of B-lymphopoiesis.
Collapse
Affiliation(s)
- Matthew D Thomas
- Department of Microbiology, P.O. Box 800734, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
This review explores the evolutionary origins of lymphocyte development by focusing on the transcription factors that direct mammalian lymphocyte development today. Gene expression data suggest that the programs to make lymphocytes involve the same transcription factor ensembles in all animals with lymphocytes. Most of these factors, GATA, Runx, PU.1/Spi, EBF/Olf, Ikaros, and Pax-2/5/8 family members, are also encoded in the genomes of animals without lymphocytes. We consider the functions of these factors in animals without lymphocytes in terms of discrete program components, which could have been assembled in a new way to create the lymphocyte developmental program approximately 500 My ago.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
15
|
Uenishi H, Hiraiwa H, Yamamoto R, Yasue H, Takagaki Y, Shiina T, Kikkawa E, Inoko H, Awata T. Genomic structure around joining segments and constant regions of swine T-cell receptor alpha/delta (TRA/TRD) locus. Immunology 2003; 109:515-26. [PMID: 12871218 PMCID: PMC1783003 DOI: 10.1046/j.1365-2567.2003.01695.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Revised: 04/10/2003] [Accepted: 05/15/2003] [Indexed: 11/20/2022] Open
Abstract
A complete genomic region of 131.2 kb including the swine T-cell receptor alpha/delta constant region (TRAC/TRDC) and joining segments (TRAJ/TRDJ) was sequenced. The structure of this region was strikingly conserved in comparison to that of human or mouse. All of the 61 TRAJ segments detected in the human genomic sequence were detected in the swine sequence and the sequence of the protein binding site of T early alpha, the sequence of the alpha enhancer element and the conserved sequence block between TRAJ3 and TRAJ4 are highly conserved. Insertion of the repetitive sequences that interspersed after the differentiation of the species in mammals such as short interspersed nucleotide elements is markedly suppressed in comparison to other genomic regions, while the composition of the mammalian-wide interspersed sequences is relatively conserved in human and swine. This observation indicates the existence of a highly selective pressure to conserve this genomic region around TRAJ throughout the evolution of mammals.
Collapse
Affiliation(s)
- Hirohide Uenishi
- Genome Research Department, National Institute of Agrobiological Sciences, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hernández-Munain C, Krangel MS. Distinct roles for c-Myb and core binding factor/polyoma enhancer-binding protein 2 in the assembly and function of a multiprotein complex on the TCR delta enhancer in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4362-9. [PMID: 12370369 DOI: 10.4049/jimmunol.169.8.4362] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Enhancers and promoters within TCR loci functionally collaborate to modify chromatin structure and to confer accessibility to the transcription and V(D)J recombination machineries during T cell development in the thymus. Two enhancers at the TCRalphadelta locus, the TCR alpha enhancer and the TCR delta enhancer (Edelta), are responsible for orchestrating the distinct developmental programs for V(D)J recombination and transcription of the TCR alpha and delta genes, respectively. Edelta function depends critically on transcription factors core binding factor (CBF)/polyoma enhancer-binding protein 2 (PEBP2) and c-Myb as measured by transcriptional activation of transiently transfected substrates in Jurkat cells, and by activation of V(D)J recombination within chromatin-integrated substrates in transgenic mice. To understand the molecular mechanisms for synergy between these transcription factors in the context of chromatin, we used in vivo footprinting to study the requirements for protein binding to Edelta within wild-type and mutant versions of a human TCR delta minilocus in stably transfected Jurkat cells. Our data indicate that CBF/PEBP2 plays primarily a structural role as it induces a conformational change in the enhanceosome that is associated with augmented binding of c-Myb. In contrast, c-Myb has no apparent affect on CBF/PEBP2 binding, but is critical for transcriptional activation. Thus, our data reveal distinct functions for c-Myb and CBF/PEBP2 in the assembly and function of an Edelta enhanceosome in the context of chromatin in vivo.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- Binding Sites/immunology
- Core Binding Factor Alpha 1 Subunit
- Core Binding Factor beta Subunit
- Core Binding Factors
- DNA Footprinting
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Enhancer Elements, Genetic/immunology
- Humans
- Jurkat Cells
- Molecular Sequence Data
- Neoplasm Proteins
- Protein Conformation
- Proto-Oncogene Proteins c-myb/metabolism
- Proto-Oncogene Proteins c-myb/physiology
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Transcription Factor AP-2
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcriptional Activation/immunology
- Transfection
- Tumor Cells, Cultured
Collapse
|
17
|
Affiliation(s)
- D G Hesslein
- Department of Cell Biology and Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
18
|
Barreda DR, Belosevic M. Transcriptional regulation of hemopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:763-789. [PMID: 11602195 DOI: 10.1016/s0145-305x(01)00035-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The regulation of blood cell formation, or hemopoiesis, is central to the replenishment of mature effector cells of innate and acquired immune responses. These cells fulfil specific roles in the host defense against invading pathogens, and in the maintenance of homeostasis. The development of hemopoietic cells is under stringent control from extracellular and intracellular stimuli that result in the activation of specific downstream signaling cascades. Ultimately, all signal transduction pathways converge at the level of gene expression where positive and negative modulators of transcription interact to delineate the pattern of gene expression and the overall cellular hemopoietic response. Transcription factors, therefore, represent a nodal point of hemopoietic control through the integration of the various signaling pathways and subsequent modulation of the transcriptional machinery. Transcription factors can act both positively and negatively to regulate the expression of a wide range of hemopoiesis-relevant genes including growth factors and their receptors, other transcription factors, as well as various molecules important for the function of developing cells. The expression of these genes is dependent on the complex interactions between transcription factors, co-regulatory molecules, and specific binding sequences on the DNA. Recent advances in various vertebrate and invertebrate systems emphasize the importance of transcription factors for hemopoiesis control and the evolutionary conservation of several of such mechanisms. In this review we outline some of the key issues frequently identified in studies of the transcriptional regulation of hemopoietic gene expression. In teleosts, we expect that the characterization of several of these transcription factors and their regulatory mechanisms will complement recent advances in a number of fish systems where identification of cytokine and other hemopoiesis-relevant factors are currently under investigation.
Collapse
Affiliation(s)
- D R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
19
|
Krangel MS, McMurry MT, Hernandez-Munain C, Zhong XP, Carabana J. Accessibility control of T cell receptor gene rearrangement in developing thymocytes. The TCR alpha/delta locus. Immunol Res 2001; 22:127-35. [PMID: 11339350 DOI: 10.1385/ir:22:2-3:127] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The joining of T cell receptor (TCR) and immunoglobulin (Ig) gene segments through the process of V(D)J recombination occurs in a lineage-specific and developmental-stage-specific way during the early stages of lymphocyte development. Such developmental regulation is thought to be mediated through the control of gene segment accessibility to the recombinase. We have studied the regulation of V(D)J recombination at the TCR alpha/delta locus, because this locus provides a fascinating model in which distinct sets of gene segments are activated at different stages of T cell development. The transcriptional enhancers Edelta and Ealpha have been implicated as critical regulators that, in conjunction with other cis-acting elements, confer region-specific and developmental-stage-specific changes in gene segment accessibility within TCR alpha/delta locus chromatin. Current work suggests that they may do so by functioning as regional modulators of histone acetylation.
Collapse
Affiliation(s)
- M S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
20
|
Abstract
VDJ recombination is developmentally regulated in vivo by enhancer-dependent changes in the accessibility of chromosomal recombination signal sequences to the recombinase, but the molecular nature of these changes is unknown. Here histone H3 acetylation was measured along versions of a transgenic VDJ recombination reporter and the endogenous T cell receptor alpha/delta locus. Enhancer activity was shown to impart long-range, developmentally regulated changes in H3 acetylation, and H3 acetylation status was tightly linked to VDJ recombination. H3 hyperacetylation is proposed as a molecular mechanism coupling enhancer activity to accessibility for VDJ recombination.
Collapse
Affiliation(s)
- M T McMurry
- Department of Immunology, Post Office Box 3010, Duke University Medical Center, Durham NC 27710, USA
| | | |
Collapse
|
21
|
Affiliation(s)
- S Desiderio
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
22
|
Zhong XP, Carabaña J, Krangel MS. Flanking nuclear matrix attachment regions synergize with the T cell receptor delta enhancer to promote V(D)J recombination. Proc Natl Acad Sci U S A 1999; 96:11970-5. [PMID: 10518560 PMCID: PMC18396 DOI: 10.1073/pnas.96.21.11970] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have identified nuclear matrix attachment regions (MARs) that are closely associated with transcriptional enhancers in the IgH, Igkappa, and T cell receptor (TCR) beta loci, but have yielded conflicting information regarding their functional significance. In this report, a combination of in vitro and in situ mapping approaches was used to localize three MARs associated with the human TCR delta gene. Two of these are located within the Jdelta3-Cdelta intron, flanking the core TCR delta enhancer (Edelta) both 5' and 3' in a fashion reminiscent of the Ig heavy chain intronic enhancer-associated MARs. The third is located about 20 kb upstream, tightly linked to Ddelta1 and Ddelta2. We have previously used a transgenic minilocus V(D)J recombination reporter to establish that Edelta functions as a developmental regulator of V(D)J recombination, and that it does so by modulating substrate accessibility to the V(D)J recombinase. We show here that the Edelta-associated MARs function synergistically with the core Edelta to promote V(D)J recombination in this system, as they are required for enhancer-dependent transgene rearrangement in single-copy transgene integrants.
Collapse
Affiliation(s)
- X P Zhong
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
23
|
Abstract
The plasticity of the immune system relies on stochastic, i.e. random, decisions as well as on controlled events. V(D)J rearrangement of antigen receptors on B and T cells are mediated through the action of compound elements containing enhancer sequences. These elements function in a developmentally stage-specific and a cell-type-specific manner to attract machineries that demethylate DNA, remodel chromatin structure, and induce V(D)J recombination on one allele preferentially.
Collapse
Affiliation(s)
- Y Bergman
- Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
24
|
Hernández-Munain C, Sleckman BP, Krangel MS. A developmental switch from TCR delta enhancer to TCR alpha enhancer function during thymocyte maturation. Immunity 1999; 10:723-33. [PMID: 10403647 DOI: 10.1016/s1074-7613(00)80071-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
V(D)J recombination and transcription within the TCR alpha/delta locus are regulated by three characterized cis-acting elements: the TCR delta enhancer (Edelta), TCR alpha enhancer (Ealpha), and T early alpha (TEA) promoter. Analysis of enhancer and promoter occupancy and function in developing thymocytes in vivo indicates Edelta and Ealpha to be developmental-stage-specific enhancers, with Edelta "on" and Ealpha "off" in double-negative III thymocytes and Edelta "off" and Ealpha "on" in double-positive thymocytes. Edelta downregulation reflects a loss of occupancy. Surprisingly, Ealpha and TEA are extensively occupied even prior to activation. TCR delta downregulation in double-positive thymocytes depends on two events, Edelta inactivation and removal of TCR delta from the influence of Ealpha by chromosomal excision.
Collapse
Affiliation(s)
- C Hernández-Munain
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
25
|
Abstract
The myb gene family consists of three members, named A, B and c-myb which encode nuclear proteins that function as transcriptional transactivators. Proteins encoded by these three genes exhibit a tripartate structure with an N-terminal DNA-binding domain, a central transactivation domain and a C-terminal regulatory domain. These proteins exhibit highest homology in their DNA binding domains and appear to bind DNA with overlapping sequence specificities. Transactivation by myb gene family varies considerably depending on cell type and promoter context suggesting a dependence on interaction with other cell type specific co-factors. While the C-terminal domains of A-Myb and c-Myb proteins exert a negative regulatory effect on their transcriptional transactivation function, the C-terminal domain of B-Myb appears to function as a positive regulator of this activity. One or more of these proteins interact with other transcription factors such as Ets-2, CEBP and NF-M. In addition, expression of these genes is cell cycle-regulated and inhibition of their expression with antisense oligonucleotides has been found to affect cell cycle-progression, cell division and/or differentiation. Members of the myb gene family exhibit different temporal and spatial expression patterns suggesting a distinctive function for each of these genes. Gene knockout experiments show that these genes play an essential role in development. Loss of c-myb function results in embryonic lethality due to failure of fetal hepatic hematopoiesis. A-myb null mutant mice, on the other hand are viable but exhibit growth abnormalities, and defects in spermatogenesis and female breast development. While the role of c-myb in oncogenesis is well established, future experiments are likely to provide further clues regarding the role of A-myb and B-myb in tumorigenesis.
Collapse
Affiliation(s)
- I H Oh
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
26
|
Abstract
The c-Myb transcription factor is important for fetal hematopoiesis and has been proposed to mediate later stages of lymphocyte development. Using homozygous null c-Myb/Rag1 chimeric mice, we have determined that c-Myb plays an important role in the differentiation of macrophages and lymphocytes from precursor stem cells. We also determine that deletion of c-Myb leads to a complete block in early T cell development just before the oligopotent thymocyte matures into the definitive T cell precursor. These data indicate that c-Myb plays an important role at multiple stages of hematopoiesis and is required at an early stage of T cell development.
Collapse
Affiliation(s)
- R D Allen
- Department of Microbiology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
27
|
Hofmeister R, Khaled AR, Benbernou N, Rajnavolgyi E, Muegge K, Durum SK. Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev 1999; 10:41-60. [PMID: 10379911 DOI: 10.1016/s1359-6101(98)00025-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interleukin-7 (IL-7), a product of stromal cells, provides critical signals to lymphoid cells at early stages in their development. Two types of cellular responses to IL-7 have been identified in lymphoid progenitors: (1) a trophic effect and (2) an effect supporting V(D)J recombination. The IL-7 receptor is comprised of two chains, IL-7R alpha and gamma(c). Following receptor crosslinking, rapid activation of several classes of kinases occurs, including members of the Janus and Src families and PI3-kinase. A number of transcription factors are subsequently activated including STATs, c-myc, NFAT and AP-1. However, it remains to be determined which, if any, previously identified pathway leads to the trophic or V(D)J endpoints. The trophic response to IL-7 involves protecting lymphoid progenitors from a death process that resembles apoptosis. This protection is partly mediated by IL-7 induction of Bcl-2, however other IL-7-induced events are probably also involved in the trophic response. The V(D)J response to IL-7 is partly mediated through increased production of Rag proteins (which cleave the target locus) and partly by increasing the accessibility of a target locus to cleavage through chromatin remodeling.
Collapse
Affiliation(s)
- R Hofmeister
- Laboratory of Molecular Immunoregulation, NCI, USA
| | | | | | | | | | | |
Collapse
|
28
|
Krangel MS, Hernandez-Munain C, Lauzurica P, McMurry M, Roberts JL, Zhong XP. Developmental regulation of V(D)J recombination at the TCR alpha/delta locus. Immunol Rev 1998; 165:131-47. [PMID: 9850858 DOI: 10.1111/j.1600-065x.1998.tb01236.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The T-cell receptor (TCR) alpha/delta locus includes a large number of V, D, J and C gene segments that are used to produce functional TCR delta and TCR alpha chains expressed by distinct subsets of T lymphocytes. V(D)J recombination events within the locus are regulated as a function of developmental stage and cell lineage during T-lymphocyte differentiation in the thymus. The process of V(D)J recombination is regulated by cis-acting elements that modulate the accessibility of chromosomal substrates to the recombinase. Here we evaluate how the assembly of transcription factor complexes onto enhancers, promoters and other regulatory elements within the TCR alpha/delta locus imparts developmental control to VDJ delta and VJ alpha rearrangement events. Furthermore, we develop the notion that within a complex locus such as the TCR alpha/delta locus, highly localized and region-specific control is likely to require an interplay between positive regulatory elements and blocking or boundary elements that restrict the influence of the positive elements to defined regions of the locus.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Lineage
- Gene Expression Regulation, Developmental
- Gene Rearrangement, T-Lymphocyte
- Genes, Immunoglobulin
- Humans
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Recombination, Genetic
- Regulatory Sequences, Nucleic Acid
- T-Lymphocytes/cytology
Collapse
Affiliation(s)
- M S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Hempel WM, Leduc I, Mathieu N, Tripathi RK, Ferrier P. Accessibility control of V(D)J recombination: lessons from gene targeting. Adv Immunol 1998; 69:309-52. [PMID: 9646847 DOI: 10.1016/s0065-2776(08)60610-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- W M Hempel
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | |
Collapse
|
30
|
Hernandez-Munain C, Roberts JL, Krangel MS. Cooperation among multiple transcription factors is required for access to minimal T-cell receptor alpha-enhancer chromatin in vivo. Mol Cell Biol 1998; 18:3223-33. [PMID: 9584163 PMCID: PMC108904 DOI: 10.1128/mcb.18.6.3223] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/1998] [Accepted: 03/09/1998] [Indexed: 02/07/2023] Open
Abstract
To understand the molecular basis for the dramatic functional synergy between transcription factors that bind to the minimal T-cell receptor alpha enhancer (Ealpha), we analyzed enhancer occupancy in thymocytes of transgenic mice in vivo by genomic footprinting. We found that the formation of a multiprotein complex on this enhancer in vivo results from the occupancy of previously identified sites for CREB/ATF, TCF/LEF, CBF/PEBP2, and Ets factors as well as from the occupancy of two new sites 5' of the CRE site, GC-I (which binds Sp1 in vitro) and GC-II. Significantly, although all sites are occupied on a wild-type Ealpha, all sites are unoccupied on versions of Ealpha with mutations in the TCF/LEF or Ets sites. Previous in vitro experiments demonstrated hierarchical enhancer occupancy with independent binding of LEF-1 and CREB. Our data indicate that the formation of a multiprotein complex on the enhancer in vivo is highly cooperative and that no single Ealpha binding factor can access chromatin in vivo to play a unique initiating role in its assembly. Rather, the simultaneous availability of multiple enhancer binding proteins is required for chromatin disruption and stable binding site occupancy as well as the activation of transcription and V(D)J recombination.
Collapse
Affiliation(s)
- C Hernandez-Munain
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
31
|
Abstract
Interleukin-7 (IL-7) is a non redundant cytokine in thymic T-cell development. It binds to a dimeric receptor consisting of a specific IL-7Ralpha and a gamma-common subunit that it shares with the receptors for IL-2, 4, 9, 13 and 15. IL-7 is critical for early T-cell development but it also acts on immature B-cells and mature T-cells, and leads to secondary cytokine release. Its mechanisms of action in early T-cell development may be multiple. There is direct evidence to support a mechanistic involvement in TCR-gamma rearrangement that drives further TCR-gammadelta thymocyte commitment and maturation. There is indirect evidence for a role of IL-7 in TCR-beta rearrangement. It may however also act as a survival factor for TCR-beta rearranging thymocytes while the critical commitment selections are effected by other factors. The effects of IL-7 in fetal thymus organ culture are dose dependent, with a biphasic response: low doses of IL-7 are necessary for normal TCR-alphabeta thymocyte development but high doses block TCR-alphabeta maturation in favor of TCR-gammadelta development. A good understanding of the dose response of IL-7 in thymocyte development, mature T-cell stimulation, and of the release of secondary cytokines will be important for planning successful clinical trials with IL-7.
Collapse
Affiliation(s)
- F Offner
- Department of Clinical Chemistry, University Hospital Ghent, Belgium
| | | |
Collapse
|
32
|
Bhalla A, Sachdeva G, Bamezai R. T-cell receptor-gamma rearrangement and c-myb methylation in MNNG-exposed Bloom syndrome B-lymphoblastoid cells. Cancer Lett 1998; 126:1-6. [PMID: 9563641 DOI: 10.1016/s0304-3835(97)00529-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The MNNG-exposed Bloom syndrome (BS) B-lymphoblastoid cell population (BS-MNNG), when analyzed for aberrant genetic variations, showed an illegitimate rearrangement at the TCR-gamma gene and hypermethylation at the c-myb protooncogene. The TCR-gamma rearrangement involved a Vgamma9 segment corresponding to a 4 kb band detected with a Jgamma-specific probe in HindIII-digested DNA samples from BS-MNNG cells only. These variations were not shown by unexposed BS cells or both MNNG-exposed and unexposed normal (GA3) B-lymphoblastoid cells.
Collapse
Affiliation(s)
- A Bhalla
- Human Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
33
|
Abstract
During the past few years, the essential role of distinct transcription factors in specifying cell-fate decisions in a stepwise fashion during T-cell differentiation has been revealed. One striking feature is that a single factor can act at several sites throughout T-cell development, possibly through interactions with different partners. The challenge is now to understand how these interactions can account for the co-ordination of complex extracellular signals and gene expression programs, such as those involved in T-cell receptor gene recombination and expression.
Collapse
Affiliation(s)
- H Clevers
- Department of Immunology, University Hospital, Utrecht, The Netherlands.
| | | |
Collapse
|
34
|
Abstract
Myb transcription factors are crucial to the control of proliferation and differentiation in a number of cell types but their mechanism of action is unclear. Regulation of Myb proteins by phosphorylation and intermolecular cooperation has recently been demonstrated, together with a new role for the proteins, in the control of apoptosis.
Collapse
Affiliation(s)
- K Weston
- CRC Centre for Cell and Molecular Biology, Chester Beatty Laboratories, London, UK.
| |
Collapse
|
35
|
McMurry MT, Hernandez-Munain C, Lauzurica P, Krangel MS. Enhancer control of local accessibility to V(D)J recombinase. Mol Cell Biol 1997; 17:4553-61. [PMID: 9234713 PMCID: PMC232309 DOI: 10.1128/mcb.17.8.4553] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have studied the role of transcriptional enhancers in providing recombination signal sequence (RSS) accessibility to V(D)J recombinase by examining mice carrying a transgenic human T-cell receptor (TCR) delta gene minilocus. This transgene is composed of unrearranged variable (Vdelta and Vdelta2), diversity (Ddelta3), joining (Jdelta1 and Jdelta3), and constant (Cdelta) gene segments. Previous data indicated that with the TCR delta enhancer (Edelta) present in the Jdelta3-Cdelta intron, V(D)J recombination proceeds stepwise, first V to D and then VD to J. With the enhancer deleted or mutated, V-to-D rearrangement is intact, but VD-to-J rearrangement is inhibited. We proposed that Edelta is necessary for J segment but not D segment accessibility and that J segment inaccessibility in the enhancerless minilocus resulted in the observed V(D)J recombination phenotype. In this study, we tested this notion by using ligation-mediated PCR to assess the formation of recombination-activating gene (RAG)-dependent double-strand breaks (DSBs) at RSSs 3' of Ddelta3 and 5' of Jdelta1. In five lines of mice carrying multicopy integrants of constructs that either lacked Edelta or carried an inactivated Edelta, the frequency of DSBs 5' of Jdelta1 was dramatically reduced relative to that in the wild type, whereas the frequency of DSBs 3' of Ddelta3 was unaffected. We interpret these results to indicate that Edelta is required for Jdelta1 but not Ddelta3 accessibility within the minilocus, and we conclude that enhancers regulate V(D)J recombination by providing local accessibility to the recombinase. cis-acting elements other than Edelta must maintain Ddelta3 in an accessible state in the absence of Edelta. The analysis of DSB formation in a single-copy minilocus integrant indicates that efficient DSB formation at the accessible RSS 3' of Ddelta3 requires an accessible partner RSS, arguing that RSS synapsis is required for DSB formation in chromosomal substrates in vivo.
Collapse
Affiliation(s)
- M T McMurry
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
36
|
Lauzurica P, Zhong XP, Krangel MS, Roberts JL. Regulation of T cell receptor delta gene rearrangement by CBF/PEBP2. J Exp Med 1997; 185:1193-201. [PMID: 9104806 PMCID: PMC2196263 DOI: 10.1084/jem.185.7.1193] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/1996] [Indexed: 02/04/2023] Open
Abstract
We have analyzed transgenic mice carrying versions of a human T cell receptor (TCR)-delta gene minilocus to study the developmental control of VDJ (variable/diversity/joining) recombination. Previous data indicated that a 1.4-kb DNA fragment carrying the TCR-delta enhancer (E(delta)) efficiently activates minilocus VDJ recombination in vivo. We tested whether the transcription factor CBF/PEBP2 plays an important role in the ability of E(delta) to activate VDJ recombination by analyzing VDJ recombination in mice carrying a minilocus in which the deltaE3 element of E(delta) includes a mutated CBF/PEBP2 binding site. The enhancer-dependent VD to J step of minilocus rearrangement was dramatically inhibited in three of four transgenic lines, arguing that the binding of CBF/PEBP2 plays a role in modulating local accessibility to the VDJ recombinase in vivo. Because mutation of the deltaE3 binding site for the transcription factor c-Myb had previously established a similar role for c-Myb, and because a 60-bp fragment of E(delta) carrying deltaE3 and deltaE4 binding sites for CBF/PEBP2, c-Myb, and GATA-3 displays significant enhancer activity in transient transfection experiments, we tested whether this fragment of E(delta) is sufficient to activate VDJ recombination in vivo. This fragment failed to efficiently activate the enhancer-dependent VD to J step of minilocus rearrangement in all three transgenic lines examined, indicating that the binding of CBF/PEBP2 and c-Myb to their cognate sites within E(delta), although necessary, is not sufficient for the activation of VDJ recombination by E(delta). These results imply that CBF/PEBP2 and c-Myb collaborate with additional factors that bind elsewhere within E(delta) to modulate local accessibility to the VDJ recombinase in vivo.
Collapse
Affiliation(s)
- P Lauzurica
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
37
|
Roberts JL, Lauzurica P, Krangel MS. Developmental regulation of VDJ recombination by the core fragment of the T cell receptor alpha enhancer. J Exp Med 1997; 185:131-40. [PMID: 8996249 PMCID: PMC2196107 DOI: 10.1084/jem.185.1.131] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/1996] [Indexed: 02/03/2023] Open
Abstract
The role of T cell receptor alpha enhancer (E alpha) cis-acting elements in the developmental regulation of VDJ recombination at the TCR alpha/delta locus was examined in transgenic mice containing variants of a minilocus VDJ recombination substrate. We demonstrate that the 116-bp T alpha 1,2 core enhancer fragment of the 1.4-kb E alpha is sufficient to activate the enhancer-dependent step of minilocus rearrangement, and that within T alpha 1,2, intact binding sites for TCF/LEF and Ets family transcription factors are essential. Although minilocus rearrangement under the control of the 1.4-kb E alpha initiates at fetal day 16.5 and is strictly limited to alpha beta T cells, we find that rearrangement under the control of T alpha 1,2 initiates slightly earlier during ontogeny and occurs in both gamma delta and alpha beta T cells. We conclude that the core fragment of E alpha can establish accessibility to the recombinase in developing thymocytes in vivo in a fashion that is dependent on the binding of TCF/LEF and Ets family transcription factors, but that these and other factors that bind to the E alpha core cannot account for the precise developmental onset of accessibility that is provided by the intact E alpha. Rather, our data suggests a critical role for factors that bind E alpha outside of the core T alpha 1,2 region in establishing the precise developmental onset of TCR alpha rearrangement in vivo.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA Nucleotidyltransferases/metabolism
- DNA Primers
- Enhancer Elements, Genetic
- Flow Cytometry
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Humans
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- T-Lymphocytes/immunology
- VDJ Recombinases
Collapse
Affiliation(s)
- J L Roberts
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|