1
|
Cornman HL, Manjunath J, Reddy SV, Adams J, Rajeh A, Samuel C, Bao A, Zhao R, Ma EZ, Shumsky J, Pritchard TW, Imo BU, Kollhoff AL, Lee KK, Lu W, Yossef S, Kwatra MM, Kwatra SG. Comprehensive plasma cytokine and chemokine profiling in prurigo nodularis reveals endotypes in Type 2 inflammation. Sci Rep 2024; 14:8098. [PMID: 38582943 PMCID: PMC10998852 DOI: 10.1038/s41598-024-58013-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
Prurigo nodularis (PN) is a chronic inflammatory skin disease that is associated with variability in peripheral blood eosinophil levels and response to T-helper 2 targeted therapies (Th2). Our objective was to determine whether circulating immune profiles with respect to type 2 inflammation differ by race and peripheral blood eosinophil count. Plasma from 56 PN patients and 13 matched healthy controls was assayed for 54 inflammatory biomarkers. We compared biomarker levels between PN and HCs, among PN patients based on absolute eosinophil count, and across racial groups in PN. Eleven biomarkers were elevated in PN versus HCs including interleukin (IL)-12/IL-23p40, tumor necrosis factor-alpha (TNF-α), Thymic stromal lymphopoietin (TSLP), and macrophage-derived chemokine (MDC/CCL22). Additionally, PN patients with AEC > 0.3 K cells/μL had higher Th2 markers (eotaxin, eotaxin-3, TSLP, MCP-4/CCL13), and African American PN patients had lower eosinophils, eotaxin, and eotaxin-3 versus Caucasian and Asian PN patients (p < 0.05 for all). Dupilumab responders had higher AEC (p < 0.01), were more likely to be Caucasian (p = 0.02) or Asian (p = 0.05) compared to African Americans, and more often had a history of atopy (p = 0.08). This study suggests that blood AEC > 0.3 K and Asian and Caucasian races are associated with Th2 skewed circulating immune profiles and response to Th2 targeted therapies.
Collapse
Affiliation(s)
- Hannah L Cornman
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
- Maryland Itch Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jaya Manjunath
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sriya V Reddy
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Jackson Adams
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Ahmad Rajeh
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Christeen Samuel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Aaron Bao
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Ryan Zhao
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Emily Z Ma
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
- Maryland Itch Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jason Shumsky
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Thomas W Pritchard
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
- Maryland Itch Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brenda Umenita Imo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Alexander L Kollhoff
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Kevin K Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Weiying Lu
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Selina Yossef
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Shawn G Kwatra
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Maryland Itch Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Nakayama T, Lee IT, Le W, Tsunemi Y, Borchard NA, Zarabanda D, Dholakia SS, Gall PA, Yang A, Kim D, Akutsu M, Kashiwagi T, Patel ZM, Hwang PH, Frank DN, Haruna SI, Ramakrishnan VR, Nolan GP, Jiang S, Nayak JV. Inflammatory molecular endotypes of nasal polyps derived from Caucasian and Japanese populations. J Allergy Clin Immunol 2021; 149:1296-1308.e6. [PMID: 34863854 DOI: 10.1016/j.jaci.2021.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Emerging evidence suggests that chronic rhinosinusitis with nasal polyps (CRSwNP) is a highly heterogeneous disease with disparate inflammatory characteristics between different racial groups and geographies. Little is known currently about possible distinguishing factors underlying these inflammatory differences. OBJECTIVE To interrogate for differences between Caucasian and Japanese CRSwNP disease using whole transcriptome and single-cell RNA gene expression profiling of nasal polyps (NPs). METHODS We performed whole transcriptome RNA sequencing (RNA-seq) with endotype stratification of NPs from 8 Caucasian (residing in USA) and 9 Japanese (residing in Japan) patients. Reproducibility was confirmed by qPCR in an independent validation set of 46 Caucasian and 31 Japanese patients. Single-cell RNA-seq stratified key cell types for contributory transcriptional signatures. RESULTS Unsupervised clustering analysis identified two major endotypes present within both NP cohorts, which have previously been reported at the cytokine level: 1) type 2 endotype and 2) non-type 2 endotype. Importantly, there was a statistically significant difference in the proportion of these endotypes between these geographically distinct NP subgroups (p = 0.03). Droplet-based single-cell RNA sequencing further identified prominent type 2 inflammatory transcript expression: C-C motif chemokine ligand 13 (CCL13) and CCL18 in M2 macrophages, as well as cystatin SN (CST1) and CCL26 in basal, suprabasal, and secretory epithelial cells. CONCLUSION NPs from both racial groups harbor the same two major endotypes, which we determine are present in differing ratios between each cohort with CRSwNP disease. Distinct inflammatory and epithelial cells contribute to the type 2 inflammatory profiles observed.
Collapse
Affiliation(s)
- Tsuguhisa Nakayama
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Ivan T Lee
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Wei Le
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yasuhiro Tsunemi
- Department of Otorhinolaryngology-Head and Neck Surgery, Dokkyo Medical University, Tochigi, Japan
| | - Nicole A Borchard
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David Zarabanda
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sachi S Dholakia
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Philip A Gall
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Angela Yang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Dayoung Kim
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Makoto Akutsu
- Department of Otorhinolaryngology-Head and Neck Surgery, Dokkyo Medical University, Tochigi, Japan
| | - Takashi Kashiwagi
- Department of Otorhinolaryngology-Head and Neck Surgery, Dokkyo Medical University, Tochigi, Japan
| | - Zara M Patel
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel N Frank
- Division of Infectious Diseases, University of Colorado, Aurora, CO, USA
| | - Shin-Ichi Haruna
- Department of Otorhinolaryngology-Head and Neck Surgery, Dokkyo Medical University, Tochigi, Japan
| | - Vijay R Ramakrishnan
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, CO, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology-Head and Neck Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
3
|
Ortiz-Virumbrales M, Menta R, Pérez LM, Lucchesi O, Mancheño-Corvo P, Avivar-Valderas Á, Palacios I, Herrero-Mendez A, Dalemans W, de la Rosa O, Lombardo E. Human adipose mesenchymal stem cells modulate myeloid cells toward an anti-inflammatory and reparative phenotype: role of IL-6 and PGE2. Stem Cell Res Ther 2020; 11:462. [PMID: 33138862 PMCID: PMC7607855 DOI: 10.1186/s13287-020-01975-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/13/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) activate the endogenous immune regulatory system, inducing a therapeutic effect in recipients. MSCs have demonstrated the ability to modulate the differentiation of myeloid cells toward a phagocytic and anti-inflammatory profile. Allogeneic, adipose-derived MSCs (ASCs) have been investigated for the management of complex perianal fistula, with darvadstrocel being the first ASC therapy approved in Europe in March 2018. Additionally, ASCs are being explored as a potential treatment in other indications. Yet, despite these clinical advances, their mechanism of action is only partially understood. METHODS Freshly isolated human monocytes from the peripheral blood were differentiated in vitro toward M0 non-polarized macrophages (Mphs), M1 pro-inflammatory Mphs, M2 anti-inflammatory Mphs, or mature dendritic cells (mDCs) in the presence or absence of ASCs, in non-contact conditions. The phenotype and function of the differentiated myeloid populations were determined by flow cytometry, and their secretome was analyzed by OLINK technology. We also investigated the capacity of ASCs to modulate the phenotype and function of terminally differentiated M1 Mphs. The role of soluble factors interleukin (IL)-6 and prostaglandin E2 (PGE2) on the ability of ASCs to modulate myeloid cells was assessed using neutralization assays, CRISPR/Cas9 knock-down of cyclooxygenase 2 (COX-2), and ASC-conditioned medium assays using pro-inflammatory stimulus. RESULTS Co-culture of monocytes in the presence of ASCs resulted in the polarization of Mphs and mDCs toward an anti-inflammatory and phagocytic phenotype. This was characterized by an increase in phagocytic receptors on the cell surface of Mphs (M0, M1, and M2) and mDCs, as well as modulation of chemokine receptors and reduced expression of pro-inflammatory, co-stimulatory molecules. ASCs also modulated the secretome of Mphs and mDCs, demonstrated by reduced expression of pro-inflammatory factors and increased expression of anti-inflammatory and reparative factors. Chemical inhibition of PGE2 with indomethacin abolished this modulatory effect, whereas treatment with a neutralizing anti-IL-6 antibody resulted in a partial abolishment. The knock-down of COX-2 in ASCs and the use of IL-1β-activated ASC-conditioned media confirmed the key role of PGE2 in ASC-mediated myeloid modulation. In our in vitro experimental settings, ASCs failed to modulate the phenotype and function of terminally polarized M1 Mphs. CONCLUSIONS The results demonstrate that ASCs are able to modulate the in vitro differentiation of myeloid cells toward an anti-inflammatory and reparative profile. This modulatory effect was mediated mainly by PGE2 and, to a lesser extent, IL-6.
Collapse
Affiliation(s)
| | - Ramón Menta
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | - Laura M Pérez
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | - Ornella Lucchesi
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | | | | | - Itziar Palacios
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | | | | | - Olga de la Rosa
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | | |
Collapse
|
4
|
Henriksson HE, White RA, Iliadis SI, Fransson E, Papadopoulos FC, Sundström-Poromaa I, Skalkidou A. Spring peaks and autumn troughs identified in peripheral inflammatory markers during the peripartum period. Sci Rep 2019; 9:15328. [PMID: 31653981 PMCID: PMC6814733 DOI: 10.1038/s41598-019-51527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/01/2019] [Indexed: 11/08/2022] Open
Abstract
Seasonal variations have recently been described in biomarkers, cell types, and gene expression associated with the immune system, but so far no studies have been conducted among women in the peripartum period. It is of note that pregnancy complications and outcomes, as well as autoimmune diseases, have also been reported to exhibit seasonal fluctuations. We report here a clear-cut seasonal pattern of 23 inflammatory markers, analysed using proximity-extension assay technology, in pregnant women. The inflammatory markers generally peaked in the spring and had a trough in the autumn. During the postpartum period we found seasonality in one inflammatory marker, namely monocyte chemotactic protein 4 (MCP-4). Our findings suggest that seasonal variations in peripheral inflammatory markers are only observed during pregnancy. The results of this study could be valuable to professionals working within the field of immunology-related areas, and provide insight for the understanding of obstetric complications.
Collapse
Affiliation(s)
- Hanna E Henriksson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | | | - Stavros I Iliadis
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Emma Fransson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Feehan KT, Gilroy DW. Is Resolution the End of Inflammation? Trends Mol Med 2019; 25:198-214. [DOI: 10.1016/j.molmed.2019.01.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
|
6
|
Abu El-Asrar AM, Berghmans N, Al-Obeidan SA, Gikandi PW, Opdenakker G, Van Damme J, Struyf S. The CC chemokines CCL8, CCL13 and CCL20 are local inflammatory biomarkers of HLA-B27-associated uveitis. Acta Ophthalmol 2019; 97:e122-e128. [PMID: 30242977 DOI: 10.1111/aos.13835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To determine the concentrations of the CC chemokines CCL2, CCL7, CCL8, CCL11, CCL13, CCL20, CCL24 and CCL26 in aqueous humour (AH) samples from patients with specific uveitic entities. METHODS Aqueous humour samples from patients with active uveitis associated with Behçet's disease (BD) (n = 13), sarcoidosis (n = 8), HLA-B27-related inflammation (n = 12), Vogt-Koyanagi-Harada (VKH) disease (n = 12) and control patients (n = 9) were assayed with the use of a multiplex assay. RESULTS When considering all uveitis patients as one group, all chemokine levels except CCL2 were significantly increased compared to controls. CCL8, CCL13 and CCL20 were the most strongly upregulated, 48-fold, 118-fold and 173-fold, respectively, above control AH levels. CCL8 and CCL13 levels were significantly higher in HLA-B27-associated uveitis than in sarcoidosis and VKH disease. CCL20 levels were significantly higher in HLA-B27-associated uveitis than in BD, sarcoidosis and VKH disease. In addition, CCL20 levels were significantly higher in BD than in VKH disease. In HLA-B27-associated uveitis, CCL8, CCL13 and CCL20 were upregulated 111-fold, 255-fold and 465-fold, respectively, compared with controls. CCL8, CCL13 and CCL20 levels were significantly higher in nongranulomatous uveitis (BD and HLA-B27-associated uveitis) than in granulomatous uveitis (sarcoidosis and VKH disease). CONCLUSION Immune responses mediated by CCL8, CCL13 and CCL20 appear to be more potent in nongranulomatous uveitis, particularly in HLA-B27-associated uveitis.
Collapse
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - Nele Berghmans
- Rega Institute for Medical Research; Department of Microbiology and Immunology; University of Leuven; KU Leuven; Leuven Belgium
| | - Saleh A. Al-Obeidan
- Department of Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - Priscilla W. Gikandi
- Department of Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - Ghislain Opdenakker
- Rega Institute for Medical Research; Department of Microbiology and Immunology; University of Leuven; KU Leuven; Leuven Belgium
| | - Jo Van Damme
- Rega Institute for Medical Research; Department of Microbiology and Immunology; University of Leuven; KU Leuven; Leuven Belgium
| | - Sofie Struyf
- Rega Institute for Medical Research; Department of Microbiology and Immunology; University of Leuven; KU Leuven; Leuven Belgium
| |
Collapse
|
7
|
Larose MC, Archambault AS, Provost V, Laviolette M, Flamand N. Regulation of Eosinophil and Group 2 Innate Lymphoid Cell Trafficking in Asthma. Front Med (Lausanne) 2017; 4:136. [PMID: 28848734 PMCID: PMC5554517 DOI: 10.3389/fmed.2017.00136] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022] Open
Abstract
Asthma is an inflammatory disease usually characterized by increased Type 2 cytokines and by an infiltration of eosinophils to the airways. While the production of Type 2 cytokines has been associated with TH2 lymphocytes, increasing evidence indicates that group 2 innate lymphoid cells (ILC2) play an important role in the production of the Type 2 cytokines interleukin (IL)-5 and IL-13, which likely amplifies the recruitment of eosinophils from the blood to the airways. In that regard, recent asthma treatments have been focusing on blocking Type 2 cytokines, notably IL-4, IL-5, and IL-13. These treatments mainly result in decreased blood or sputum eosinophil counts as well as decreased asthma symptoms. This supports that therapies blocking eosinophil recruitment and activation are valuable tools in the management of asthma and its severity. Herein, we review the mechanisms involved in eosinophil and ILC2 recruitment to the airways, with an emphasis on eotaxins, other chemokines as well as their receptors. We also discuss the involvement of other chemoattractants, notably the bioactive lipids 5-oxo-eicosatetraenoic acid, prostaglandin D2, and 2-arachidonoyl-glycerol. Given that eosinophil biology differs between human and mice, we also highlight and discuss their responsiveness toward the different eosinophil chemoattractants.
Collapse
Affiliation(s)
- Marie-Chantal Larose
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Anne-Sophie Archambault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Véronique Provost
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Michel Laviolette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
8
|
Proost P, Struyf S, Van Damme J, Fiten P, Ugarte-Berzal E, Opdenakker G. Chemokine isoforms and processing in inflammation and immunity. J Autoimmun 2017; 85:45-57. [PMID: 28684129 DOI: 10.1016/j.jaut.2017.06.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
The first dimension of chemokine heterogeneity is reflected by their discovery and purification as natural proteins. Each of those chemokines attracted a specific inflammatory leukocyte type. With the introduction of genomic technologies, a second wave of chemokine heterogeneity was established by the discovery of putative chemokine-like sequences and by demonstrating chemotactic activity of the gene products in physiological leukocyte homing. In the postgenomic era, the third dimension of chemokine heterogeneity is the description of posttranslational modifications on most chemokines. Proteolysis of chemokines, for instance by dipeptidyl peptidase IV (DPP IV/CD26) and by matrix metalloproteinases (MMPs) is already well established as a biological control mechanism to activate, potentiate, dampen or abrogate chemokine activities. Other posttranslational modifications are less known. Theoretical N-linked and O-linked attachment sites for chemokine glycosylation were searched with bio-informatic tools and it was found that most chemokines are not glycosylated. These findings are corroborated with a low number of experimental studies demonstrating N- or O-glycosylation of natural chemokine ligands. Because attached oligosaccharides protect proteins against proteolytic degradation, their absence may explain the fast turnover of chemokines in the protease-rich environments of infection and inflammation. All chemokines interact with G protein-coupled receptors (GPCRs) and glycosaminoglycans (GAGs). Whether lectin-like GAG-binding induces cellular signaling is not clear, but these interactions are important for leukocyte migration and have already been exploited to reduce inflammation. In addition to selective proteolysis, citrullination and nitration/nitrosylation are being added as biologically relevant modifications contributing to functional chemokine heterogeneity. Resulting chemokine isoforms with reduced affinity for GPCRs reduce leukocyte migration in various models of inflammation. Here, these third dimension modifications are compared, with reflections on the biological and pathological contexts in which these posttranslational modifications take place and contribute to the repertoire of chemokine functions and with an emphasis on autoimmune diseases.
Collapse
Affiliation(s)
- Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Pierre Fiten
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
9
|
Ahmadi Z, Hassanshahi G, Khorramdelazad H, Zainodini N, Koochakzadeh L. An Overlook to the Characteristics and Roles Played by Eotaxin Network in the Pathophysiology of Food Allergies: Allergic Asthma and Atopic Dermatitis. Inflammation 2017; 39:1253-67. [PMID: 26861136 DOI: 10.1007/s10753-016-0303-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Investigations revealed substantial parts accomplished by chemokines specifically eotaxins and their specific receptors. They are functionally involved in the modulation of the pathologic state of tissue inflammation which is as a result of allergic reactions. Chemokines as small proteins with approximately 8-10 kDa molecular weight are considered and fit in the bigger family of cytokines, containing basic heparin-binding polypeptide mediators. Chemokines actively interfere in the processes of selective, oriented leukocyte (including eosinophil) recruitment. As eminent from their name, more specifically, eotaxins are specialized for eosinophils' oriented locomotion toward allergic inflamed regions. To date, three members are defined for eotaxin subfamily as follows: eotaxin-1 (CCL11), eotaxin-2 (CCL24), and eotaxin-3 (CCL26), all of them bind to and activate CCR3 but have a low level of homology and appear to exhibit different physiological potentials. Allergy is described as a clinical state in which a pathologic hypersensitivity reaction is always initiated throughout an immunologic mechanism; similar to other immunologic reactions, an allergic reaction could also either be antibody or cell mediated. This type of allergic reactions occurs in all age groups and damages several different organs, having a significant impact on the emotional and social health of patients and their families and relatives. Concerning introductory comments introduced above, the authors of the present review attempted to collect and provide the latest evidences and information regarding the correlation between expression of eotaxin family members and allergy, in a wider extent, in two important allergic disorders: atopic asthma (AA) and atopic dermatitis (AD). Overall, concerning the most recent articles published within the database in the life sciences literature regarding the fundamental role(s) played by eotaxins in the pathogenesis of AA and AD, the authors of the current article propose that eotaxins (CCL11, CCL24, and CCL26) play key role(s) during symptomatic inflammatory responses raised in response to allergic crisis of these two clinical states.
Collapse
Affiliation(s)
- Zahra Ahmadi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nahid Zainodini
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Leila Koochakzadeh
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Stone MJ, Hayward JA, Huang C, E Huma Z, Sanchez J. Mechanisms of Regulation of the Chemokine-Receptor Network. Int J Mol Sci 2017; 18:E342. [PMID: 28178200 PMCID: PMC5343877 DOI: 10.3390/ijms18020342] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 12/18/2022] Open
Abstract
The interactions of chemokines with their G protein-coupled receptors promote the migration of leukocytes during normal immune function and as a key aspect of the inflammatory response to tissue injury or infection. This review summarizes the major cellular and biochemical mechanisms by which the interactions of chemokines with chemokine receptors are regulated, including: selective and competitive binding interactions; genetic polymorphisms; mRNA splice variation; variation of expression, degradation and localization; down-regulation by atypical (decoy) receptors; interactions with cell-surface glycosaminoglycans; post-translational modifications; oligomerization; alternative signaling responses; and binding to natural or pharmacological inhibitors.
Collapse
Affiliation(s)
- Martin J Stone
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Jenni A Hayward
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Cheng Huang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Zil E Huma
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Julie Sanchez
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
11
|
Siddiqui JA, Partridge NC. CCL2/Monocyte Chemoattractant Protein 1 and Parathyroid Hormone Action on Bone. Front Endocrinol (Lausanne) 2017; 8:49. [PMID: 28424660 PMCID: PMC5372820 DOI: 10.3389/fendo.2017.00049] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
Chemokines are small molecules that play a crucial role as chemoattractants for several cell types, and their components are associated with host immune responses and repair mechanisms. Chemokines selectively recruit monocytes, neutrophils, and lymphocytes and induce chemotaxis through the activation of G protein-coupled receptors. Two well-described chemokine families (CXC and CC) are known to regulate the localization and trafficking of immune cells in cases of injury, infection, and tumors. Monocyte chemoattractant protein 1 (MCP-1/CCL2) is one of the important chemokines from the CC family that controls migration and infiltration of monocytes/macrophages during inflammation. CCL2 is profoundly expressed in osteoporotic bone and prostate cancer-induced bone resorption. CCL2 also regulates physiological bone remodeling in response to hormonal and mechanical stimuli. Parathyroid hormone (PTH) has multifaceted effects on bone, depending on the mode of administration. Intermittent PTH increases bone in vivo by increasing the number and activity of osteoblasts, whereas a continuous infusion of PTH decreases bone mass by stimulating a net increase in bone resorption. CCL2 is essential for both anabolic and catabolic effects of PTH. In this review, we will discuss the pharmacological role of PTH and involvement of CCL2 in the processes of PTH-mediated bone remodeling.
Collapse
Affiliation(s)
- Jawed Akhtar Siddiqui
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Nicola C. Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
- *Correspondence: Nicola C. Partridge,
| |
Collapse
|
12
|
Okugawa Y, Toiyama Y, Mohri Y, Tanaka K, Kawamura M, Hiro J, Araki T, Inoue Y, Miki C, Kusunoki M. Elevated serum concentration of monocyte chemotactic protein 4 (MCP-4) as a novel non-invasive prognostic and predictive biomarker for detection of metastasis in colorectal cancer. J Surg Oncol 2016; 114:483-9. [DOI: 10.1002/jso.24335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/08/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshinaga Okugawa
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery; Institute of Life Sciences, Mie University Graduate School of Medicine; Mie Japan
- Department of Surgery and Medical Oncology; Iga Municipal Ueno General Citizen's Hospital; Mie Japan
| | - Yuji Toiyama
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery; Institute of Life Sciences, Mie University Graduate School of Medicine; Mie Japan
| | - Yasuhiko Mohri
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery; Institute of Life Sciences, Mie University Graduate School of Medicine; Mie Japan
| | - Koji Tanaka
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery; Institute of Life Sciences, Mie University Graduate School of Medicine; Mie Japan
| | - Mikio Kawamura
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery; Institute of Life Sciences, Mie University Graduate School of Medicine; Mie Japan
| | - Junichiro Hiro
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery; Institute of Life Sciences, Mie University Graduate School of Medicine; Mie Japan
| | - Toshimitsu Araki
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery; Institute of Life Sciences, Mie University Graduate School of Medicine; Mie Japan
| | - Yasuhiro Inoue
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery; Institute of Life Sciences, Mie University Graduate School of Medicine; Mie Japan
| | - Chikao Miki
- Department of Surgery and Medical Oncology; Iga Municipal Ueno General Citizen's Hospital; Mie Japan
| | - Masato Kusunoki
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery; Institute of Life Sciences, Mie University Graduate School of Medicine; Mie Japan
| |
Collapse
|
13
|
Perera SS, Wang B, Damian A, Dyer W, Zhou L, Conceicao V, Saksena NK. Retrospective Proteomic Analysis of Cellular Immune Responses and Protective Correlates of p24 Vaccination in an HIV Elite Controller Using Antibody Arrays. ACTA ACUST UNITED AC 2016; 5:microarrays5020014. [PMID: 27600080 PMCID: PMC5003490 DOI: 10.3390/microarrays5020014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 01/22/2023]
Abstract
Background: HIV p24 is an extracellular HIV antigen involved in viral replication. Falling p24 antibody responses are associated with clinical disease progression and their preservation with non-progressive disease. Stimulation of p24 antibody production by immunization to delay progression was the basis of discontinued p24 vaccine. We studied a therapy-naive HIV+ man from Sydney, Australia, infected in 1988. He received the HIV-p24-virus like particle (VLP) vaccine in 1993, and continues to show vigorous p24 antigen responses (>4% p24-specific CD4+ T cells), coupled with undetectable plasma viremia. We defined immune-protective correlates of p24 vaccination at the proteomic level through parallel retrospective analysis of cellular immune responses to p24 antigen in CD4+ and CD8+ T cells and CD14+ monocytes at viremic and aviremic phases using antibody-array. We found statistically significant coordinated up-regulation by all three cell-types with high fold-changes in fractalkine, ITAC, IGFBP-2, and MIP-1α in the aviremic phase. TECK and TRAIL-R4 were down-regulated in the viremic phase and up-regulated in the aviremic phase. The up-regulation of fractalkine in all three cell-types coincided with protective effect, whereas the dysfunction in anti-apoptotic chemokines with the loss of immune function. This study highlights the fact that induction of HIV-1-specific helper cells together with coordinated cellular immune response (p < 0.001) might be important in immunotherapeutic interventions and HIV vaccine development.
Collapse
Affiliation(s)
- Suneth S Perera
- Department of Medicine, University of Sydney, Sydney 2000, Australia.
| | - Bin Wang
- Department of Medicine, University of Sydney, Sydney 2000, Australia.
| | - Arturo Damian
- Department of Cytogenetics, Children's Hospital at Westmead, Sydney 2000, Australia.
| | - Wayne Dyer
- Australian Red Cross Blood Service, 17 O'Riordan Street, Alexandria NSW 2015 and School of Medical Sciences, (Faculty of Medicine) University of Sydney, Sydney 2000, Australia.
| | - Li Zhou
- Department of Medicine, University of Sydney, Sydney 2000, Australia.
| | - Viviane Conceicao
- Department of Medicine, University of Sydney, Sydney 2000, Australia.
| | - Nitin K Saksena
- Department of Medicine, University of Sydney, Sydney 2000, Australia.
| |
Collapse
|
14
|
Abstract
Migration and positioning of cells is fundamental for complex functioning of multicellular organisms. During an immune response, cells are recruited from remote distances to a distinct location. Cells that are passively transported leave the circulation stimulated by locally produced signals and follow chemotactic cues to reach specific destinations. Such gradients are short (<150 μm) and require a source of production where the concentration is the highest and a sink in apposition where the attractant dissipates and the concentration is the lowest. Several straight forward methods exist to identify in vitro and in vivo cells producing chemoattractants. This can be achieved at the transcriptional level and by measuring secreted proteins. However, to demonstrate the activity of sinks in vitro and in vivo is more challenging. Cell-mediated dissipation of an attractant must be revealed by measuring its uptake and subsequent destruction. Elimination of chemoattractants such as chemokines can be monitored in vitro using radiolabeled ligands or more elegantly with fluorescent-labeled chemoattractants. The latter method can also be used in vivo and enables to monitor the process in real time using time-lapse video microscopy. In this chapter, we describe methods to produce fluorescently labeled chemokines either as fusion proteins secreted from insect cells or as recombinant bacterial proteins that can enzymatically be labeled. We discuss methods that were successfully used to demonstrate sink activities of scavenger receptors. Moreover, fluorescent chemokines can be used to noninvasively analyze receptor expression and activity in living cells.
Collapse
Affiliation(s)
- Barbara Moepps
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
15
|
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by local inflammation of the upper airways and sinuses which persists for at least 12 weeks. CRS can be divided into two phenotypes dependent on the presence of nasal polyps (NPs); CRS with NPs (CRSwNP) and CRS without NPs (CRSsNP). Immunological patterns in the two diseases are known to be different. Inflammation in CRSsNP is rarely investigated and limited studies show that CRSsNP is characterized by type 1 inflammation. Inflammation in CRSwNP is well investigated and CRSwNP in Western countries shows type 2 inflammation and eosinophilia in NPs. In contrast, mixed inflammatory patterns are found in CRSwNP in Asia and the ratio of eosinophilic NPs and non-eosinophilic NPs is almost 50:50 in these countries. Inflammation in eosinophilic NPs is mainly controlled by type 2 cytokines, IL-5 and IL-13, which can be produced from several immune cells including Th2 cells, mast cells and group 2 innate lymphoid cells (ILC2s) that are all elevated in eosinophilic NPs. IL-5 strongly induces eosinophilia. IL-13 activates macrophages, B cells and epithelial cells to induce recruitment of eosinophils and Th2 cells, IgE mediated reactions and remodeling. Epithelial derived cytokines, TSLP, IL-33 and IL-1 can directly and indirectly control type 2 cytokine production from these cells in eosinophilic NPs. Recent clinical trials showed the beneficial effect on eosinophilic NPs and/or asthma by monoclonal antibodies against IL-5, IL-4Rα, IgE and TSLP suggesting that they can be therapeutic targets for eosinophilic CRSwNP.
Collapse
Affiliation(s)
- Atsushi Kato
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Human cytomegalovirus modulates monocyte-mediated innate immune responses during short-term experimental latency in vitro. J Virol 2014; 88:9391-405. [PMID: 24920803 DOI: 10.1128/jvi.00934-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED The ability of human cytomegalovirus (HCMV) to establish lifelong persistence and reactivate from latency is critical to its success as a pathogen. Here we describe a short-term in vitro model representing the events surrounding HCMV latency and reactivation in circulating peripheral blood monocytes that was developed in order to study the immunological consequence of latent virus carriage. Infection of human CD14(+) monocytes by HCMV resulted in the immediate establishment of latency, as evidenced by the absence of particular lytic gene expression, the transcription of latency-associated mRNAs, and the maintenance of viral genomes. Latent HCMV induced cellular differentiation to a macrophage lineage, causing production of selective proinflammatory cytokines and myeloid-cell chemoattractants that most likely play a role in virus dissemination in the host. Analysis of global cellular gene expression revealed activation of innate immune responses and the modulation of protein and lipid synthesis to accommodate latent HCMV infection. Remarkably, monocytes harboring latent virus exhibited selective responses to secondary stimuli known to induce an antiviral state. Furthermore, when challenged with type I and II interferon, latently infected cells demonstrated a blockade of signaling at the level of STAT1 phosphorylation. The data demonstrate that HCMV reprograms specific cellular pathways in monocytes, most notably innate immune responses, which may play a role in the establishment of, maintenance of, and reactivation from latency. The modulation of innate immune responses is likely a viral evasion strategy contributing to viral dissemination and pathogenesis in the host. IMPORTANCE HCMV has the ability to establish a lifelong infection within the host, a phenomenon termed latency. We have established a short-term model system in human peripheral blood monocytes to study the immunological relevance of latent virus carriage. Infection of CD14(+) monocytes by HCMV results in the generation of latency-specific transcripts, maintenance of viral genomes, and the capacity to reenter the lytic cycle. During short-term latency in monocytes the virus initiates a program of differentiation to inflammatory macrophages that coincides with the modulation of cytokine secretion and specific cellular processes. HCMV-infected monocytes are hindered in their capacity to exert normal immunoprotective mechanisms. Additionally, latent virus disrupts type I and II interferon signaling at the level of STAT1 phosphorylation. This in vitro model system can significantly contribute to our understanding of the molecular and inflammatory factors that initiate HCMV reactivation in the host and allow the development of strategies to eradicate virus persistence.
Collapse
|
17
|
Kumari M, Pradeep AR, Priyanka N, Kalra N, Naik SB. Crevicular and serum levels of monocyte chemoattractant protein-4 and high-sensitivity C-reactive protein in periodontal health and disease. Arch Oral Biol 2014; 59:645-53. [DOI: 10.1016/j.archoralbio.2014.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
18
|
Mendez-Enriquez E, García-Zepeda EA. The multiple faces of CCL13 in immunity and inflammation. Inflammopharmacology 2013; 21:397-406. [PMID: 23846739 DOI: 10.1007/s10787-013-0177-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/20/2013] [Indexed: 01/19/2023]
Abstract
CCL13/MCP-4, is a CC family chemokine that is chemoattractant for eosinophils, basophils, monocytes, macrophages, immature dendritic cells, and T cells, and its capable of inducing crucial immuno-modulatory responses through its effects on epithelial, muscular and endothelial cells. Similar to other CC chemokines, CCL13 binds to several chemokine receptors (CCR1, CCR2 and CCR3), allowing it to elicit different effects on its target cells. A number of studies have shown that CCL13 is involved in many chronic inflammatory diseases, in which it functions as a pivotal molecule involved in the selective recruitment of cell lineages to the inflamed tissues and their subsequent activation. Based on these studies, we suggest that blocking the actions of CCL13 can serve as a novel strategy for the generation of agents with anti-inflammatory activity. The main goal of this review is to present the current information about CCL13, its gene and protein structure and the roles of this chemokine during innate/adaptive immune responses in inflammatory diseases.
Collapse
Affiliation(s)
- E Mendez-Enriquez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, 04510, México, DF, México
| | | |
Collapse
|
19
|
Cynis H, Kehlen A, Haegele M, Hoffmann T, Heiser U, Fujii M, Shibazaki Y, Yoneyama H, Schilling S, Demuth HU. Inhibition of Glutaminyl Cyclases alleviates CCL2-mediated inflammation of non-alcoholic fatty liver disease in mice. Int J Exp Pathol 2013; 94:217-25. [PMID: 23560443 PMCID: PMC3664967 DOI: 10.1111/iep.12020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/16/2013] [Indexed: 12/21/2022] Open
Abstract
Inflammation is an integral part of non-alcoholic fatty liver disease (NAFLD), the most prevalent form of hepatic pathology found in the general population. In this context, recently we have examined the potential role of Glutaminyl Cyclases (QC and isoQC), and their inhibitors, in the maturation of chemokines, for example, monocyte chemoattractant protein 1 (MCP-1, CCL2), to generate their bioactive conformation. Catalysis by isoQC leads to the formation of an N-terminal pyroglutamate residue protecting CCL2 against degradation by aminopeptidases. This is of importance because truncated forms possess a reduced potential to attract immune cells. Since liver inflammation is characterized by the up-regulation of different chemokine pathways, and within this CCL2 is known to be a prominent example, we hypothesised that application of QC/isoQC inhibitors may alleviate liver inflammation by destabilizing CCL2. Therefore, we investigated the role of QC/isoQC inhibition, in comparison with the angiotensin receptor blocker Telmisartan, during development of pathology in a mouse model of non-alcoholic fatty liver disease. Application of a QC/isoQC inhibitor led to a significant reduction in circulating alanine aminotransferase and NAFLD activity score accompanied by an inhibitory effect on hepatocyte ballooning. Further analysis revealed a specific reduction of inflammation by decreasing the number of F4/80-positive macrophages, which is in agreement with the proposed CCL2-related mechanism of action of QC/isoQC inhibitors. Finally, QC/isoQC inhibitor application attenuated liver fibrosis as characterized by reduced collagen deposition in the liver parenchyma. Thus in conclusion, QC/isoQC inhibitors are a promising novel class of anti-non-alcoholic steatohepatitis drugs which have a comparable disease-modifying effect to that of Telmisartan, which is probably mediated via specific interference with a comparable monocyte/macrophage infiltration that occurs under inflammatory conditions.
Collapse
|
20
|
Morais S, Taggart JB, Guy DR, Bell JG, Tocher DR. Hepatic transcriptome analysis of inter-family variability in flesh n-3 long-chain polyunsaturated fatty acid content in Atlantic salmon. BMC Genomics 2012; 13:410. [PMID: 22905698 PMCID: PMC3463449 DOI: 10.1186/1471-2164-13-410] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 07/18/2012] [Indexed: 12/14/2022] Open
Abstract
Background Genetic selection of Atlantic salmon families better adapted to alternative feed formulations containing high levels of vegetable ingredients has been suggested to ensure sustainable growth of aquaculture. The present study aimed to identify molecular pathways that could underlie phenotypic differences in flesh n-3 long-chain polyunsaturated fatty acid (LC-PUFA) levels when fish are fed vegetable oil diets. Liver transcriptome was analyzed and compared in four families presenting higher or lower n-3 LC-PUFA contents at two contrasting flesh total lipid levels. Results The main effect of n-3 LC-PUFA contents was in the expression of immune response genes (38% of all significantly affected genes), broadly implicated in the modulation of inflammatory processes and innate immune response. Although genetic evaluations of traits used in the breeding program revealed that the chosen families were not balanced for viral disease resistance, this did not fully explain the preponderance of immune response genes in the transcriptomic analysis. Employing stringent statistical analysis no lipid metabolism genes were detected as being significantly altered in liver when comparing families with high and low n-3 LC-PUFA flesh contents. However, relaxing the statistical analysis enabled identification of potentially relevant effects, further studied by RT-qPCR, in cholesterol biosynthesis, lipoprotein metabolism and lipid transport, as well as eicosanoid metabolism particularly affecting the lipoxygenase pathway. Total lipid level in flesh also showed an important effect on immune response and 8% of significantly affected genes related to lipid metabolism, including a fatty acyl elongase (elovl2), an acyl carrier protein and stearoyl-CoA desaturase. Conclusions Inter-family differences in n-3 LC-PUFA content could not be related to effects on lipid metabolism, including transcriptional modulation of the LC-PUFA biosynthesis pathway. An association was found between flesh adiposity and n-3 LC-PUFA in regulation of cholesterol biosynthesis, which was most likely explained by variation in tissue n-3 LC-PUFA levels regulating transcription of cholesterol metabolism genes through srebp2. A preponderance of immune response genes significantly affected by n-3 LC-PUFA contents could be potentially associated with disease resistance, possibly involving anti-inflammatory actions of tissue n-3 LC-PUFA through eicosanoid metabolism. This association may have been fortuitous, but it is important to clarify if this trait is included in future salmon breeding programmes.
Collapse
Affiliation(s)
- Sofia Morais
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK.
| | | | | | | | | |
Collapse
|
21
|
Macrophage migration inhibitory factor is essential for eosinophil recruitment in allergen-induced skin inflammation. J Invest Dermatol 2010; 131:925-31. [PMID: 21191413 DOI: 10.1038/jid.2010.418] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that has an essential role in the pathophysiology of experimental allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including atopic dermatitis (AD). In this study, the role of MIF in allergic skin inflammation was examined using a murine model of AD elicited by epicutaneous sensitization with ovalbumin (OVA). We observed the number of skin-infiltrating eosinophils to significantly increase in OVA-sensitized MIF transgenic (Tg) mice compared with their wild-type (WT) littermates. On the other hand, eosinophils were virtually absent from the skin of MIF knockout (KO) mice and failed to infiltrate their skin after repeated epicutaneous sensitization with OVA. The mRNA expression levels of eotaxin and IL-5 were significantly increased in OVA-sensitized skin sites of MIF Tg mice, but were significantly decreased in MIF KO mice in comparison with the levels in WT littermates. Eotaxin expression was induced by IL-4 stimulation in fibroblasts in MIF Tg mice, but not in MIF KO mice. These findings indicate that MIF can induce eosinophil accumulation in the skin. Therefore, the targeted inhibition of MIF might be a promising new therapeutic strategy for allergic skin diseases.
Collapse
|
22
|
Dezerega A, Pozo P, Hernández M, Oyarzún A, Rivera O, Dutzan N, Gutiérrez-Fernández A, Overall CM, Garrido M, Alcota M, Ortiz E, Gamonal J. Chemokine Monocyte Chemoattractant Protein-3 in Progressive Periodontal Lesions in Patients With Chronic Periodontitis. J Periodontol 2010; 81:267-76. [DOI: 10.1902/jop.2009.090406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Ali S, O'Boyle G, Hepplewhite P, Tyler JR, Robertson H, Kirby JA. Therapy with nonglycosaminoglycan-binding mutant CCL7: a novel strategy to limit allograft inflammation. Am J Transplant 2010; 10:47-58. [PMID: 19951286 DOI: 10.1111/j.1600-6143.2009.02868.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemokines are immobilized by binding to glycosaminoglycans (GAGs). A non-GAG-binding mutant CCL7 (mtCCL7) was developed that retained its affinity for chemokine receptors. This mtCCL7 induced leukocyte chemotaxis in diffusion gradients but did not stimulate trans-endothelial migration (p<0.01). Unlike wild-type CCL7, mtCCL7 persisted in the circulation of BALB/c mice for more than 6 h and prevented leukocyte infiltration of skin isografts (p<0.05). Treatment with mtCCL7 marginally increased the survival of C57BL/6 to BALB/c skin allografts and reduced graft infiltration by CD3+ cells (p<0.05). Importantly, mtCCL7 promoted long-term (>40 day) graft survival following minor histocompatibility (HY) antigen mismatched C57BL/6 skin transplantation; control grafts were rejected by day 24. Treatment with mtCCL7 produced a significant decrease in the frequency of IFN-gamma producing donor-reactive splenic T cells, reduced CCR2 expression by circulating leukocytes for 6 h (p<0.01) and blocked the normal increase in affinity of alpha4beta1 integrins for VCAM-1 following transient chemokine stimulation. These data suggest that mtCCL7 persists in the circulation and reduces both specific T-cell priming and the capacity of circulating immune cells to respond to GAG-bound chemokine at sites of developing inflammation.
Collapse
Affiliation(s)
- S Ali
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle Upon Tyne, NE2 4HH, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Yanaba K, Yoshizaki A, Muroi E, Hara T, Ogawa F, Shimizu K, Hasegawa M, Fujimoto M, Takehara K, Sato S. CCL13 is a promising diagnostic marker for systemic sclerosis. Br J Dermatol 2009; 162:332-6. [DOI: 10.1111/j.1365-2133.2009.09507.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Hintzen C, Quaiser S, Pap T, Heinrich PC, Hermanns HM. Induction of CCL13 expression in synovial fibroblasts highlights a significant role of oncostatin M in rheumatoid arthritis. ACTA ACUST UNITED AC 2009; 60:1932-43. [DOI: 10.1002/art.24602] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Struyf S, Proost P, Vandercappellen J, Dempe S, Noyens B, Nelissen S, Gouwy M, Locati M, Opdenakker G, Dinsart C, Van Damme J. Synergistic up-regulation of MCP-2/CCL8 activity is counteracted by chemokine cleavage, limiting its inflammatory and anti-tumoral effects. Eur J Immunol 2009; 39:843-57. [PMID: 19224633 DOI: 10.1002/eji.200838660] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chemokines mediate the inflammatory response by attracting various leukocyte types. MCP-2/CC chemokine ligand 8 (CCL8) was induced at only suboptimal levels in fibroblasts and endothelial cells by IL-1beta or IFN-gamma, unless these cytokines were combined. IFN-gamma also synergized with the TLR ligands peptidoglycan (TLR2), dsRNA (TLR3) or LPS (TLR4). Under these conditions, intact MCP-2/CCL8(1-76) produced by fibroblasts was found to be processed into MCP-2/CCL8(6-75), which lacked chemotactic activity for monocytic cells. Furthermore, the capacity of MCP-2/CCL8(6-75) to increase intracellular calcium levels through CCR1, CCR2, CCR3 and CCR5 was severely reduced. However, the truncated isoform still blocked these receptors for other ligands. MCP-2/CCL8(6-75) induced internalization of CCR2, inhibited MCP-1/CCL2 and MCP-2/CCL8 ERK signaling and antagonized the chemotactic activity of several CCR2 ligands (MCP-1/CCL2, MCP-2/CCL8, MCP-3/CCL7). In contrast to MCP-3/CCL7, parvoviral delivery of MCP-2/CCL8 into B78/H1 melanoma failed to inhibit tumor growth, partially due to proteolytic cleavage into inactive MCP-2/CCL8 missing five NH(2)-terminal residues. However, in an alternative tumor model, using HeLa cells, MCP-2/CCL8 retarded tumor development. These data indicate that optimal induction and delivery of MCP-2/CCL8 is counteracted by converting this chemokine into a receptor antagonist, thereby losing its anti-tumoral potential.
Collapse
Affiliation(s)
- Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Iwamoto T, Okamoto H, Kobayashi S, Ikari K, Toyama Y, Tomatsu T, Kamatani N, Momohara S. A role of monocyte chemoattractant protein-4 (MCP-4)/CCL13 from chondrocytes in rheumatoid arthritis. FEBS J 2007; 274:4904-12. [PMID: 17824960 DOI: 10.1111/j.1742-4658.2007.06013.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the role of monocyte chemoattractant (MCP)-4/CCL13 in the pathogenesis of rheumatoid arthritis (RA). MCP-4 was highly expressed in cartilage from RA patients. Interferon-gamma significantly stimulated MCP-4/CCL13 production in human chondrocytes, and this effect was enhanced in combination with interleukin-1beta or tumor necrosis factor-alpha. MCP-4/CCL13 induces the phosphorylation of extracellular signal-regulated kinase in fibroblast-like synoviocytes and activates cell proliferation, and PD98059 completely inhibits these effects. These data suggest that interferon-gamma in combination with interleukin-1beta/tumor necrosis factor-alpha activates the production of MCP-4/CCL13 from chondrocytes in RA joints, and that secreted MCP-4/CCL13 enhances fibroblast-like synoviocyte proliferation by activating the extracellular signal-regulated kinase mitogen-activated protein kinase cascade.
Collapse
Affiliation(s)
- Takuji Iwamoto
- Institute of Rheumatology, Tokyo Women's Medical University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Nonaka M, Fukumoto A, Ogihara N, Pawankar R, Sakanushi A, Yagi T. Expression of MCP-4 by TLR ligand-stimulated nasal polyp fibroblasts. Acta Otolaryngol 2007; 127:1304-9. [PMID: 17851891 DOI: 10.1080/00016480701242444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONCLUSION These results indicate that nasal polyp fibroblasts contribute to innate immunity and eosinophilic inflammation such as nasal polyposis. OBJECTIVE It is generally accepted that type 2 T helper (Th2) cytokines and some chemoattractants play an essential role in the pathogenesis of nasal polyposis. Nasal polyposis is characterized by chronic eosinophilic inflammation. The mechanisms that cause the predominance of eosinophilic infiltration in nasal polyposis have yet to be clarified. There is growing evidence that fibroblasts could be a major source of Th2 chemokines. Because the nasal and paranasal mucosae are the first respiratory tissues that environmental agents encounter, those tissues are exposed to injurious agents, including microorganisms and their breakdown products. We investigated whether nasal polyp fibroblasts produce a C-C chemokine, MCP-4, when stimulated with the breakdown products of microorganisms and a Th2 cytokine (interleukin (IL)-4). MATERIALS AND METHODS Fibroblast lines were established from nasal polyp tissues. The expression of MCP-4 mRNA was evaluated by real-time RT-PCR. The amount of MCP-4 in the supernatants was measured by ELISA. RESULTS TLR2, 3, 4 and 5 ligands, but not TLR7/8 or 9 ligands, induced small amounts of MCP-4. TLR2, 3, 4 and 5 ligands synergized with IL-4 to induce the production of MCP-4.
Collapse
Affiliation(s)
- Manabu Nonaka
- Department of Otorhinolaryngology, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The paradigm of cancer development and metastasis is a comprehensive, complex series of events that ultimately reflects a coordinated interaction between the tumor cell and the microenvironment within which the tumor cell resides. Despite the realization that this relationship has changed the current paradigm of cancer research, the struggle continues to more completely understand the pathogenesis of the disease and the ability to appropriately identify and design novel targets for therapy. A particular area of research that has added a significant understanding to cancer metastasis is the role of chemokines and chemokine receptors. Here we review the current concepts of CCL2 (monocyte chemoattractant protein 1) and its role in tumor metastasis with particular interest to its role in the development of bone metastases.
Collapse
Affiliation(s)
- Matt J Craig
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
30
|
Cappello P, Fraone T, Barberis L, Costa C, Hirsch E, Elia AR, Caorsi C, Musso T, Novelli F, Giovarelli M. CC-Chemokine Ligand 16 Induces a Novel Maturation Program in Human Immature Monocyte-Derived Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:6143-51. [PMID: 17056542 DOI: 10.4049/jimmunol.177.9.6143] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dendritic cells (DCs) are indispensable for initiation of primary T cell responses and a host's defense against infection. Many proinflammatory stimuli induce DCs to mature (mDCs), but little is known about the ability of chemokines to modulate their maturation. In the present study, we report that CCL16 is a potent maturation factor for monocyte-derived DCs (MoDCs) through differential use of its four receptors and an indirect regulator of Th cell differentiation. MoDCs induced to mature by CCL16 are characterized by increased expression of CD80 and CD86, MHC class II molecules, and ex novo expression of CD83 and CCR7. They produce many chemokines to attract monocytes and T cells and are also strong stimulators in activating allogeneic T cells to skew toward Th1 differentiation. Interestingly, they are still able to take up Ag and express chemokine receptors usually bound by inflammatory ligands and can be induced to migrate to different sites where they capture Ags. Our findings indicate that induction of MoDC maturation is an important property of CCL16 and suggest that chemokines may not only organize the migration of MoDCs, but also directly regulate their ability to prime T cell responses.
Collapse
Affiliation(s)
- Paola Cappello
- Center for Experimental Research and Medical Studies, San Giovanni Battista Hospital, Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hashimoto I, Wada J, Hida A, Baba M, Miyatake N, Eguchi J, Shikata K, Makino H. Elevated serum monocyte chemoattractant protein-4 and chronic inflammation in overweight subjects. Obesity (Silver Spring) 2006; 14:799-811. [PMID: 16855189 DOI: 10.1038/oby.2006.93] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Chronic inflammation observed in obesity has been reported to be implicated in the development of atherosclerosis. We screened candidate chemokines that link chronic inflammation and obesity. RESEARCH METHODS AND PROCEDURES Japanese overweight (n = 39, BMI 28.7 +/- 0.65 kg/m(2)) and normal-weight (n = 24, BMI 22.3 +/- 0.45 kg/m(2)) subjects were enrolled. Using antibody-based protein microarray, spot intensities of monocyte chemoattractant protein (MCP)-4, eotaxin, and eotaxin-2 correlated with anthropometric parameters. We further measured serum concentration of these chemokines and mRNA levels in adipose tissues obtained from volunteers. RESULTS Serum MCP-4 levels showed positive correlation with BMI (r = 0.318, p = 0.014), waist (r = 0.316, p = 0.018), and waist-to-hip ratio (WHR) (r = 0.264, p = 0.049). Furthermore, MCP-4 correlated with homeostasis model assessment of insulin resistance (r = 0.392, p = 0.002), high-sensitivity C-reactive protein (hsCRP) (r = 0.350, p = 0.006). In step-wise multiple regression analyses, hsCRP independently correlated with MCP-4 levels. The expression of MCP-4 mRNA in visceral adipose tissue positively correlates with BMI. Serum eotaxin levels correlate with BMI (r = 0.262, p = 0.045) and WHR (r = 0.383, p = 0.003). Serum eotaxin-2 levels correlated with BMI (r = 0.464, p < 0.001), waist (r = 0.333, p = 0.017), and WHR (r = 0.278, p = 0.048). However, eotaxin and eotaxin-2 levels did not show significant correlation with hsCRP. DISCUSSION Serum levels of MCP-4, eotaxin, and eotaxin-2, which belong to CC chemokine family and share CC chemokine receptor 3, correlated with BMI. These chemokines, especially MCP-4, may be critical molecules that link obesity and chronic inflammation.
Collapse
Affiliation(s)
- Izumi Hashimoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Huaux F, Gharaee-Kermani M, Liu T, Morel V, McGarry B, Ullenbruch M, Kunkel SL, Wang J, Xing Z, Phan SH. Role of Eotaxin-1 (CCL11) and CC chemokine receptor 3 (CCR3) in bleomycin-induced lung injury and fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1485-96. [PMID: 16314464 PMCID: PMC1613185 DOI: 10.1016/s0002-9440(10)61235-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Eotaxin-1/CCL11 and its receptor CCR3 are involved in recruitment of eosinophils to diverse tissues, but their role in eosinophil recruitment in pulmonary fibrosis is unclear. The present study examined the pulmonary expression of CCL11 and CCR3 during bleomycin (blm)-induced lung injury and determined their importance in the recruitment of inflammatory cells and the development of lung fibrosis. In mice, blm induced a marked pulmonary expression of CCL11 and CCR3. Immunostaining for CCR3 revealed that this receptor was not only expressed by eosinophils but also by neutrophils. CCL11-deficient (CCL11(-/-)) mice developed significantly reduced pulmonary fibrosis. Expression of profibrotic cytokines such as transforming growth factor-beta1 was diminished in the absence of CCL11. Furthermore, increased lung expression of CCL11 significantly enhanced blm-induced lung fibrosis and production of profibrotic cytokines. These effects were also associated with an increase of eosinophil and neutrophil pulmonary infiltration. In contrast, mice treated with neutralizing CCR3 antibodies developed significantly reduced pulmonary fibrosis, eosinophilia, neutrophilia, and expression of profibrotic cytokines. Together, these data suggest that CCL11 and CCR3 are important in the pulmonary recruitment of granulocytes and play significant pathogenic roles in blm-induced lung fibrosis.
Collapse
Affiliation(s)
- Francois Huaux
- Unit of Industrial Toxicology and Occupational Medicine, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rossi L, Moharram R, Martin BM, White RL, Panelli MC. Detection of human MCP-4/CCL13 isoforms by SELDI immunoaffinity capture. J Transl Med 2006; 4:5. [PMID: 16433902 PMCID: PMC1397875 DOI: 10.1186/1479-5876-4-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 01/24/2006] [Indexed: 12/03/2022] Open
Abstract
Monocyte Chemoattractant Proteins 4 (MCP-4/CCL13) is a member of a distinct, structurally-related subclass of CC chemokines mainly involved in recruitment of eosinphils to inflammatory sites. Recent evidence demonstrates that serum level of this protein strongly increases following high dose IL-2 immunotherapy. The physiological form of human MCP-4/CCL13 has yet to be purified. Therefore, the primary structure of the biologically relevant (mature) form has not been established. By using SELDI immunoaffinity capture technology we describe two mature isoforms both present in serum before and after high-dose IL-2 immunotherapy.
Collapse
Affiliation(s)
- Leonardo Rossi
- Department of Human Morphology and Applied Biology, University of Pisa, 56126 Pisa, Italy
| | - Ramy Moharram
- National Institute of Mental Health NIMH, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Brian M Martin
- National Institute of Mental Health NIMH, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Richard L White
- Carolinas Medical Center, Blumenthal Cancer Center, Charlotte, North Carolina, 28232 USA
| | - Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
34
|
Gouwy M, Struyf S, Proost P, Van Damme J. Synergy in cytokine and chemokine networks amplifies the inflammatory response. Cytokine Growth Factor Rev 2005; 16:561-80. [PMID: 16023396 DOI: 10.1016/j.cytogfr.2005.03.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 03/04/2005] [Indexed: 11/20/2022]
Abstract
The inflammatory response is a highly co-ordinated process involving multiple factors acting in a complex network as stimulators or inhibitors. Upon infection, the sequential release of exogenous agents (e.g. bacterial and viral products) and induction of endogenous mediators (e.g. cytokines and chemokines) contribute to the recruitment of circulating leukocytes to the inflamed tissue. Microbial products trigger multiple cell types to release cytokines, which in turn are potent inducers of chemokines. Primary cytokines act as endogenous activators of the immune response, whereas inducible chemokines act as secondary mediators to attract leukocytes. Interaction between exogenous and endogenous mediators thus enhances the inflammatory response. In this review, the synergistic interaction between cytokines to induce chemokine production and the molecular mechanisms of the cooperation amongst co-induced chemokines to further increase leukocyte recruitment to the site of inflammation are discussed.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
35
|
Overview and History of Chemokines and Their Receptors. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(04)55001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Pierer M, Rethage J, Seibl R, Lauener R, Brentano F, Wagner U, Hantzschel H, Michel BA, Gay RE, Gay S, Kyburz D. Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands. THE JOURNAL OF IMMUNOLOGY 2004; 172:1256-65. [PMID: 14707104 DOI: 10.4049/jimmunol.172.2.1256] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To analyze the role of Toll-like receptors (TLR) in the pathogenesis of rheumatoid arthritis, we have assessed the effects of stimulation of cultured synovial fibroblasts by the TLR-2 ligand bacterial peptidoglycan. By using high density oligonucleotide microarray analysis we identified 74 genes that were up-regulated >2.5-fold. Fourteen CC and CXC chemokine genes were among the genes with the highest up-regulation. Quantitative real-time PCR analysis confirmed up-regulation of granulocyte chemotactic protein (GCP)-2, RANTES, monocyte chemoattractant protein (MCP)-2, IL-8, growth-related oncogene-2, and to a lesser extent, macrophage-inflammatory protein 1alpha, MCP-1, EXODUS, and CXCL-16. GCP-2, RANTES, and MCP-2 were detected in culture supernatants of synovial fibroblasts stimulated with peptidoglycan. Chemokine secretion induced by stimulation of rheumatoid arthritis synovial fibroblasts via TLR-2 was functionally relevant as demonstrated by chemotaxis assays. GCP-2 and MCP-2 expression, which have not been reported previously in rheumatoid arthritis, was demonstrated in synovial tissue sections of patients diagnosed with rheumatoid arthritis but not in those with osteoarthritis. Correspondingly, synovial fluid levels were significantly higher in patients diagnosed with rheumatoid arthritis as compared with osteoarthritis. Thus, we present evidence for an induction of chemokine secretion by activation of synovial fibroblasts via TLR-2, possibly contributing to the formation of inflammatory infiltrates characteristically found in rheumatoid arthritis joints.
Collapse
MESH Headings
- Adult
- Aged
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/microbiology
- Cells, Cultured
- Chemokine CCL5/biosynthesis
- Chemokine CCL5/metabolism
- Chemokine CCL8
- Chemokine CXCL6
- Chemokines/metabolism
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/metabolism
- Chemotaxis, Leukocyte/immunology
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Gene Expression Profiling
- Humans
- Ligands
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Middle Aged
- Monocyte Chemoattractant Proteins/biosynthesis
- Monocyte Chemoattractant Proteins/metabolism
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Oligonucleotide Array Sequence Analysis
- Osteoarthritis/immunology
- Osteoarthritis/metabolism
- Peptidoglycan/pharmacology
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Synovial Fluid/immunology
- Synovial Fluid/metabolism
- Synovial Membrane/immunology
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Toll-Like Receptor 2
- Toll-Like Receptors
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Matthias Pierer
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zürich, Gloriastrasse 25, 8091 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schraufstatter I, Takamori H, Sikora L, Sriramarao P, DiScipio RG. Eosinophils and monocytes produce pulmonary and activation-regulated chemokine, which activates cultured monocytes/macrophages. Am J Physiol Lung Cell Mol Physiol 2004; 286:L494-501. [PMID: 12716654 DOI: 10.1152/ajplung.00323.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary and activation-regulated chemokine (PARC/CCL18) belongs to the family of CC chemokines and shares 61% sequence identity with monocyte inflammatory protein (MIP)-1alpha. Produced by dendritic cells and macrophages primarily in the lung, PARC is known to be chemotactic for T cells. Because PARC's biological function is largely unknown, we screened various leukocyte populations for PARC expression and for response to PARC, with the idea that the cellular source may link PARC to disease states in which it may be involved. Here we report that eosinophils obtained from individuals with mild eosinophilia express PARC as assessed by RT-PCR on eosinophil RNA. The eosinophil preparations were free of monocytes, a known source of PARC, and no RT-PCR product was obtained from neutrophils. Furthermore, PARC protein was detected by ELISA in the supernatants of eosinophils from seven of nine donors and in higher concentration in the supernatants of monocytes on day 1 of culture. Purified recombinant PARC activated human monocytes/macrophages kept in culture for 3-4 days but not freshly isolated monocytes. The threshold dose for Ca(2+) mobilization as determined fluorometrically in indo 1-AM-labeled monocytes was 5 nM; maximal response was reached with approximately 50 nM PARC. PARC was chemotactic for these cultured monocytes and caused actin polymerization determined by FITC-phalloidin binding and fluorescence-activated cell sorting analysis. In contrast, PARC activated neither neutrophils nor eosinophils. Eosinophil production of PARC, its chemotactic effect on monocytes and lymphocytes, and PARC's previously described localization to the lung suggest that this chemokine might play a role in pulmonary leukocyte trafficking.
Collapse
Affiliation(s)
- Ingrid Schraufstatter
- Div. of Cancer Biology, La Jolla Inst. for Molecular Medicine, 4570 Executive Dr., #100, San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|
38
|
Babcock A, Owens T. Chemokines in experimental autoimmune encephalomyelitis and multiple sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 520:120-32. [PMID: 12613576 DOI: 10.1007/978-1-4615-0171-8_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alicia Babcock
- McGill University Montreal Neurology Institute, Quebec, Canada
| | | |
Collapse
|
39
|
Ong VH, Evans LA, Shiwen X, Fisher IB, Rajkumar V, Abraham DJ, Black CM, Denton CP. Monocyte chemoattractant protein 3 as a mediator of fibrosis: Overexpression in systemic sclerosis and the type 1 tight-skin mouse. ARTHRITIS AND RHEUMATISM 2003; 48:1979-91. [PMID: 12847692 DOI: 10.1002/art.11164] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine the gene-expression profile in dermal fibroblasts from type 1 tight-skin (Tsk1) mice, and to examine the expression and potential fibrotic activity of monocyte chemoattractant protein 3 (MCP-3) in Tsk1 mouse and human systemic sclerosis (SSc) skin. METHODS Complementary DNA microarrays (Atlas 1.2) were used to compare Tsk1 fibroblasts with non-Tsk1 littermate cells at 10 days, 6 weeks, and 12 weeks of age. Expression of MCP-3 protein was assessed by Western blotting of fibroblast culture supernatants, and localized in the mouse and human skin biopsy samples by immunohistochemistry. Activation of collagen reporter genes by MCP-3 was explored in transgenic mouse fibroblasts and by transient transfection assays. RESULTS MCP-3 was highly overexpressed by neonatal Tsk1 fibroblasts and by fibroblasts cultured from the lesional skin of patients with early-stage diffuse cutaneous SSc. Immunolocalization confirmed increased expression of MCP-3 in the dermis of 4 of 5 Tsk1 skin samples and 14 of 28 lesional SSc skin samples, compared with that in matched healthy mice (n = 5) and human controls (n = 11). Proalpha2(I) collagen promoter-reporter gene constructs were activated by MCP-3 in transgenic mice and by transient transfection assays. This response was maximal between 16 and 24 hours of culture and mediated via sequences within the proximal promoter. The effects of MCP-3 could be diminished by a neutralizing antibody to transforming growth factor beta. CONCLUSION We demonstrate, for the first time, overexpression of MCP-3 in early-stage SSc and in Tsk1 skin, and suggest a novel role for this protein as a fibrotic mediator activating extracellular matrix gene expression in addition to promoting leukocyte trafficking. This chemokine may be an important early member of the cytokine cascade driving the pathogenesis of SSc.
Collapse
Affiliation(s)
- Voon H Ong
- Royal Free Hospital and University College Medical School, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Wan Y, Jakway JP, Qiu H, Shah H, Garlisi CG, Tian F, Ting P, Hesk D, Egan RW, Billah MM, Umland SP. Identification of full, partial and inverse CC chemokine receptor 3 agonists using [35S]GTPgammaS binding. Eur J Pharmacol 2002; 456:1-10. [PMID: 12450563 DOI: 10.1016/s0014-2999(02)02621-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Study of the CC chemokine receptor 3 (CCR3) has been limited to using radiolabeled agonist chemokines. A small molecule CCR3 antagonist, 2-[(6-amino-2-benzothiazolyl)thio]-N-[1-[(3,4-dichlorylphenyl)methyl]-4-piperidinyl]acetamide, Banyu (I), was tritiated and used for pharmacological studies. Banyu (I) has a K(d) of 5.0+/-0.4 and 4.3+/-1.8 nM on human CCR3 transfectants and eosinophils, and noncompetitively inhibits [125I]eotaxin binding and eotaxin-induced [35S]guanosine-5'-O-(3-thiotriphosphate) ([35S]GTPgammaS) binding. The proportion of [125I]eotaxin: [3H]Banyu (I) binding sites in eosinophils or transfectants was 35% or 13%, although both binding sites were overexpressed in transfectants. CCR3 spontaneously couples to G-proteins in CCR3 transfectants, demonstrated by changes in basal and eotaxin-induced [35S]GTPgammaS binding under reduced NaCl and GDP concentrations. Consequently, Banyu (I) was identified as an inverse agonist. In contrast, CCL18 and I-TAC (interferon-inducible T cell alpha-chemoattractant) were neutral antagonists, inhibiting eotaxin-induced [35S]GTPgammaS binding, with minimal effect on basal coupling of CCR3 to G proteins. Eotaxin, eotaxin-2 and monocyte chemoattractant protein (MCP)-4 are full agonists inducing [35S]GTPgammaS binding; eotaxin-3, MCP-3, RANTES (regulated on activation normal T cell expressed and secreted), vMIP-I (Kaposi's sarcoma-associated herpesvirus macrophage inflammatory protein-) and vMIP-II are partial agonists, indicating that this is a sensitive method to quantitate agonist efficacy.
Collapse
Affiliation(s)
- Yuntao Wan
- Department of Allergy, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Borchers MT, Ansay T, DeSalle R, Daugherty BL, Shen H, Metzger M, Lee NA, Lee JJ. In vitro
assessment of chemokine receptor‐ligand interactions mediating mouse eosinophil migration. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.6.1033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | - Rob DeSalle
- American Museum of Natural History, New York, New York
| | - Bruce L. Daugherty
- Department of Immunology and Rheumatology, Merck Research Laboratories, Rahway, New Jersey; and
| | - Huahao Shen
- Mayo Clinic Scottsdale, Scottsdale, Arizona
- Department of Respiratory Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | | | | | | |
Collapse
|
42
|
Górski P, Wittczak T, Walusiak J, Pałczyński C, Ruta U, Kuna P, Alam R. Eotaxin but not MCP-3 induces eosinophil influx into nasal fluid in allergic patients. Allergy 2002; 57:519-28. [PMID: 12028117 DOI: 10.1034/j.1398-9995.2002.03555.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Eotaxin and MCP-3 (CC chemokines), owing to their preferential action on eosinophils, seem to be the very importance in the patophysiology of allergic rhinitis and asthma. The purpose of this study was to examine the effect of intranasally administered eotaxin and MCP-3 after specific allergen priming on the influx of inflammatory cells and their soluble mediators into the nasal mucosa. METHODS Eotaxin and MCP-3 have been applied intranasally at the increasing doses of 1, 5 and 10 microg to allergic patients after allergen priming. The 'nasal pool' technique was used. The cell count and biochemical parameters in nasal lavage were evaluated before 30 min, and 4 and 24 h after the challenge with chemokines. RESULTS Both eotaxin and MCP-3 induced the increase in clinical 'score' lasting till 24 h. Eosinophil influx into nasal mucosa after provocation with eotaxin was also observed. The challenge with MCP-3 did not induce any significant changes in nasal lavage fluid. CONCLUSIONS Eotaxin is likely to play an important role in the pathogenesis of allergic conditions in humans. MCP-3 did not induce inflammatory cell influx into nasal mucosa. The role of this chemokine in the pathogenesis of allergic inflammation is difficult to assess and requires further studies.
Collapse
Affiliation(s)
- P Górski
- Department of Occupational Medicine, Center of Occupational and Environmental Allergy, The Nofer Institute of Occupational Medicine, Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
43
|
Wain JH, Kirby JA, Ali S. Leucocyte chemotaxis: Examination of mitogen-activated protein kinase and phosphoinositide 3-kinase activation by Monocyte Chemoattractant Proteins-1, -2, -3 and -4. Clin Exp Immunol 2002; 127:436-44. [PMID: 11966759 PMCID: PMC1906309 DOI: 10.1046/j.1365-2249.2002.01764.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monocyte Chemoattractant Proteins (MCPs) form a distinct, structurally-related subclass of CC chemokines. They are major chemoattractants for monocytes and T lymphocytes. The MCPs bind to specific G-protein-coupled receptors, initiating a signal cascade within the cell. Though the signal transduction pathways involved in MCP-1-mediated chemotaxis have been studied, the signalling pathways through which MCP-2, -3 and -4 trigger cell migration are not established. In this study, we examined the mitogen-activated protein kinase (MAPK) activation elicited by the MCPs (1-4) and its specific role in chemotaxis. Within 2 min, the MCPs (1-4) elicited a rapid and transient activation of MAPK in peripheral blood mononuclear cells and in HEK-293 cells expressing CCR2b. U0126, an inhibitor of MAPK-kinase (MEK) activation, not only prevented extracellular signal-regulated kinase 1/2 (ERK1/2) activation but also significantly inhibited the MCP-mediated chemotaxis. PI3K inhibitors Wortmannin and LY294002 also partially inhibited the MCP-induced chemotaxis. However, these compounds did not significantly inhibit ERK1/2 activation. As PI3K inhibitors partially inhibit the MCP-mediated chemotaxis but do not significantly effect ERK1/2 activation, these data suggest that co-ordinated action of distinct signal pathways is required to produce chemokine-mediated chemotaxis.
Collapse
Affiliation(s)
- J H Wain
- The Applied Immunobiology Group, Department of Surgery, The Medical School, University of Newcastle Upon Tyne, UK
| | | | | |
Collapse
|
44
|
Nakamura H, Luster AD, Tateno H, Jedrzkiewicz S, Tamura G, Haley KJ, Garcia-Zepeda EA, Yamaguchi K, Lilly CM. IL-4 differentially regulates eotaxin and MCP-4 in lung epithelium and circulating mononuclear cells. Am J Physiol Lung Cell Mol Physiol 2001; 281:L1288-L1302. [PMID: 11597922 DOI: 10.1152/ajplung.2001.281.5.l1288] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To investigate the mechanisms of eosinophil recruitment in allergic airway inflammation, we examined the effects of interleukin (IL)-4, a Th2-type cytokine, on eotaxin and monocyte chemoattractant protein-4 (MCP-4) expression in human peripheral blood mononuclear cells (PBMCs; n = 10), in human lower airway mononuclear cells (n = 5), in the human lung epithelial cell lines A549 and BEAS-2B, and in human cultured airway epithelial cells. IL-4 inhibited eotaxin and MCP-4 mRNA expression induced by IL-1 beta and tumor necrosis factor-alpha in PBMCs but did not significantly inhibit expression in epithelial cells. Eotaxin and MCP-4 mRNA expression was not significantly induced by proinflammatory cytokines in lower airway mononuclear cells. IL-1 beta-induced eotaxin and MCP-4 protein production was also inhibited by IL-4 in PBMCs, whereas IL-4 enhanced eotaxin protein production in A549 cells. In contrast, dexamethasone inhibited eotaxin and MCP-4 expression in both PBMCs and epithelial cells. The divergent effects of IL-4 on eotaxin and MCP-4 expression between PBMCs and epithelial cells may create chemokine concentration gradients between the subepithelial layer and the capillary spaces that may promote the recruitment of eosinophils to the airway in Th2-type responses.
Collapse
Affiliation(s)
- H Nakamura
- Combined Program in Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kurth I, Willimann K, Schaerli P, Hunziker T, Clark-Lewis I, Moser B. Monocyte selectivity and tissue localization suggests a role for breast and kidney-expressed chemokine (BRAK) in macrophage development. J Exp Med 2001; 194:855-61. [PMID: 11561000 PMCID: PMC2195966 DOI: 10.1084/jem.194.6.855] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Although numerous chemokines act on monocytes, none of them is specific for these cells. Here, we show that breast and kidney-expressed chemokine (BRAK) is a highly selective monocyte chemoattractant. Migration efficacy and Bordetella pertussis toxin-sensitive Ca(2+) mobilization responses to BRAK were strongly enhanced after treatment of monocytes with the cyclic AMP-elevating agents prostaglandin E(2) and forskolin. BRAK is the first monocyte-selective chemokine, as other types of blood leukocytes or monocyte-derived dendritic cells and macrophages did not respond. Expression in normal skin keratinocytes and dermal fibroblasts as well as lamina propria cells in normal intestinal tissues suggests a homeostatic rather than an inflammatory function for this chemokine. In addition, macrophages were frequently found to colocalize with BRAK-producing fibroblasts. We propose that BRAK is involved in the generation of tissue macrophages by recruiting extravasated precursors to fibroblasts, which are known to secrete essential cytokines for macrophage development.
Collapse
Affiliation(s)
- Isabel Kurth
- Theodor-Kocher Institute, University of Bern, CH-3000 Bern 9, Switzerland
| | | | - Patrick Schaerli
- Theodor-Kocher Institute, University of Bern, CH-3000 Bern 9, Switzerland
| | - Thomas Hunziker
- Department of Dermatology, University Hospital, CH-3000 Bern, Switzerland
| | - Ian Clark-Lewis
- Biomedical Research Center, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Bernhard Moser
- Theodor-Kocher Institute, University of Bern, CH-3000 Bern 9, Switzerland
| |
Collapse
|
46
|
Forssmann U, Mägert H, Adermann K, Escher SE, Forssmann W. Hemofiltrate CC chemokines with unique biochemical properties: HCC‐1/CCL14a and HCC‐2/CCL15. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.3.357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Ulf Forssmann
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| | - Hans‐Jürgen Mägert
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| | - Knut Adermann
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| | - Sylvia E. Escher
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| | - Wolf‐Georg Forssmann
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| |
Collapse
|
47
|
Taha RA, Laberge S, Hamid Q, Olivenstein R. Increased expression of the chemoattractant cytokines eotaxin, monocyte chemotactic protein-4, and interleukin-16 in induced sputum in asthmatic patients. Chest 2001; 120:595-601. [PMID: 11502664 DOI: 10.1378/chest.120.2.595] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Induced sputum from asthmatic patients has been recently used to assess inflammatory cells. We have previously reported an increased expression of Th-2-type cytokines in induced sputum of asthmatic patients. C-C chemokines, particularly eotaxin and monocyte chemotactic protein (MCP)-4, are associated with eosinophilic infiltration. Interleukin (IL)-16 is associated with chemotactic activity for CD4+ cells. Chemokine expression in BAL and bronchial biopsy specimens has been demonstrated in asthmatic airways, but not in induced sputum. METHODS We examined whether eotaxin, MCP-4, and IL-16 expression could be detected in induced sputum of asthmatic patients (n = 10), and whether the expression was increased compared to normal control subjects (n = 9). Eotaxin, MCP-4, and IL-16 immunoreactivity were determined by immunocytochemistry. In addition, inflammatory cells were investigated using markers for T cells (CD3), eosinophils (major basic protein [MBP]), macrophages (CD68), neutrophils (elastase), and epithelial cells (cytokeratin). RESULTS Our results showed that there was a significant difference in the percentages of MBP-positive and epithelial cells between asthmatic patients and normal control subjects (p < 0.05). However, there was no difference between these two groups in the percentage of CD3-, elastase-, and CD68-positive cells. Immunoreactivity for eotaxin, MCP-4, and IL-16 was expressed in the induced sputum of all asthmatic patients, and expression of these chemotactic cytokines was significantly greater than in control subjects (p < 0.001, p < 0.005, and p < 0.001, respectively). CONCLUSIONS This study showed that induced sputum could be used to detect chemokines in patients with bronchial asthma, and that the upregulation of chemotactic cytokines in the airways can be seen using noninvasive techniques.
Collapse
Affiliation(s)
- R A Taha
- Meakins-Christie Laboratories, McGill University, and Ste-Justine Hospital, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
48
|
Chakravorty SJ, Howie AJ, Girdlestone J, Gentle D, Savage CO. Potential role for monocyte chemotactic protein-4 (MCP-4) in monocyte/macrophage recruitment in acute renal inflammation. J Pathol 2001; 194:239-46. [PMID: 11400154 DOI: 10.1002/path.877] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The CC chemokine, monocyte chemoattractant protein-4 (MCP-4), is an important chemoattractant for monocytes and T cells. Recent data indicate a role in renal inflammation. This study has used in situ hybridization and immunohistochemical analysis of cryostat sections of biopsy material taken from patients with acute renal allograft rejection and vasculitic glomerulonephritis to demonstrate renal expression of MCP-4, both at message and protein level. MCP-4 was primarily expressed at peritubular, periglomerular, and perivascular sites, irrespective of the inflammatory condition, and was associated with infiltrating CD3-positive lymphocytes and CD68-positive monocyte/macrophages. In addition, proximal tubular epithelial cells grown in culture from cortical fragments of human kidney showed low levels of constitutive MCP-4 expression, detectable by western blotting; this expression of MCP-4 was up-regulated in response to the pro-inflammatory cytokines, tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). CCR3-, CCR5- and CCR2-expressing leukocyte populations were identified at sites of MCP-4 expression. Double-staining techniques revealed that CC chemokine receptor-expressing cells were primarily CD68-positive. These studies suggest an important role for MCP-4 in the recruitment and retention of monocytes/macrophages in renal inflammation.
Collapse
MESH Headings
- Acute Disease
- Antigens, CD
- Antigens, Differentiation, Myelomonocytic
- CD3 Complex
- Cells, Cultured
- Glomerulonephritis/immunology
- Glomerulonephritis/metabolism
- Graft Rejection/immunology
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Interferon-gamma/pharmacology
- Kidney/chemistry
- Kidney/immunology
- Kidney Transplantation
- Macrophage Activation
- Macrophages/immunology
- Macrophages/metabolism
- Monocyte Chemoattractant Proteins/analysis
- Monocyte Chemoattractant Proteins/genetics
- Monocyte Chemoattractant Proteins/physiology
- Receptors, CCR2
- Receptors, CCR3
- Receptors, CCR5
- Receptors, Chemokine
- Stimulation, Chemical
- Transplantation, Homologous
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- S J Chakravorty
- Renal Immunobiology, MRC Centre for Immune Regulation, The Medical School, University of Birmingham, B15 2TT, UK
| | | | | | | | | |
Collapse
|
49
|
Buri C, Körner M, Schärli P, Cefai D, Uguccioni M, Mueller C, Laissue JA, Mazzucchelli L. CC chemokines and the receptors CCR3 and CCR5 are differentially expressed in the nonneoplastic leukocytic infiltrates of Hodgkin disease. Blood 2001; 97:1543-8. [PMID: 11238088 DOI: 10.1182/blood.v97.6.1543] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymph nodes with Hodgkin disease (HD) harbor few neoplastic cells in a marked leukocytic infiltrate. Since chemokines are likely to be involved in the recruitment of these leukocytes, the expression of potentially relevant chemokines and chemokine receptors were studied in lymph nodes from 24 patients with HD and in 5 control lymph nodes. The expression of regulated on activation, normal T cell expressed and secreted (RANTES), monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1alpha, and MIP-1beta was analyzed by in situ hybridization and that of CCR3 and CCR5 by immunohistochemistry and flow cytometry. It was found that, overall, the expression of all 4 chemokines was markedly enhanced, but the cellular source was different. RANTES was expressed almost exclusively by T cells whereas the expression of MCP-1, MIP-1alpha, and MIP-1beta was confined largely to macrophages. In control lymph nodes, chemokine expression was low, with the exception of MIP-1alpha in macrophages. CCR3 and CCR5 were highly expressed in T cells of HD involved but not of control lymph nodes. CCR3 was equally distributed in CD4+ and CD8+ cells, but CCR5 was associated largely with CD4+ cells. In HD lymph nodes, CCR3 and CCR5 were also expressed in B cells, which normally do not express these receptors. All these chemokines and receptors studied, by contrast, were absent in the neoplastic cells. It was concluded that chemokines are involved in the formation of the HD nonneoplastic leukocytic infiltrate. Expression of CCR3 and CCR5 appears to be characteristic of HD, but the roles of these receptors' up-regulation for the disease process remain unclear.
Collapse
Affiliation(s)
- C Buri
- Institute of Pathology and the Theodor Kocher Institute, University of Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu LY, Swensen CA, Kelly EA, Kita H, Busse WW. The relationship of sputum eosinophilia and sputum cell generation of IL-5. J Allergy Clin Immunol 2000; 106:1063-9. [PMID: 11112887 DOI: 10.1067/mai.2000.110792] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Eosinophil recruitment to the airway after antigen challenge is regulated by many factors, including airway cell generation of cytokines. OBJECTIVES The purpose of this study was to determine the relationship between sputum cell generation of IL-5 and the appearance of eosinophils in the sputum after antigen challenge. METHODS Sputum samples from 11 allergic subjects were collected before and again 4 and 24 hours after antigen challenge. In 6 of these subjects, induced sputum samples were also obtained 48 hours and 7 days after challenge. Sputum leukocyte differential and cell counts and eosinophil-derived neurotoxin levels were determined. Sputum cells were then cultured with PHA (10 microg/mL) to stimulate IL-5 and IFN-gamma, which were measured in culture supernatants. RESULTS An increase in sputum eosinophils and eosinophil-derived neurotoxin levels was detected at 4 hours after antigen challenge, with peak values at 24 hours. In contrast, significant increases in ex vivo generation of IL-5 by sputum cells was not seen until 24 hours after challenge. At 24 hours, PHA-induced IL-5 correlated with airspace eosinophil values (r (s) = 0.78, P <.01). In addition, the ratio of IFN-gamma/IL-5 decreased at 24 hours (P <.05) and had an inverse correlation with sputum eosinophils (r (s)= -0.68, P <.05). CONCLUSION Although eosinophils are increased in the airway lumen as early as 4 hours, the ex vivo generation of IL-5 by sputum cells is first noted in samples obtained 24 hours after antigen challenge. This suggests that the early (4 hours) recruitment of eosinophils to the airway lumen may be regulated by factors other than IL-5 or that mucosal cells (rather than airspace cells) contribute to the IL-5 generation at this time point. Furthermore, IL-5 generation by airspace cells may be more responsible for either eosinophil recruitment or retention at later time points.
Collapse
Affiliation(s)
- L Y Liu
- Allergy and Immunology and Pulmonary and Critical Care Sections of the Department of Medicine, University of Wisconsin, Madison 53972, USA
| | | | | | | | | |
Collapse
|