1
|
Zhou H, Brekman A, Zuo WL, Ou X, Shaykhiev R, Agosto-Perez FJ, Wang R, Walters MS, Salit J, Strulovici-Barel Y, Staudt MR, Kaner RJ, Mezey JG, Crystal RG, Wang G. POU2AF1 Functions in the Human Airway Epithelium To Regulate Expression of Host Defense Genes. THE JOURNAL OF IMMUNOLOGY 2016; 196:3159-67. [PMID: 26927796 DOI: 10.4049/jimmunol.1502400] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/01/2016] [Indexed: 02/05/2023]
Abstract
In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium.
Collapse
Affiliation(s)
- Haixia Zhou
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Sichuan 610041, China; Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Angelika Brekman
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Wu-Lin Zuo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Xuemei Ou
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Renat Shaykhiev
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | | | - Rui Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Matthew S Walters
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | | | - Michelle R Staudt
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10065; and
| | - Jason G Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065; Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, NY 14853
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10065; and
| | - Guoqing Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
2
|
Drozina G, Kohoutek J, Nishiya T, Peterlin BM. Sequential Modifications in Class II Transactivator Isoform 1 Induced by Lipopolysaccharide Stimulate Major Histocompatibility Complex Class II Transcription in Macrophages. J Biol Chem 2006; 281:39963-70. [PMID: 17095509 DOI: 10.1074/jbc.m608538200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
By presenting antigenic peptides on major histocompatibility complex class (MHC) II determinants to CD4(+) T cells, macrophages help to direct the establishment of adaptive immunity. We found that in these cells, lipopolysaccharide stimulates the expression of MHC II genes via the activation of Erk1/2, which is mediated by Toll-like receptor 4. Erk1/2 then phosphorylates the serine at position 357, which is located in a degron of CIITA isoform 1 that leads to its monoubiquitylation. Thus modified, CIITA isoform 1 binds P-TEFb, which mediates the elongation of RNA polymerase II and co-transcriptional processing of nascent transcripts. This induction leads to the expression of MHC II genes. Subsequent polyubiquitylation results in the degradation of CIITA isoform 1. Thus, the signaling cascade from Toll-like receptor 4 to CIITA isoform 1 represents one connection between innate and adaptive immunity in macrophages.
Collapse
Affiliation(s)
- Gorazd Drozina
- Department of Medicine, Rosalind Russell Medical Research Center, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
3
|
Kohoutek J, Blazek D, Peterlin BM. Hexim1 sequesters positive transcription elongation factor b from the class II transactivator on MHC class II promoters. Proc Natl Acad Sci U S A 2006; 103:17349-54. [PMID: 17088550 PMCID: PMC1859933 DOI: 10.1073/pnas.0603079103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The class II transactivator (CIITA) is the master integrator of expression of MHC class II genes. It interacts with variety of basal transcription factors to initiate and elongate transcription of these genes. Among others, it recruits positive transcription elongation factor b (P-TEFb) to MHC class II promoters. In cells, P-TEFb is found in small active or large inactive complexes. The large complex is composed of P-TEFb, 7SK small nuclear RNA, and hexamethylene bisacetamide-inducible protein 1 (Hexim1). The present study identifies Hexim1 as a potent inhibitor of CIITA-mediated transcription. Not only the exogenously expressed but also IFN-gamma-induced CIITA was inhibited by Hexim1. This inhibition did not result from an association between Hexim1 and CIITA but depended on the intact Cyclin T1-binding domain in Hexim1. Importantly, Hexim1 sequestered P-TEFb from CIITA, as documented by binding competition and ChIP assays. Conversely, the depletion of Hexim1 from cells by siRNA increased CIITA-mediated transcription. Thus, modulating ratios between active and inactive P-TEFb complexes is an additional mechanism of regulating transcriptional activators such as CIITA.
Collapse
Affiliation(s)
- Jiri Kohoutek
- Departments of Medicine, Microbiology, and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94143-0703
| | - Dalibor Blazek
- Departments of Medicine, Microbiology, and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94143-0703
| | - B. Matija Peterlin
- Departments of Medicine, Microbiology, and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94143-0703
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
4
|
Drozina G, Kohoutek J, Jabrane-Ferrat N, Peterlin BM. Expression of MHC II genes. Curr Top Microbiol Immunol 2005; 290:147-70. [PMID: 16480042 DOI: 10.1007/3-540-26363-2_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Innate and adaptive immunity are connected via antigen processing and presentation (APP), which results in the presentation of antigenic peptides to T cells in the complex with the major histocompatibility (MHC) determinants. MHC class II (MHC II) determinants present antigens to CD4+ T cells, which are the main regulators of the immune response. Their genes are transcribed from compact promoters that form first the MHC II enhanceosome, which contains DNA-bound activators and then the MHC II transcriptosome with the addition of the class II transactivator (CIITA). CIITA is the master regulator of MHC II transcription. It is expressed constitutively in dendritic cells (DC) and mature B cells and is inducible in most other cell types. Three isoforms of CIITA exist, depending on cell type and inducing signals. CIITA is regulated at the levels of transcription and post-translational modifications, which are still not very clear. Inappropriate immune responses are found in several diseases, including cancer and autoimmunity. Since CIITA regulates the expression of MHC II genes, it is involved directly in the regulation of the immune response. The knowledge of CIITA will facilitate the manipulation of the immune response and might contribute to the treatment of these diseases.
Collapse
Affiliation(s)
- G Drozina
- Department of Medicine, Rosalind Russell Medical Research Center, University of California, San Francisco 94143, USA.
| | | | | | | |
Collapse
|
5
|
Greer SF, Harton JA, Linhoff MW, Janczak CA, Ting JPY, Cressman DE. Serine Residues 286, 288, and 293 within the CIITA: A Mechanism for Down-Regulating CIITA Activity through Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2004; 173:376-83. [PMID: 15210796 DOI: 10.4049/jimmunol.173.1.376] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CIITA is the primary factor activating the expression of the class II MHC genes necessary for the exogenous pathway of Ag processing and presentation. Strict control of CIITA is necessary to regulate MHC class II gene expression and induction of an immune response. We show in this study that the nuclear localized form of CIITA is a predominantly phosphorylated form of the protein, whereas cytoplasmic CIITA is predominantly unphosphorylated. Novel phosphorylation sites were determined to be located within a region that contains serine residues 286, 288, and 293. Double mutations of these residues increased nuclear CIITA, indicating that these sites are not required for nuclear import. CIITA-bearing mutations of these serine residues significantly increased endogenous MHC class II expression, but did not significantly enhance trans-activation from a MHC class II promoter, indicating that these phosphorylation sites may be important for gene activation from intact chromatin rather than artificial plasmid-based promoters. These data suggest a model for CIITA function in which phosphorylation of these specific sites in CIITA in the nucleus serves to down-regulate CIITA activity.
Collapse
Affiliation(s)
- Susanna F Greer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
6
|
Radosevich M, Ono SJ. Novel mechanisms of class II major histocompatibility complex gene regulation. Immunol Res 2003; 27:85-106. [PMID: 12637770 DOI: 10.1385/ir:27:1:85] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Class II MHC molecules present processed peptides from exogenous antigens to CD4+ helper T lymphocytes. In so doing, they are central to immunity, driving both the humoral and cell mediated arms of the immune response. Class II MHC molecules, and the genes encoding them, are expressed primarily in cells of the immune system (B cells, thymic epithelial cells, activated T cells and professional antigen presenting cells). The expression is also under developmental control. Research over the past 20 years have provided a clear understanding of the cis-elements and transcription factors that regulate the expression of Class II MHC genes. Perhaps the most critical advance has been the discovery of CIITA, a non- DNA binding activator of transcription that is a master control gene for class II gene expression. Current research is focused on understanding the situations where class II MHC gene expression occurs in a CIITA-independent pathway, and the molecular basis for this expression. Finally, significant emphasis is being placed on targeting class II MHC transcription factors to either inhibit or stimulate the immune response to transplanted tissue or in cell based vaccines. This communication outlines recent advances in this field and discusses likely areas for future research.
Collapse
Affiliation(s)
- Michael Radosevich
- Department of Immunology, Institute of Ophthalmology, University College London, University of London, London, UK
| | | |
Collapse
|
7
|
Harton JA, O'Connor W, Conti BJ, Linhoff MW, Ting JPY. Leucine-rich repeats of the class II transactivator control its rate of nuclear accumulation. Hum Immunol 2002; 63:588-601. [PMID: 12072194 DOI: 10.1016/s0198-8859(02)00400-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of class II major histocompatibility complex (MHC) gene expression is regulated by a master regulator, class II transcriptional activator (CIITA). Transactivation by CIITA requires its nuclear import. This study will address a mechanistic role for the leucine-rich repeats (LRR) of CIITA in regulating nuclear translocation by mutating 12 individual consensus-motif "leucine" residues in both its alpha-motifs and beta-motifs. While some leucine mutations in the LRR motif of CIITA cause congruent loss of transactivation function and nuclear import, other alanine substitutions in both the alpha-helices and the beta-sheets have normal transactivation function but a loss of nuclear accumulation (i.e., functional mutants). This seeming paradox is resolved by the observations that nuclear accumulation of these functional mutants does occur but is significantly less than wild-type. This difference is revealed only in the presence of leptomycin B and actinomycin D, which permit examination of nuclear accumulation unencumbered by nuclear export and new CIITA synthesis. Further analysis of these mutants reveals that at limiting concentrations of CIITA, a dramatic difference in transactivation function between mutants and wild-type CIITA is easily detected, in agreement with their lowered nuclear accumulation. These experiments reveal an interesting aspect of LRR in controlling the amount of nuclear accumulation.
Collapse
Affiliation(s)
- Jonathan A Harton
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
8
|
Mudhasani R, Fontes JD. Inhibition of class II trans-activator function by HIV-1 tat in mouse cells is independent of competition for binding to cyclin T1. Mol Immunol 2002; 38:539-46. [PMID: 11750655 DOI: 10.1016/s0161-5890(01)00091-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Tat trans-activator protein from HIV-1 inhibits the function of the class II trans-activator protein (CIITA), resulting in reduced MHC class II gene transcription in human cells. Tat does so by competing with CIITA for binding to cyclin T1, a component of the transcriptional elongation complex PTEFb. Since Tat does not functionally interact with mouse cyclin T1, we decided to examine the ability of Tat to inhibit CIITA in mouse cells. We found that Tat inhibited CIITA activity in mouse cells though this inhibition was independent of cyclin T1. The inhibition required the transcriptional activation domain of CIITA, but did not involve alterations in MHC class II promoter occupancy. Although Tat blocked the interaction between CIITA protein and human cyclin T1, it had no effect on the binding between CIITA and mouse cyclin T1. Therefore, Tat can inhibit the ability of CIITA to activate transcription of MHC class II genes in mouse cells by a mechanism that appears to be distinct from that proposed for human cells.
Collapse
Affiliation(s)
- Rajini Mudhasani
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Rm. SI219, Cleveland, OH 44115, USA
| | | |
Collapse
|
9
|
Cressman DE, O'Connor WJ, Greer SF, Zhu XS, Ting JP. Mechanisms of nuclear import and export that control the subcellular localization of class II transactivator. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3626-34. [PMID: 11564775 DOI: 10.4049/jimmunol.167.7.3626] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presence of the class II transactivator (CIITA) activates the transcription of all MHC class II genes. Previously, we reported that deletion of a carboxyl-terminal nuclear localization signal (NLS) results in the cytoplasmic localization of CIITA and one form of the type II bare lymphocyte syndrome. However, further sequential carboxyl-terminal deletions of CIITA resulted in mutant forms of the protein that localized predominantly to the nucleus, suggesting the presence of one or more additional NLS in the remaining sequence. We identified a 10-aa motif at residues 405-414 of CIITA that contains strong residue similarity to the classical SV40 NLS. Deletion of this region results in cytoplasmic localization of CIITA and loss of transactivation activity, both of which can be rescued by replacement with the SV40 NLS. Fusion of this sequence to a heterologous protein results in its nuclear translocation, confirming the identification of a NLS. In addition to nuclear localization sequences, CIITA is also controlled by nuclear export. Leptomycin B, an inhibitor of export, blocked the nuclear to cytoplasmic translocation of CIITA; however, leptomycin did not alter the localization of the NLS mutant, indicating that this region mediates only the rate of import and does not affect CIITA export. Several candidate nuclear export sequences were also found in CIITA and one affected the export of a heterologous protein. In summary, we have demonstrated that CIITA localization is balanced between the cytoplasm and nucleus due to the presence of NLS and nuclear export signal sequences in the CIITA protein.
Collapse
Affiliation(s)
- D E Cressman
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
10
|
Abstract
The major histocompatibility complex (MHC) class II transactivator (CIITA) regulates the expression of genes involved in the immune response, including MHC class II genes and the interleukin-4 gene. Interactions between CIITA and sequence-specific, DNA-binding proteins are required for CIITA to function as an activator of MHC class II genes. CIITA also interacts with the coactivators CBP (also called p300), and this interaction leads to synergistic activation of MHC class II promoters. Here, we report that CIITA forms complexes with itself and that a central region, including the GTP-binding domain is sufficient for self-association. Additionally, this central region interacts with the C-terminal leucine-rich repeat as well as the N-terminal acidic domain. LXXLL motifs residing in the GTP-binding domain are essential for self-association. Finally, distinct differences exist among various CIITA mutant proteins with regard to activation function, subcellular localization, and association with wild-type protein and dominant-negative potential.
Collapse
Affiliation(s)
- T J Sisk
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
11
|
Xi H, Goodwin B, Shepherd AT, Blanck G. Impaired class II transactivator expression in mice lacking interferon regulatory factor-2. Oncogene 2001; 20:4219-27. [PMID: 11464288 DOI: 10.1038/sj.onc.1204556] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2000] [Revised: 04/12/2001] [Accepted: 04/18/2001] [Indexed: 11/09/2022]
Abstract
Class II transactivator (CIITA) is required for both constitutive and inducible expression of MHC class II genes. IFN-gamma induced expression of CIITA in various cell types is directed by CIITA type IV promoter. The two transactivators, STAT1 and IRF-1, mediate the IFN-gamma activation of the type IV promoter by binding to the GAS and IRF-E of the promoter, respectively. In addition to IRF-1, IRF-2, another member of the IRF family, also activates the human CIITA type IV promoter, and IRF-2 cooperates with IRF-1 to activate the promoter in transient transfection assays. IRF-1 and IRF-2 can co-occupy the IRF-E of the human CIITA type IV promoter. To understand the effect of loss of IRF-2 on the endogenous CIITA expression, we assayed for CIITA expression in IRF-2 knock-out mice. Both basal and IFN-gamma induced CIITA expression were reduced in IRF-2 knock-out mice. At least half of the amount of inducible CIITA mRNA depends on IRF-2. The reduction of IFN-gamma induced CIITA mRNA in IRF-2 knock-out mice was due to the reduction of the type IV CIITA mRNA induction. The reduction of basal CIITA mRNA was apparently due to the reduction of CIITA mRNA originating from other promoters. These data indicate that IRF-2, like IRF-1, plays a critical role in the regulation of the endogenous CIITA gene. The implications in understanding the previously described phenotypes of IRF-2 defective mice are discussed.
Collapse
Affiliation(s)
- H Xi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida, FL33612, USA
| | | | | | | |
Collapse
|
12
|
Kanazawa S, Peterlin BM. Combinations of dominant-negative class II transactivator, p300 or CDK9 proteins block the expression of MHC II genes. Int Immunol 2001; 13:951-8. [PMID: 11431425 DOI: 10.1093/intimm/13.7.951] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The class II transactivator (CIITA) regulates not only the transcription of HLA-DR, -DQ, -DP, but also invariant chain, DMA and DMB genes. A hybrid mutant CIITA protein, which contained residues from positions 302 to 1130 in CIITA fused to the enhanced green fluorescent protein (EdCIITA), inhibited the function of the wild-type protein. EdCIITA extinguished the inducible and constitutive expression of MHC II genes in epithelial cells treated with IFN-gamma and B lymphoblastoid cells respectively. Also, it blocked T cell activation by superantigen. This inhibition correlated with the localization of EdCIITA but not CIITA in the cytoplasm of cells. However, when EdCIITA was co-expressed with a dominant-negative form of the nucleoporin Nup214/CAN, it also accumulated in the nucleus. These data suggest that EdCIITA not only competes with the wild-type protein for the binding to MHC II promoters but sequesters a critical co-factor of CIITA in the cytoplasm. CIITA also recruits the histone acetyltransferase cAMP responsive element binding protein (CREB) binding protein and positive transcription elongation factor b (p-TEFb) for the transcription of MHC II genes. Dominant-negative p300 (DNp300) or CDK9 (DNCDK9) proteins inhibited the function of CIITA and of the DRA promoter. Thus, combinations of EdCIITA and DNp300 and/or DNCDK9 proteins extinguished the transcription of MHC II genes. They might become useful for future genetic therapeutic approaches in organ transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- S Kanazawa
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0703, USA
| | | |
Collapse
|
13
|
Raval A, Howcroft TK, Weissman JD, Kirshner S, Zhu XS, Yokoyama K, Ting J, Singer DS. Transcriptional coactivator, CIITA, is an acetyltransferase that bypasses a promoter requirement for TAF(II)250. Mol Cell 2001; 7:105-15. [PMID: 11172716 DOI: 10.1016/s1097-2765(01)00159-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The CIITA coactivator is essential for transcriptional activation of MHC class II genes and mediates enhanced MHC class I transcription. We now report that CIITA contains an intrinsic acetyltransferase (AT) activity that maps to a region within the N-terminal segment of CIITA, between amino acids 94 and 132. The AT activity is regulated by the C-terminal GTP-binding domain and is stimulated by GTP. CIITA-mediated transactivation depends on the AT activity. Further, we report that, although constitutive MHC class I transcription depends on TAF(II)250, CIITA activates the promoter in the absence of functional TAF(II)250.
Collapse
Affiliation(s)
- A Raval
- Experimental Immunology Branch, National Cancer Institute, Building 10, Room 4B-36, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Okamoto H, Asamitsu K, Nishimura H, Kamatani N, Okamoto T. Reciprocal modulation of transcriptional activities between HIV-1 Tat and MHC class II transactivator CIITA. Biochem Biophys Res Commun 2000; 279:494-9. [PMID: 11118314 DOI: 10.1006/bbrc.2000.3972] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 is the etiologic agent of acquired immune deficiency syndrome (AIDS). Functional loss of antigen-presenting cells (APC) in HIV-1 infection is considered to be involved in AIDS pathogenesis. We found that actions of the viral transactivator Tat and the transactivator of MHC class II genes, CIITA, are mutually inhibitory. While Tat inhibited expression of MHC class II genes in APC, overexpression of CIITA inhibited Tat and subsequently HIV-1 replication. This action of Tat appears to be mediated by sequestering the common cofactor, cyclin T1, but not p300 and CBP. These reciprocal actions between Tat and CIITA not only explains the functional impairment of APC in HIV-1 infection but also rationalizes the suppression of HIV-1 virus load by induction of CIITA such as IFN-gamma.
Collapse
Affiliation(s)
- H Okamoto
- Department of Molecular Genetics, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | | | | | | | | |
Collapse
|
15
|
Hake SB, Masternak K, Kammerbauer C, Janzen C, Reith W, Steimle V. CIITA leucine-rich repeats control nuclear localization, in vivo recruitment to the major histocompatibility complex (MHC) class II enhanceosome, and MHC class II gene transactivation. Mol Cell Biol 2000; 20:7716-25. [PMID: 11003667 PMCID: PMC86349 DOI: 10.1128/mcb.20.20.7716-7725.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major histocompatibility complex (MHC) class II transactivator CIITA plays a pivotal role in the control of the cellular immune response through the quantitative regulation of MHC class II expression. We have analyzed a region of CIITA with similarity to leucine-rich repeats (LRRs). CIITA LRR alanine mutations abolish both the transactivation capacity of full-length CIITA and the dominant-negative phenotype of CIITA mutants with N-terminal deletions. We demonstrate direct interaction of CIITA with the MHC class II promoter binding protein RFX5 and could also detect novel interactions with RFXANK, NF-YB, and -YC. However, none of these interactions is influenced by CIITA LRR mutagenesis. On the other hand, chromatin immunoprecipitation shows that in vivo binding of CIITA to the MHC class II promoter is dependent on LRR integrity. LRR mutations lead to an impaired nuclear localization of CIITA, indicating that a major function of the CIITA LRRs is in nucleocytoplasmic translocation. There is, however, evidence that the CIITA LRRs are also involved more directly in MHC class II gene transactivation. CIITA interacts with a novel protein of 33 kDa in a manner sensitive to LRR mutagenesis. CIITA is therefore imported into the nucleus by an LRR-dependent mechanism, where it activates transcription through multiple protein-protein interactions with the MHC class II promoter binding complex.
Collapse
Affiliation(s)
- S B Hake
- Hans-Spemann-Laboratories, Max-Planck-Institute of Immunology, D79108 Freiburg, D79008 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Harton JA, Ting JP. Class II transactivator: mastering the art of major histocompatibility complex expression. Mol Cell Biol 2000; 20:6185-94. [PMID: 10938095 PMCID: PMC86093 DOI: 10.1128/mcb.20.17.6185-6194.2000] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2000] [Accepted: 05/18/2000] [Indexed: 11/20/2022] Open
Affiliation(s)
- J A Harton
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
17
|
Sisk TJ, Gourley T, Roys S, Chang CH. MHC class II transactivator inhibits IL-4 gene transcription by competing with NF-AT to bind the coactivator CREB binding protein (CBP)/p300. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2511-7. [PMID: 10946277 DOI: 10.4049/jimmunol.165.5.2511] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MHC class II transactivator (CIITA) activates the expression of multiple genes involved in Ag presentation, but inhibits Th2-type cytokine production, including IL-4, during Th1 cell differentiation. Th1 cells derived from CIITA-deficient mice produce both Th1- and Th2-type cytokines, and the introduction of CIITA to Th2 cells down-regulates Th2-type cytokine gene transcription. Here we show that the IL-4 promoter is regulated by multiple protein-protein interactions among CIITA, NF-AT, and coactivator CBP/p300. The introduction of CBP/p300 and NF-AT enhances the IL-4 promoter activity, and this activation was repressed by CIITA. Furthermore, our data show that CIITA competes with NF-AT to bind CBP/p300 and that this competition dramatically influences transcriptional activation of the IL-4 promoter. We identified two domains of CIITA that interact with two distinct domains of CBP/p300 that are also recognized by NF-AT. CIITA mutants that retain the ability to interact with CBP/p300 are sufficient to inhibit NF-AT-mediated IL-4 gene expression.
Collapse
Affiliation(s)
- T J Sisk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
18
|
Taxman DJ, Cressman DE, Ting JP. Identification of class II transcriptional activator-induced genes by representational difference analysis: discoordinate regulation of the DN alpha/DO beta heterodimer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1410-6. [PMID: 10903745 DOI: 10.4049/jimmunol.165.3.1410] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Class II transcriptional activator (CIITA) is a master regulator of MHC class II genes, including DR, DP, and DQ, and MHC class II-associated genes DM and invariant chain. To determine the repertoire of genes that is regulated by CIITA and to identify uncharacterized CIITA-inducible genes, we used representational difference analysis. Representational difference analysis screens for differentially expressed transcripts. All CIITA-induced genes were MHC class II related. We have identified the alpha subunit, DN alpha, of the class II processing factor DO as an additional CIITA-inducible gene. Northern analysis confirmed that DN alpha is induced by IFN-gamma in 2fTGH fibrosarcoma cells, and CIITA is necessary for high-level expression in B cells. The beta subunit, DO beta, is not inducible in fibrosarcoma cells by IFN-gamma or exogenous CIITA expression. Moreover, in contrast to other class II genes, DO beta expression remains high in the absence of CIITA in B cells. The promoters for DN alpha and DO beta contain the highly conserved WXY motifs, and, like other class II genes, expression of both DN alpha and DO beta requires RFX. These findings demonstrate that both DN alpha and DO beta are regulated by RFX. However, DN alpha is defined for the first time as a CIITA-inducible gene, and DO beta as a MHC class II gene whose expression is independent of CIITA.
Collapse
Affiliation(s)
- D J Taxman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
19
|
Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev 2000; 14:1156-66. [PMID: 10809673 PMCID: PMC316580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
By virtue of its control over major histocompatibility complex class II (MHC-II) gene expression, CIITA represents a key molecule in the regulation of adaptive immune responses. It was first identified as a factor that is defective in MHC-II deficiency, a hereditary disease characterized by the absence of MHC-II expression. CIITA is a highly regulated transactivator that governs all spatial, temporal, and quantitative aspects of MHC-II expression. It has been proposed to act as a non-DNA-binding transcriptional coactivator, but evidence that it actually functions at the level of MHC-II promoters was lacking. By means of chromatin immunoprecipitation assays, we show here for the first time that CIITA is physically associated with MHC-II, as well as HLA-DM, Ii, MHC-I, and beta(2)m promoters in vivo. To dissect the mechanism by which CIITA is recruited to the promoter, we have developed a DNA-dependent coimmunoprecipitation assay and a pull-down assay using immobilized promoter templates. We demonstrate that CIITA recruitment depends on multiple, synergistic protein-protein interactions with DNA-bound factors constituting the MHC-II enhanceosome. CIITA therefore represents a paradigm for a novel type of regulatory and gene-specific transcriptional cofactor.
Collapse
Affiliation(s)
- K Masternak
- Department of Genetics and Microbiology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev 2000. [DOI: 10.1101/gad.14.9.1156] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
By virtue of its control over major histocompatibility complex class II (MHC-II) gene expression, CIITA represents a key molecule in the regulation of adaptive immune responses. It was first identified as a factor that is defective in MHC-II deficiency, a hereditary disease characterized by the absence of MHC-II expression. CIITA is a highly regulated transactivator that governs all spatial, temporal, and quantitative aspects of MHC-II expression. It has been proposed to act as a non-DNA-binding transcriptional coactivator, but evidence that it actually functions at the level of MHC-II promoters was lacking. By means of chromatin immunoprecipitation assays, we show here for the first time that CIITA is physically associated with MHC-II, as well asHLA–DM, Ii, MHC-I, and β2mpromoters in vivo. To dissect the mechanism by which CIITA is recruited to the promoter, we have developed a DNA-dependent coimmunoprecipitation assay and a pull-down assay using immobilized promoter templates. We demonstrate that CIITA recruitment depends on multiple, synergistic protein–protein interactions with DNA-bound factors constituting the MHC-II enhanceosome. CIITA therefore represents a paradigm for a novel type of regulatory and gene-specific transcriptional cofactor.
Collapse
|
21
|
Kanazawa S, Okamoto T, Peterlin BM. Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. Immunity 2000; 12:61-70. [PMID: 10661406 DOI: 10.1016/s1074-7613(00)80159-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIDS and the bare lymphocyte syndrome (BLS) are severe combined immunodeficiencies. BLS results from mutations in genes that regulate the expression of class II major histocompatibility (MHC II) determinants. One of these is the class II transactivator (CIITA). HIV and its transcriptional transactivator (Tat) also block the expression of MHC II genes. By binding to the same surface in the cyclin T1, which together with CDK9 forms the positive transcription elongation factor b (P-TEFb) complex, Tat inhibits CIITA. CIITA can also activate transcription when tethered artificially to RNA. Moreover, a dominant-negative CDK9 protein inhibits the activity of MHC II promoters. Thus, CIITA is a novel cellular coactivator that binds to P-TEFb for the expression of its target genes.
Collapse
Affiliation(s)
- S Kanazawa
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
22
|
Nikcevich KM, Piskurich JF, Hellendall RP, Wang Y, Ting JP. Differential selectivity of CIITA promoter activation by IFN-gamma and IRF-1 in astrocytes and macrophages: CIITA promoter activation is not affected by TNF-alpha. J Neuroimmunol 1999; 99:195-204. [PMID: 10505975 DOI: 10.1016/s0165-5728(99)00117-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During demyelinating disease of the central nervous system (CNS), locally elevated cytokine levels may induce upregulation of MHC class II molecules on otherwise low expressing or negative cell types such as microglia and astrocytes, since IFN-gamma has been shown to induce MHC class II expression on these cell types in vitro. While many transcription factors are involved with MHC class II expression, only the class II transactivator (CIITA) is tightly coordinated with IFN-gamma-inducibility. Control of CIITA gene expression is complex, involving four distinct promoters, two of which (promoters III and IV) are IFN-gamma-inducible in certain cell types. Here we demonstrate that IFN-gamma treatment of rat astrocytes induces only CIITA promoter IV activity in contrast to the murine macrophage cell line RAW 264.7 that uses both IFN-gamma-inducible promoters. In contrast to previously published reports, promoter IV activation is completely dependent upon an intact interferon regulatory factor-1 (IRF-1) but not STAT binding site using promoter constructs specifically mutated at these positions. Importantly, while TNF-alpha is able to synergize with IFN-gamma to increase astrocyte MHC class II expression in vitro, we show that treatment of rat astrocytes with TNF-alpha has no effect on CIITA promoter activity. These data demonstrate that TNF-alpha augments MHC class II expression through a mechanism downstream or independent of CIITA induction.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/immunology
- Brain/cytology
- Brain/immunology
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Genes, MHC Class II/genetics
- Genes, MHC Class II/immunology
- Genes, Reporter
- Interferon Regulatory Factor-1
- Interferon-gamma/pharmacology
- Luciferases/genetics
- Macrophages/cytology
- Macrophages/immunology
- Nuclear Proteins
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Pregnancy
- Promoter Regions, Genetic/immunology
- Protein Binding/genetics
- Protein Binding/immunology
- Rats
- Rats, Sprague-Dawley
- STAT1 Transcription Factor
- Trans-Activators/genetics
- Trans-Activators/immunology
- Trans-Activators/metabolism
- Transfection
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- K M Nikcevich
- Department of Microbiology-Immunology, University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 27599-7295, USA
| | | | | | | | | |
Collapse
|
23
|
Zhu X, Pattenden S, Bremner R. pRB is required for interferon-gamma-induction of the MHC class II abeta gene. Oncogene 1999; 18:4940-7. [PMID: 10490828 DOI: 10.1038/sj.onc.1202876] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
pRB is required for IFN-gamma-induction of MHC class II in human tumor cell lines, providing a potential link between tumor suppressors and the immune system. However, other genes, such as cyclin D1, show pRB-dependency only in tumor cells, so by analogy, pRB may not be necessary for cII-regulation in normal cells. Here, we demonstrate that induction of the mouse MHC class II I-A heterodimer is normal in RB+/+ mouse embryonic fibroblasts (MEFs), but deficient in RB-/- MEFs. Inducibility is restored in RB-/- MEFs stably transfected with wild type RB cDNA or infected with an adenovirus expressing pRB. Thus, involvement of pRB in MHC class II expression is conserved in the mouse and is not an aberrant feature of tumorigenic, aneuploid, human tumor cells. Although cII genes are generally induced in a coordinate fashion, suggesting a common mechanism, we found that pRB was specifically required for induction of the Abeta, but not Aalpha or other MHC cII genes including Ebeta, Ii and H2-Malpha. Finally, IFN-gamma-induction of class II transactivator (CIITA), was pRB-independent, suggesting that pRB works downstream of this master-regulator of MHC class II expression.
Collapse
Affiliation(s)
- X Zhu
- Eye Research Institute for Canada, 399 Bathurst Street, Toronto, Ontario, Canada, M5T 2S8
| | | | | |
Collapse
|
24
|
Boss JM. A common set of factors control the expression of the MHC class II, invariant chain, and HLA-DM genes. Microbes Infect 1999; 1:847-53. [PMID: 10614001 DOI: 10.1016/s1286-4579(99)00234-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- J M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Fontes JD, Kanazawa S, Nekrep N, Peterlin BM. The class II transactivator CIITA is a transcriptional integrator. Microbes Infect 1999; 1:863-9. [PMID: 10614003 DOI: 10.1016/s1286-4579(99)00232-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- J D Fontes
- Department of Medicine, Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0703, USA
| | | | | | | |
Collapse
|
26
|
Pan-Yun Ting J, Zhu XS. Class II MHC genes: a model gene regulatory system with great biologic consequences. Microbes Infect 1999. [DOI: 10.1016/s1286-4579(99)00233-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Chang CH, Roys S, Gourley T. Class II transactivator: is it a master switch for MHC class II gene expression? Microbes Infect 1999; 1:879-85. [PMID: 10614005 DOI: 10.1016/s1286-4579(99)00230-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- C H Chang
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | | | |
Collapse
|
28
|
Harton JA, Cressman DE, Chin KC, Der CJ, Ting JP. GTP binding by class II transactivator: role in nuclear import. Science 1999; 285:1402-5. [PMID: 10464099 DOI: 10.1126/science.285.5432.1402] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Class II transactivator (CIITA) is a global transcriptional coactivator of human leukocyte antigen-D (HLA-D) genes. CIITA contains motifs similar to guanosine triphosphate (GTP)-binding proteins. This report shows that CIITA binds GTP, and mutations in these motifs decrease its GTP-binding and transactivation activity. Substitution of these motifs with analogous sequences from Ras restores CIITA function. CIITA exhibits little GTPase activity, yet mutations in CIITA that confer GTPase activity reduce transcriptional activity. GTP binding by CIITA correlates with nuclear import. Thus, unlike other GTP-binding proteins, CIITA is involved in transcriptional activation that uses GTP binding to facilitate its own nuclear import.
Collapse
Affiliation(s)
- J A Harton
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
29
|
Gourley T, Roys S, Lukacs NW, Kunkel SL, Flavell RA, Chang CH. A novel role for the major histocompatibility complex class II transactivator CIITA in the repression of IL-4 production. Immunity 1999; 10:377-86. [PMID: 10204493 DOI: 10.1016/s1074-7613(00)80037-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Class II transactivator (CIITA) is known as a coactivator for MHC class II gene expression in antigen-presenting cells. Surprisingly, when CIITA-/- CD4 T cells were stimulated in the presence of IL-12, they produced not only IFNgamma but also high levels of IL-4. The IL-4 production is due to the accumulation of IL-4 gene transcripts in Th1 cells. This transcriptional control is observed in T cells differentiating to the Th1 but not Th2 lineage, consistent with induction of expression of the CIITA gene in T cells by IFNgamma. Thus, in addition to its role in transactivation of genes involved in antigen presentation, CIITA plays a critical role during the T cell differentiation by negatively regulating the IL-4 gene transcription.
Collapse
Affiliation(s)
- T Gourley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | | | | | |
Collapse
|
30
|
Fontes JD, Kanazawa S, Jean D, Peterlin BM. Interactions between the class II transactivator and CREB binding protein increase transcription of major histocompatibility complex class II genes. Mol Cell Biol 1999; 19:941-7. [PMID: 9858618 PMCID: PMC83952 DOI: 10.1128/mcb.19.1.941] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/1998] [Accepted: 10/14/1998] [Indexed: 11/20/2022] Open
Abstract
Class II major histocompatibility (class II) genes are regulated in a B-cell-specific and gamma interferon-inducible fashion. The master switch for the expression of these genes is the class II transactivator (CIITA). In this report, we demonstrate that one of the functions of CIITA is to recruit the CREB binding protein (CBP) to class II promoters. Not only functional but also specific binding interactions between CIITA and CBP were demonstrated. Moreover, a dominant negative form of CBP decreased the activity of class II promoters and levels of class II determinants on the surface of cells. Finally, the inhibition of class II gene expression by the glucocorticoid hormone could be attributed to the squelching of CBP by the glucocorticoid receptor. We conclude that CBP, a histone acetyltransferase, plays an important role in the transcription of class II genes.
Collapse
Affiliation(s)
- J D Fontes
- Howard Hughes Medical Institute, Departments of Medicine, Immunology, and Microbiology, University of California San Francisco, San Francisco, California 94143-0703, USA
| | | | | | | |
Collapse
|
31
|
Piskurich JF, Linhoff MW, Wang Y, Ting JP. Two distinct gamma interferon-inducible promoters of the major histocompatibility complex class II transactivator gene are differentially regulated by STAT1, interferon regulatory factor 1, and transforming growth factor beta. Mol Cell Biol 1999; 19:431-40. [PMID: 9858567 PMCID: PMC83901 DOI: 10.1128/mcb.19.1.431] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/1998] [Accepted: 09/28/1998] [Indexed: 01/14/2023] Open
Abstract
The major histocompatibility complex (MHC) class II transactivator (CIITA) is the master regulatory factor required for appropriate expression of class II MHC genes. Understanding the expression of CIITA is key to understanding the regulation of class II MHC genes. This report describes the independent regulation of two distinct CIITA promoters by cytokines with opposing functions, gamma interferon (IFN-gamma) and transforming growth factor beta (TGF-beta). A functional analysis of deletion mutations of the upstream promoter (promoter III) identified an IFN-gamma-responsive region located approximately 5 kb from the transcriptional start site. An in vivo DNase I hypersensitivity analysis detected a hypersensitive site in this area which supports the relevance of this region. When the downstream promoter (promoter IV) was studied by in vivo genomic footprinting, IFN-gamma-induced changes at putative binding sites for STAT1, interferon regulatory factor 1 (IRF-1), and E-box proteins were seen. Gel shift and supershift analyses for IRF-1 confirmed the in vivo footprint results. The role of the IFN-gamma-inducible transcription factor STAT1 was examined functionally. Although both promoters were controlled by STAT1, promoter-specific regulation was exhibited. The IFN-gamma response of promoter III was completely dependent on STAT1 and not IRF-1, while promoter IV was partially activated by IRF-1 in the total absence of STAT1 expression. While both promoters were affected by TGF-beta, activation of promoter III by IFN-gamma was more severely diminished by TGF-beta treatment. The differential control of CIITA promoters by TGF-beta, IRF-1, and STAT1 may be important in refining regulation of class II MHC genes in different cell types and under different stimulatory conditions.
Collapse
Affiliation(s)
- J F Piskurich
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
32
|
Murphy SP, Tomasi TB. Absence of MHC class II antigen expression in trophoblast cells results from a lack of class II transactivator (CIITA) gene expression. Mol Reprod Dev 1998; 51:1-12. [PMID: 9712312 DOI: 10.1002/(sici)1098-2795(199809)51:1<1::aid-mrd1>3.0.co;2-l] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although the mechanism(s) underlying the failure of the maternal immune system to reject the semiallogeneic fetus have not been clearly defined, the absence of MHC class II antigen expression by fetal trophoblast cells very likely plays a critical role in the maintenance of normal pregnancy. However, the regulation of class II antigen expression in trophoblast cells is poorly understood. Class II transactivator (CIITA) is a transacting factor that is required for both constitutive and IFN-gamma-inducible class II gene transcription. In this report we demonstrate that the inability of trophoblast cells to express class II antigens is due to a lack of CIITA gene expression. Trophoblast cell lines derived from human, mouse, and rat do not express CIITA, and expression is not inducible by IFN-gamma. The absence of CIITA gene expression in trophoblasts treated with IFN-gamma does not result from a defect in the IFN-gamma receptor or the JAK/STAT pathway, because the classical IFN-gamma inducible gene encoding the guanylate-binding protein is expressed. Transfection of CIITA expression vectors into trophoblast cells results in activation of class II promoters, endogenous class II mRNA expression, and subsequent expression of class II antigens on the cell surface. In contrast, class I mRNA is not expressed in human trophoblast cells transfected with CIITA expression vectors. Thus, trophoblast cells contain all of the DNA binding factors necessary for class II transcription, and ectopic expression of CIITA is sufficient to activate class II, but not class I expression. The failure of trophoblast cells to express CIITA, and therefore class II antigens, provides a potential mechanism by which the fetus is protected from the maternal immune system during pregnancy.
Collapse
Affiliation(s)
- S P Murphy
- Department of Immunology, Laboratory of Molecular Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | |
Collapse
|
33
|
Currie RA. Biochemical characterization of the NF-Y transcription factor complex during B lymphocyte development. J Biol Chem 1998; 273:18220-9. [PMID: 9660784 DOI: 10.1074/jbc.273.29.18220] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor, NF-Y, plays a critical role in tissue-specific major histocompatibility complex class II gene transcription. In this report the biochemical properties of the heterotrimeric NF-Y complex have been characterized during stage-specific B-cell development, and in several class II- mutant B-cell lines, which represent distinct bare lymphocyte syndrome class II genetic complementation groups. The NF-Y complex derived from class II+ mature B-cells bound with high affinity to anion exchangers, and eluted as an intact trimeric complex, whereas, NF-Y derived from class II- plasma B-cells, and from bare lymphocyte syndrome group II cell lines, RJ2.2.5 and RM3, dissociated into discrete NF-YA and NF-YB:C subunit fractions. Recombination of the MPC11 plasma B-cell derived NF-Y A:B:C complex with the low molecular mass protein fraction, NF-Y-associated factors (YAFs), derived from mature A20 B-cell nuclei, conferred high affinity anion exchange binding to NF-Y as an intact trimeric complex. Recombination of the native NF-YA:B:C complex with the transcriptional cofactor, PC4, likewise conferred high affinity NF-Y binding to anion exchangers, and stabilized NF-Y interaction with CCAAT-box DNA motifs in vitro. Interaction between PC4 and NF-Y was mapped to the C-terminal region of PC4, and the subunit interaction subdomain of the highly conserved DNA binding-subunit interaction domain (DBD) of NF-YA. These results suggest that in class II+ mature B-cells NF-Y is associated with the protein cofactor, PC4, which may play an important role in NF-Y-mediated transcriptional control of class II genes.
Collapse
Affiliation(s)
- R A Currie
- Laboratory of Gene Regulation, The Wheeler Institute for Biomedical Research, Huntington, New York 11743, USA
| |
Collapse
|
34
|
Wright KL, Chin KC, Linhoff M, Skinner C, Brown JA, Boss JM, Stark GR, Ting JP. CIITA stimulation of transcription factor binding to major histocompatibility complex class II and associated promoters in vivo. Proc Natl Acad Sci U S A 1998; 95:6267-72. [PMID: 9600954 PMCID: PMC27653 DOI: 10.1073/pnas.95.11.6267] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CIITA is a master transactivator of the major histocompatibility complex class II genes, which are involved in antigen presentation. Defects in CIITA result in fatal immunodeficiencies. CIITA activation is also the control point for the induction of major histocompatibility complex class II and associated genes by interferon-gamma, but CIITA does not bind directly to DNA. Expression of CIITA in G3A cells, which lack endogenous CIITA, followed by in vivo genomic footprinting, now reveals that CIITA is required for the assembly of transcription factor complexes on the promoters of this gene family, including DRA, Ii, and DMB. CIITA-dependent promoter assembly occurs in interferon-gamma-inducible cell types, but not in B lymphocytes. Dissection of the CIITA protein indicates that transactivation and promoter loading are inseparable and reveal a requirement for a GTP binding motif. These findings suggest that CIITA may be a new class of transactivator.
Collapse
Affiliation(s)
- K L Wright
- Lineberger Comprehensive Cancer Center and the Department of Immunology and Microbiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Information is increasingly available concerning the molecular events that occur during primary and antigen-dependent stages of B cell development. In this review the roles of transcription factors and coactivators are discussed with respect to changes in expression patterns of various genes during B cell development. Transcriptional regulation is also discussed in the context of developmentally regulated immunoglobulin gene V(D)J recombination, somatic hypermutation, and isotype switch recombination.
Collapse
Affiliation(s)
- A Henderson
- Department of Veterinary Science, Pennsylvania State University, University Park 16802, USA.
| | | |
Collapse
|
36
|
Piskurich JF, Wang Y, Linhoff MW, White LC, Ting JPY. Identification of Distinct Regions of 5′ Flanking DNA That Mediate Constitutive, IFN-γ, STAT1, and TGF-β-Regulated Expression of the Class II Transactivator Gene. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.1.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Class II transactivator (CIITA) is a master regulator required for constitutive and IFN-γ-inducible expression of class II MHC genes. Although the role of CIITA is greatly appreciated, the mechanisms underlying constitutive and IFN-γ-induced expression of CIITA are not understood. The study of CIITA induction is extremely important, but has been fraught with difficulty. This study describes for the first time a large (7-kb) fragment of 5′ flanking sequences that mediates the B cell-specific, IFN-γ-induced, and TGF-β-suppressed expression of CIITA. This pattern of expression matches the authentic expression of the endogenous gene. Within the 7-kb fragment, sequences that lie between nucleotides −545 and −113 relative to the transcriptional start site are critical for constitutive promoter expression in B cells. In contrast, inducible activation of CIITA by IFN-γ requires sequences contained in an additional 4 kb of upstream DNA. This region mediates an IFN-γ response when linked to either the endogenous CIITA promoter or a heterologous promoter. A role for STAT1 in regulation of the CIITA promoter is shown by the rescue of IFN-γ induction by expression of STAT1 in STAT1-defective U3A cells. TGF-β significantly inhibits IFN-γ-mediated induction of the CIITA promoter in 2fTGH fibroblasts, which indicates that the promoter is a target for TGF-β. This inhibition is achieved by suppression of the basal promoter. This study provides a focal point for understanding the mechanism of B cell-specific, IFN-γ-induced, and TGF-β-suppressed expression of CIITA.
Collapse
Affiliation(s)
- Janet F. Piskurich
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ying Wang
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Michael W. Linhoff
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Leigh C. White
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jenny P.-Y. Ting
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
37
|
Osborne A, Tschickardt M, Blanck G. Retinoblastoma protein expression facilitates chromatin remodeling at the HLA-DRA promoter. Nucleic Acids Res 1997; 25:5095-102. [PMID: 9396821 PMCID: PMC147150 DOI: 10.1093/nar/25.24.5095] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The major histocompatibility complex (MHC) class II genes encode a series of heterodimeric cell surface glycoproteins that bind peptide antigen. The MHC class II/peptide complex is bound by the T-cell receptor of CD4(+) T cells, thereby stimulating an immune response. The MHC class II genes are coordinately regulated by conserved promoter elements and are inducible by IFN-gamma. Furthermore, IFN-gamma induction of the MHC class II genes in solid human tumor lines requires retinoblastoma protein (Rb). In vivo footprinting analyses of the HLA-DRA gene, which encodes the heavy chain subunit of the human MHC class II molecule, HLA-DR, revealed that Rb facilitates occupancy of multiple HLA-DRA promoter elements. Detecting the effect of Rb on HLA-DRA promoter occupancy in vivo required IFN-gamma treatment. However, use of a variation on the in vivo footprinting technique, nuclei footprinting, which assays for promoter occupancy in isolated nuclei, revealed that expression of Rb facilitates promoter occupancy even in the absence of IFN-gamma. These results indicate that expression of Rb leads to modification of the chromatin environment of the HLA-DRA promoter independently of transcription.
Collapse
Affiliation(s)
- A Osborne
- Department of Biochemistry and Molecular Biology and Institute for Biomolecular Science, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | |
Collapse
|
38
|
Fontes JD, Jiang B, Peterlin BM. The class II trans-activator CIITA interacts with the TBP-associated factor TAFII32. Nucleic Acids Res 1997; 25:2522-8. [PMID: 9171108 PMCID: PMC146770 DOI: 10.1093/nar/25.12.2522] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The class II trans- activator (CIITA) is the main transcriptional co-activator for the expression of MHC class II proteins. Its N-terminal 125 amino acids function as an independent transcriptional activation domain. Analyses of the primary amino acid sequence of the activation domain predict the presence of three alpha-helices, each with a high proportion of acidic residues. Using site-directed mutagenesis, we found that two of these predicted alpha-helices are required for full transcriptional activation by CIITA. Moreover, a CIITA protein in which both functional alpha-helices have been deleted displays a dominant negative phenotype. This activation domain of CIITA interacts with the 32 kDa subunit of the general transcription complex TFIID, TAFII32. Decreased transcriptional activation by N-terminal deletions of CIITA is correlated directly with their reduced binding to TAFII32. We conclude that interactions between TAFII32 and CIITA are responsible for activation of class II genes.
Collapse
Affiliation(s)
- J D Fontes
- Howard Hughes Medical Institute, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143-0724, USA
| | | | | |
Collapse
|
39
|
Abstract
Genetic and biochemical analyses have identified multiple DNA-binding and non-DNA-binding proteins that functionally regulate MHC class II genes. These include RFX, X2BP, NF-Y, CIITA, OCT-2 and Bob1. One of the essential non-DNA-binding proteins, CIITA, appears to function as a limiting molecular switch that is responsible for the control of class II expression and the regulation of expression by interferon-gamma.
Collapse
Affiliation(s)
- J M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, 3131 Rollins Research Center, Atlanta, GA 30322, USA.
| |
Collapse
|