1
|
Cassavaugh J, Longhi MS, Robson SC. Impact of Estrogen on Purinergic Signaling in Microvascular Disease. Int J Mol Sci 2025; 26:2105. [PMID: 40076726 PMCID: PMC11900469 DOI: 10.3390/ijms26052105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Microvascular ischemia, especially in the heart and kidneys, is associated with inflammation and metabolic perturbation, resulting in cellular dysfunction and end-organ failure. Heightened production of adenosine from extracellular nucleotides released in response to inflammation results in protective effects, inclusive of adaptations to hypoxia, endothelial cell nitric oxide release with the regulation of vascular tone, and inhibition of platelet aggregation. Purinergic signaling is modulated by ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39, which is the dominant factor dictating vascular metabolism of extracellular ATP to adenosine throughout the cardiovascular tissues. Excess levels of extracellular purine metabolites, however, have been associated with metabolic and cardiovascular diseases. Physiological estrogen signaling is anti-inflammatory with vascular protective effects, but pharmacological replacement use in transgender and postmenopausal individuals is associated with thrombosis and other side effects. Crucially, the loss of this important sex hormone following menopause or with gender reassignment is associated with worsened pro-inflammatory states linked to increased oxidative stress, myocardial fibrosis, and, ultimately, diastolic dysfunction, also known as Yentl syndrome. While there is a growing body of knowledge on distinctive purinergic or estrogen signaling and endothelial health, much less is known about the relationships between the two signaling pathways. Continued studies of the interactions between these pathways will allow further insight into future therapeutic targets to improve the cardiovascular health of aging women without imparting deleterious side effects.
Collapse
Affiliation(s)
- Jessica Cassavaugh
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (M.S.L.); (S.C.R.)
| | | | | |
Collapse
|
2
|
Truffin D, Marchand F, Chatelais M, Chêne G, Saias L, Herbst F, Lipner J, King AJ. Impact of Methylated Cyclodextrin KLEPTOSE ® CRYSMEB on Inflammatory Responses in Human In Vitro Models. Int J Mol Sci 2024; 25:9748. [PMID: 39273695 PMCID: PMC11396153 DOI: 10.3390/ijms25179748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
KLEPTOSE® CRYSMEB methylated cyclodextrin derivative displays less methylated group substitution than randomly methylated cyclodextrin. It has demonstrated an impact on atherosclerosis and neurological diseases, linked in part to cholesterol complexation and immune response, however, its impact on inflammatory cascade pathways is not clear. Thus, the impact of KLEPTOSE® CRYSMEB on various pharmacological targets was assessed using human umbilical vein endothelial cells under physiological and inflammatory conditions, followed by screening against twelve human primary cell-based systems designed to model complex human tissue and disease biology of the vasculature, skin, lung, and inflammatory tissues using the BioMAP® Diversity PLUS® panel. Finally, its anti-inflammatory mechanism was investigated on peripheral blood mononuclear cells to evaluate anti-inflammatory or pro-resolving properties. The results showed that KLEPTOSE® CRYSMEB can modulate the immune system in vitro and potentially manage vascular issues by stimulating the expression of molecules involved in the crosstalk between immune cells and other cell types. It showed anti-inflammatory effects that were driven by the inhibition of pro-inflammatory cytokine secretion and could have different impacts on different tissue types. Moreover, this cyclodextrin showed no clear impact on pro-resolving lipid mediators. Additionally, it appeared that the mechanism of action of KLEPTOSE® CRYSMEB seems to not be shared by other well-known anti-inflammatory molecules. Finally, KLEPTOSE® CRYSMEB may have an anti-inflammatory impact, which could be due to its effect on receptors such as TLR or direct complexation with LPS or PGE2, and conversely, this methylated cyclodextrin could stimulate a pro-inflammatory response involving lipid mediators and on proteins involved in communication with immune cells, probably via interaction with membrane cholesterol.
Collapse
Affiliation(s)
- Damien Truffin
- Roquette Frères, Rue de la Haute Loge, 62136 Lestrem, France
| | - Flora Marchand
- ProfileHIT, 7 Rue du Buisson, 44680 Sainte-Pazanne, France
| | | | - Gérald Chêne
- Ambiotis, 3 Can Biotech 3 r Satellites, 31400 Toulouse, France
| | - Laure Saias
- Ambiotis, 3 Can Biotech 3 r Satellites, 31400 Toulouse, France
| | - Frauke Herbst
- Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| | - Justin Lipner
- Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| | - Alastair J King
- Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| |
Collapse
|
3
|
Lee NT, Savvidou I, Selan C, Calvello I, Vuong A, Wright DK, Brkljaca R, Willcox A, Chia JSJ, Wang X, Peter K, Robson SC, Medcalf RL, Nandurkar HH, Sashindranath M. Development of endothelial-targeted CD39 as a therapy for ischemic stroke. J Thromb Haemost 2024; 22:2331-2344. [PMID: 38754782 DOI: 10.1016/j.jtha.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Ischemic stroke is characterized by a necrotic lesion in the brain surrounded by an area of dying cells termed the penumbra. Salvaging the penumbra either with thrombolysis or mechanical retrieval is the cornerstone of stroke management. At-risk neuronal cells release extracellular adenosine triphosphate, triggering microglial activation and causing a thromboinflammatory response, culminating in endothelial activation and vascular disruption. This is further aggravated by ischemia-reperfusion injury that follows all reperfusion therapies. The ecto-enzyme CD39 regulates extracellular adenosine triphosphate by hydrolyzing it to adenosine, which has antithrombotic and anti-inflammatory properties and reverses ischemia-reperfusion injury. OBJECTIVES The objective off the study was to determine the efficacy of our therapeutic, anti-VCAM-CD39 in ischaemic stroke. METHODS We developed anti-VCAM-CD39 that targets the antithrombotic and anti-inflammatory properties of recombinant CD39 to the activated endothelium of the penumbra by binding to vascular cell adhesion molecule (VCAM)-1. Mice were subjected to 30 minutes of middle cerebral artery occlusion and analyzed at 24 hours. Anti-VCAM-CD39 or control agents (saline, nontargeted CD39, or anti-VCAM-inactive CD39) were given at 3 hours after middle cerebral artery occlusion. RESULTS Anti-VCAM-CD39 treatment reduced neurologic deficit; magnetic resonance imaging confirmed significantly smaller infarcts together with an increase in cerebrovascular perfusion. Anti-VCAM-CD39 also restored blood-brain barrier integrity and reduced microglial activation. Coadministration of anti-VCAM-CD39 with thrombolytics (tissue plasminogen activator [tPA]) further reduced infarct volumes and attenuated blood-brain barrier permeability with no associated increase in intracranial hemorrhage. CONCLUSION Anti-VCAM-CD39, uniquely targeted to endothelial cells, could be a new stroke therapy even when administered 3 hours postischemia and may further synergize with thrombolytic therapy to improve stroke outcomes.
Collapse
Affiliation(s)
- Natasha Ting Lee
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Ioanna Savvidou
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Carly Selan
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Ilaria Calvello
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Amy Vuong
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robert Brkljaca
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Abbey Willcox
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Joanne S J Chia
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Harshal H Nandurkar
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Maithili Sashindranath
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Luo C, Liu X, Liu Y, Shao H, Gao J, Tao J. Upregulation of CD39 During Gout Attacks Promotes Spontaneous Remission of Acute Gouty Inflammation. Inflammation 2024; 47:664-677. [PMID: 38055119 DOI: 10.1007/s10753-023-01936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Gout is a self-limiting form of inflammatory arthropathy caused by the formation of urate crystals due to hyperuricemia. The resolution of gout involves the transition of proinflammatory M1-type macrophages to anti-inflammatory M2-type macrophages, as well as neutrophil-mediated extracellular trap (NET) formation. However, the underlying mechanisms of these changes are not clear. Studies have confirmed that high expression of CD39 on macrophages and neutrophils can trigger the polarization of macrophages from a proinflammatory state to an anti-inflammatory state. Recent studies have shown that the pathogenesis of gout involves extracellular ATP (eATP), and the synergistic effect of MSU and extracellular ATP can cause gout. CD39 is a kind of ATP hydrolysis enzyme that can degrade eATP, suggesting that CD39 may inhibit the aggravation of inflammation in gout and participate in the remission mechanism of gout. To confirm this hypothesis, using data mining and flow cytometry, we first found that CD39 expression was significantly upregulated on CD14 + monocytes and neutrophils in gout patients during the acute phase. Inhibition of CD39 by lentivirus or a CD39 inhibitor in acute gout models aggravated gouty arthritis and delayed gout remission. Apyrase, a functional analog of CD39, can significantly reduce the inflammatory response and promote gout remission in acute gout model mice. Our findings confirm that the upregulation of CD39 during gout flare-ups promotes spontaneous remission of acute gouty inflammation.
Collapse
Affiliation(s)
- Chengyu Luo
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Xingyue Liu
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Yiming Liu
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Huijun Shao
- Department of Rheumatology and Immunology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China
| | - Jie Gao
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China.
- Department of Rheumatology and Immunology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China.
| |
Collapse
|
5
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
6
|
Gomchok D, Ge RL, Wuren T. Platelets in Renal Disease. Int J Mol Sci 2023; 24:14724. [PMID: 37834171 PMCID: PMC10572297 DOI: 10.3390/ijms241914724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney disease is a major global health concern, affecting millions of people. Nephrologists have shown interest in platelets because of coagulation disorders caused by renal diseases. With a better understanding of platelets, it has been found that these anucleate and abundant blood cells not only play a role in hemostasis, but also have important functions in inflammation and immunity. Platelets are not only affected by kidney disease, but may also contribute to kidney disease progression by mediating inflammation and immune effects. This review summarizes the current evidence regarding platelet abnormalities in renal disease, and the multiple effects of platelets on kidney disease progression. The relationship between platelets and kidney disease is still being explored, and further research can provide mechanistic insights into the relationship between thrombosis, bleeding, and inflammation related to kidney disease, and elucidate targeted therapies for patients with kidney disease.
Collapse
Affiliation(s)
- Drolma Gomchok
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| |
Collapse
|
7
|
Willcox A, Lee NT, Nandurkar HH, Sashindranath M. CD39 in the development and progression of pulmonary arterial hypertension. Purinergic Signal 2022; 18:409-419. [PMID: 35947229 PMCID: PMC9832216 DOI: 10.1007/s11302-022-09889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 01/14/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating progressive disease characterised by pulmonary arterial vasoconstriction and vascular remodelling. Endothelial dysfunction has emerged as a contributing factor in the development of PAH. However, despite progress in the understanding of the pathophysiology of this disease, current therapies fail to impact upon long-term outcomes which remain poor in most patients. Recent observations have suggested the disturbances in the balance between ATP and adenosine may be integral to the vascular remodelling seen in PAH. CD39 is an enzyme important in regulating these nucleos(t)ides which may also provide a novel pathway to target for future therapies. This review summarises the role of adenosine signalling in the development and progression of PAH and highlights the therapeutic potential of CD39 for treatment of PAH.
Collapse
Affiliation(s)
- Abbey Willcox
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Monash AMREP Building, Level 1, Walkway, via The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Natasha Ting Lee
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Monash AMREP Building, Level 1, Walkway, via The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Harshal H Nandurkar
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Monash AMREP Building, Level 1, Walkway, via The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Maithili Sashindranath
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Monash AMREP Building, Level 1, Walkway, via The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| |
Collapse
|
8
|
The Interplay of Endothelial P2Y Receptors in Cardiovascular Health: From Vascular Physiology to Pathology. Int J Mol Sci 2022; 23:ijms23115883. [PMID: 35682562 PMCID: PMC9180512 DOI: 10.3390/ijms23115883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
The endothelium plays a key role in blood vessel health. At the interface of the blood, it releases several mediators that regulate local processes that protect against the development of cardiovascular disease. In this interplay, there is increasing evidence for a role of extracellular nucleotides and endothelial purinergic P2Y receptors (P2Y-R) in vascular protection. Recent advances have revealed that endothelial P2Y1-R and P2Y2-R mediate nitric oxide-dependent vasorelaxation as well as endothelial cell proliferation and migration, which are processes involved in the regeneration of damaged endothelium. However, endothelial P2Y2-R, and possibly P2Y1-R, have also been reported to promote vascular inflammation and atheroma development in mouse models, with endothelial P2Y2-R also being described as promoting vascular remodeling and neointimal hyperplasia. Interestingly, at the interface with lipid metabolism, P2Y12-R has been found to trigger HDL transcytosis through endothelial cells, a process known to be protective against lipid deposition in the vascular wall. Better characterization of the role of purinergic P2Y-R and downstream signaling pathways in determination of the endothelial cell phenotype in healthy and pathological environments has clinical potential for the prevention and treatment of cardiovascular diseases.
Collapse
|
9
|
Thrombo-Inflammation: A Focus on NTPDase1/CD39. Cells 2021; 10:cells10092223. [PMID: 34571872 PMCID: PMC8469976 DOI: 10.3390/cells10092223] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence for a link between inflammation and thrombosis. Following tissue injury, vascular endothelium becomes activated, losing its antithrombotic properties whereas inflammatory mediators build up a prothrombotic environment. Platelets are the first elements to be activated following endothelial damage; they participate in physiological haemostasis, but also in inflammatory and thrombotic events occurring in an injured tissue. While physiological haemostasis develops rapidly to prevent excessive blood loss in the endothelium activated by inflammation, hypoxia or by altered blood flow, thrombosis develops slowly. Activated platelets release the content of their granules, including ATP and ADP released from their dense granules. Ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39 dephosphorylates ATP to ADP and to AMP, which in turn, is hydrolysed to adenosine by ecto-5'-nucleotidase (CD73). NTPDase1/CD39 has emerged has an important molecule in the vasculature and on platelet surfaces; it limits thrombotic events and contributes to maintain the antithrombotic properties of endothelium. The aim of the present review is to provide an overview of platelets as cellular elements interfacing haemostasis and inflammation, with a particular focus on the emerging role of NTPDase1/CD39 in controlling both processes.
Collapse
|
10
|
Huang YA, Chen JC, Wu CC, Hsu CW, Ko AMS, Chen LC, Kuo ML. Reducing Lung ATP Levels and Alleviating Asthmatic Airway Inflammation through Adeno-Associated Viral Vector-Mediated CD39 Expression. Biomedicines 2021; 9:biomedicines9060656. [PMID: 34201190 PMCID: PMC8228057 DOI: 10.3390/biomedicines9060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/04/2022] Open
Abstract
Asthma is a chronic respiratory inflammatory disease. Patients usually suffer long-term symptoms and high medical expenses. Extracellular ATP (eATP) has been identified as a danger signal in innate immunity and serves as a potent inflammatory mediator for asthma. Hydrolyzing eATP in lungs might be a potential approach to alleviate asthmatic inflammation. Recombinant adeno-associated virus (rAAV) vectors that contain tissue-specific cap protein have been demonstrated to efficiently transfer exogenous genes into the lung tissues. To test anti-inflammation efficacy of rAAV-mediated CD39 gene transfer, rAAV-CD39 was generated and applied to OVA-mediated asthmatic mice. BALB/c mice were sensitized intraperitoneally and challenged intratracheally with OVA and treated with rAAV-CD39. At the end of procedure, some inflammatory features were examined. rAAV-CD39 treatment downregulated the levels of pulmonary eATP by the rescued expression of CD39. Several asthmatic features, such as airway hyperresponsiveness, eosinophilia, mucin deposition, and IL-5/IL-13 production in the lungs were decreased in the rAAV-CD39-treated mice. Reduced IL-5/IL-13 production and increased frequency of CD4+FoxP3+ regulatory T cells were detected in draining lymph nodes of rAAV-CD39 treated mice. This evidence suggested that rAAV-mediated CD39 gene transfer attenuated the asthmatic airway inflammation locally. The results suggest that rAAV-CD39 might have therapeutic potential for asthma.
Collapse
Affiliation(s)
- Yung-An Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Jeng-Chang Chen
- Department of Surgery, Chang Gung Memorial Hospital-Linkou, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Wei Hsu
- Department of Otolaryngology—Head and Neck Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11574, Taiwan
| | - Albert Min-Shan Ko
- Department of Cardiovascular Diseases, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
| | - Li-Chen Chen
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City 23664, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Cardiovascular Diseases, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City 23664, Taiwan
- Correspondence: ; Tel.: +886-3-2118800 (ext. 3319)
| |
Collapse
|
11
|
Xiang Z, Jiang X, Ji R, Yuan H. Enhanced expression of P2X4 purinoceptors in pyramidal neurons of the rat hippocampal CA1 region may be involved ischemia-reperfusion injury. Purinergic Signal 2021; 17:425-438. [PMID: 33966147 DOI: 10.1007/s11302-021-09780-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke is the most serious disease that harms human beings. In principle, its treatment is to restore blood flow supply as soon as possible. However, after the blood flow is restored, it will lead to secondary brain injury, that is, ischemia-reperfusion injury. The mechanism of ischemia-reperfusion injury is very complicated. This study showed that P2X4 receptors in the pyramidal neurons of rat hippocampus were significantly upregulated in the early stage of ischemia-reperfusion injury. Neurons with high expression of P2X4 receptors are neurons that are undergoing apoptosis. Intraventricular injection of the P2X4 receptor antagonist 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) and PSB-12062 can partially block neuronal apoptosis, to promote the survival of neurons, indicating that ATP through P2X4 receptors is involved in the process of cerebral ischemia-reperfusion injury. Therefore, identifying the mechanism of neuronal degeneration induced by extracellular ATP via P2X4 receptors after ischemia-reperfusion will likely find new targets for the treatment of ischemia-reperfusion injury, and will provide a useful theoretical basis for the treatment of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Rihui Ji
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| |
Collapse
|
12
|
Huang W, Shimizu H, Bianchi J, Matovinovic K, Ayares DL, Gotoh M, Korbutt GS, Rajotte RV, Rayat GR. Impact of donor and prolonged cold ischemia time of neonatal pig pancreas on neonatal pig islet transplant outcome. Xenotransplantation 2021; 28:e12663. [PMID: 33230864 DOI: 10.1111/xen.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Genetically modified pigs (GMP) have been developed to alleviate the shortage of donors in human islet transplantation and rejection. In this study, we characterized and compared the islets from GalTKO, GalTKO/hCD46, GalTKO/hCD46/hCD39, and wild-type (WT) neonatal pigs. METHODS Islets were isolated from GMP and WT pig pancreases that have been packaged with ice pack for at least 24 hours. The difference in gene expression and function of islets were evaluated by microarray analysis and transplantation of islets under the kidney capsule of streptozotocin-induced diabetic immune-deficient mice, respectively. Blood glucose levels of these mice were monitored weekly post-transplantation for >100 days, and islet grafts were collected and evaluated for the presence of endocrine cells. RESULTS The genes involved in extracellular components, cell adhesion, glucose metabolism, and inflammatory response are differentially expressed between GMP and WT pig islets. Variation in the ability of pig islets in correcting the diabetic state of the mouse recipients appears to be dependent on the pig donor. In addition, prolonged cold ischemia time had a negative effect on the transplant outcome. All normoglycemic mice were able to respond well to glucose challenge despite the initial differences in the ability of islet transplants to reverse their diabetic state. Islet xenografts of normoglycemic mice contained abundant insulin- and glucagon-positive cells. CONCLUSION The effect of GMP and WT neonatal pig islet transplants on hyperglycemia in mice appears to be dependent on the pig donor, and prolonged cold ischemia time negatively affects the neonatal pig islet transplant outcome.
Collapse
Affiliation(s)
- Wenlong Huang
- Faculty of Medicine and Dentistry, Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, Canada
- General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hirofumi Shimizu
- Department of Surgery, Fukushima Medical University, Fukushima, Japan
| | | | - Kaja Matovinovic
- Faculty of Medicine and Dentistry, Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Mitsukazu Gotoh
- Department of Surgery, Fukushima Medical University, Fukushima, Japan
| | - Gregory S Korbutt
- Faculty of Medicine and Dentistry, Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Ray V Rajotte
- Faculty of Medicine and Dentistry, Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Gina R Rayat
- Faculty of Medicine and Dentistry, Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, Ping Y, Li W, Zhang J, Wang T, Church GM. Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev 2021; 168:229-245. [PMID: 32275950 DOI: 10.1016/j.addr.2020.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The extreme shortage of human donor organs for treatment of patients with end-stage organ failures is well known. Xenotransplantation, which might provide unlimited organ supply, is a most promising strategy to solve this problem. Domestic pigs are regarded as ideal organ-source animals owing to similarity in anatomy, physiology and organ size to humans as well as high reproductive capacity and low maintenance cost. However, several barriers, which include immune rejection, inflammation and coagulative dysfunctions, as well as the cross-species transmission risk of porcine endogenous retrovirus, blocked the pig-to-human xenotransplantation. With the rapid development of genome engineering technologies and the potent immunosuppressive medications in recent years, these barriers could be eliminated through genetic modification of pig genome together with the administration of effective immunosuppressants. A number of candidate genes involved in the regulation of immune response, inflammation and coagulation have been explored to optimize porcine xenograft survival in non-human primate recipients. PERV inactivation in pigs has also been accomplished to firmly address the safety issue in pig-to-human xenotransplantation. Many encouraging preclinical milestones have been achieved with some organs surviving for years. Therefore, the clinical trials of some promising organs, such as islet, kidney and heart, are aimed to be launched in the near future.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Taoyan Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yifan Niu
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Yibin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhongxin Sun
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jufang Zhang
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
14
|
Shokoples BG, Paradis P, Schiffrin EL. P2X7 Receptors: An Untapped Target for the Management of Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2020; 41:186-199. [PMID: 32998520 PMCID: PMC7752223 DOI: 10.1161/atvbaha.120.315116] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic low-grade inflammation contributes to the development of several diseases, including cardiovascular disease. Adequate strategies to target inflammation in cardiovascular disease are in their infancy and remain an avenue of great interest. The purinergic receptor P2X7 is a ubiquitously expressed receptor that predominately mediates inflammation and cellular death. P2X7 is a ligand-gated cation channel that is activated in response to high concentrations of extracellular ATP, triggering the assembly and activation of the NLRP3 (nuclear oligomerization domain like receptor family pyrin domain containing 3) inflammasome and subsequent release of proinflammatory cytokines IL (interleukin)-1β and IL-18. Increased P2X7 activation and IL-1β and IL-18 concentrations have been implicated in the development of many cardiovascular conditions including hypertension, atherosclerosis, ischemia/reperfusion injury, and heart failure. P2X7 receptor KO (knockout) mice exhibit a significant attenuation of the inflammatory response, which corresponds with reduced disease severity. P2X7 antagonism blunts blood pressure elevation in hypertension and progression of atherosclerosis in animal models. IL-1β and IL-18 inhibition has shown efficacy in clinical trials reducing major adverse cardiac events, including myocardial infarction, and heart failure. With several P2X7 antagonists available with proven safety margins, P2X7 antagonism could represent an untapped potential for therapeutic intervention in cardiovascular disorders.
Collapse
Affiliation(s)
- Brandon G. Shokoples
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Pierre Paradis
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Ernesto L. Schiffrin
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Medicine (E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Khawaja AA, Taylor KA, Lovell AO, Nelson M, Gazzard B, Boffito M, Emerson M. HIV Antivirals Affect Endothelial Activation and Endothelial-Platelet Crosstalk. Circ Res 2020; 127:1365-1380. [PMID: 32998637 DOI: 10.1161/circresaha.119.316477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RATIONALE People living with HIV on effective antiretroviral therapy are at increased risk of cardiovascular complications, possibly due to off-target drug effects. Some studies have associated antiretroviral therapy with increased risk of myocardial infarction and endothelial dysfunction, but a link between endothelial function and antiretrovirals has not been established. OBJECTIVE To determine the effects of antiretrovirals in common clinical use upon in vitro endothelial function to better understand cardiovascular risk in people living with HIV. METHODS AND RESULTS Human umbilical cord vein endothelial cells or human coronary artery endothelial cells were pretreated with the antiretrovirals abacavir sulphate (ABC), tenofovir disoproxil fumarate, or tenofovir alafenamide. Expression of adhesion molecules, ectonucleotidases (CD39 and CD73), tissue factor (TF), endothelial-derived microparticle (EMP) numbers and phenotype, and platelet activation were evaluated by flow cytometry. TF and ectonucleotidase activities were measured using colourimetric plate-based assays. ABC-treated endothelial cells had higher levels of ICAM (intercellular adhesion molecule)-1 and TF expression following TNF (tumor necrosis factor)-α stimulation. In contrast, tenofovir disoproxil fumarate and tenofovir alafenamide treatment gave rise to greater populations of CD39+CD73+ cells. These cell surface differences were also observed within EMP repertoires. ABC-treated cells and EMP had greater TF activity, while tenofovir disoproxil fumarate- and tenofovir alafenamide-treated cells and EMP displayed higher ectonucleotidase activity. Finally, EMP isolated from ABC-treated cells enhanced collagen-evoked platelet integrin activation and α-granule release. CONCLUSIONS We report differential effects of antiretrovirals used in the treatment of HIV upon endothelial function. ABC treatment led to an inflammatory, prothrombotic endothelial phenotype that promoted platelet activation. In contrast, tenofovir disoproxil fumarate and tenofovir alafenamide conferred potentially cardioprotective properties associated with ectonucleotidase activity. These observations establish a link between antiretrovirals and specific functional effects that provide insight into cardiovascular disease in people living with HIV.
Collapse
Affiliation(s)
- Akif A Khawaja
- National Heart and Lung Institute (A.A.K., K.A.T., M.E.), Imperial College London, London, United Kingdom
| | - Kirk A Taylor
- National Heart and Lung Institute (A.A.K., K.A.T., M.E.), Imperial College London, London, United Kingdom
| | - Andrew O Lovell
- Department of Infectious Disease (A.O.L., M.N., B.G., M.B.), Imperial College London, London, United Kingdom
| | - Mark Nelson
- National Heart and Lung Institute (A.A.K., K.A.T., M.E.), Imperial College London, London, United Kingdom.,Department of Infectious Disease (A.O.L., M.N., B.G., M.B.), Imperial College London, London, United Kingdom.,Chelsea and Westminster NHS Foundation Trust, London, United Kingdom (M.N., B.G., M.B.)
| | - Brian Gazzard
- Department of Infectious Disease (A.O.L., M.N., B.G., M.B.), Imperial College London, London, United Kingdom.,Chelsea and Westminster NHS Foundation Trust, London, United Kingdom (M.N., B.G., M.B.)
| | - Marta Boffito
- Chelsea and Westminster NHS Foundation Trust, London, United Kingdom (M.N., B.G., M.B.)
| | - Michael Emerson
- Department of Infectious Disease (A.O.L., M.N., B.G., M.B.), Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Semenova S, Shatrova A, Vassilieva I, Shamatova M, Pugovkina N, Negulyaev Y. Adenosine-5'-triphosphate suppresses proliferation and migration capacity of human endometrial stem cells. J Cell Mol Med 2020; 24:4580-4588. [PMID: 32150662 PMCID: PMC7176887 DOI: 10.1111/jcmm.15115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
Extracellular ATP through the activation of the P2X and P2Y purinergic receptors affects the migration, proliferation and differentiation of many types of cells, including stem cells. High plasticity, low immunogenicity and immunomodulation ability of mesenchymal stem cells derived from human endometrium (eMSCs) allow them to be considered a prominent tool for regenerative medicine. Here, we examined the role of ATP in the proliferation and migration of human eMSCs. Using a wound healing assay, we showed that ATP-induced activation of purinergic receptors suppressed the migration ability of eMSCs. We found the expression of one of the ATP receptors, the P2X7 receptor in eMSCs. In spite of this, cell activation with specific P2X7 receptor agonist, BzATP did not significantly affect the cell migration. The allosteric P2X7 receptor inhibitor, AZ10606120 also did not prevent ATP-induced inhibition of cell migration, confirming that inhibition occurs without P2X7 receptor involvement. Flow cytometry analysis showed that high concentrations of ATP did not have a cytotoxic effect on eMSCs. At the same time, ATP induced the cell cycle arrest, suppressed the proliferative and migration capacity of eMSCs and therefore could affect the regenerative potential of these cells.
Collapse
Affiliation(s)
- Svetlana Semenova
- Institute of Cytology of the Russian Academy of ScienceSaint‐PetersburgRussia
| | - Alla Shatrova
- Institute of Cytology of the Russian Academy of ScienceSaint‐PetersburgRussia
| | - Irina Vassilieva
- Institute of Cytology of the Russian Academy of ScienceSaint‐PetersburgRussia
| | - Margarita Shamatova
- Institute of Cytology of the Russian Academy of ScienceSaint‐PetersburgRussia
| | - Natalja Pugovkina
- Institute of Cytology of the Russian Academy of ScienceSaint‐PetersburgRussia
| | - Yuri Negulyaev
- Institute of Cytology of the Russian Academy of ScienceSaint‐PetersburgRussia
| |
Collapse
|
17
|
Asada Y, Yamashita A, Sato Y, Hatakeyama K. Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathol Int 2020; 70:309-322. [PMID: 32166823 PMCID: PMC7317428 DOI: 10.1111/pin.12921] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Atherothrombosis is a leading cause of cardiovascular mortality and morbidity worldwide. The underlying mechanisms of atherothrombosis comprise plaque disruption and subsequent thrombus formation. Arterial thrombi are thought to mainly comprise aggregated platelets as a result of high blood velocity. However, thrombi that develop on disrupted plaques comprise not only aggregated platelets, but also large amounts of fibrin, because plaques contain large amount of tissue factor that activate the coagulation cascade. Since not all thrombi grow large enough to occlude the vascular lumen, the propagation of thrombi is also critical in the onset of adverse vascular events. Various factors such as vascular wall thrombogenicity, local hemorheology, systemic thrombogenicity and fibrinolytic activity modulate thrombus formation and propagation. Although the activation mechanisms of platelets and the coagulation cascade have been intensively investigated, the underlying mechanisms of occlusive thrombus formation on disrupted plaques remain obscure. Pathological findings derived from humans and animal models of human atherothrombosis have uncovered pathophysiological processes during thrombus formation and propagation after plaque disruption, and novel factors have been identified that modulate the activation of platelets and the coagulation cascade. These findings have also provided insights into the development of novel drugs for atherothrombosis.
Collapse
Affiliation(s)
- Yujiro Asada
- Pathophysiology Section, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Pathophysiology Section, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki, Miyazaki, Japan
| | - Kinta Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University, Nara, Japan
| |
Collapse
|
18
|
Dixit A, Cheema H, George J, Iyer S, Dudeja V, Dawra R, Saluja AK. Extracellular release of ATP promotes systemic inflammation during acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G463-G475. [PMID: 31433214 PMCID: PMC6842987 DOI: 10.1152/ajpgi.00395.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/12/2019] [Accepted: 07/27/2019] [Indexed: 02/07/2023]
Abstract
In the current study, we explored the role of extracellular ATP (eATP) in promoting systemic inflammation during development of acute pancreatitis (AP). Release of extracellular (e)ATP was evaluated in plasma and bronchoalveolar lavage fluid (BALF) of mice with experimental acute pancreatitis (AP). Prophylactic intervention using apyrase or suramin was used to understand the role and contribution of eATP in pancreatitis-associated systemic injury. AP of varying severity was induced in C57BL/6 mice using 1-day or 2-day caerulein, caerulein + LPS and l-arginine models. eATP was measured in plasma and BALF. Mice were treated with suramin or apyrase in the caerulein and l-arginine models of AP. Plasma cytokines, lung, and pancreatic myeloperoxidase, and morphometric analysis of pancreatic and lung histology, were used to assess the severity of pancreatitis. Plasma eATP and purinergic 2 (P2) receptors in the pancreas and lungs were significantly elevated in the experimental models of AP. Blocking the effect of eATP by suramin led to reduced levels of plasma IL-6 and TNFα as well as reduced lung, and pancreatic injury. Neutralizing eATP with apyrase reduced systemic injury but did not ameliorate local injury. The results of this study support the role of eATP and P2 receptors in promoting systemic inflammation during AP. Modulating purinergic signaling during AP can be an important therapeutic strategy in controlling systemic inflammation and, thus, systemic inflammatory response syndrome during AP.NEW & NOTEWORTHY Released ATP from injured cells promotes systemic inflammation in acute pancreatitis.
Collapse
Affiliation(s)
- Ajay Dixit
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Hassam Cheema
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - John George
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Srikanth Iyer
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Vikas Dudeja
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Rajinder Dawra
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Ashok K Saluja
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
19
|
Abstract
Acute kidney injury (AKI), a major public health problem associated with high mortality and increased risk of progression towards end-stage renal disease, is characterized by the activation of intra-renal haemostatic and inflammatory processes. Platelets, which are present in high numbers in the circulation and can rapidly release a broad spectrum of bioactive mediators, are important acute modulators of inflammation and haemostasis, as they are the first cells to arrive at sites of acute injury, where they interact with endothelial cells and leukocytes. Diminished control of platelet reactivity by endothelial cells and/or an increased release of platelet-activating mediators can lead to uncontrolled platelet activation in AKI. As increased platelet sequestration and increased expression levels of the markers P-selectin, thromboxane A2, CC-chemokine ligand 5 and platelet factor 4 on platelets have been reported in kidneys following AKI, platelet activation likely plays a part in AKI pathology. Results from animal models and some clinical studies highlight the potential of antiplatelet therapies in the preservation of renal function in the context of AKI, but as current strategies also affect other cell types and non-platelet-derived mediators, additional studies are required to further elucidate the extent of platelet contribution to the pathology of AKI and to determine the best therapeutic approach by which to specifically target related pathogenic pathways.
Collapse
Affiliation(s)
- Marcel P B Jansen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
20
|
|
21
|
Sharma AK, Charles EJ, Zhao Y, Narahari AK, Baderdinni PK, Good ME, Lorenz UM, Kron IL, Bayliss DA, Ravichandran KS, Isakson BE, Laubach VE. Pannexin-1 channels on endothelial cells mediate vascular inflammation during lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 2018; 315:L301-L312. [PMID: 29745255 PMCID: PMC6139659 DOI: 10.1152/ajplung.00004.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury (IRI), which involves inflammation, vascular permeability, and edema, remains a major challenge after lung transplantation. Pannexin-1 (Panx1) channels modulate cellular ATP release during inflammation. This study tests the hypothesis that endothelial Panx1 is a key mediator of vascular inflammation and edema after I/R and that IRI can be blocked by Panx1 antagonism. A murine hilar ligation model of IRI was used whereby left lungs underwent 1 h of ischemia and 2 h of reperfusion. Treatment of wild-type mice with Panx1 inhibitors (carbenoxolone or probenecid) significantly attenuated I/R-induced pulmonary dysfunction, edema, cytokine production, and neutrophil infiltration versus vehicle-treated mice. In addition, VE-Cad-CreERT2+/Panx1fl/fl mice (tamoxifen-inducible deletion of Panx1 in vascular endothelium) treated with tamoxifen were significantly protected from IRI (reduced dysfunction, endothelial permeability, edema, proinflammatory cytokines, and neutrophil infiltration) versus vehicle-treated mice. Furthermore, extracellular ATP levels in bronchoalveolar lavage fluid is Panx1-mediated after I/R as it was markedly attenuated by Panx1 antagonism in wild-type mice and by endothelial-specific Panx1 deficiency. Panx1 gene expression in lungs after I/R was also significantly elevated compared with sham. In vitro experiments demonstrated that TNF-α and/or hypoxia-reoxygenation induced ATP release from lung microvascular endothelial cells, which was attenuated by Panx1 inhibitors. This study is the first, to our knowledge, to demonstrate that endothelial Panx1 plays a key role in mediating vascular permeability, inflammation, edema, leukocyte infiltration, and lung dysfunction after I/R. Pharmacological antagonism of Panx1 activity may be a novel therapeutic strategy to prevent IRI and primary graft dysfunction after lung transplantation.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Eric J Charles
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Yunge Zhao
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Adishesh K Narahari
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Pranav K Baderdinni
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Ulrike M Lorenz
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Irving L Kron
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| |
Collapse
|
22
|
Asada Y, Yamashita A, Sato Y, Hatakeyama K. Thrombus Formation and Propagation in the Onset of Cardiovascular Events. J Atheroscler Thromb 2018; 25:653-664. [PMID: 29887539 PMCID: PMC6099067 DOI: 10.5551/jat.rv17022] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ischemic cardiovascular disease is a major cause of morbidity and mortality worldwide and thrombus formation on disrupted atherosclerotic plaques is considered to trigger its onset. Although the activation of platelets and coagulation pathways has been investigated intensively, the mechanisms of thrombus formation on disrupted plaques have not been understood in detail. Platelets are thought to play a central role in the formation of arterial thrombus because of rapid flow conditions; however, thrombus that develops on disrupted plaques consistently includes large amounts of fibrin in addition to aggregated platelets. While, thrombus does not always become large enough to completely occlude the vascular lumen, indicating that the propagation of thrombus is also critical for the onset of cardiovascular events. Various factors, such as vascular wall thrombogenicity, altered blood flow and imbalanced blood hemostasis, modulate thrombus formation and propagation on disrupted plaques. Pathological findings derived from humans and experimental animal models of atherothrombosis have identified important factors that affect thrombus formation and propagation, namely platelets, extrinsic and intrinsic coagulation factors, proinflammatory factors, plaque hypoxia and blood flow alteration. These findings might provide insight into the mechanisms of thrombus formation and propagation on disrupted plaques that lead to the onset of cardiovascular events.
Collapse
Affiliation(s)
- Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki
| | | |
Collapse
|
23
|
Cooperation between NMDA-Type Glutamate and P2 Receptors for Neuroprotection during Stroke: Combining Astrocyte and Neuronal Protection. ACTA ACUST UNITED AC 2018. [DOI: 10.3390/neuroglia1010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Excitotoxicity is the principle mechanism of acute injury during stroke. It is defined as the unregulated accumulation of excitatory neurotransmitters such as glutamate within the extracellular space, leading to over-activation of receptors, ionic disruption, cell swelling, cytotoxic Ca2+ elevation and a feed-forward loop where membrane depolarisation evokes further neurotransmitter release. Glutamate-mediated excitotoxicity is well documented in neurons and oligodendrocytes but drugs targeting glutamate excitotoxicity have failed clinically which may be due to their inability to protect astrocytes. Astrocytes make up ~50% of the brain volume and express high levels of P2 adenosine triphosphate (ATP)-receptors which have excitotoxic potential, suggesting that glutamate and ATP may mediate parallel excitotoxic cascades in neurons and astrocytes, respectively. Mono-cultures of astrocytes expressed an array of P2X and P2Y receptors can produce large rises in [Ca2+]i; mono-cultured neurons showed lower levels of functional P2 receptors. Using high-density 1:1 neuron:astrocyte co-cultures, ischemia (modelled as oxygen-glucose deprivation: OGD) evoked a rise in extracellular ATP, while P2 blockers were highly protective of both cell types. GluR blockers were only protective of neurons. Neither astrocyte nor neuronal mono-cultures showed significant ATP release during OGD, showing that cell type interactions are required for ischemic release. P2 blockers were also protective in normal-density co-cultures, while low doses of combined P2/GluR blockers where highly protective. These results highlight the potential of combined P2/GluR block for protection of neurons and glia.
Collapse
|
24
|
Kutryb-Zajac B, Mateuszuk L, Zukowska P, Jasztal A, Zabielska MA, Toczek M, Jablonska P, Zakrzewska A, Sitek B, Rogowski J, Lango R, Slominska EM, Chlopicki S, Smolenski RT. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition. Cardiovasc Res 2018; 112:590-605. [PMID: 28513806 DOI: 10.1093/cvr/cvw203] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023] Open
Abstract
Aims Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Methods and results Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular inflammation and improved endothelial function. Conclusions This study highlights the importance of extracellular nucleotides and adenosine metabolism in the atherosclerotic vessel in both experimental and clinical setting. The increased eADA activity marks an early stage of atherosclerosis, contributes to its progression and could represent a novel target for therapy.
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Paulina Zukowska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Magdalena A Zabielska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Marta Toczek
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Jan Rogowski
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Romuald Lango
- Department of Cardiac Anaesthesiology, Chair of Anaesthesiology and Intensive Care, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
25
|
Roy C, Tabiasco J, Caillon A, Delneste Y, Merot J, Favre J, Guihot AL, Martin L, Nascimento DC, Ryffel B, Robson SC, Sévigny J, Henrion D, Kauffenstein G. Loss of vascular expression of nucleoside triphosphate diphosphohydrolase-1/CD39 in hypertension. Purinergic Signal 2017; 14:73-82. [PMID: 29236227 DOI: 10.1007/s11302-017-9597-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolase-1, the major vascular/immune ectonucleotidase, exerts anti-thrombotic and immunomodulatory actions by hydrolyzing extracellular nucleotides (danger signals). Hypertension is characterized by vascular wall remodeling, endothelial dysfunction, and immune infiltration. Here our aim was to investigate the impact of arterial hypertension on CD39 expression and activity in mice. Arterial expression of CD39 was determined by reverse transcription quantitative real-time PCR in experimental models of hypertension, including angiotensin II (AngII)-treated mice (1 mg/kg/day, 21 days), deoxycorticosterone acetate-salt mice (1% salt and uninephrectomy, 21 days), and spontaneously hypertensive rats. A decrease in CD39 expression occurred in the resistance and conductance arteries of hypertensive animals with no effect on lymphoid organs. In AngII-treated mice, a decrease in CD39 protein levels (Western blot) was corroborated by reduced arterial nucleotidase activity, as evaluated by fluorescent (etheno)-ADP hydrolysis. Moreover, serum-soluble ADPase activity, supported by CD39, was significantly decreased in AngII-treated mice. Experiments were conducted in vitro on vascular cells to determine the elements underlying this downregulation. We found that CD39 transcription was reduced by proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor alpha on vascular smooth muscle cells and by IL-6 and anti-inflammatory and profibrotic cytokine transforming growth factor beta 1 on endothelial cells. In addition, CD39 expression was downregulated by mechanical stretch on vascular cells. Arterial expression and activity of CD39 were decreased in hypertension as a result of both a proinflammatory environment and mechanical strain exerted on vascular cells. Reduced ectonucleotidase activity may alter the vascular condition, thus enhancing arterial damage, remodeling, or thrombotic events.
Collapse
Affiliation(s)
- Charlotte Roy
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Julie Tabiasco
- CNRS UMR 6299, INSERM 892, CRCNA, University of Angers, Angers, France
| | - Antoine Caillon
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Yves Delneste
- CNRS UMR 6299, INSERM 892, CRCNA, University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Jean Merot
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Julie Favre
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Anne Laure Guihot
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Ludovic Martin
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Daniele C Nascimento
- CNRS, UMR 7355, Orleans, France.,CNRS UMR 7355, INEM, University of Orleans, Orleans, France
| | - Bernhard Ryffel
- CNRS, UMR 7355, Orleans, France.,CNRS UMR 7355, INEM, University of Orleans, Orleans, France
| | - Simon C Robson
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Daniel Henrion
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Gilles Kauffenstein
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France. .,University Hospital of Angers, Angers, France.
| |
Collapse
|
26
|
Chisci E, De Giorgi M, Zanfrini E, Testasecca A, Brambilla E, Cinti A, Farina L, Kutryb-Zajac B, Bugarin C, Villa C, Grassilli E, Combi R, Gaipa G, Cerrito MG, Rivolta I, Smolenski RT, Lavitrano M, Giovannoni R. Simultaneous overexpression of human E5NT and ENTPD1 protects porcine endothelial cells against H 2O 2-induced oxidative stress and cytotoxicity in vitro. Free Radic Biol Med 2017; 108:320-333. [PMID: 28389406 DOI: 10.1016/j.freeradbiomed.2017.03.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/28/2017] [Accepted: 03/29/2017] [Indexed: 12/12/2022]
Abstract
Ischemia-reperfusion injury (IRI) and oxidative stress still limit the survival of cells and organs in xenotransplantation models. Ectonucleotidases play an important role in inflammation and IRI in transplantation settings. We tested the potential protective effects derived by the co-expression of the two main vascular ectonucleotidases, ecto-5'-nucleotidase (E5NT) and ecto nucleoside triphosphate diphosphohydrolase 1 (ENTPD1), in an in vitro model of H2O2-induced oxidative stress and cytotoxicity. We produced a dicistronic plasmid (named pCX-DI-2A) for the co-expression of human E5NT and ENTPD1 by using the F2A technology. pCX-DI-2A-transfected porcine endothelial cells simultaneously overexpressed hE5NT and hENTPD1, which were correctly processed and localized on the plasma membrane. Furthermore, such co-expression system led to the synergistic enzymatic activity of hE5NT and hENTPD1 as shown by the efficient catabolism of pro-inflammatory and pro-thrombotic extracellular adenine nucleotides along with the enhanced production of the anti-inflammatory molecule adenosine. Interestingly, we found that the hE5NT/hENTPD1 co-expression system conferred protection to cells against H2O2-induced oxidative stress and cytotoxicity. pCX-DI-2A-transfected cells showed reduced activation of caspase 3/7 and cytotoxicity than mock-, hE5NT- and hENTPD1-transfected cells. Furthermore, pCX-DI-2A-transfected cells showed decreased H2O2-induced production of ROS as compared to the other control cell lines. The cytoprotective phenotype observed in pCX-DI-2A-transfected cells was associated with higher detoxifying activity of catalase as well as increased activation of the survival signaling molecules Akt, extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). Our data add new insights to the protective effects of the combination of hE5NT and hENTPD1 against oxidative stress and constitute a proof of concept for testing this new genetic combination in pig-to-non-human primates xenotransplantation models.
Collapse
Affiliation(s)
- Elisa Chisci
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Marco De Giorgi
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy; Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Elisa Zanfrini
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Angela Testasecca
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Elena Brambilla
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Alessandro Cinti
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Laura Farina
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Cristina Bugarin
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, 20900 Monza, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Emanuela Grassilli
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Giuseppe Gaipa
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, 20900 Monza, Italy
| | - Maria Grazia Cerrito
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | | | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| |
Collapse
|
27
|
Chen P, Gao H, Lu Y, Nie H, Liu Z, Zhao Y, Fan N, Zou Q, Dai Y, Tang A, Hara H, Cai Z, Cooper DKC, Lai L, Mou L. Altered expression of eNOS, prostacyclin synthase, prostaglandin G/H synthase, and thromboxane synthase in porcine aortic endothelial cells after exposure to human serum-relevance to xenotransplantation. Cell Biol Int 2017; 41:798-808. [PMID: 28462511 DOI: 10.1002/cbin.10782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/23/2017] [Indexed: 01/27/2023]
Abstract
Under normal conditions, the activity of platelets is stringently and precisely balanced between activation and quiescent state. This guarantees rapid hemostasis and avoids uncontrolled thrombosis. However, excessive platelet activation and resulting thrombotic microangiopathy are frequently observed in pig-to-primate xenotransplantation models. Endothelium-derived inhibitory mechanisms play an important role in regulation of platelet activation. These mainly include nitric oxide (NO), prostacyclin PGI2 , and adenosine, which are synthesized by endothelial NO synthases (eNOS), prostacyclin synthase, and CD39/CD73, respectively. We investigated whether endothelium-derived regulatory mechanisms are affected in porcine aortic endothelial cells (PAECs) after exposure to human serum. In the present study, exposure of PAECs or porcine iliac arteries to human serum suppressed gene expression of eNOS and prostacyclin synthase, while induced gene expression of prostaglandin G/H synthase and thromboxane synthase. Simultaneously, exposure to human serum reduced NO and PGI2 production in PAEC culture supernatants. Thus, human serum altered the balance of endothelium-derived inhibitory mechanisms in PAECs, which may indicate a regulatory mechanism of excessive platelet activation in pig-to-primate xenotransplantation.
Collapse
Affiliation(s)
- Pengfei Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hanchao Gao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Huirong Nie
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhaoming Liu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nana Fan
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qingjian Zou
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aifa Tang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
28
|
Abstract
The presence of cirrhosis poses an increased risk of both thrombosis and bleeding in individuals with chronic liver disease. This duality is a result of a dynamic disequilibrium between procoagulant and anticoagulant states in individuals with cirrhosis. The mechanism of this imbalance in cirrhosis remains unclear. It is known that the progression of cirrhosis leads to decreased synthetic function and a concurrent lack of natural anticoagulants. Other proposed mechanisms contributing to this hemostatic imbalance include decreased platelet production, increased platelet destruction from hypersplenism, decreased synthesis of Vitamin K-dependent and independent clotting factors and anticoagulant factors, and alterations in purinergic signaling pathways. Given the current state of flux in our understanding of bleeding and thrombophilia in cirrhosis, the recommendations for treatment of these conditions are still evolving. We provide a current update on the proposed pathophysiology of altered hemostasis and thrombophilia in cirrhosis. We discuss recent studies in portal vein thrombosis (PVT) and venous thromboembolism (VTE), which are the common thrombotic consequences of cirrhosis, resulting in substantive morbidity and mortality. To address these, we discuss new prophylactic interventions and current treatment options to manage the heightened risk of thrombosis in cirrhosis, while limiting hemorrhagic complications.
Collapse
Affiliation(s)
- Brisas Flores
- Division of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard University, 330 Brookline Avenue, 02215, Boston, USA
| | - Hirsh D Trivedi
- Liver Center. Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Simon C Robson
- Liver Center. Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Alan Bonder
- Liver Center. Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
29
|
Abstract
OBJECTIVES Ischemic tissue injury contributes to significant morbidity and mortality and is implicated in a range of pathologic conditions, including but not limited to myocardial infarction, ischemic stroke, and acute kidney injury. The associated reperfusion phase is responsible for the activation of the innate and adaptive immune system, further accentuating inflammation. Adenosine triphosphate molecule has been implicated in various ischemic conditions, including stroke and myocardial infarction. STUDY SELECTION Adenosine triphosphate is a well-defined intracellular energy transfer and is commonly referred to as the body's "energy currency." However, Laboratory studies have demonstrated that extracellular adenosine triphosphate has the ability to initiate inflammation and is therefore referred to as a damage-associated molecular pattern. Purinergic receptors-dependent signaling, proinflammatory cytokine release, increased Ca influx into cells, and subsequent apoptosis have been shown to form a common underlying extracellular adenosine triphosphate molecular mechanism in ischemic organ injury. CONCLUSIONS In this review, we aim to discuss the molecular mechanisms behind adenosine triphosphate-mediated ischemic tissue injury and evaluate the role of extracellular adenosine triphosphate in ischemic injury in specific organs, in order to provide a greater understanding of the pathophysiology of this complex process. We also appraise potential future therapeutic strategies to limit damage in various organs, including the heart, brain, kidneys, and lungs.
Collapse
|
30
|
Covarrubias R, Chepurko E, Reynolds A, Huttinger ZM, Huttinger R, Stanfill K, Wheeler DG, Novitskaya T, Robson SC, Dwyer KM, Cowan PJ, Gumina RJ. Role of the CD39/CD73 Purinergic Pathway in Modulating Arterial Thrombosis in Mice. Arterioscler Thromb Vasc Biol 2016; 36:1809-20. [PMID: 27417582 DOI: 10.1161/atvbaha.116.307374] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/29/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Circulating blood cells and endothelial cells express ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and ecto-5'-nucleotidase (CD73). CD39 hydrolyzes extracellular ATP or ADP to AMP. CD73 hydrolyzes AMP to adenosine. The goal of this study was to examine the interplay between CD39 and CD73 cascade in arterial thrombosis. APPROACH AND RESULTS To determine how CD73 activity influences in vivo thrombosis, the time to ferric chloride-induced arterial thrombosis was measured in CD73-null mice. In response to 5% FeCl3, but not to 10% FeCl3, there was a significant decrease in the time to thrombosis in CD73-null mice compared with wild-type mice. In mice overexpressing CD39, ablation of CD73 did not inhibit the prolongation in the time to thrombosis conveyed by CD39 overexpression. However, the CD73 inhibitor α-β-methylene-ADP nullified the prolongation in the time to thrombosis in human CD39 transgenic (hC39-Tg)/CD73-null mice. To determine whether hematopoietic-derived cells or endothelial cell CD39 activity regulates in vivo arterial thrombus, bone marrow transplant studies were conducted. FeCl3-induced arterial thrombosis in chimeric mice revealed a significant prolongation in the time to thrombosis in hCD39-Tg reconstituted wild-type mice, but not on wild-type reconstituted hCD39-Tg mice. Monocyte depletion with clodronate-loaded liposomes normalized the time to thrombosis in hCD39-Tg mice compared with hCD39-Tg mice treated with control liposomes, demonstrating that increased CD39 expression on monocytes protects against thrombosis. CONCLUSIONS These data demonstrate that ablation of CD73 minimally effects in vivo thrombosis, but increased CD39 expression on hematopoietic-derived cells, especially monocytes, attenuates in vivo arterial thrombosis.
Collapse
Affiliation(s)
- Roman Covarrubias
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Elena Chepurko
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Adam Reynolds
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Zachary M Huttinger
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Ryan Huttinger
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Katherine Stanfill
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Debra G Wheeler
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Tatiana Novitskaya
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Simon C Robson
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Karen M Dwyer
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Peter J Cowan
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Richard J Gumina
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.).
| |
Collapse
|
31
|
Caiazzo E, Tedesco I, Spagnuolo C, Russo GL, Ialenti A, Cicala C. Red Wine Inhibits Aggregation and Increases ATP-diphosphohydrolase (CD39) Activity of Rat Platelets in Vitro. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Moderate consumption of red wine has been shown to exert a peculiar cardioprotective effect compared with other alcoholic beverages; inhibition of platelet aggregation seems to be one of the mechanisms underlying this beneficial effect. CD39/ATP-diphosphohydrolase is an integral membrane glycoprotein metabolizing ATP and ADP to AMP; in concert with CD73/ecto-5′-nucleotidase, it contributes to extracellular adenosine accumulation. CD39 is considered a key modulator of thrombus formation; it inhibits platelet aggregation by promoting ADP hydrolysis. There is evidence that red wine consumption increases CD39 activity in platelets from streptozotocin-induced diabetic rats. Here we show that two kinds of Aglianico red wines inhibit aggregation and increase ATP-and ADPase activity in rat platelets.
Collapse
Affiliation(s)
- Elisabetta Caiazzo
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Idolo Tedesco
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Armando Ialenti
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
32
|
Takenaka MC, Robson S, Quintana FJ. Regulation of the T Cell Response by CD39. Trends Immunol 2016; 37:427-439. [PMID: 27236363 DOI: 10.1016/j.it.2016.04.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
Abstract
The ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, or CD39) catalyzes the phosphohydrolysis of extracellular ATP (eATP) and ADP (eADP) released under conditions of inflammatory stress and cell injury. CD39 generates AMP, which is in turn used by the ecto-5'-nucleotidase CD73 to synthesize adenosine. These ectonucleotidases have a major impact on the dynamic equilibrium of proinflammatory eATP and ADP nucleotides versus immunosuppressive adenosine nucleosides. Indeed, CD39 plays a dominant role in the purinergic regulation of inflammation and the immune response because its expression is influenced by genetic and environmental factors. We review the specific role of CD39 in the kinetic regulation of cellular immune responses in the evolution of disease. We focus on the effects of CD39 on T cells and explore potential clinical applications in autoimmunity, chronic infections, and cancer.
Collapse
Affiliation(s)
- Maisa C Takenaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon Robson
- Divisions of Gastroenterology, Hepatology, and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| |
Collapse
|
33
|
Taguchi M, Shinozaki Y, Kashiwagi K, Shigetomi E, Robaye B, Koizumi S. Müller cell-mediated neurite outgrowth of the retinal ganglion cells via P2Y 6 receptor signals. J Neurochem 2015; 136:741-751. [PMID: 26560804 DOI: 10.1111/jnc.13427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/22/2015] [Accepted: 10/30/2015] [Indexed: 12/27/2022]
Abstract
Müller cells, the primary macroglia of the retina, support various functions of retinal ganglion cells (RGCs). Here, we demonstrate a nucleotide-mediated communication between these two types of cells, by which Müller cells control neurite outgrowth of RGCs by activation of P2 receptors such as P2Y6 . Cultured mouse RGCs had significantly enhanced neurite outgrowth when cultured with either cultured mouse Müller cells or conditioned medium derived from Müller cells, and this was completely inhibited by the nucleotide-degrading enzyme, apyrase. This increase in outgrowth was mimicked by exogenously applied nucleotides such as ATP, uridine triphosphate, and uridine diphosphate. Pharmacological and genetic analysis revealed that P2Y6 receptor in RGCs was responsible for the increased neurite outgrowth. P2Y6 receptor was expressed in the ganglion cell layer of the retina and in RGC primary cultures. High performance liquid chromatography has revealed that Müller cells constitutively release uridine triphosphate, which is immediately metabolized into uridine diphosphate, an endogenous agonist for P2Y6 receptor. In the in vitro ocular hypertension model (i.e., glaucoma model), neurite outgrowth in RGCs was significantly reduced, which was associated with a decrease in P2Y6 receptors. Taken together, Müller cells control neurite outgrowth of RGCs by activating P2 receptors such as P2Y6 receptor, and the receptor expression level might be down-regulated in glaucoma. Müller cells support various functions of retina including those of retinal ganglion cells (RGCs). Here, we report an importance of nucleotide-mediated communication between these two types of cells. Müller cells were found to release uridine diphosphate (UTD), uridine triphosphate (UTP), and activate P2Y6 receptors in RGCs, which was essential for neurite outgrowth of RGCs. In addition, P2Y6 receptors in RGCs were reduced in a glaucoma model in vitro, suggesting an involvement of their dysfunction in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Masanori Taguchi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kenji Kashiwagi
- Department of Ophthalmology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Bernard Robaye
- Institute of Interdisciplinary Research, Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, Gosselies, Belgium
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
34
|
Phillips CD, Baker RJ. Secretory Gene Recruitments in Vampire Bat Salivary Adaptation and Potential Convergences With Sanguivorous Leeches. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Iwase H, Kobayashi T. Current status of pig kidney xenotransplantation. Int J Surg 2015; 23:229-233. [PMID: 26305729 PMCID: PMC4684762 DOI: 10.1016/j.ijsu.2015.07.721] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/21/2015] [Accepted: 07/26/2015] [Indexed: 12/27/2022]
Abstract
Significant progress in life-supporting kidney xenograft survival in nonhuman primates (NHPs) has been associated largely with the increasing availability of pigs with genetic modifications that protect the pig tissues from the primate immune response and/or correct molecular incompatibilities between pig and primate. Blockade of the CD40/CD154 costimulation pathway with anti-CD154 mAb therapy has contributed to prolongation of kidney xenograft survival, although this agent may not be clinically available. An anti-CD40 mAb-based regimen is proving equally successful, but blockade of the CD28/B7 pathway is inadequate. Severe proteinuria were uniformly documented in the early studies of pig kidney xenotransplantation, but whether this resulted from immune injury or from physiological incompatibilities between the species, or both, remained uncertain. Recent experiments suggest it was related to a continuing immune response. Before 2014, the longest survival of a pig kidney graft in a NHP was 90 days, though graft survival >30 days was unusual. Recently this has been extended to >125 days, without features of a consumptive coagulopathy or a protein-losing nephropathy. In conclusion, overcoming the immune, coagulation, and inflammatory responses by the development of precise genetic modifications in donor pigs, along with effective immunosuppressive and anticoagulant/anti-inflammatory therapy is advancing the field towards clinical trials.
Collapse
Affiliation(s)
- Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | | |
Collapse
|
36
|
CD39 Expression Identifies Terminally Exhausted CD8+ T Cells. PLoS Pathog 2015; 11:e1005177. [PMID: 26485519 PMCID: PMC4618999 DOI: 10.1371/journal.ppat.1005177] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/30/2015] [Indexed: 12/31/2022] Open
Abstract
Exhausted T cells express multiple co-inhibitory molecules that impair their function and limit immunity to chronic viral infection. Defining novel markers of exhaustion is important both for identifying and potentially reversing T cell exhaustion. Herein, we show that the ectonucleotidse CD39 is a marker of exhausted CD8+ T cells. CD8+ T cells specific for HCV or HIV express high levels of CD39, but those specific for EBV and CMV do not. CD39 expressed by CD8+ T cells in chronic infection is enzymatically active, co-expressed with PD-1, marks cells with a transcriptional signature of T cell exhaustion and correlates with viral load in HIV and HCV. In the mouse model of chronic Lymphocytic Choriomeningitis Virus infection, virus-specific CD8+ T cells contain a population of CD39high CD8+ T cells that is absent in functional memory cells elicited by acute infection. This CD39high CD8+ T cell population is enriched for cells with the phenotypic and functional profile of terminal exhaustion. These findings provide a new marker of T cell exhaustion, and implicate the purinergic pathway in the regulation of T cell exhaustion. Chronic viral infection induces an acquired state of T cell dysfunction known as exhaustion. Discovering surface markers of exhausted T cells is important for both to identify exhausted T cells as well as to develop potential therapies. We report that the ectonucleotidase CD39 is expressed by T cells specific for chronic viral infections in humans and a mouse model, but is rare in T cells following clearance of acute infections. In the mouse model of chronic viral infection, CD39 demarcates a subpopulation of dysfunctional, exhausted CD8+ T cells with the phenotype of irreversible exhaustion. CD39 expression therefore identifies terminal CD8+ T cell exhaustion in mice and humans, and implicates the purinergic pathway in the regulation of exhaustion.
Collapse
|
37
|
Kanthi Y, Hyman MC, Liao H, Baek AE, Visovatti SH, Sutton NR, Goonewardena SN, Neral MK, Jo H, Pinsky DJ. Flow-dependent expression of ectonucleotide tri(di)phosphohydrolase-1 and suppression of atherosclerosis. J Clin Invest 2015; 125:3027-36. [PMID: 26121751 DOI: 10.1172/jci79514] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/21/2015] [Indexed: 01/18/2023] Open
Abstract
The ability of cells to detect and respond to nucleotide signals in the local microenvironment is essential for vascular homeostasis. The enzyme ectonucleotide tri(di)phosphohydrolase-1 (ENTPD1, also known as CD39) on the surface of leukocytes and endothelial cells metabolizes locally released, intravascular ATP and ADP, thereby eliminating these prothrombotic and proinflammatory stimuli. Here, we evaluated the contribution of CD39 to atherogenesis in the apolipoprotein E-deficient (ApoE-deficient) mouse model of atherosclerosis. Compared with control ApoE-deficient animals, plaque burden was markedly increased along with circulating markers of platelet activation in Cd39+/-Apoe-/- mice fed a high-fat diet. Plaque analysis revealed stark regionalization of endothelial CD39 expression and function in Apoe-/- mice, with CD39 prominently expressed in atheroprotective, stable flow regions and diminished in atheroprone areas subject to disturbed flow. In mice, disturbed flow as the result of partial carotid artery ligation rapidly suppressed endothelial CD39 expression. Moreover, unidirectional laminar shear stress induced atheroprotective CD39 expression in human endothelial cells. CD39 induction was dependent upon the vascular transcription factor Krüppel-like factor 2 (KLF2) binding near the transcriptional start site of CD39. Together, these data establish CD39 as a regionalized regulator of atherogenesis that is driven by shear stress.
Collapse
|
38
|
Abstract
There are nineteen different receptor proteins for adenosine, adenine and uridine nucleotides, and nucleotide sugars, belonging to three families of G protein-coupled adenosine and P2Y receptors, and ionotropic P2X receptors. The majority are functionally expressed in blood vessels, as purinergic receptors in perivascular nerves, smooth muscle and endothelial cells, and roles in regulation of vascular contractility, immune function and growth have been identified. The endogenous ligands for purine receptors, ATP, ADP, UTP, UDP and adenosine, can be released from different cell types within the vasculature, as well as from circulating blood cells, including erythrocytes and platelets. Many purine receptors can be activated by two or more of the endogenous ligands. Further complexity arises because of interconversion between ligands, notably adenosine formation from the metabolism of ATP, leading to complex integrated responses through activation of different subtypes of purine receptors. The enzymes responsible for this conversion, ectonucleotidases, are present on the surface of smooth muscle and endothelial cells, and may be coreleased with neurotransmitters from nerves. What selectivity there is for the actions of purines/pyrimidines comes from differential expression of their receptors within the vasculature. P2X1 receptors mediate the vasocontractile actions of ATP released as a neurotransmitter with noradrenaline (NA) from sympathetic perivascular nerves, and are located on the vascular smooth muscle adjacent to the nerve varicosities, the sites of neurotransmitter release. The relative contribution of ATP and NA as functional cotransmitters varies with species, type and size of blood vessel, neuronal firing pattern, the tone/pressure of the blood vessel, and in ageing and disease. ATP is also a neurotransmitter in non-adrenergic non-cholinergic perivascular nerves and mediates vasorelaxation via smooth muscle P2Y-like receptors. ATP and adenosine can act as neuromodulators, with the most robust evidence being for prejunctional inhibition of neurotransmission via A1 adenosine receptors, but also prejunctional excitation and inhibition of neurotransmission via P2X and P2Y receptors, respectively. P2Y2, P2Y4 and P2Y6 receptors expressed on the vascular smooth muscle are coupled to vasocontraction, and may have a role in pathophysiological conditions, when purines are released from damaged cells, or when there is damage to the protective barrier that is the endothelium. Adenosine is released during hypoxia to increase blood flow via vasodilator A2A and A2B receptors expressed on the endothelium and smooth muscle. ATP is released from endothelial cells during hypoxia and shear stress and can act at P2Y and P2X4 receptors expressed on the endothelium to increase local blood flow. Activation of endothelial purine receptors leads to the release of nitric oxide, hyperpolarising factors and prostacyclin, which inhibits platelet aggregation and thus ensures patent blood flow. Vascular purine receptors also regulate endothelial and smooth muscle growth, and inflammation, and thus are involved in the underlying processes of a number of cardiovascular diseases.
Collapse
Affiliation(s)
- Vera Ralevic
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| | - William R Dunn
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
39
|
Helenius MH, Vattulainen S, Orcholski M, Aho J, Komulainen A, Taimen P, Wang L, de Jesus Perez VA, Koskenvuo JW, Alastalo TP. Suppression of endothelial CD39/ENTPD1 is associated with pulmonary vascular remodeling in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1046-57. [PMID: 25820525 DOI: 10.1152/ajplung.00340.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/24/2015] [Indexed: 11/22/2022] Open
Abstract
Endothelial cell (EC) dysfunction plays a role in the pathobiology of occlusive vasculopathy in pulmonary arterial hypertension (PAH). Purinergic signaling pathways, which consist of extracellular nucleotide and nucleoside-mediated cell signaling through specific receptors, are known to be important regulators of vascular tone and remodeling. Therefore, we hypothesized that abnormalities in the vascular purinergic microenvironment are associated with PAH. Enzymatic clearance is crucial to terminate unnecessary cell activation; one of the most abundantly expressed enzymes on the EC surface is E-NTPDase1/CD39, which hydrolyzes ATP and ADP to AMP. we used histological samples from patients and healthy donors, radioisotope-labeled substrates to measure ectoenzyme activity, and a variety of in vitro approaches to study the role of CD39 in PAH. Immunohistochemistry on human idiopathic PAH (IPAH) patients' lungs demonstrated that CD39 was significantly downregulated in the endothelium of diseased small arteries. Similarly, CD39 expression and activity were decreased in cultured pulmonary ECs from IPAH patients. Suppression of CD39 in vitro resulted in EC phenotypic switch that gave rise to apoptosis-resistant pulmonary arterial endothelial cells and promoted a microenvironment that induced vascular smooth muscle cell migration. we also identified that the ATP receptor P2Y11 is essential for ATP-mediated EC survival. Furthermore, we report that apelin, a known regulator of pulmonary vascular homeostasis, can potentiate the activity of CD39 both in vitro and in vivo. we conclude that sustained attenuation of CD39 activity through ATP accumulation is tightly linked to vascular dysfunction and remodeling in PAH and could represent a novel target for therapy.
Collapse
Affiliation(s)
- Mikko H Helenius
- Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Sanna Vattulainen
- Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Mark Orcholski
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California
| | - Joonas Aho
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Anne Komulainen
- Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland; and
| | - Lingli Wang
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California
| | | | - Juha W Koskenvuo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Tero-Pekka Alastalo
- Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland;
| |
Collapse
|
40
|
Abstract
Our previous work has shown that polymorphonuclear neutrophils (PMNs) require cellular adenosine triphosphate (ATP) release and autocrine purinergic signaling for their activation. Here we studied in a mouse model of cecal ligation and puncture (CLP) whether sepsis affects this purinergic signaling process and thereby alters PMN responses after sepsis. Using high-performance liquid chromatography, we found that plasma ATP, adenosine diphosphate (ADP), and adenosine monophosphate (AMP) concentrations increased up to 6-fold during the first 8 h after CLP, reaching top levels that were significantly higher than those in sham control animals without CLP. Although leukocyte and PMN counts in sham animals increased significantly after 4 h, these blood cell counts decreased in sepsis animals. CD11b expression on the cell surface of PMNs of septic animals was significantly higher compared with sham and untreated control animals. These findings suggest increased PMN activation and sequestration of PMN from the circulation after sepsis. Plasma ATP levels correlated with CD11b expression, suggesting that increased ATP concentrations in plasma contribute to PMN activation. We found that treatment of septic mice with the ATP receptor antagonist suramin diminished CD11b expression, indicating that plasma ATP contributes to PMN activation by stimulating P2 receptors of PMNs. Increased PMN activation can protect the host from invading microorganisms. However, increased PMN activation can also be detrimental by promoting secondary organ damage. We conclude that pharmacological targeting of P2 receptors may allow modulation of PMN responses in sepsis.
Collapse
|
41
|
Abstract
Extracellular nucleotides play a critical role in vascular thrombosis and inflammation. Alterations in purinergic extracellular nucleotide concentrations activate pathways that result in platelet degranulation and aggregation, and endothelial and leukocyte activation and recruitment. CD39, the dominant vascular nucleotidase, hydrolyzes ATP and ADP to provide the substrate for generation of the anti-inflammatory and antithrombotic mediator adenosine. The purinergic signaling system, with CD39 at its center, plays an important role in modulating vascular homeostasis and the response to vascular injury, as seen in clinically relevant diseases such as stroke, ischemia-reperfusion injury, and pulmonary hypertension. A growing body of knowledge of the purinergic signaling pathway implicates CD39 as a critical modulator of vascular thrombosis and inflammation. Therapeutic strategies targeting CD39 offer promising opportunities in the management of vascular thromboinflammatory diseases.
Collapse
|
42
|
Ibrahim M, Wang X, Puyo CA, Montecalvo A, Huang HJ, Hachem RR, Andreetti C, Menna C, Chen R, Krupnick AS, Kreisel D, Rendina EA, Gelman AE. Human recombinant apyrase therapy protects against canine pulmonary ischemia-reperfusion injury. J Heart Lung Transplant 2014; 34:247-53. [PMID: 25455749 DOI: 10.1016/j.healun.2014.09.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND There is accumulating evidence that extracellular adenosine triphosphate (eATP) promotes many of the underlying mechanisms that exacerbate acute lung injury. However, much of these data are from inbred rodent models, indicating the need for further investigation in higher vertebrates to better establish clinical relevance. To this end we evaluated a human recombinant apyrase therapy in a canine warm pulmonary ischemia-reperfusion injury (IRI) model and measured eATP levels in human lung recipients with or without primary lung graft dysfunction (PGD). METHODS Warm ischemia was induced for 90 minutes in the left lung of 14 mongrel dogs. Seven minutes after reperfusion, the apyrase APT102 (1 mg/kg, n = 7) or saline vehicle (n = 7) was injected into the pulmonary artery. Arterial blood gases were obtained every 30 minutes up to 180 minutes after reperfusion. Bronchioalveolar lavage fluid (BALF) was analyzed for eATP concentration, cellularity, and inflammatory mediator accumulation. Thirty bilateral human lung transplant recipients were graded for immediate early PGD and assessed for BALF eATP levels. RESULTS APT102-treated dogs had progressively better lung function and less pulmonary edema during the 3-hour reperfusion period compared with vehicle-treated controls. Protection from IRI was observed, with lower BALF eATP levels, fewer airway leukocytes, and blunted inflammatory mediator expression. Human lung recipients with moderate to severe PGD had significantly higher eATP levels compared with recipients without this injury. CONCLUSIONS Extracellular ATP accumulates in acutely injured canine and human lungs. Strategies that target eATP reduction may help protect lung recipients from IRI.
Collapse
Affiliation(s)
- Mohsen Ibrahim
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; Department of Thoracic Surgery, Sapienza University, Rome, Italy
| | - Xingan Wang
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | | - Alessandro Montecalvo
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | - Cecilia Menna
- Department of Thoracic Surgery, Sapienza University, Rome, Italy
| | | | - Alexander S Krupnick
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Erino A Rendina
- Department of Thoracic Surgery, Sapienza University, Rome, Italy
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; Department of Thoracic Surgery, Sapienza University, Rome, Italy; Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
43
|
CD39/NTPDase-1 expression and activity in human umbilical vein endothelial cells are differentially regulated by leaf extracts from Rubus caesius and Rubus idaeus. Cell Mol Biol Lett 2014; 19:361-80. [PMID: 25034034 PMCID: PMC6275654 DOI: 10.2478/s11658-014-0202-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022] Open
Abstract
Many experimental studies have demonstrated the favorable biological activities of plants belonging to the genus Rubus, but little is known of the role of Rubus leaf extracts in the modulation of the surface membrane expression and activity of endothelial apyrase. The aim of this study was to assess the influence of 1–15 μg/ml Rubus extracts on CD39 expression and enzymatic activity, and on the activation (ICAM-1 expression) and viability of human umbilical vein endothelial cells (HUVEC). The polyphenolic contents and antioxidative capacities of extracts from dewberry (R. caesius L.) and raspberry (R. idaeus L.) leaves were also investigated. The techniques applied were flow cytometry (endothelial surface membrane expression of ICAM-1 and CD39), malachite green assay (CD39 activity), HPLC-DAD (quantitative analysis of polyphenolic extract), ABTS, DPPH and FRAP spectrometric assays (antioxidant capacity), and the MTT test (cell viability). Significantly increased CD39 expressions and significantly decreased ATPDase activities were found in the cells treated with 15 μg/ml of either extract compared to the results for the controls. Neither of the extracts affected cell proliferation, but both significantly augmented endothelial cell ICAM-1 expression. The overall antioxidant capacities of the examined extracts remained relatively high and corresponded well to the determined total polyphenol contents. Overall, the results indicate that under in vitro conditions dewberry and raspberry leaf extracts have unfavorable impact on endothelial cells.
Collapse
|
44
|
Eun SY, Park SW, Lee JH, Chang KC, Kim HJ. P2Y(2)R activation by nucleotides released from oxLDL-treated endothelial cells (ECs) mediates the interaction between ECs and immune cells through RAGE expression and reactive oxygen species production. Free Radic Biol Med 2014; 69:157-66. [PMID: 24486339 DOI: 10.1016/j.freeradbiomed.2014.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/14/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Lipoprotein oxidation, inflammation, and immune responses involving the vascular endothelium and immune cells contribute to the pathogenesis of atherosclerosis. In an atherosclerotic animal model, P2Y2 receptor (P2Y2R) upregulation and stimulation were previously shown to induce intimal hyperplasia and increased intimal monocyte infiltration. Thus, we investigated the role of P2Y2R in oxidized low-density lipoprotein (oxLDL)-mediated oxidative stress and the subsequent interaction between endothelial cells (ECs) and immune cells. The treatment of human ECs with oxLDL caused the rapid release of ATP (maximum after 5 min). ECs treated with oxLDL or the P2Y2R agonists ATP/UTP for 1h exhibited significant reactive oxygen species (ROS) production, but this effect was not observed in P2Y2R siRNA-transfected ECs. In addition, oxLDL and ATP/UTP both induced RAGE expression, which was P2Y2R dependent. Oxidized LDL- and ATP/UTP-mediated ROS production was diminished in RAGE siRNA-transfected ECs, suggesting that RAGE is an important mediator in P2Y2R-mediated ROS production. Treatment with oxLDL for 24h induced P2Y2R expression in the human monocyte cell line THP-1 and increased THP-1 cell migration toward ECs. The addition of apyrase, an enzyme that hydrolyzes nucleotides, or diphenyleneiodonium (DPI), a well-known inhibitor of NADPH oxidase, significantly inhibited the increase in cell migration caused by oxLDL. P2Y2R siRNA-transfected THP-1 cells did not migrate in response to oxLDL or ATP/UTP treatment, indicating a critical role for P2Y2R and nucleotide release in oxLDL-induced monocyte migration. Last, oxLDL and ATP/UTP effectively increased ICAM-1 and VCAM-1 expression and the subsequent binding of THP-1 cells to ECs, which was inhibited by pretreatment with DPI or by siRNA against P2Y2R or RAGE, suggesting that P2Y2R is an important mediator in oxLDL-mediated monocyte adhesion to ECs through the regulation of ROS-dependent adhesion molecule expression in ECs. Taken together, our findings suggest that P2Y2R could be a therapeutic target for the prevention of vascular disorders, including atherosclerosis.
Collapse
Affiliation(s)
- So Young Eun
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-701, Korea
| | - Sang Won Park
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-701, Korea
| | - Jae Heun Lee
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-701, Korea
| | - Ki Churl Chang
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-701, Korea
| | - Hye Jung Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
45
|
Szczesny P, Poznanski J, Paczek L, Zielenkiewicz P. Hypophosphatemia and sudden infant death syndrome (SIDS)--is ATP the link? Ups J Med Sci 2014; 119:55-6. [PMID: 24151935 PMCID: PMC3916719 DOI: 10.3109/03009734.2013.849317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Pawel Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Paczek
- Department of Immunology, Transplantology and Internal Medicine, Warsaw Medical University, Warsaw, Poland
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
46
|
Iwase H, Ezzelarab MB, Ekser B, Cooper DKC. The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options. Xenotransplantation 2014; 21:201-20. [PMID: 24571124 DOI: 10.1111/xen.12085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/08/2014] [Indexed: 12/11/2022]
Abstract
Xenotransplantation could resolve the increasing discrepancy between the availability of deceased human donor organs and the demand for transplantation. Most advances in this field have resulted from the introduction of genetically engineered pigs, e.g., α1,3-galactosyltransferase gene-knockout (GTKO) pigs transgenic for one or more human complement-regulatory proteins (e.g., CD55, CD46, CD59). Failure of these grafts has not been associated with the classical features of acute humoral xenograft rejection, but with the development of thrombotic microangiopathy in the graft and/or consumptive coagulopathy in the recipient. Although the precise mechanisms of coagulation dysregulation remain unclear, molecular incompatibilities between primate coagulation factors and pig natural anticoagulants exacerbate the thrombotic state within the xenograft vasculature. Platelets play a crucial role in thrombosis and contribute to the coagulation disorder in xenotransplantation. They are therefore important targets if this barrier is to be overcome. Further genetic manipulation of the organ-source pigs, such as pigs that express one or more coagulation-regulatory genes (e.g., thrombomodulin, endothelial protein C receptor, tissue factor pathway inhibitor, CD39), is anticipated to inhibit platelet activation and the generation of thrombus. In addition, adjunctive pharmacologic anti-platelet therapy may be required. The genetic manipulations that are currently being tested are reviewed, as are the potential pharmacologic agents that may prove beneficial.
Collapse
Affiliation(s)
- Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
47
|
Esther CR, Alexis NE, Picher M. Regulation of airway nucleotides in chronic lung diseases. Subcell Biochem 2014; 55:75-93. [PMID: 21560045 DOI: 10.1007/978-94-007-1217-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physiological relevance of the purinergic signaling network for airway defenses is emerging through cumulating reports of abnormal ATP and adenosine (ADO) levels in the airway secretions of patients with asthma, chronic pulmonary obstructive diseases, cystic fibrosis and idiopathic pulmonary fibrosis. The consequences for airway defenses range from abnormal clearance responses to the destruction of lung tissue by excessive inflammation. This chapter reviews the challenges of assessing airway purines in human subjects, and identifies the general trend in aberrant airway composition. Most diseases are associated with an accumulation of ATP and/or ADO in bronchoalveolar lavage, sputum or exhaled breadth condensate. Intriguing is the case of cystic fibrosis patients, which do not accumulate airway ADO, but its precursor, AMP. This observation launched the investigation of ectonucleotidases as target proteins for the correction of airway purine levels in chronic respiratory diseases. This chapter exposes the extensive rearrangement of the enzymatic network taking place in diseased airways, and identifies signaling pathways likely involved in the aberrant regulation of the airway purines.
Collapse
Affiliation(s)
- Charles R Esther
- Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC, 27599, USA,
| | | | | |
Collapse
|
48
|
Cowan PJ, Cooper DKC, d'Apice AJF. Kidney xenotransplantation. Kidney Int 2014; 85:265-75. [PMID: 24088952 PMCID: PMC3946635 DOI: 10.1038/ki.2013.381] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 12/14/2022]
Abstract
Xenotransplantation using pigs as donors offers the possibility of eliminating the chronic shortage of donor kidneys, but there are several obstacles to be overcome before this goal can be achieved. Preclinical studies have shown that, while porcine renal xenografts are broadly compatible physiologically, they provoke a complex rejection process involving preformed and elicited antibodies, heightened innate immune cell reactivity, dysregulated coagulation, and a strong T cell-mediated adaptive response. Furthermore, the susceptibility of the xenograft to proinflammatory and procoagulant stimuli is probably increased by cross-species molecular defects in regulatory pathways. To balance these disadvantages, xenotransplantation has at its disposal a unique tool to address particular rejection mechanisms and incompatibilities: genetic modification of the donor. This review focuses on the pathophysiology of porcine renal xenograft rejection, and on the significant genetic, pharmacological, and technical progress that has been made to prolong xenograft survival.
Collapse
Affiliation(s)
- Peter J Cowan
- 1] Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia [2] Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anthony J F d'Apice
- 1] Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia [2] Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Abstract
Adenosine triphosphate (ATP) is essential for the myriad of metabolic processes upon which life is based and is known widely as the universal energy currency unit of intracellular biologic reactions. ATP, adenosine diphosphate, adenosine, as well as other purines and pyrimidines also serve as ubiquitous extracellular mediators which function through the activation of specific receptors (viz. P2 receptors for nucleotides and purinergic P1 receptors for adenosine). Extracellular nucleotides are rapidly converted to nucleosides, such as adenosine, by highly regulated plasma membrane ectonucleotidases that modulate many of the normal biological and metabolic processes in the liver - such as gluconeogenesis and insulin signaling. Under inflammatory conditions, as with ischemia reperfusion, sepsis or metabolic stress, ATP and other nucleotides can also act as 'damage-associated molecular patterns' causing inflammasome activation in innate immune cells and endothelium resulting in tissue damage. The phosphohydrolysis of ATP by ectonucleotidases, such as those of the CD39/ENTPD family, results in the generation of immune suppressive adenosine, which in turn markedly limits inflammatory processes. Experimental studies by others and our group have implicated purinergic signaling in experimental models of hepatic ischemia reperfusion and inflammation, transplant rejection, hepatic regeneration, steatohepatitis, fibrosis and cancer, amongst others. Expression of ectonucleotidases on sinusoidal endothelial, stellate or immune cells allows for homeostatic integration and linking of the control of vascular inflammatory and immune cell reactions in the liver. CD39 expression also identifies hepatic myeloid dendritic cells and efficiently distinguishes T-regulatory-type cells from other resting or activated T cells. Our evolving data strongly indicate that CD39 serves as a key 'molecular switch' and is an integral component of the suppressive machinery of myeloid, dendritic and T cells. Increased understanding of mechanisms of extracellular ATP scavenging and specifically conversion to nucleosides by ectonucleotidases of the CD39 family have also led to novel insights into the exquisite balance of nucleotide P2-receptor and adenosinergic P1-receptor signaling in inflammatory and hepatic diseases. Further, CD39 and other ectonucleotidases exhibit genetic polymorphisms in humans which alter levels of expression/function and are associated with predisposition to inflammatory and immune diseases, diabetes and vascular calcification, amongst other problems. Development of therapeutic strategies targeting purinergic signaling and ectonucleotidases offers promise for the management of disordered inflammation and aberrant immune reactivity.
Collapse
Affiliation(s)
- Byron P Vaughn
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Mass., USA
| | | | | |
Collapse
|
50
|
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|