1
|
Verigou E, Chatzilygeroudi T, Lazaris V, de Lastic AL, Symeonidis A. Immunophenotyping myelodysplastic neoplasms: the role of flow cytometry in the molecular classification era. Front Oncol 2024; 14:1447001. [PMID: 39544295 PMCID: PMC11560873 DOI: 10.3389/fonc.2024.1447001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
The unique heterogenous landscape of myelodysplastic syndromes/neoplasms (MDS) has resulted in continuous redefinition of disease sub-entities, in view of the novel translational research data that have clarified several areas of the pathogenesis and the progression of the disease. The new international classifications (WHO 2022, ICC 2022) have incorporated genomic data defining phenotypical alterations, that guide clinical management of specific patient subgroups. On the other hand, for over a decade, multiparameter flow cytometry (MFC) has proven its value as a complementary diagnostic tool for these diseases and although it has never been established as a mandatory test for the baseline evaluation of MDS patients in international guidelines, it is almost universally adopted in everyday clinical practice for the assessment of suspected cytopenias through simplified scoring systems or elaborate analytical strategies for the detection of immunophenotypical dysplastic features in every hematopoietic cell lineage in the bone marrow (BM). In this review, we explore the clinically meaningful interplay of MFC data and genetic profiles of MDS patients, to reveal the currently existing and the potential future role of each methodology for routine clinical practice, and the benefit of the patients. We reviewed the existing knowledge and recent advances in the field and discuss how an integrated approach could lead to patient re-stratification and guide personalized management.
Collapse
Affiliation(s)
- Evgenia Verigou
- Hematology Division, Department of Internal Medicine, General University Hospital of Patras - School of Medicine, Patras, Greece
| | - Theodora Chatzilygeroudi
- Hematology Division, Department of Internal Medicine, General University Hospital of Patras - School of Medicine, Patras, Greece
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | | | - Anne-Lise de Lastic
- Laboratory of Immunohematology, School of Medicine, University of Patras, Patras, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, General University Hospital of Patras - School of Medicine, Patras, Greece
| |
Collapse
|
2
|
Menezes AC, Dixon C, Scholz A, Nicholson R, Leckenby A, Azevedo A, Baker S, Gilkes AF, Davies S, Darley RL, Tonks A. RUNX3 overexpression inhibits normal human erythroid development. Sci Rep 2022; 12:1243. [PMID: 35075235 PMCID: PMC8786893 DOI: 10.1038/s41598-022-05371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
RUNX proteins belong to a family of transcription factors essential for cellular proliferation, differentiation, and apoptosis with emerging data implicating RUNX3 in haematopoiesis and haematological malignancies. Here we show that RUNX3 plays an important regulatory role in normal human erythropoiesis. The impact of altering RUNX3 expression on erythropoiesis was determined by transducing human CD34+ cells with RUNX3 overexpression or shRNA knockdown vectors. Analysis of RUNX3 mRNA expression showed that RUNX3 levels decreased during erythropoiesis. Functionally, RUNX3 overexpression had a modest impact on early erythroid growth and development. However, in late-stage erythroid development, RUNX3 promoted growth and inhibited terminal differentiation with RUNX3 overexpressing cells exhibiting lower expression of glycophorin A, greater cell size and less differentiated morphology. These results suggest that suppression of RUNX3 is required for normal erythropoiesis. Overexpression of RUNX3 increased colony formation in liquid culture whilst, corresponding RUNX3 knockdown suppressed colony formation but otherwise had little impact. This study demonstrates that the downregulation of RUNX3 observed in normal human erythropoiesis is important in promoting the terminal stages of erythroid development and may further our understanding of the role of this transcription factor in haematological malignancies.
Collapse
Affiliation(s)
- Ana Catarina Menezes
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Christabel Dixon
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Anna Scholz
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Rachael Nicholson
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Adam Leckenby
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Aleksandra Azevedo
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Sarah Baker
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK.,Cardiff Experimental Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Amanda F Gilkes
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK.,Cardiff Experimental Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sara Davies
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Richard L Darley
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Alex Tonks
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK.
| |
Collapse
|
3
|
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell (HSC) disorders with overproduction of mature myeloid blood cells, including essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). In 2005, several groups identified a single gain-of-function point mutation JAK2V617F in the majority of MPN patients. The JAK2V617F mutation confers cytokine independent proliferation to hematopoietic progenitor cells by constitutively activating canonical and non-canonical downstream pathways. In this chapter, we focus on (1) the regulation of JAK2, (2) the molecular mechanisms used by JAK2V617F to induce MPNs, (3) the factors that are involved in the phenotypic diversity in MPNs, and (4) the effects of JAK2V617F on hematopoietic stem cells (HSCs). The discovery of the JAK2V617F mutation led to a comprehensive understanding of MPN; however, the question still remains about how one mutation can give rise to three distinct disease entities. Various mechanisms have been proposed, including JAK2V617F allele burden, differential STAT signaling, and host genetic modifiers. In vivo modeling of JAK2V617F has dramatically enhanced the understanding of the pathophysiology of the disease and provided the pre-clinical platform. Interestingly, most of these models do not show an increased hematopoietic stem cell self-renewal and function compared to wildtype controls, raising the question of whether JAK2V617F alone is sufficient to give a clonal advantage in MPN patients. In addition, the advent of modern sequencing technologies has led to a broader understanding of the mutational landscape and detailed JAK2V617F clonal architecture in MPN patients.
Collapse
|
4
|
Guinn BA, Mohamedali A, Mills KI, Czepulkowski B, Schmitt M, Greiner J. Leukemia Associated Antigens: Their Dual Role as Biomarkers and Immunotherapeutic Targets for Acute Myeloid Leukemia. Biomark Insights 2017. [DOI: 10.1177/117727190700200015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Leukemia associated antigens (LAAs) are being increasingly identified by methods such as cytotoxic T-lymphocyte (CTL) cloning, serological analysis of recombinant cDNA expression libraries (SEREX) and mass spectrometry (MS). In additional, large scale screening techniques such as microarray, single nucleotide polymorphisms (SNPs), serial analysis of gene expression (SAGE) and 2-dimensional gel electrophoresis (2-DE) have expanded our understanding of the role that tumor antigens play in the biological processes which are perturbed in acute myeloid leukemia (AML). It has become increasingly apparent that these antigens play a dual role, not only as targets for immunotherapy, but also as biomarkers of disease state, stage, response to treatment and survival. We need biomarkers to enable the identification of the patients who are most likely to benefit from specific treatments (conventional and/or novel) and to help clinicians and scientists improve clinical end points and treatment design. Here we describe the LAAs identified in AML, to date, which have already been shown to play a dual role as biomarkers of AML disease.
Collapse
Affiliation(s)
- Barbara-ann Guinn
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Azim Mohamedali
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Ken I. Mills
- Department of Haematology, University Hospital of Wales, Heath Park, Cardiff, CF4 4XN, U.K
| | - Barbara Czepulkowski
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Michael Schmitt
- Third Clinic for Internal Medicine, University of Ulm, Germany
| | - Jochen Greiner
- Third Clinic for Internal Medicine, University of Ulm, Germany
| |
Collapse
|
5
|
Wang T, Li C, Xia C, Dong Y, Yang D, Geng Y, Cai J, Zhang J, Zhang X, Wang J. Oncogenic NRAS hyper-activates multiple pathways in human cord blood stem/progenitor cells and promotes myelomonocytic proliferation in vivo. Am J Transl Res 2015; 7:1963-1973. [PMID: 26692939 PMCID: PMC4656772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Oncogenic NRAS mutations are prevalent in human myeloid leukemia, especially in chronic myelomonocytic leukemia (CMML). NrasG12D mutation at its endogenous locus in murine hematopoietic stem cells (HSCs) leads to CMML and acute T-cell lymphoblastic lymphoma/leukemia in a dose-dependent manner. Hyper-activated MAPK and STAT5 pathways by oncogenic Nras contribute to the leukemogenesis in vivo. However, it is unclear whether these conclusions remain true in a more human relevant model. Here, we evaluated the effects of NRASG12D on human hematopoiesis and leukemogenesis in vitro and in vivo by ectopically expressing NRASG12D in human cord blood stem/progenitor cells (hSPCs). NRASG12D expressing hSPCs preferentially differentiated into myelomonocytic lineage cells, demonstrated by forming more colony forming unit-macrophages than control hSPCs in cultures. Transplantation of NRASG12D expressing hSPCs initiated myeloproliferative neoplasm in immune deficiency mice. All the recipient mice died of myeloid tumor burdens in spleens and bone marrows and none developed lymphoid leukemia. Phospho-flow analysis of CD34(+) CD38(-) hSPCs confirmed that NRASG12D hyper-activated MAPK, AKT and STAT5 pathways. Our study provides the strong evidence that NRASG12D mutation mainly targets monocytic lineage cells and leads to myelomonocytic proliferation in vivo in a highly human relevant context.
Collapse
Affiliation(s)
- Tongjie Wang
- School of Life Sciences, University of Science and Technology of ChinaAnhui, China
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineGuangzhou, China
| | - Chen Li
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Chengxiang Xia
- School of Life Sciences, University of Science and Technology of ChinaAnhui, China
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineGuangzhou, China
| | - Yong Dong
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineGuangzhou, China
| | - Dan Yang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineGuangzhou, China
| | - Yang Geng
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineGuangzhou, China
| | - Jizhen Cai
- Laboratory Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesChina
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Xiangzhong Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Jinyong Wang
- School of Life Sciences, University of Science and Technology of ChinaAnhui, China
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineGuangzhou, China
| |
Collapse
|
6
|
Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood 2013; 122:3322-30. [DOI: 10.1182/blood-2013-04-491944] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Key Points
More than 60% of primary AML blasts constitutively produce high levels of NOX-derived reactive oxygen species (ROS), which drives AML proliferation. High ROS AMLs show depleted antioxidant defenses but evade the oxidative stress response through suppression of p38MAPK signaling.
Collapse
|
7
|
Cluzeau T, Fenaux P. Nouveaux outils et traitements pour les syndromes myélodysplasiques. Rev Med Interne 2013; 34:159-67. [DOI: 10.1016/j.revmed.2012.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 05/06/2012] [Accepted: 06/02/2012] [Indexed: 11/25/2022]
|
8
|
Beurlet S, Chomienne C, Padua RA. Engineering mouse models with myelodysplastic syndrome human candidate genes; how relevant are they? Haematologica 2012; 98:10-22. [PMID: 23065517 DOI: 10.3324/haematol.2012.069385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myelodysplastic syndromes represent particularly challenging hematologic malignancies that arise from a large spectrum of genetic events resulting in a disease characterized by a range of different presentations and outcomes. Despite efforts to classify and identify the key genetic events, little improvement has been made in therapies that will increase patient survival. Animal models represent powerful tools to model and study human diseases and are useful pre-clinical platforms. In addition to enforced expression of candidate oncogenes, gene inactivation has allowed the consequences of the genetic effects of human myelodysplastic syndrome to be studied in mice. This review aims to examine the animal models expressing myelodysplastic syndrome-associated genes that are currently available and to highlight the most appropriate model to phenocopy myelodysplastic syndrome disease and its risk of transformation to acute myelogenous leukemia.
Collapse
|
9
|
Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, Pandey S, Patel J, Chung YR, Koche R, Perna F, Zhao X, Taylor JE, Park CY, Carroll M, Melnick A, Nimer SD, Jaffe JD, Aifantis I, Bernstein BE, Levine RL. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 2012; 22:180-93. [PMID: 22897849 PMCID: PMC3422511 DOI: 10.1016/j.ccr.2012.06.032] [Citation(s) in RCA: 474] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 05/21/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022]
Abstract
Recurrent somatic ASXL1 mutations occur in patients with myelodysplastic syndrome, myeloproliferative neoplasms, and acute myeloid leukemia, and are associated with adverse outcome. Despite the genetic and clinical data implicating ASXL1 mutations in myeloid malignancies, the mechanisms of transformation by ASXL1 mutations are not understood. Here, we identify that ASXL1 mutations result in loss of polycomb repressive complex 2 (PRC2)-mediated histone H3 lysine 27 (H3K27) tri-methylation. Through integration of microarray data with genome-wide histone modification ChIP-Seq data, we identify targets of ASXL1 repression, including the posterior HOXA cluster that is known to contribute to myeloid transformation. We demonstrate that ASXL1 associates with the PRC2, and that loss of ASXL1 in vivo collaborates with NRASG12D to promote myeloid leukemogenesis.
Collapse
Affiliation(s)
- Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York City, NY
| | - Mazhar Adli
- Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Lindsay M. LaFave
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York City, NY
- Gerstner Sloan Kettering School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jie Gao
- Howard Hughes Medical Institute and Department of Pathology, New York University School of Medicine, New York, NY
| | - Todd Hricik
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York City, NY
| | - Alan H. Shih
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York City, NY
| | - Suveg Pandey
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York City, NY
| | - Jay Patel
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York City, NY
| | - Young Rock Chung
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York City, NY
| | - Richard Koche
- Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Fabiana Perna
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL
| | | | - Christopher Y. Park
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York City, NY
| | - Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA
| | - Ari Melnick
- Division of Hematology/Oncology, Weill Cornell Medical College, New York, NY
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | | | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, New York University School of Medicine, New York, NY
| | - Bradley E. Bernstein
- Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York City, NY
- Biochemistry and Molecular Biology Program, Weill Cornell Medical College, New York, NY
| |
Collapse
|
10
|
Kleppe M, Levine RL. New pieces of a puzzle: the current biological picture of MPN. Biochim Biophys Acta Rev Cancer 2012; 1826:415-22. [PMID: 22824378 DOI: 10.1016/j.bbcan.2012.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/14/2022]
Abstract
Over the last years, we have witnessed significant improvement in our ability to elucidate the genetic events, which contribute to the pathogenesis of acute and chronic leukemias, and also in patients with myeloproliferative neoplasms (MPN). However, despite significant insight into the role of specific mutations, including the JAK2V617F mutation, in MPN pathogenesis, the precise mechanisms by which specific disease alleles contribute to leukemic transformation in MPN remain elusive. Here we review recent studies aimed at understanding the role of downstream signaling pathways in MPN initiation and phenotype, and discuss how these studies have begun to lead to novel insights with biologic, clinical, and therapeutic relevance.
Collapse
Affiliation(s)
- Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
11
|
Abstract
The DEAH helicase RHAU (alias DHX36, G4R1) is the only helicase shown to have G-quadruplex (G4)-RNA resolvase activity and the major source of G4-DNA resolvase activity. Previous report showed RHAU mRNA expression to be elevated in human lymphoid and CD34(+) BM cells, suggesting a potential role in hematopoiesis. Here, we generated a conditional knockout of the RHAU gene in mice. Germ line deletion of RHAU led to embryonic lethality. We then targeted the RHAU gene specifically in the hematopoiesis system, using a Cre-inducible system in which an optimized variant of Cre recombinase was expressed under the control of the Vav1 promoter. RHAU deletion in hematopoietic system caused hemolytic anemia and differentiation defect at the proerythroblast stage. The partial differentiation block of proerythroblasts was because of a proliferation defect. Transcriptome analysis of RHAU knockout proerythroblasts showed that a statistically significant portion of the deregulated genes contain G4 motifs in their promoters. This suggests that RHAU may play a role in the regulation of gene expression that relies on its G4 resolvase activity.
Collapse
|
12
|
Fatrai S, van Gosliga D, Han L, Daenen SMGJ, Vellenga E, Schuringa JJ. KRAS(G12V) enhances proliferation and initiates myelomonocytic differentiation in human stem/progenitor cells via intrinsic and extrinsic pathways. J Biol Chem 2010; 286:6061-70. [PMID: 21169357 DOI: 10.1074/jbc.m110.201848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In human hematopoietic malignancies, RAS mutations are frequently observed. Yet, little is known about signal transduction pathways that mediate KRAS-induced phenotypes in human CD34(+) stem/progenitor cells. When cultured on bone marrow stroma, we observed that KRAS(G12V)-transduced cord blood (CB) CD34(+) cells displayed a strong proliferative advantage over control cells, which coincided with increased early cobblestone (CAFC) formation and induction of myelomonocytic differentiation. However, the KRAS(G12V)-induced proliferative advantage was transient. By week three no progenitors remained in KRAS(G12V)-transduced cultures and cells were all terminally differentiated into monocytes/macrophages. In line with these results, LTC-IC frequencies were strongly reduced. Both the ERK and p38 MAPK pathways, but not JNK, were activated by KRAS(G12V) and we observed that proliferation and CAFC formation were mediated via ERK, while differentiation was predominantly mediated via p38. Interestingly, we observed that KRAS(G12V)-induced proliferation and CAFC formation, but not differentiation, were largely mediated via secreted factors, since these phenotypes could be recapitulated by treating non-transduced cells with conditioned medium harvested from KRAS(G12V)-transduced cultures. Multiplex cytokine arrays and genome-wide gene expression profiling were performed to gain further insight into the mechanisms by which oncogenic KRAS(G12V) can contribute to the process of leukemic transformation. Thus, angiopoietin-like 6 (ANGPTL6) was identified as an important factor in the KRAS(G12V) secretome that enhanced proliferation of human CB CD34(+) cells.
Collapse
Affiliation(s)
- Szabolcs Fatrai
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Tokunaga M, Ezoe S, Tanaka H, Satoh Y, Fukushima K, Matsui K, Shibata M, Tanimura A, Oritani K, Matsumura I, Kanakura Y. BCR-ABL but not JAK2 V617F inhibits erythropoiesis through the Ras signal by inducing p21CIP1/WAF1. J Biol Chem 2010; 285:31774-82. [PMID: 20663870 DOI: 10.1074/jbc.m110.118653] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BCR-ABL is a causative tyrosine kinase (TK) of chronic myelogenous leukemia (CML). In CML patients, although myeloid cells are remarkably proliferating, erythroid cells are rather decreased and anemia is commonly observed. This phenotype is quite different from that observed in polycythemia vera (PV) caused by JAK2 V617F, whereas both oncogenic TKs activate common downstream molecules at the level of hematopoietic stem cells (HSCs). To clarify this mechanism, we investigated the effects of BCR-ABL and JAK2 V617F on erythropoiesis. Enforced expression of BCR-ABL but not of JAK2 V617F in murine LSK (Lineage(-)Sca-1(hi)CD117(hi)) cells inhibited the development of erythroid cells. Among several signaling molecules downstream of BCR-ABL, an active mutant of N-Ras (N-RasE12) but not of STAT5 or phosphatidylinositol 3-kinase (PI3-K) inhibited erythropoiesis, while N-RasE12 enhanced the development of myeloid cells. BCR-ABL activated Ras signal more intensely than JAK2 V617F, and inhibition of Ras by manumycin A, a farnesyltransferase inhibitor, ameliorated erythroid colony formation of CML cells. As for the mechanisms of Ras-induced suppression of erythropoiesis, we found that GATA-1, an erythroid-specific transcription factor, blocked Ras-mediated mitogenic signaling at the level of MEK through the direct interaction. Furthermore, enforced expression of N-RasE12 in LSK cells derived from p53-, p16(INK4a)/p19(ARF)-, and p21(CIP1/WAF1)-null/wild-type mice revealed that suppressed erythroid cell growth by N-RasE12 was restored only by p21(CIP1/WAF1) deficiency, indicating that a cyclin-dependent kinase (CDK) inhibitor, p21(CIP1/WAF1), plays crucial roles in Ras-induced suppression of erythropoiesis. These data would, at least partly, explain why respective oncogenic TKs cause different disease phenotypes.
Collapse
Affiliation(s)
- Masahiro Tokunaga
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells. Blood 2009; 115:1238-46. [PMID: 20007804 DOI: 10.1182/blood-2009-06-222869] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Excessive production of reactive oxygen species (ROS) is a feature of human malignancy and is often triggered by activation of oncogenes such as activated Ras. ROS act as second messengers and can influence a variety of cellular process including growth factor responses and cell survival. We have examined the contribution of ROS production to the effects of N-Ras(G12D) and H-Ras(G12V) on normal human CD34(+) progenitor cells. Activated Ras strongly up-regulated the production of both superoxide and hydrogen peroxide through the stimulation of NADPH oxidase (NOX) activity, without affecting the expression of endogenous antioxidants or the production of mitochondrially derived ROS. Activated Ras also promoted both the survival and the growth factor-independent proliferation of CD34(+) cells. Using oxidase inhibitors and antioxidants, we found that excessive ROS production by these cells did not contribute to their enhanced survival; rather, ROS promoted their growth factor-independent proliferation. Although Ras-induced ROS production specifically activated the p38(MAPK) oxidative stress response, this failed to induce expression of the cell-cycle inhibitor, p16(INK4A); instead, ROS promoted the expression of D cyclins. These data are the first to show that excessive ROS production in the context of oncogene activation can promote proliferative responses in normal human hematopoietic progenitor cells.
Collapse
|
15
|
Yu M, Riva L, Xie H, Schindler Y, Moran TB, Cheng Y, Yu D, Hardison R, Weiss MJ, Orkin SH, Bernstein BE, Fraenkel E, Cantor AB. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell 2009; 36:682-95. [PMID: 19941827 PMCID: PMC2800995 DOI: 10.1016/j.molcel.2009.11.002] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/05/2009] [Accepted: 10/30/2009] [Indexed: 01/29/2023]
Abstract
The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1-induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA-binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus nondifferentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1-bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that polycomb repressive complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1-repressed genes. These data provide insights into GATA-1-mediated gene regulation in vivo.
Collapse
Affiliation(s)
- Ming Yu
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Laura Riva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Huafeng Xie
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yocheved Schindler
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tyler B. Moran
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yong Cheng
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Duonan Yu
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ross Hardison
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Mitchell J Weiss
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stuart H. Orkin
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Bradley E. Bernstein
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School and the Broad Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA, USA
| | - Alan B. Cantor
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Konrad TA, Karger A, Hackl H, Schwarzinger I, Herbacek I, Wieser R. Inducible expression of EVI1 in human myeloid cells causes phenotypes consistent with its role in myelodysplastic syndromes. J Leukoc Biol 2009; 86:813-22. [PMID: 19605700 PMCID: PMC2777892 DOI: 10.1189/jlb.0109042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/06/2009] [Accepted: 06/09/2009] [Indexed: 12/20/2022] Open
Abstract
The oncogene EVI1 has been implicated in the etiology of AML and MDS. Although AML cells are characterized by accelerated proliferation and differentiation arrest, MDS cells hyperproliferate when immature but fail to differentiate later and die instead. In agreement with its roles in AML and in immature MDS cells, EVI1 was found to stimulate cell proliferation and inhibit differentiation in several experimental systems. In contrast, the variant protein MDS1/EVI1 caused the opposite effect in some of these assays. In the present study, we expressed EVI1 and MDS1/EVI1 in a tetracycline-regulable manner in the human myeloid cell line U937. Induction of either of these proteins caused cells to accumulate in the G(0)/G(1)-phase of the cell cycle and moderately increased the rate of spontaneous apoptosis. However, when EVI1- or MDS1/EVI1-expressing cells were induced to differentiate, they massively succumbed to apoptosis, as reflected by the accumulation of phosphatidylserine in the outer leaflet of the plasma membrane and increased rates of DNA fragmentation. In summary, these data show that inducible expression of EVI1 in U937 cells causes phenotypes that may be relevant for its role in MDS and provides a basis for further investigation of its contribution to this fatal disease.
Collapse
Affiliation(s)
- Torsten A Konrad
- Department of Medical Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Although uncontrolled proliferation is a distinguishing property of a tumor as a whole, the individual cells that make up the tumor exhibit considerable variation in many properties, including morphology, proliferation kinetics, and the ability to initiate tumor growth in transplant assays. Understanding the molecular and cellular basis of this heterogeneity has important implications in the design of therapeutic strategies. The mechanistic basis of tumor heterogeneity has been uncertain; however, there is now strong evidence that cancer is a cellular hierarchy with cancer stem cells at the apex. This review provides a historical overview of the influence of hematology on the development of stem cell concepts and their linkage to cancer.
Collapse
|
18
|
Tonks A, Tonks AJ, Pearn L, Mohamad Z, Burnett AK, Darley RL. Optimized Retroviral Transduction Protocol Which Preserves the Primitive Subpopulation of Human Hematopoietic Cells. Biotechnol Prog 2008; 21:953-8. [PMID: 15932279 DOI: 10.1021/bp0500314] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Though both low-speed centrifugation and the use of fibronectin (Retronectin) fragments increase gene transduction efficiency, they still do not overcome the adverse effects of the presence of virus-containing medium (VCM). In this study, we improved transduction efficiency of primitive human hematopoietic cells by optimizing the conditions for preadsorbing culture dishes with retrovirus using a centrifugation protocol allowing subsequent infection to be carried out in the absence of VCM. We also demonstrate that preadsorbing tissue culture plates with retrovirus is dependent on the volume of VCM used for preadsorption and the length of centrifugation and the type of plasticware used but not on the temperature of centrifugation (4-33 degrees C). Direct exposure of CD34+ target cells to VCM depletes the primitive CD34+CD38neg subpopulation by more than 30%, whereas the optimized VCM-free infection protocol targets this population with equivalent efficiency but had no detrimental effects on CD34+CD38neg frequency. In summary, we demonstrate a high-frequency transduction protocol which preserves the therapeutically relevant primitive subpopulation of human hematopoietic cells.
Collapse
Affiliation(s)
- Alex Tonks
- Department of Haematology and Department of Medical Microbiology, Cardiff University, School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Kennedy JA, Barabé F. Investigating human leukemogenesis: from cell lines to in vivo models of human leukemia. Leukemia 2008; 22:2029-40. [DOI: 10.1038/leu.2008.206] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Omidvar N, Kogan S, Beurlet S, le Pogam C, Janin A, West R, Noguera ME, Reboul M, Soulie A, Leboeuf C, Setterblad N, Felsher D, Lagasse E, Mohamedali A, Thomas NSB, Fenaux P, Fontenay M, Pla M, Mufti GJ, Weissman I, Chomienne C, Padua RA. BCL-2 and mutant NRAS interact physically and functionally in a mouse model of progressive myelodysplasia. Cancer Res 2008; 67:11657-67. [PMID: 18089795 DOI: 10.1158/0008-5472.can-07-0196] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Myelodysplastic syndromes (MDS) are clonal stem cell hematologic disorders that evolve to acute myeloid leukemia (AML) and thus model multistep leukemogenesis. Activating RAS mutations and overexpression of BCL-2 are prognostic features of MDS/AML transformation. Using NRASD12 and BCL-2, we created two distinct models of MDS and AML, where human (h)BCL-2 is conditionally or constitutively expressed. Our novel transplantable in vivo models show that expression of hBCL-2 in a primitive compartment by mouse mammary tumor virus-long terminal repeat results in a disease resembling human MDS, whereas the myeloid MRP8 promoter induces a disease with characteristics of human AML. Expanded leukemic stem cell (Lin(-)/Sca-1(+)/c-Kit(+)) populations and hBCL-2 in the increased RAS-GTP complex within the expanded Sca-1(+) compartment are described in both MDS/AML-like diseases. Furthermore, the oncogenic compartmentalizations provide the proapoptotic versus antiapoptotic mechanisms, by activating extracellular signal-regulated kinase and AKT signaling, in determination of the neoplastic phenotype. When hBCL-2 is switched off with doxycycline in the MDS mice, partial reversal of the phenotype was observed with persistence of bone marrow blasts and tissue infiltration as RAS recruits endogenous mouse (m)BCL-2 to remain active, thus demonstrating the role of the complex in the disease. This represents the first in vivo progression model of MDS/AML dependent on the formation of a BCL-2:RAS-GTP complex. The colocalization of BCL-2 and RAS in the bone marrow of MDS/AML patients offers targeting either oncogene as a therapeutic strategy.
Collapse
Affiliation(s)
- Nader Omidvar
- Institut National de la Sante et de la Recherche Medicale U718 and 728, Université Paris 7 Denis Diderot, Faculté de Médicine, Institut Universitaire d'Hématologie-IFR105, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shen S, Passioura T, Symonds G, Dolnikov A. N-ras oncogene–induced gene expression in human hematopoietic progenitor cells: Upregulation of p16INK4a and p21CIP1/WAF1 correlates with myeloid differentiation. Exp Hematol 2007; 35:908-19. [PMID: 17533045 DOI: 10.1016/j.exphem.2007.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 02/16/2007] [Accepted: 02/20/2007] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Mutations in ras oncogenes occur at high frequency in acute myeloid leukemia and myelodysplastic syndromes; however, the role of ras genes in leukemogenesis has not been clearly defined. Our previous studies have shown that expression of mutant N-ras (N-rasG13R, G to C transversion) in human hematopoietic progenitor cells (HPC) promotes myeloid differentiation and proliferation both in vitro and in a NOD/SCID mouse model. In the present study, we performed expression profiling to identify the transcriptome induced by N-rasG13R in human HPC, and analyzed the effect of mutant N-ras in sorted specific subpopulations of HPC. METHODS cDNA microarray analysis was performed on cord blood CD34(+) cells transduced with a retrovirus containing GFP alone or in combination with mutant N-ras. Transduced cells were also sorted into factorial subpopulations according to CD34 and transgene expression, and analyzed in suspension or semi-solid methylcellulose culture. RESULTS Among a variety of changes, including upregulation of cytokine genes, we found that N-rasG13R induced expression of the cyclin-dependent kinase inhibitors p16(INK4a) and p21(CIP1/WAF1). Analysis by RT-PCR revealed that increased p16(INK4a) and p21(CIP1/WAF1) occurred in the most primitive, CD34(+)/Ras(+) population but not in the more mature CD34(-)/Ras(+) cells or in the CD34(+)/Ras(-) cells. Moreover, N-rasG13R inhibited the proliferation of the primitive CD34(+)/Ras(+) cells, both in liquid culture and in colony assays. This growth suppression correlated with an increased proportion of myelomonocytic colonies and a decrease of erythroid colonies. In contrast, the growth of CD34(-)/Ras(+) cells and CD34(+)/Ras(-) HPC was not inhibited. CONCLUSIONS These findings demonstrated the mutant N-ras induced transcriptome, and that this is associated with HPC growth suppression/myelomonocytic differentiation, and identify upregulation of cyclin inhibitors as key events in this process. The results indicate that ras mutation alone is not sufficient to induce leukemogenesis; collaborative secondary event(s) are involved in the process.
Collapse
MESH Headings
- Animals
- Antigens, CD34/biosynthesis
- Cell Differentiation/genetics
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured
- Cyclin-Dependent Kinase Inhibitor p16/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p21/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cytokines/biosynthesis
- Cytokines/genetics
- Gene Expression Regulation, Leukemic/genetics
- Genes, ras/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mutation, Missense
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- Myeloid Progenitor Cells/metabolism
- Myeloid Progenitor Cells/pathology
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Sylvie Shen
- Children's Cancer Institute Australia, Randwick, Sydney, Australia
| | | | | | | |
Collapse
|
22
|
Guinn BA, Mohamedali A, Mills KI, Czepulkowski B, Schmitt M, Greiner J. Leukemia associated antigens: their dual role as biomarkers and immunotherapeutic targets for acute myeloid leukemia. Biomark Insights 2007; 2:69-79. [PMID: 19662193 PMCID: PMC2717836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Leukemia associated antigens (LAAs) are being increasingly identified by methods such as cytotoxic T-lymphocyte (CTL) cloning, serological analysis of recombinant cDNA expression libraries (SEREX) and mass spectrometry (MS). In additional, large scale screening techniques such as microarray, single nucleotide polymorphisms (SNPs), serial analysis of gene expression (SAGE) and 2-dimensional gel electrophoresis (2-DE) have expanded our understanding of the role that tumor antigens play in the biological processes which are perturbed in acute myeloid leukemia (AML). It has become increasingly apparent that these antigens play a dual role, not only as targets for immunotherapy, but also as biomarkers of disease state, stage, response to treatment and survival. We need biomarkers to enable the identification of the patients who are most likely to benefit from specific treatments (conventional and/or novel) and to help clinicians and scientists improve clinical end points and treatment design. Here we describe the LAAs identified in AML, to date, which have already been shown to play a dual role as biomarkers of AML disease.
Collapse
Affiliation(s)
- Barbara-ann Guinn
- Department of Haematological Medicine, King’s College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU,Correspondence: Dr. Barbara Guinn, Department of Haematological Medicine, King’s College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU. U.K., Tel: +44 207 848 5816; Fax: +44 207 733 3877;
| | - Azim Mohamedali
- Department of Haematological Medicine, King’s College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Ken I. Mills
- Department of Haematology, University Hospital of Wales, Heath Park, Cardiff, CF4 4XN, U.K
| | - Barbara Czepulkowski
- Department of Haematological Medicine, King’s College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Michael Schmitt
- Third Clinic for Internal Medicine, University of Ulm, Germany
| | - Jochen Greiner
- Third Clinic for Internal Medicine, University of Ulm, Germany
| |
Collapse
|
23
|
Pearn L, Fisher J, Burnett AK, Darley RL. The role of PKC and PDK1 in monocyte lineage specification by Ras. Blood 2007; 109:4461-9. [PMID: 17255356 DOI: 10.1182/blood-2006-09-047217] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although hyperactivation of Ras is a common feature of myeloid malignancy, its role in subverting hematopoiesis is unclear. We have examined the influence of Ras on normal human uncommitted myeloid subsets and show that expression of this oncogene strongly favors monocyte lineage selection in bipotential granulocyte/macrophage progenitors while inhibiting colony formation in other uncommitted subsets. Ras also promoted monocytic differentiation but not the proliferation of these cells. The mechanism through which Ras drives monocyte lineage selection was dependent on PKC activity and Ras was found to promote the expression, membrane translocation, and phosphorylation of conventional and novel PKC isoforms. We further show that Ras promoted the expression of the AGC kinase master regulator, PDK1, which maintains the stability and activity of PKC isoforms. Consistent with this, overexpression of PDK1 itself promoted monocyte colony formation and translocation of PKC. Overexpression of PDK1 was found to be a common feature of acute myeloid leukemia (45% of patients) and was closely associated with hyperphosphorylation of PKC. These data demonstrate that Ras is able to promote monocyte lineage selection via PKC and show for the first time the involvement of the kinase master regulator, PDK1, in both lineage specification and in human leukemia.
Collapse
Affiliation(s)
- Lorna Pearn
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
24
|
Braun BS, Archard JA, Van Ziffle JAG, Tuveson DA, Jacks TE, Shannon K. Somatic activation of a conditional KrasG12D allele causes ineffective erythropoiesis in vivo. Blood 2006; 108:2041-4. [PMID: 16720837 PMCID: PMC1895533 DOI: 10.1182/blood-2006-01-013490] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Somatic activation of a conditional targeted Kras(G12D) allele induces a fatal myeloproliferative disease in mice that closely models juvenile and chronic myelomonocytic leukemia. These mice consistently develop severe and progressive anemia despite adequate numbers of clonogenic erythroid progenitors in the bone marrow and expanded splenic hematopoiesis. Ineffective erythropoiesis is characterized by impaired differentiation. These results demonstrate that endogenous levels of oncogenic Ras have cell lineage-specific effects and support efforts to modulate Ras signaling for therapy of anemia in patients with myelodysplastic syndromes and myeloproliferative disorders.
Collapse
Affiliation(s)
- Benjamin S Braun
- Department of Pediatrics, HSE-302, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
25
|
Steensma DP. Are myelodysplastic syndromes "cancer"? Unexpected adverse consequences of linguistic ambiguity. Leuk Res 2006; 30:1227-33. [PMID: 16443272 DOI: 10.1016/j.leukres.2005.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 12/04/2005] [Accepted: 12/04/2005] [Indexed: 01/20/2023]
Abstract
Myelodysplastic syndromes (MDS) are clonal, neoplastic disorders of hematopoietic tissue that convey a guarded prognosis, but physicians vary in whether they refer to MDS as a "cancer" when discussing the diagnosis with patients. Because of past ambiguity about whether MDS is truly a malignancy, confusion about MDS terminology is widespread. Additionally, patients who carry one of the dubious cancer-specific health insurance policies are usually not eligible for financial benefits when they receive a diagnosis of MDS. Likewise, patients with MDS who have been led to believe they do not have a form of cancer by their primary physician may become upset when seeing another health care provider who does refer to MDS in this way. Here, I discuss evidence supporting broader consideration of MDS as a form of malignant neoplasia - i.e., cancer - as well as some of the relevant practical issues.
Collapse
Affiliation(s)
- David P Steensma
- Department of Medicine (Hematology) and Oncology, Mayo Clinic and Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
26
|
Passioura T, Shen S, Symonds G, Dolnikov A. A retroviral library genetic screen identifies IRF-2 as an inhibitor of N-ras-induced growth suppression in leukemic cells. Oncogene 2005; 24:7327-36. [PMID: 16007130 DOI: 10.1038/sj.onc.1208877] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activating mutations of the N-ras gene occur at relatively high frequency in acute myeloid leukemia and myelodysplastic syndrome. Somewhat paradoxically, ectopic expression of activated N-ras in primary hematopoietic cells and myeloid cell lines (in some cases) can lead to inhibition of proliferation. Expression of mutant N-ras in murine hematopoietic stem/progenitor cells is sufficient to induce myeloid malignancies, but these pathologies occur with long latency. This suggests that mutations that disable the growth suppressive properties of N-ras in hematopoietic cells are required for the development of frank malignancy. In the present work, the growth suppression induced by a mutant N-ras gene in U937 myeloid cells was used as the basis to screen a retroviral cDNA library for genes that prevent mutant N-ras-induced growth suppression (i.e., putative cooperating oncogenes). This screen identified the gene for the transcription factor interferon regulatory factor-2 (IRF-2), and as confirmation of the screen, overexpression of this gene in U937 cells was shown to inhibit mutant N-ras-induced growth suppression. Also recovered from the screen were two truncated clones of an uncharacterized gene (interim official symbol: PP2135). Overexpression of this truncated PP2135 gene in U937 cells did not appear to abrogate mutant N-ras-induced growth suppression, but rather appeared to confer an increased sensitivity of U937 cells to retroviral infection, accounting for the recovery of this gene from the genetic screen.
Collapse
Affiliation(s)
- Toby Passioura
- School of Medical Sciences, University of New South Wales, Kensington, Sydney, Australia
| | | | | | | |
Collapse
|
27
|
Guo X, Schrader KA, Xu Y, Schrader JW. Expression of a constitutively active mutant of M-Ras in normal bone marrow is sufficient for induction of a malignant mastocytosis/mast cell leukemia, distinct from the histiocytosis/monocytic leukemia induced by expression of activated H-Ras. Oncogene 2005; 24:2330-42. [PMID: 15735740 DOI: 10.1038/sj.onc.1208441] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expression of constitutively activated M-Ras in normal murine bone-marrow cells was sufficient to induce the factor-independent, in vitro growth and differentiation of colonies of macrophages and neutrophils, and the generation of immortal lines of factor-independent mast cells, and, upon in vivo injection of the transduced cells, a fatal mastocytosis/mast-cell leukemia. In contrast, expression of constitutively activated H-Ras in bone-marrow cells resulted in the in vitro growth, in the absence of exogenous factors, of colonies that contained only macrophages and of lines of cells resembling dendritic cells, and, upon in vivo injection of the transduced cells, a fatal histiocytosis/monocytic leukemia. Macrophages generated by bone-marrow cells expressing activated M-Ras or activated H-Ras differed morphologically, the latter appearing more activated, a difference abrogated by an inhibitor of Erk activation. Inhibition of either Erk or PI3 kinase blocked the capacity of both activated M-Ras and activated H-Ras to support proliferation and viability. However, inhibition of p38 MAPK activity suppressed proliferation of bone-marrow cells expressing activated H-Ras, but enhanced that of bone-marrow cells expressing activated M-Ras. Thus, expression of either activated M-Ras or H-Ras in normal hematopoietic cells was sufficient for transformation but each resulted in the generation of distinct lineages of cells.
Collapse
Affiliation(s)
- Xuecui Guo
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada V6T1Z3
| | | | | | | |
Collapse
|
28
|
Passioura T, Dolnikov A, Shen S, Symonds G. N-Ras–Induced Growth Suppression of Myeloid Cells Is Mediated by IRF-1. Cancer Res 2005. [DOI: 10.1158/0008-5472.797.65.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Activating mutations in ras oncogenes occur at high frequency in human malignancies and expression of activated ras in immortalized cells lines is generally transforming. However, somewhat paradoxically, ectopic expression of ras in some myeloid cell lines has been shown to induce growth suppression associated with up-regulation of the cyclin-dependent kinase inhibitor p21CIP1/WAF1 in a p16INK4a, p15INK4b, and p53 independent fashion. We have used cDNA array technology to compare the expression profile induced by activated N-ras (N-rasG13R) in growth-suppressed myeloid cells with that induced in myeloid cells, which are transformed by N-rasG13R. The expression profile induced in growth suppressed cells was consistent with differentiation and included the up-regulation of the transcription factor IFN regulatory factor-1 (IRF-1), a known transcriptional activator of p21CIP/WAF1 expression and a target of oncogenic mutations associated with myeloid leukemia. Antisense suppression of IRF-1 prevented N-rasG13R–associated growth arrest and up-regulation of p21CIP1/WAF1. These results define a novel tumor suppressive response to oncogenic signaling and provide a mechanistic link between growth suppression and differentiation in myeloid cells.
Collapse
Affiliation(s)
- Toby Passioura
- 1School of Medical Sciences, The University of New South Wales, Kensington and
| | - Alla Dolnikov
- 1School of Medical Sciences, The University of New South Wales, Kensington and
- 2Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Sylvie Shen
- 1School of Medical Sciences, The University of New South Wales, Kensington and
- 2Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Geoff Symonds
- 1School of Medical Sciences, The University of New South Wales, Kensington and
- 2Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Too much ERK, not enough erythrocytes. Blood 2004. [DOI: 10.1182/blood-2004-06-2461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Dorrell C, Takenaka K, Minden MD, Hawley RG, Dick JE. Hematopoietic cell fate and the initiation of leukemic properties in primitive primary human cells are influenced by Ras activity and farnesyltransferase inhibition. Mol Cell Biol 2004; 24:6993-7002. [PMID: 15282300 PMCID: PMC479743 DOI: 10.1128/mcb.24.16.6993-7002.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ras pathway transduces divergent signals determining normal cell fate and is frequently activated in hematopoietic malignancies, but the manner in which activation contributes to human leukemia is poorly understood. We report that a high level of activated H-Ras signaling in transduced primary human hematopoietic progenitors reduced their proliferation and enhanced monocyte/macrophage differentiation. However, the exposure of these cells to a farnesyltransferase inhibitor and establishment of a moderate level of Ras activity showed increased proliferation, an elevated frequency of primitive blast-like cells, and progenitors with enhanced self-renewal capacity. These results suggest that the amplitude of Ras pathway signaling is a determinant of myeloid cell fate and that moderate Ras activation in primitive hematopoietic cells can be an early event in leukemogenesis.
Collapse
Affiliation(s)
- Craig Dorrell
- Department of Molecular and Cellular Biology, Princess Margaret Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
31
|
Shen SW, Dolnikov A, Passioura T, Millington M, Wotherspoon S, Rice A, MacKenzie KL, Symonds G. Mutant N-ras preferentially drives human CD34+ hematopoietic progenitor cells into myeloid differentiation and proliferation both in vitro and in the NOD/SCID mouse. Exp Hematol 2004; 32:852-60. [PMID: 15345287 DOI: 10.1016/j.exphem.2004.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 05/25/2004] [Accepted: 06/03/2004] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Ras oncogene mutations are the most frequently observed genetic abnormality (20-40% of patients) in acute myeloid leukemia (AML), and in the preleukemic conditions myelodysplastic syndrome (MDS) and myeloproliferative disorder (MPD). We have previously shown that mutant N-ras (N-rasm) can induce myeloproliferative disorders and apoptosis in a murine reconstitution system. In the present study we investigated the effect of N-rasm in human primary hematopoietic progenitor cells (HPC). METHODS Cord blood CD34+ hematopoietic progenitor cells (HPC) were transduced with retroviral vectors containing green fluorescence protein (GFP) alone, or in combination with N-rasm. Cells were then cultured in vitro with a cytokine supplement or cocultured with murine stroma MS-5 cells. The in vivo behavior of transduced cells was examined in the NOD/SCID mouse model. RESULTS N-rasm-transduced cells exhibited greater proliferative capacity; a higher frequency of granulocyte-macrophage colony-forming unit (CFU-GM); and an increase in myelomonocytic lineage cells with a concomitant decrease in lymphoid and erythroid cells. Analysis of transduced HPC in NOD/SCID mice revealed higher bone marrow engraftment by N-rasm HPC and increased numbers of myeloid lineage cells. CONCLUSIONS The results demonstrate that N-rasm in HPC induces myeloproliferation both in vitro and in the NOD/SCID mouse model as a primary event that does not appear to be dependent on cooperating transforming events.
Collapse
Affiliation(s)
- Sylvie W Shen
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang J, Lodish HF. Constitutive activation of the MEK/ERK pathway mediates all effects of oncogenic H-ras expression in primary erythroid progenitors. Blood 2004; 104:1679-87. [PMID: 15166036 DOI: 10.1182/blood-2004-04-1362] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oncogenic mutations in ras genes frequently occur in patients with myeloid disorders, and in these patients erythropoiesis is often affected. Previously, we showed that expression of oncogenic H-ras in purified mouse primary fetal liver erythroid progenitors blocks terminal erythroid differentiation and supports erythropoietin (Epo)-independent proliferation. As a first step in understanding the underlying molecular mechanisms we examined the signaling pathways downstream of Ras in primary erythroid cells. We found that 3 major pathways are abnormally activated by oncogenic H-ras: Raf/ERK (extracellular signal-regulated kinase), phosphatidyl inositol 3 (PI3)-kinase/Akt, and RalGEF/RalA. However, only constitutive activation of the MEK (MAPK [mitogen-activated protein kinase]/ERK kinase)/ERK pathway alone could recapitulate all of the effects of oncogenic H-ras expression in blocking erythroid differentiation and inducing Epo-independent proliferation. Although expression of a constitutively active Akt kinase (ca.Akt) in erythroid progenitors does not significantly affect erythroid differentiation in the presence of Epo, coexpression of ca.Akt together with a constitutively active MEK causes prolonged Epo-independent proliferation of erythroid progenitors in addition to a block in differentiation. Moreover, the effects of oncogenic H-ras expression on primary erythroid cells are blocked by the addition of U0126, a specific inhibitor of MEK1 and MEK2, allowing normal terminal erythroid proliferation and differentiation. Our data suggest that the interruption of constitutive MEK/ERK signaling is a potential therapeutic strategy to correct impaired erythroid differentiation in patients with myeloid disorders.
Collapse
Affiliation(s)
- Jing Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | |
Collapse
|
33
|
Abstract
Targeted therapies for hematological malignancies have come of age since the advent of all trans retinoic acid (ATRA) for treating APL and STI571/Imatinib Mesylate/Gleevec for CML. There are good molecular targets for other malignancies and several new drugs are in clinical trials. In this review, we will concentrate on individual abnormalities that exist in the myelodysplastic syndromes (MDS) and myeloid leukemias that are targets for small molecule therapies (summarised in Fig. 1). We will cover fusion proteins that are produced as a result of translocations, including BCR-ABL, the FLT3 tyrosine kinase receptor and RAS. Progression of diseases such as MDS to secondary AML occur as a result of changes in the balance between cell proliferation and apoptosis and we will review targets in both these areas, including reversal of epigenetic silencing of genes such as p15(INK4B).
Collapse
Affiliation(s)
- Alison M John
- Leukaemia Sciences Laboratories, Department of Haematological Medicine, Guy's, King's and St Thomas' School of Medicine, King's College London, The Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, UK
| | | | | | | |
Collapse
|
34
|
Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H, Johnson L, Akashi K, Tuveson DA, Jacks T, Gilliland DG. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 2004; 113:528-38. [PMID: 14966562 PMCID: PMC338267 DOI: 10.1172/jci20476] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 01/07/2004] [Indexed: 12/16/2022] Open
Abstract
Oncogenic ras alleles are among the most common mutations found in patients with acute myeloid leukemia (AML). Previously, the role of oncogenic ras in cancer was assessed in model systems overexpressing oncogenic ras from heterologous promoters. However, there is increasing evidence that subtle differences in gene dosage and regulation of gene expression from endogenous promoters play critical roles in cancer pathogenesis. We characterized the role of oncogenic K-ras expressed from its endogenous promoter in the hematopoietic system using a conditional allele and IFN-inducible, Cre-mediated recombination. Mice developed a completely penetrant myeloproliferative syndrome characterized by leukocytosis with normal maturation of myeloid lineage cells; myeloid hyperplasia in bone marrow; and extramedullary hematopoiesis in the spleen and liver. Flow cytometry confirmed the myeloproliferative phenotype. Genotypic and Western blot analysis demonstrated Cre-mediated excision and expression, respectively, of the oncogenic K-ras allele. Bone marrow cells formed growth factor-independent colonies in methylcellulose cultures, but the myeloproliferative disease was not transplantable into secondary recipients. Thus, oncogenic K-ras induces a myeloproliferative disorder but not AML, indicating that additional mutations are required for AML development. This model system will be useful for assessing the contribution of cooperating mutations in AML and testing ras inhibitors in vivo.
Collapse
Affiliation(s)
- Iris T Chan
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pradhan A, Mijovic A, Mills K, Cumber P, Westwood N, Mufti GJ, Rassool FV. Differentially expressed genes in adult familial myelodysplastic syndromes. Leukemia 2004; 18:449-59. [PMID: 14737073 DOI: 10.1038/sj.leu.2403265] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The precise genetic events leading to myelodysplastic syndromes (MDSs) and leukemic transformation remain poorly defined. Even less is known about adult familial MDS. We report an adult MDS family in whom enriched tissue-specific transcripts were derived by subtractive hybridization of cDNA from the mononuclear and CD34+ cells of affected and unaffected family members. These expression libraries were then hybridized to Genome Discovery arrays containing 18 404 genes and expressed sequence tags, and several clusters of differentially expressed genes were identified. A group of 21 genes was underexpressed (>5-fold) in affected vs unaffected family members, and among these were transcription factors and genes involved in myeloid differentiation, such as ZNF140 and myeloid nuclear differentiation antigen (MNDA). Another group of 36 genes was overexpressed (>5-fold), and these encoded proteins belonging to signaling pathways, such as Ras- and Fos-related genes. The top two genes downregulated in this MDS family, ZNF140 and MNDA, were similarly altered in another MDS family, and in some cases of sporadic MDS. Our data suggest that we have identified genes differentially expressed in adult familial MDS, and that alteration of some of these genes may also be important for the evolution of different stages or severity of sporadic MDS.
Collapse
Affiliation(s)
- A Pradhan
- Leukaemia Science Laboratories, Department of Haematological Medicine, The Rayne Institute, GKT School of Medicine, Denmark Hill, London, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Braun BS, Tuveson DA, Kong N, Le DT, Kogan SC, Rozmus J, Le Beau MM, Jacks TE, Shannon KM. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci U S A 2003; 101:597-602. [PMID: 14699048 PMCID: PMC327193 DOI: 10.1073/pnas.0307203101] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RAS mutations are common in myeloid malignancies; however, it is not known whether oncogenic RAS can initiate leukemia. We show that expressing mutant K-Ras(G12D) protein from the endogenous murine locus rapidly induces a fatal myeloproliferative disorder with 100% penetrance characterized by tissue infiltration, hypersensitivity to growth factors, and hyperproliferation. Hematopoietic cells from diseased mice demonstrated increased levels of Ras-GTP, but effector kinases were not constitutively phosphorylated and responded normally to growth factors. Oncogenic RAS is sufficient to initiate myeloid leukemogenesis in mice, and this provides an in vivo system for biologic and preclinical studies.
Collapse
Affiliation(s)
- Benjamin S Braun
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lancet JE, Karp JE. Farnesyltransferase inhibitors in hematologic malignancies: new horizons in therapy. Blood 2003; 102:3880-9. [PMID: 12920034 DOI: 10.1182/blood-2003-02-0633] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Farnesyltransferase inhibitors (FTIs) are small-molecule inhibitors that selectively inhibit farnesylation of a number of intracellular substrate proteins such as Ras. Preclinical work has revealed their ability to effectively inhibit tumor growth across a wide range of malignant phenotypes. Many hematologic malignancies appear to be reasonable disease targets, in that they express relevant biologic targets, such as Ras, mitogen-activated protein kinase (MAPK), AKT, and others that may depend on farnesyl protein transferase (FTase) activity to promote proliferation and survival. A host of phase 1 trials have been recently launched to assess the applicability of FTIs in hematologic malignancies, many of which demonstrate effective enzyme target inhibition, low toxicity, and some clinical responses. As a result, phase 2 trials have been initiated in a variety of hematologic malignancies and disease settings to further validate clinical activity and to identify downstream signal transduction targets that may be modified by these agents. It is anticipated that these studies will serve to define the optimal roles of FTIs in patients with hematologic malignancies and provide insight into effective methods by which to combine FTIs with other agents.
Collapse
Affiliation(s)
- Jeffrey E Lancet
- James P. Wilmot Cancer Center, University of Rochester, 601 Elmwood Ave, Box 704, Rochester, NY 14642, USA.
| | | |
Collapse
|
38
|
Zhang J, Socolovsky M, Gross AW, Lodish HF. Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 2003; 102:3938-46. [PMID: 12907435 DOI: 10.1182/blood-2003-05-1479] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ras signaling plays an important role in erythropoiesis. Its function has been extensively studied in erythroid and nonerythroid cell lines as well as in primary erythroblasts, but inconclusive results using conventional erythroid colony-forming unit (CFU-E) assays have been obtained concerning the role of Ras signaling in erythroid differentiation. Here we describe a novel culture system that supports terminal fetal liver erythroblast proliferation and differentiation and that closely recapitulates erythroid development in vivo. Erythroid differentiation is monitored step by step and quantitatively by a flow cytometry analysis; this analysis distinguishes CD71 and TER119 double-stained erythroblasts into different stages of differentiation. To study the role of Ras signaling in erythroid differentiation, different H-ras proteins were expressed in CFU-E progenitors and early erythroblasts with the use of a bicistronic retroviral system, and their effects on CFU-E colony formation and erythroid differentiation were analyzed. Only oncogenic H-ras, not dominant-negative H-ras, reduced CFU-E colony formation. Analysis of infected erythroblasts in our newly developed system showed that oncogenic H-ras blocks terminal erythroid differentiation, but not through promoting apoptosis of terminally differentiated erythroid cells. Rather, oncogenic H-ras promotes abnormal proliferation of CFU-E progenitors and early erythroblasts and supports their erythropoietin (Epo)-independent growth.
Collapse
Affiliation(s)
- Jing Zhang
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
39
|
Steensma DP, Tefferi A. The myelodysplastic syndrome(s): a perspective and review highlighting current controversies. Leuk Res 2003; 27:95-120. [PMID: 12526916 DOI: 10.1016/s0145-2126(02)00098-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The myelodysplastic syndrome (MDS) includes a diverse group of clonal and potentially malignant bone marrow disorders characterized by ineffective and inadequate hematopoiesis. The presumed source of MDS is a genetically injured early marrow progenitor cell or pluripotential hematopoietic stem cell. The blood dyscrasias that fall under the broad diagnostic rubric of MDS appear to be quite heterogeneous, which has made it very difficult to construct a coherent, universally applicable MDS classification scheme. A recent re-classification proposal sponsored by the World Health Organization (WHO) has engendered considerable controversy. Although the precise incidence of MDS is uncertain, it has become clear that MDS is at least as common as acute myelogenous leukemia (AML). There is considerable overlap between these two conditions, and the former often segues into the latter; indeed, the distinction between AML and MDS can be murky, and some have argued that the current definitions are arbitrary. Despite the discovery of several tantalizing pathophysiological clues, the basic biology of MDS is incompletely understood. Treatment at present is generally frustrating and ineffective, and except for the small subset of patients who exhibit mild marrow dysfunction and low-risk cytogenetic lesions, the overall prognosis remains rather grim. In this narrative review, we highlight recent developments and controversies within the context of current knowledge about this mysterious and fascinating cluster of bone marrow failure states.
Collapse
Affiliation(s)
- David P Steensma
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
40
|
Tonks A, Pearn L, Tonks AJ, Pearce L, Hoy T, Phillips S, Fisher J, Downing JR, Burnett AK, Darley RL. The AML1-ETO fusion gene promotes extensive self-renewal of human primary erythroid cells. Blood 2003; 101:624-32. [PMID: 12393523 DOI: 10.1182/blood-2002-06-1732] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The t(8;21) translocation, which encodes the AML1-ETO fusion protein (now known as RUNX1-CBF2T1), is one of the most frequent translocations in acute myeloid leukemia, although its role in leukemogenesis is unclear. Here, we report that exogenous expression of AML1-ETO in human CD34(+) cells severely disrupts normal erythropoiesis, resulting in virtual abrogation of erythroid colony formation. In contrast, in bulk liquid culture of purified erythroid cells, we found that while AML1-ETO initially inhibited proliferation during early (erythropoietin [EPO]-independent) erythropoiesis, growth inhibition gave way to a sustained EPO-independent expansion of early erythroid cells that continued for more than 60 days, whereas control cultures became growth arrested after 10 to 13 days (at the EPO-dependent stage of development). Phenotypic analysis showed that although these cells were CD13(-) and CD34(-), unlike control cultures, these cells failed to up-regulate CD36 or to down-regulate CD33, suggesting that expression of AML1-ETO suppressed the differentiation of these cells and allowed extensive self-renewal to occur. In the early stages of this expansion, addition of EPO was able to promote both phenotypic (CD36(+), CD33(-), glycophorin A(+)) and morphologic differentiation of these cells, almost as effectively as in control cultures. However, with extended culture, cells expressing AML1-ETO became refractory to addition of this cytokine, suggesting that a block in differentiation had been established. These data demonstrate the capacity of AML1-ETO to promote the self-renewal of human hematopoietic cells and therefore support a causal role for t(8;21) translocations in leukemogenesis.
Collapse
Affiliation(s)
- Alex Tonks
- Department of Haematology, University of Wales College of Medicine, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sugiyama T, Osaka M, Koami K, Maeda S, Ueda N. 7,12-DMBA-induced rat leukemia: a review with insights into future research. Leuk Res 2002; 26:1053-68. [PMID: 12443876 DOI: 10.1016/s0145-2126(02)00045-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
7,12-Dimethylbenz[a]anthracene (DMBA) elicits leukemia in Long-Evans rats (LE). This leukemia is mostly erythroblastic and 30% of leukemias have total and partial trisomy of #2 chromosome and the rest have diploid karyotype. The common duplication site is in 2q26-q34 and N-ras gene is located in 2q34. 7,8,12-Trimethylbenz[a]anthracene (TMBA) also induces similar leukemias. These leukemias reveal a highly specific mutation of N-ras gene as in human leukemias. N-ras mutation is induced 48h after DMBA treatment. Wild type N-ras allele is frequently lost in diploid leukemias but not in trisomy type. Therefore, a gene dosage problem related to the mutant N-ras gene is involved in development of leukemia. Some secondary genetic rearrangements involving abl and H-ras are also observed in cultured leukemia cells. DMBA-induced chromosome aberrations as well as leukemia are enhanced by erythropoietin and blocked by Sudan III given prior to DMBA treatment. This leukemia will provide an important tool for chemical carcinogenesis and leukemia studies.
Collapse
|
42
|
Darley RL, Pearn L, Omidvar N, Sweeney M, Fisher J, Phillips S, Hoy T, Burnett AK. Protein kinase C mediates mutant N-Ras-induced developmental abnormalities in normal human erythroid cells. Blood 2002; 100:4185-92. [PMID: 12393454 DOI: 10.1182/blood-2002-05-1358] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RAS mutations are one of the most frequent molecular abnormalities associated with myeloid leukemia and preleukemia, yet there is a poor understanding of how they contribute to the pathogenesis of these conditions. Here, we describe the consequences of ectopic mutant N-Ras (N-Ras*) expression on normal human erythropoiesis. We show that during early (erythropoietin [EPO]-independent) erythropoiesis, N-Ras* promoted the amplification of a phenotypically primitive but functionally defective subpopulation of CD34(+) erythroblasts. N-Ras* also up-regulated the expression of megakaryocyte antigens on human erythroblasts. Although early erythroblasts expressing N-Ras* were able to respond to erythropoietin and generate mature progeny, this occurred with greatly reduced efficiency, probably explaining the poor colony growth characteristics of these cells. We further report that this oncogene promoted the expression and activation of protein kinase C (PKC) and that the effects of N-Ras* on erythropoiesis could be abrogated or attenuated by inhibition of PKC. Similarly, the effects of this oncogene could be partially mimicked by treatment with PKC agonist. Together, these data suggest that expression of N-Ras* is able to subvert the normal developmental cues that regulate erythropoiesis by activating PKC. This gives rise to phenotypic and functional abnormalities commonly observed in preleukemia, suggesting a direct link between RAS mutations and the pathogenesis of preleukemia.
Collapse
Affiliation(s)
- Richard L Darley
- Leukaemia Research Fund Differentiation Group, Department of Haematology, University of Wales College of Medicine, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ehrhardt A, Ehrhardt GRA, Guo X, Schrader JW. Ras and relatives--job sharing and networking keep an old family together. Exp Hematol 2002; 30:1089-106. [PMID: 12384139 DOI: 10.1016/s0301-472x(02)00904-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many members of the Ras superfamily of GTPases have been implicated in the regulation of hematopoietic cells, with roles in growth, survival, differentiation, cytokine production, chemotaxis, vesicle-trafficking, and phagocytosis. The well-known p21 Ras proteins H-Ras, N-Ras, K-Ras 4A, and K-Ras 4B are also frequently mutated in human cancer and leukemia. Besides the four p21 Ras proteins, the Ras subfamily of the Ras superfamily includes R-Ras, TC21 (R-Ras2), M-Ras (R-Ras3), Rap1A, Rap1B, Rap2A, Rap2B, RalA, and RalB. They exhibit remarkable overall amino acid identities, especially in the regions interacting with the guanine nucleotide exchange factors that catalyze their activation. In addition, there is considerable sharing of various downstream effectors through which they transmit signals and of GTPase activating proteins that downregulate their activity, resulting in overlap in their regulation and effector function. Relatively little is known about the physiological functions of individual Ras family members, although the presence of well-conserved orthologs in Caenorhabditis elegans suggests that their individual roles are both specific and vital. The structural and functional similarities have meant that commonly used research tools fail to discriminate between the different family members, and functions previously attributed to one family member may be shared with other members of the Ras family. Here we discuss similarities and differences in activation, effector usage, and functions of different members of the Ras subfamily. We also review the possibility that the differential localization of Ras proteins in different parts of the cell membrane may govern their responses to activation of cell surface receptors.
Collapse
Affiliation(s)
- Annette Ehrhardt
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
44
|
Padua RA, McGlynn A, McGlynn H. Molecular, cytogenetic and genetic abnormalities in MDS and secondary AML. Cancer Treat Res 2002; 108:111-57. [PMID: 11702597 DOI: 10.1007/978-1-4615-1463-3_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Myelodysplasia (MDS) is a clonal disease, which increases with age, suggesting that multiple steps are required for the evolution of the condition. Approximately 30% of MDS evolve into acute myelogenous leukemia (AML). In this review, we intend to delineate the genetic events, which may drive this sequence and therefore we will focus primarily on cytogenetic abnormalities where the genes have been identified and oncogenes and suppressor genes that have been implicated. In terms of the biological mechanisms, which characterise this process, it is generally thought that the MDS cell has impaired differentiation, and has increased apoptosis. As the disease progresses in addition, the cells have increased proliferation. As the disease evolves, the population of cells, which predominate remain immature, have decreased apoptosis and in many cases, upregulate anti-apoptotic genes and have deregulated proliferation as the number of blast cells increase. Etiological factors, which contribute to the development of leukemia, include therapeutic agents administered for a primary malignancy. The cytogenetic abnormalities, predisposition factors and genes involved in secondary leukemia will also be reviewed.
Collapse
MESH Headings
- Acute Disease
- Aneuploidy
- Apoptosis/genetics
- Biomarkers, Tumor
- Chromosome Aberrations
- Chromosome Deletion
- Chromosome Painting
- Chromosomes, Human/genetics
- Chromosomes, Human/ultrastructure
- Clone Cells/pathology
- Disease Progression
- Genes, Tumor Suppressor
- Genetic Predisposition to Disease
- Genetic Therapy
- Growth Substances/genetics
- Hematopoietic Stem Cells/pathology
- Humans
- Karyotyping
- Leukemia, Myeloid/etiology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Multigene Family
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/therapy
- Neoplasm Proteins/genetics
- Neoplastic Stem Cells/pathology
- Oncogenes
- Preleukemia/genetics
- Preleukemia/pathology
- Receptors, Growth Factor/genetics
- Signal Transduction/genetics
- Transcription, Genetic/genetics
- Translocation, Genetic
- Trisomy
Collapse
Affiliation(s)
- R A Padua
- Hematology Department, University of Wales College of Medicine, Cardiff, UK
| | | | | |
Collapse
|
45
|
|
46
|
|
47
|
McGlynn AP, Padua RA, Burnett AK, Darley RL. Alternative effects of RAS and RAF oncogenes on the proliferation and apoptosis of factor-dependent FDC-P1 cells. Leuk Res 2000; 24:47-54. [PMID: 10634645 DOI: 10.1016/s0145-2126(99)00159-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Despite the fact that RAF-1 lies immediately downstream of p21RAS in the MAP kinase-signalling cascade, recent evidence in non-haematopoietic environments suggest that RAS and RAF can transduce signals through alternative pathways specific to a particular cell type. Since mutational activation of RAS occurs at high frequency in human leukaemia, we have investigated the contribution of signalling from mutant RAF in mediating the transforming effects of the N-RAS oncogene in the growth factor-dependent cell line, FDC-P1. Independent activation of N-RAS extended the period of exponential growth leading to an increased saturating density under optimal growth conditions. Under conditions of growth factor withdrawal, cells expressing mutant RAS, but not control cells, demonstrated protection against apoptotic death. Although RAF promoted cell proliferation in a similar manner to that observed in FDCP-RAS cells, expression of mutant RAF was not as effective at protecting these cells against apoptotic death following growth factor withdrawal. The results suggest that RAS utilises RAF-dependent signals in promoting the proliferation of FDC-P1 cells but the anti-apoptotic effects of this oncogene are mediated through a RAF- and BCL-2-independent pathway.
Collapse
Affiliation(s)
- A P McGlynn
- LRF Differentiation Unit, University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
48
|
|
49
|
Darley RL, Burnett AK. Mutant RAS inhibits neutrophil but not macrophage differentiation and allows continued growth of neutrophil precursors. Exp Hematol 1999; 27:1599-608. [PMID: 10560907 DOI: 10.1016/s0301-472x(99)00100-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mutational activation of RAS is the most common molecular abnormality in myeloid leukemias. In order to better understand its role in leukemogenesis, we have devised a model based on the multipotent cell line, FDCP-mix. We show that expression of mutant RAS in FDCP-mix strongly inhibits terminal neutrophil differentiation under the influence of G-CSF plus GM-CSF at the metamyelocyte stage, whereas macrophage differentiation was unaffected. In addition, whereas control cultures differentiated and became postmitotic under these conditions, FDCP-mix cells expressing mutant RAS continued to proliferate indefinitely while maintaining a metamyelocytic phenotype. Labeling of these cultures with the fluorescent tracking dye, PKH26, showed that this extended proliferative capacity resulted from continued division of metamyelocytes in the culture. Dissection of the growth factor response of these cells demonstrated that GM-CSF was critical in maintaining proliferation and inhibiting the differentiation of these cells. We further show the block in neutrophil differentiation could be partially overcome by treatment with low-dose Ara C, suggesting that maintenance of cell cycle progression may be partly responsible for the anti-differentiation effect of this oncogene. These findings suggest that activation of RAS is able to specifically inhibit terminal neutrophil differentiation and in so doing promotes continued division of metamyelocyte cells.
Collapse
Affiliation(s)
- R L Darley
- Department of Haematology, University of Wales College of Medicine, Cardiff, United Kingdom.
| | | |
Collapse
|
50
|
|