1
|
Fujita S, Kosugi Y, Kimura I, Tokunaga K, Ito J, Sato K. Determination of the factors responsible for the tropism of SARS-CoV-2-related bat coronaviruses to Rhinolophus bat ACE2. J Virol 2023; 97:e0099023. [PMID: 37724881 PMCID: PMC10779674 DOI: 10.1128/jvi.00990-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE The efficiency of infection receptor use is the first step in determining the species tropism of viruses. After the coronavirus disease 2019 pandemic, a number of SARS-CoV-2-related coronaviruses (SC2r-CoVs) were identified in Rhinolophus bats, and some of them can use human angiotensin converting enzyme 2 (ACE2) for the infection receptor without acquiring additional mutations. This means that the potential of certain SC2r-CoVs to cause spillover from bats to humans is "off-the-shelf." However, both SC2r-CoVs and Rhinolophus bat species are highly diversified, and the host tropism of SC2r-CoVs remains unclear. Here, we focus on two Laotian SC2r-CoVs, BANAL-20-236 and BANAL-20-52, and determine how the tropism of SC2r-CoVs to Rhinolophus bat ACE2 is determined at the amino acid resolution level.
Collapse
Affiliation(s)
- Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Izumi Kimura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - The Genotype to Phenotype Japan (G2P-Japan) Consortium
MatsunoKeita1NaoNaganori1SawaHirofumi1TanakaShinya1TsudaMasumi1WangLei1OdaYoshikata1FerdousZannatul1ShishidoKenji1FukuharaTakasuke1TamuraTomokazu1SuzukiRigel1SuzukiSaori1ItoHayato1KakuYuMisawaNaokoPlianchaisukArnonGuoZiyiHinayAlfredo A.UriuKeiyaTolentinoJarel Elgin M.ChenLuoPanLinSuganamiMaiChibaMikaYoshimuraRyoYasudaKyokoIidaKeikoOhsumiNaomiStrangeAdam P.TanakaShihoYoshimuraKazuhisa2SadamasuKenji2NagashimaMami2AsakuraHiroyuki2YoshidaIsao2NakagawaSo3Takaori-KondoAkifumi4NagataKayoko4NomuraRyosuke4HorisawaYoshihito4TashiroYusuke4KawaiYugo4TakayamaKazuo4HashimotoRina4DeguchiSayaka4WatanabeYukio4SakamotoAyaka4YasuharaNaokoHashiguchiTakao4SuzukiTateki4KimuraKanako4SasakiJiei4NakajimaYukari4YajimaHisano4IrieTakashi5KawabataRyoko5TabataKaori6IkedaTerumasa7NasserHesham7ShimizuRyo7Monira BegumM. S. T.7JonathanMichael7MugitaYuka7TakahashiOtowa7IchiharaKimiko7MotozonoChihiro7UenoTakamasa7ToyodaMako7SaitoAkatsuki8ShofaMaya8ShibataniYuki8NishiuchiTomoko8ShirakawaKotaro4Hokkaido University, Sapporo, JapanTokyo Metropolitan Institute of Public Health, Shinjuku City, JapanTokai University, Shibuya City, JapanKyoto University, Kyoto, JapanHiroshima University, Hiroshima, JapanKyushu University, Fukuoka, JapanKumamoto University, Kumamoto, JapanUniversity of Miyazaki, Miyazaki, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
2
|
Jasinska AJ, Apetrei C, Pandrea I. Walk on the wild side: SIV infection in African non-human primate hosts-from the field to the laboratory. Front Immunol 2023; 13:1060985. [PMID: 36713371 PMCID: PMC9878298 DOI: 10.3389/fimmu.2022.1060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
HIV emerged following cross-species transmissions of simian immunodeficiency viruses (SIVs) that naturally infect non-human primates (NHPs) from Africa. While HIV replication and CD4+ T-cell depletion lead to increased gut permeability, microbial translocation, chronic immune activation, and systemic inflammation, the natural hosts of SIVs generally avoid these deleterious consequences when infected with their species-specific SIVs and do not progress to AIDS despite persistent lifelong high viremia due to long-term coevolution with their SIV pathogens. The benign course of natural SIV infection in the natural hosts is in stark contrast to the experimental SIV infection of Asian macaques, which progresses to simian AIDS. The mechanisms of non-pathogenic SIV infections are studied mainly in African green monkeys, sooty mangabeys, and mandrills, while progressing SIV infection is experimentally modeled in macaques: rhesus macaques, pigtailed macaques, and cynomolgus macaques. Here, we focus on the distinctive features of SIV infection in natural hosts, particularly (1): the superior healing properties of the intestinal mucosa, which enable them to maintain the integrity of the gut barrier and prevent microbial translocation, thus avoiding excessive/pathologic immune activation and inflammation usually perpetrated by the leaking of the microbial products into the circulation; (2) the gut microbiome, the disruption of which is an important factor in some inflammatory diseases, yet not completely understood in the course of lentiviral infection; (3) cell population shifts resulting in target cell restriction (downregulation of CD4 or CCR5 surface molecules that bind to SIV), control of viral replication in the lymph nodes (expansion of natural killer cells), and anti-inflammatory effects in the gut (NKG2a/c+ CD8+ T cells); and (4) the genes and biological pathways that can shape genetic adaptations to viral pathogens and are associated with the non-pathogenic outcome of the natural SIV infection. Deciphering the protective mechanisms against SIV disease progression to immunodeficiency, which have been established through long-term coevolution between the natural hosts and their species-specific SIVs, may prompt the development of novel therapeutic interventions, such as drugs that can control gut inflammation, enhance gut healing capacities, or modulate the gut microbiome. These developments can go beyond HIV infection and open up large avenues for correcting gut damage, which is common in many diseases.
Collapse
Affiliation(s)
- Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Schmidt JK, Kim YH, Strelchenko N, Gierczic SR, Pavelec D, Golos TG, Slukvin II. Whole genome sequencing of CCR5 CRISPR-Cas9-edited Mauritian cynomolgus macaque blastomeres reveals large-scale deletions and off-target edits. Front Genome Ed 2023; 4:1031275. [PMID: 36714391 PMCID: PMC9877282 DOI: 10.3389/fgeed.2022.1031275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction: Genome editing by CRISPR-Cas9 approaches offers promise for introducing or correcting disease-associated mutations for research and clinical applications. Nonhuman primates are physiologically closer to humans than other laboratory animal models, providing ideal candidates for introducing human disease-associated mutations to develop models of human disease. The incidence of large chromosomal anomalies in CRISPR-Cas9-edited human embryos and cells warrants comprehensive genotypic investigation of editing outcomes in primate embryos. Our objective was to evaluate on- and off-target editing outcomes in CCR5 CRISPR-Cas9-targeted Mauritian cynomolgus macaque embryos. Methods: DNA isolated from individual blastomeres of two embryos, along with paternal and maternal DNA, was subjected to whole genome sequencing (WGS) analysis. Results: Large deletions were identified in macaque blastomeres at the on-target site that were not previously detected using PCR-based methods. De novo mutations were also identified at predicted CRISPR-Cas9 off-target sites. Discussion: This is the first report of WGS analysis of CRISPR-Cas9-targeted nonhuman primate embryonic cells, in which a high editing efficiency was coupled with the incidence of editing errors in cells from two embryos. These data demonstrate that comprehensive sequencing-based methods are warranted for evaluating editing outcomes in primate embryos, as well as any resultant offspring to ensure that the observed phenotype is due to the targeted edit and not due to unidentified off-target mutations.
Collapse
Affiliation(s)
- Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Yun Hee Kim
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Nick Strelchenko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Sarah R. Gierczic
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Derek Pavelec
- University of Wisconsin Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Igor I. Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Schmidt JK, Reynolds MR, Golos TG, Slukvin II. CRISPR/Cas9 genome editing to create nonhuman primate models for studying stem cell therapies for HIV infection. Retrovirology 2022; 19:17. [PMID: 35948929 PMCID: PMC9363854 DOI: 10.1186/s12977-022-00604-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022] Open
Abstract
Nonhuman primates (NHPs) are well-established basic and translational research models for human immunodeficiency virus (HIV) infections and pathophysiology, hematopoietic stem cell (HSC) transplantation, and assisted reproductive technologies. Recent advances in CRISPR/Cas9 gene editing technologies present opportunities to refine NHP HIV models for investigating genetic factors that affect HIV replication and designing cellular therapies that exploit genetic barriers to HIV infections, including engineering mutations into CCR5 and conferring resistance to HIV/simian immunodeficiency virus (SIV) infections. In this report, we provide an overview of recent advances and challenges in gene editing NHP embryos and discuss the value of genetically engineered animal models for developing novel stem cell-based therapies for curing HIV.
Collapse
Affiliation(s)
- Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew R Reynolds
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI, 53715, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Mutations in rhodopsin, endothelin B receptor, and CC chemokine receptor 5 in large animals: Modeling human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:155-178. [PMID: 35595348 DOI: 10.1016/bs.pmbts.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell membrane receptors involved in modulating almost all physiological processes by transducing extracellular signals into the cytoplasm. Dysfunctions of GPCR-regulated signaling result in diverse human diseases, making GPCRs the most popular drug targets for human medicine. Large animals share higher similarities (in physiology and metabolism) with humans than rodents. Similar to findings in human genetics, diverse diseases caused by mutations in GPCR genes have also been discovered in large animals. Rhodopsin, endothelin B receptor, and CC chemokine receptor type 5 have been shown to be involved in human retinitis pigmentosa, Hirschsprung disease, and HIV infection/AIDS, respectively, and several mutations of these GPCRs have also been identified from large animals. The large animals with naturally occurring mutations of these GPCRs provide an opportunity to gain a better understanding of the pathogenesis of human diseases, and can be used for preclinical trials of therapies for human diseases. In this review, we aim to summarize the naturally occurring mutations of these three GPCRs in large animals and humans.
Collapse
|
6
|
D'Souza SS, Kumar A, Weinfurter J, Park MA, Maufort J, Tao L, Kang H, Dettle ST, Golos T, Thomson JA, Reynolds MR, Slukvin I. Generation of SIV-resistant T cells and macrophages from nonhuman primate induced pluripotent stem cells with edited CCR5 locus. Stem Cell Reports 2022; 17:953-963. [PMID: 35364011 PMCID: PMC9023799 DOI: 10.1016/j.stemcr.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Adoptive therapies with genetically modified somatic T cells rendered HIV resistance have shown promise for AIDS therapy. A renewable source of HIV-resistant human T cells from induced pluripotent stem cells (iPSCs) would further facilitate and broaden the applicability of these therapies. Here, we report successful targeting of the CCR5 locus in iPSCs generated from T cells (T-iPSCs) or fibroblasts (fib-iPSCs) from Mauritian cynomolgus macaques (MCM), using CRISPR-Cas9 technology. We found that CCR5 editing does not affect hematopoietic and T cell differentiation potentials of fib-iPSCs. However, T-iPSCs with edited CCR5 lost their capacity to differentiate into CD4+CD8+ T cells while maintaining myeloid differentiation potential. T cells and macrophages produced from CCR5-edited MCM iPSCs did not support replication of the CCR5-tropic simian immunodeficiency viruses SIVmac239 (T cell tropic) and SIVmac316 (macrophage-tropic). Overall, these studies provide a platform for further exploration of AIDS therapies based on gene-edited iPSCs in a nonhuman primate model.
Collapse
Affiliation(s)
- Saritha S D'Souza
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Akhilesh Kumar
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jason Weinfurter
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Mi Ae Park
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | - Lihong Tao
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - HyunJun Kang
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Samuel T Dettle
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Thaddeus Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, USA; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Matthew R Reynolds
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Igor Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53792, USA.
| |
Collapse
|
7
|
Jasinska AJ, Pandrea I, Apetrei C. CCR5 as a Coreceptor for Human Immunodeficiency Virus and Simian Immunodeficiency Viruses: A Prototypic Love-Hate Affair. Front Immunol 2022; 13:835994. [PMID: 35154162 PMCID: PMC8829453 DOI: 10.3389/fimmu.2022.835994] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
CCR5, a chemokine receptor central for orchestrating lymphocyte/cell migration to the sites of inflammation and to the immunosurveillance, is involved in the pathogenesis of a wide spectrum of health conditions, including inflammatory diseases, viral infections, cancers and autoimmune diseases. CCR5 is also the primary coreceptor for the human immunodeficiency viruses (HIVs), supporting its entry into CD4+ T lymphocytes upon transmission and in the early stages of infection in humans. A natural loss-of-function mutation CCR5-Δ32, preventing the mutated protein expression on the cell surface, renders homozygous carriers of the null allele resistant to HIV-1 infection. This phenomenon was leveraged in the development of therapies and cure strategies for AIDS. Meanwhile, over 40 African nonhuman primate species are long-term hosts of simian immunodeficiency virus (SIV), an ancestral family of viruses that give rise to the pandemic CCR5 (R5)-tropic HIV-1. Many natural hosts typically do not progress to immunodeficiency upon the SIV infection. They have developed various strategies to minimize the SIV-related pathogenesis and disease progression, including an array of mechanisms employing modulation of the CCR5 receptor activity: (i) deletion mutations abrogating the CCR5 surface expression and conferring resistance to infection in null homozygotes; (ii) downregulation of CCR5 expression on CD4+ T cells, particularly memory cells and cells at the mucosal sites, preventing SIV from infecting and killing cells important for the maintenance of immune homeostasis, (iii) delayed onset of CCR5 expression on the CD4+ T cells during ontogenetic development that protects the offspring from vertical transmission of the virus. These host adaptations, aimed at lowering the availability of target CCR5+ CD4+ T cells through CCR5 downregulation, were countered by SIV, which evolved to alter the entry coreceptor usage toward infecting different CD4+ T-cell subpopulations that support viral replication yet without disruption of host immune homeostasis. These natural strategies against SIV/HIV-1 infection, involving control of CCR5 function, inspired therapeutic approaches against HIV-1 disease, employing CCR5 coreceptor blocking as well as gene editing and silencing of CCR5. Given the pleiotropic role of CCR5 in health beyond immune disease, the precision as well as costs and benefits of such interventions needs to be carefully considered.
Collapse
Affiliation(s)
- Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Eye on Primates, Los Angeles, CA, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Le Hingrat Q, Sereti I, Landay AL, Pandrea I, Apetrei C. The Hitchhiker Guide to CD4 + T-Cell Depletion in Lentiviral Infection. A Critical Review of the Dynamics of the CD4 + T Cells in SIV and HIV Infection. Front Immunol 2021; 12:695674. [PMID: 34367156 PMCID: PMC8336601 DOI: 10.3389/fimmu.2021.695674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is substantial in progressive, nonprogressive and controlled infections. Clinical outcome is predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery occurring in rapid progressors, and partial, transient recovery, the degree of which depends on the virus control, in normal and long-term progressors. The nonprogressive infection of African nonhuman primate SIV hosts is characterized by partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes to preinfection levels. Comparative studies of the different models of SIV infection support a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in CD4+ T-cell depletion, with immune restoration occurring only when these parameters are kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+ T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-cell subsets critical for gut health contribute to mucosal inflammation and enteropathy, which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic, fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis are needed, and SIV models are extensively used to this goal.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Genome editing of CCR5 by CRISPR-Cas9 in Mauritian cynomolgus macaque embryos. Sci Rep 2020; 10:18457. [PMID: 33116147 PMCID: PMC7595107 DOI: 10.1038/s41598-020-75295-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The discovery that CCR5 serves as an R5-HIV-1 co-receptor, coupled with findings of protection from HIV infection in individuals lacking CCR5, led to the exploration of novel therapeutic strategies for HIV infection based on genome editing of CCR5. Advancing translation of CCR5-mutant-based cellular therapies for HIV requires development of novel physiologically relevant animal models. Mauritian cynomolgus macaques (MCMs), with high degree of MHC allele sharing, are valuable models for HIV-1 research and stem cell therapies. To facilitate the generation of a CCR5-mutant MHC-defined MCM model, we explored editing the CCR5 gene in MCM embryos via CRISPR-Cas9. We refined ovarian stimulation and in vitro fertilization (IVF) methods established for Chinese cynomolgus macaques to generate in vitro MCM embryos. Time-lapse embryo imaging was performed to assess the timing of MCM embryonic developmental events in control and CRISPR-Cas9 microinjected embryos. Using a dual-guide gene targeting approach, biallelic deletions in the CCR5 gene were introduced into ~ 23–37% of MCM embryos. In addition, single blastomere PCR analysis revealed mosaicism in CCR5 editing within the same embryo. Successful development of IVF and CCR5 editing protocols in MCM embryos lays a foundation for the creation of CCR5-mutant MCMs to assess novel stem cell-based HIV therapeutics.
Collapse
|
10
|
Arendt V, Amand M, Iserentant G, Lemaire M, Masquelier C, Ndayisaba GF, Verhofstede C, Karita E, Allen S, Chevigné A, Schmit J, Bercoff DP, Seguin‐Devaux C. Predominance of the heterozygous CCR5 delta-24 deletion in African individuals resistant to HIV infection might be related to a defect in CCR5 addressing at the cell surface. J Int AIDS Soc 2019; 22:e25384. [PMID: 31486251 PMCID: PMC6727025 DOI: 10.1002/jia2.25384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The chemokine receptor CCR5 is the main co-receptor for R5-tropic HIV-1 variants. We have previously described a novel 24-base pair deletion in the coding region of CCR5 among individuals from Rwanda. Here, we investigated the prevalence of hCCR5Δ24 in different cohorts and its impact on CCR5 expression and HIV-1 infection in vitro. METHODS We screened hCCR5Δ24 in a total of 3232 individuals which were either HIV-1 uninfected, high-risk HIV-1 seronegative and seropositive partners from serodiscordant couples, Long-Term Survivors, or HIV-1 infected volunteers from Africa (Rwanda, Kenya, Guinea-Conakry) and Luxembourg, using a real-time PCR assay. The role of the 24-base pair deletion on CCR5 expression and HIV infection was assessed in cell lines and PBMC using mRNA quantification, confocal analysis, flow and imaging cytometry. RESULTS AND DISCUSSION Among the 1661 patients from Rwanda, 12 individuals were heterozygous for hCCR5Δ24 but none were homozygous. Although heterozygosity for this allele may not confer complete resistance to HIV-1 infection, the prevalence of the mutation was 2.41% (95%CI: 0.43; 8.37) in 83 Long-Term Survivors (LTS) and 0.99% (95%CI: 0.45; 2.14) in 613 HIV-1 exposed seronegative members as compared with 0.35% (95% Cl: 0.06; 1.25) in 579 HIV-1 seropositive members. The prevalence of hCCR5Δ24 was 0.55% (95%CI: 0.15; 1.69) in 547 infants from Kenya but the mutation was not detected in 224 infants from Guinea-Conakry nor in 800 Caucasian individuals from Luxembourg. Expression of hCCR5Δ24 in cell lines and PBMC showed that the hCCR5Δ24 protein is stably expressed but is not transported to the plasma membrane due to a conformational change. Instead, the mutant receptor was retained intracellularly, colocalized with an endoplasmic reticulum marker and did not mediate HIV-1 infection. Co-transfection of hCCR5Δ24 and wtCCR5 did not indicate a transdominant negative effect of CCR5Δ24 on wtCCR5. CONCLUSIONS Our findings indicate that hCCR5Δ24 is not expressed at the cell surface. This could explain the higher prevalence of the heterozygous hCCR5Δ24 in LTS and HIV-1 exposed seronegative members from serodiscordant couples. Our data suggest an East-African localization of this deletion, which needs to be confirmed in larger cohorts from African and non-African countries.
Collapse
Affiliation(s)
- Vic Arendt
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
- Centre Hospitalier de LuxembourgNational Service of Infectious DiseasesLuxembourgLuxembourg
| | - Mathieu Amand
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Gilles Iserentant
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Morgane Lemaire
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Cécile Masquelier
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | | | - Chris Verhofstede
- Department of Clinical Chemistry, Microbiology and ImmunologyAIDS Reference LaboratoryGhent UniversityGhentBelgium
| | - Etienne Karita
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGAUSA
| | - Susan Allen
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGAUSA
| | - Andy Chevigné
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Jean‐Claude Schmit
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Danielle Perez Bercoff
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Carole Seguin‐Devaux
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
11
|
Wetzel KS, Elliott STC, Collman RG. SIV Coreceptor Specificity in Natural and Non-Natural Host Infection: Implications for Cell Targeting and Differential Outcomes from Infection. Curr HIV Res 2019; 16:41-51. [PMID: 29173179 DOI: 10.2174/1570162x15666171124121805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022]
Abstract
Pathogenic HIV-1 infection of humans and SIVmac infection of macaques are the result of zoonotic transfer of primate immunodeficiency viruses from their natural hosts into non-natural host species. Natural host infections do not result in pathogenesis despite high levels of virus replication, and evidence suggests that differences in anatomical location and specific subsets of CD4+ T cells infected may underlie distinct outcomes from infection. The coreceptor CCR5 has long been considered the sole pathway for SIV entry and the key determinant of CD4+ cell targeting, but it has also been known that natural hosts express exceedingly low levels of CCR5 despite maintaining high levels of virus replication. This review details emerging data indicating that in multiple natural host species, CCR5 is dispensable for SIV infection ex vivo and/or in vivo and, contrary to the established dogma, alternative coreceptors, particularly CXCR6, play a central role in infection and cell targeting. Infections of non-natural hosts, however, are characterized by CCR5-exclusive entry. These findings suggest that alternative coreceptor-mediated cell targeting in natural hosts, combined with low CCR5 expression, may direct the virus to distinct populations of cells that are dispensable for immune homeostasis, particularly extralymphoid and more differentiated CD4+ T cells. In contrast, CCR5-mediated entry in non-natural hosts results in targeting of CD4+ T cells that are located in lymphoid tissues, critical for immune homeostasis, or necessary for gut barrier integrity. Thus, fundamental differences in viral entry coreceptor use may be central determinants of infection outcome. These findings redefine the normal SIV/host relationship in natural host species, shed new light on key features linked to zoonotic immunodeficiency virus transfer, and highlight important questions regarding how and why this coreceptor bottleneck occurs and the coevolutionary equilibrium is lost following cross-species transfer that results in AIDS.
Collapse
Affiliation(s)
- Katherine S Wetzel
- Department of Medicine and Penn Center for AIDS Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Sarah T C Elliott
- Department of Medicine and Penn Center for AIDS Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ronald G Collman
- Department of Medicine and Penn Center for AIDS Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
12
|
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018; 430:2557-2589. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CCR5 has been the focus of intensive studies since its role as a coreceptor for HIV entry was discovered in 1996. These studies lead to the development of small molecular drugs targeting CCR5, with maraviroc becoming in 2007 the first clinically approved chemokine receptor inhibitor. More recently, the apparent HIV cure in a patient transplanted with hematopoietic stem cells devoid of functional CCR5 rekindled the interest for inactivating CCR5 through gene therapy and pharmacological approaches. Fundamental research on CCR5 has also been boosted by key advances in the field of G-protein coupled receptor research, with the realization that CCR5 adopts a variety of conformations, and that only a subset of these conformations may be targeted by chemokine ligands. In addition, recent genetic and pathogenesis studies have emphasized the central role of CCR5 expression levels in determining the risk of HIV and SIV acquisition and disease progression. In this article, we propose to review the key properties of CCR5 that account for its central role in HIV pathogenesis, with a focus on mechanisms that regulate CCR5 expression, conformation, and interaction with HIV envelope glycoproteins.
Collapse
|
13
|
Wetzel KS, Yi Y, Yadav A, Bauer AM, Bello EA, Romero DC, Bibollet-Ruche F, Hahn BH, Paiardini M, Silvestri G, Peeters M, Collman RG. Loss of CXCR6 coreceptor usage characterizes pathogenic lentiviruses. PLoS Pathog 2018; 14:e1007003. [PMID: 29659623 PMCID: PMC5919676 DOI: 10.1371/journal.ppat.1007003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/26/2018] [Accepted: 04/02/2018] [Indexed: 11/18/2022] Open
Abstract
Pandemic HIV-1 originated from the cross-species transmission of SIVcpz, which infects chimpanzees, while SIVcpz itself emerged following the cross-species transmission and recombination of monkey SIVs, with env contributed by the SIVgsn/mus/mon lineage that infects greater spot-nosed, mustached and mona monkeys. SIVcpz and HIV-1 are pathogenic in their respective hosts, while the phenotype of their SIVgsn/mus/mon ancestors is unknown. However, two well-studied SIV infected natural hosts, sooty mangabeys (SMs) and African green monkeys (AGMs), typically remain healthy despite high viral loads; these species express low levels of the canonical coreceptor CCR5, and recent work shows that CXCR6 is a major coreceptor for SIV in these hosts. It is not known what coreceptors were used by the precursors of SIVcpz, whether coreceptor use changed during emergence of the SIVcpz/HIV-1 lineage, and what T cell subsets express CXCR6 in natural hosts. Using species-matched coreceptors and CD4, we show here that SIVcpz uses only CCR5 for entry and, like HIV-1, cannot use CXCR6. In contrast, SIVmus efficiently uses both CXCR6 and CCR5. Coreceptor selectivity was determined by Env, with CXCR6 use abrogated by Pro326 in the V3 crown, which is absent in monkey SIVs but highly conserved in SIVcpz/HIV-1. To characterize which cells express CXCR6, we generated a novel antibody that recognizes CXCR6 of multiple primate species. Testing lymphocytes from SM, the best-studied natural host, we found that CXCR6 is restricted to CD4+ effector memory cells, and is expressed by a sub-population distinct from those expressing CCR5. Thus, efficient CXCR6 use, previously identified in SM and AGM infection, also characterizes a member of the SIV lineage that gave rise to SIVcpz/HIV-1. Loss of CXCR6 usage by SIVcpz may have altered its cell tropism, shifting virus from CXCR6-expressing cells that may support replication without disrupting immune function or homeostasis, towards CCR5-expressing cells with pathogenic consequences.
Collapse
Affiliation(s)
- Katherine S. Wetzel
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Yanjie Yi
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Anjana Yadav
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Anya M. Bauer
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Ezekiel A. Bello
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Dino C. Romero
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, GA, United States of America
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, GA, United States of America
| | - Martine Peeters
- UMI233-TransVIHMI/INSERM U1175, Institut de Recherche pour le Développement (IRD) and University of Montpellier, Montpellier, France
| | - Ronald G. Collman
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Abstract
Since the discovery of acquired immunodeficiency syndrome (AIDS) in 1981, it has been extremely difficult to develop an effective vaccine or a therapeutic cure despite over 36 years of global efforts. One of the major reasons is due to the lack of an immune-competent animal model that supports live human immunodeficiency virus (HIV) infection and disease progression such that vaccine-induced correlates of protection and efficacy can be determined clearly before human trials. Nevertheless, rhesus macaques infected with simian immunodeficiency virus (SIV) and chimeric simian human immunodeficiency virus (SHIV) have served as invaluable models not only for understanding AIDS pathogenesis but also for studying HIV vaccine and cure. In this chapter, therefore, we summarize major scientific evidence generated in these models since the beginning of the AIDS pandemic. Hopefully, the accumulated knowledge and lessons contributed by thousands of scientists will be useful in promoting the search of an ultimate solution to end HIV/AIDS.
Collapse
|
15
|
Borger P. Natural Knockouts: Natural Selection Knocked Out. BIOLOGY 2017; 6:biology6040043. [PMID: 29231847 PMCID: PMC5745448 DOI: 10.3390/biology6040043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
In functional genomics studies, research is dedicated to unveiling the function of genes using gene-knockouts, model organisms in which a gene is artificially inactivated. The idea is that, by knocking out the gene, the provoked phenotype would inform us about the function of the gene. Still, the function of many genes cannot be elucidated, because disruption of conserved sequences, including protein-coding genes, often does not directly affect the phenotype. Since the phenomenon was first observed in the early nineties of the last century, these so-called 'no-phenotype knockouts' have met with great skepticism and resistance by died-in-the-wool selectionists. Still, functional genomics of the late 20th and early 21st centuries has taught us two important lessons. First, two or more unrelated genes can often substitute for each other; and second, some genes are only present in the genome in a silent state. In the laboratory, the disruption of such genes does not negatively influence reproductive success, and does not show measurable fitness effects of the species. The genes are redundant. Genetic redundancy, one of the big surprises of modern biology, can thus be defined as the condition in which the inactivation of a gene is selectively neutral. The no-phenotype knockout is not just a freak of the laboratory. Genetic variants known as homozygous loss-of-function (HLOF) variants are of considerable scientific and clinical interest, as they represent experiments of nature qualifying as "natural knockouts". Such natural knockouts challenge the conventional NeoDarwinian appraisal that genetic information is the result of natural selection acting on random genetic variation.
Collapse
Affiliation(s)
- Peter Borger
- The Independent Research Initiative on Information & Origins, 79540 Loerrach, Germany.
| |
Collapse
|
16
|
Bell SM, Bedford T. Modern-day SIV viral diversity generated by extensive recombination and cross-species transmission. PLoS Pathog 2017; 13:e1006466. [PMID: 28672035 PMCID: PMC5510905 DOI: 10.1371/journal.ppat.1006466] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/14/2017] [Accepted: 06/12/2017] [Indexed: 02/04/2023] Open
Abstract
Cross-species transmission (CST) has led to many devastating epidemics, but is still a poorly understood phenomenon. HIV-1 and HIV-2 (human immunodeficiency virus 1 and 2), which have collectively caused over 35 million deaths, are the result of multiple CSTs from chimpanzees, gorillas, and sooty mangabeys. While the immediate history of HIV is known, there are over 45 lentiviruses that infect specific species of primates, and patterns of host switching are not well characterized. We thus took a phylogenetic approach to better understand the natural history of SIV recombination and CST. We modeled host species as a discrete character trait on the viral phylogeny and inferred historical host switches and the pairwise transmission rates between each pair of 24 primate hosts. We identify 14 novel, well-supported, ancient cross-species transmission events. We also find that lentiviral lineages vary widely in their ability to infect new host species: SIVcol (from colobus monkeys) is evolutionarily isolated, while SIVagms (from African green monkeys) frequently move between host subspecies. We also examine the origins of SIVcpz (the predecessor of HIV-1) in greater detail than previous studies, and find that there are still large portions of the genome with unknown origins. Observed patterns of CST are likely driven by a combination of ecological circumstance and innate immune factors.
Collapse
Affiliation(s)
- Sidney M. Bell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
17
|
Plachý J, Reinišová M, Kučerová D, Šenigl F, Stepanets V, Hron T, Trejbalová K, Elleder D, Hejnar J. Identification of New World Quails Susceptible to Infection with Avian Leukosis Virus Subgroup J. J Virol 2017; 91:e02002-16. [PMID: 27881654 PMCID: PMC5244330 DOI: 10.1128/jvi.02002-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022] Open
Abstract
The J subgroup of avian leukosis virus (ALV-J) infects domestic chickens, jungle fowl, and turkeys. This virus enters the host cell through a receptor encoded by the tvj locus and identified as Na+/H+ exchanger 1. The resistance to avian leukosis virus subgroup J in a great majority of galliform species has been explained by deletions or substitutions of the critical tryptophan 38 in the first extracellular loop of Na+/H+ exchanger 1. Because there are concerns of transspecies virus transmission, we studied natural polymorphisms and susceptibility/resistance in wild galliforms and found the presence of tryptophan 38 in four species of New World quails. The embryo fibroblasts of New World quails are susceptible to infection with avian leukosis virus subgroup J, and the cloned Na+/H+ exchanger 1 confers susceptibility on the otherwise resistant host. New World quails are also susceptible to new avian leukosis virus subgroup J variants but resistant to subgroups A and B and weakly susceptible to subgroups C and D of avian sarcoma/leukosis virus due to obvious defects of the respective receptors. Our results suggest that the avian leukosis virus subgroup J could be transmitted to New World quails and establish a natural reservoir of circulating virus with a potential for further evolution. IMPORTANCE Since its spread in broiler chickens in China and Southeast Asia in 2000, ALV-J remains a major enzootic challenge for the poultry industry. Although the virus diversifies rapidly in the poultry, its spillover and circulation in wild bird species has been prevented by the resistance of most species to ALV-J. It is, nevertheless, important to understand the evolution of the virus and its potential host range in wild birds. Because resistance to avian retroviruses is due particularly to receptor incompatibility, we studied Na+/H+ exchanger 1, the receptor for ALV-J. In New World quails, we found a receptor compatible with virus entry, and we confirmed the susceptibilities of four New World quail species in vitro We propose that a prospective molecular epidemiology study be conducted to identify species with the potential to become reservoirs for ALV-J.
Collapse
Affiliation(s)
- Jiří Plachý
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Markéta Reinišová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dana Kučerová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Filip Šenigl
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Volodymyr Stepanets
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tomáš Hron
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Kateřina Trejbalová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Daniel Elleder
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Hejnar
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
18
|
CXCR6-Mediated Simian Immunodeficiency Virus SIVagmSab Entry into Sabaeus African Green Monkey Lymphocytes Implicates Widespread Use of Non-CCR5 Pathways in Natural Host Infections. J Virol 2017; 91:JVI.01626-16. [PMID: 27903799 DOI: 10.1128/jvi.01626-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022] Open
Abstract
African green monkeys (AGM) and sooty mangabeys (SM) are well-studied natural hosts of simian immunodeficiency virus (SIV) that do not progress to AIDS when infected with their species-specific viruses. Natural hosts of SIV express very low levels of the canonical entry coreceptor CCR5, and recent studies have shown that CCR5 is dispensable for SIV infection of SM in vivo and that blocking of CCR5 does not prevent ex vivo infection of peripheral blood mononuclear cells (PBMC) from SM or vervet AGM. In both hosts, CXCR6 is an efficient entry pathway in vitro Here we investigated the use of species-matched CXCR6 and other alternative coreceptors by SIVagmSab, which infects sabaeus AGM. We cloned sabaeus CD4 and 10 candidate coreceptors. Species-matched CXCR6, CCR5, and GPR15 mediated robust entry into transfected cells by pseudotypes carrying SIVagmSab92018ivTF Env, with lower-level entry through GPR1 and APJ. We cloned genetically divergent env genes from the plasma of two wild-infected sabaeus AGM and found similar patterns of coreceptor use. Titration experiments showed that CXCR6 and CCR5 were more efficient than other coreceptors when tested at limiting CD4/coreceptor levels. Finally, blocking of CXCR6 with its ligand CXCL16 significantly inhibited SIVagmSab replication in sabaeus PBMC and had a greater impact than did the CCR5 blocker maraviroc, confirming the use of CXCR6 in primary lymphocyte infection. These data suggest a new paradigm for SIV infection of natural host species, whereby a shared outcome of virus-host coevolution is the use of CXCR6 or other alternative coreceptors for entry, which may direct SIV toward CD4+ T cell subsets and anatomical sites that support viral replication without disrupting immune homeostasis and function. IMPORTANCE Natural hosts of SIV do not progress to AIDS, in stark contrast to pathogenic human immunodeficiency virus type 1 (HIV-1)-human and SIVmac-macaque infections. Identifying how natural hosts avoid immunodeficiency can elucidate key mechanisms of pathogenesis. It is known that despite high viral loads, natural hosts have a low frequency of CD4+ cells expressing the SIV coreceptor CCR5. In this study, we demonstrate the efficient use of the coreceptor CXCR6 by SIVagmSab to infect sabaeus African green monkey lymphocytes. In conjunction with studies of SIVsmm, which infects sooty mangabeys, and SIVagmVer, which infects vervet monkeys, our data suggest a unifying model whereby in natural hosts, in which the CCR5 expression level is low, the use of CXCR6 or other coreceptors to mediate infection may target SIV toward distinct cell populations that are able to support high-level viral replication without causing a loss of CD4+ T cell homeostasis and lymphoid tissue damage that lead to AIDS in HIV-1 and SIVmac infections.
Collapse
|
19
|
Characterization of Simian Immunodeficiency Virus Variants Anatomically Compartmentalized in Plasma and Milk in Chronically Infected African Green Monkeys. J Virol 2016; 90:8795-808. [PMID: 27466415 PMCID: PMC5021398 DOI: 10.1128/jvi.00701-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Unlike human immunodeficiency virus type 1 (HIV-1)-infected humans, African-origin, natural simian immunodeficiency virus (SIV) hosts, such as African green monkeys (AGMs), sustain nonpathogenic SIV infections and rarely vertically transmit SIV to their infants. Interestingly, chronically SIV-infected AGMs have anatomically compartmentalized SIV variants in plasma and milk, whereas humans and SIV-infected rhesus monkeys (RMs), Asian-origin nonnatural SIV hosts, do not exhibit this compartmentalization. Thus, it is possible that AGM SIV populations in milk have unique phenotypic features that contribute to the low postnatal transmission rates observed in this natural host species. In this study, we explored this possibility by characterizing the infectivity, tropism, and neutralization susceptibility of plasma and milk SIVsab env variants isolated from chronically SIVsab92018ivTF-infected AGMs. AGM plasma and milk SIVsab env pseudovirus variants exhibited similar infectivities, neutralization susceptibilities to autologous and heterologous plasma, and chemokine coreceptor usages for cell entry, suggesting similar abilities to initiate infection in a new host. We also assessed the cytokine milieu in SIV-infected AGM milk and compared it to that of SIV-infected RMs. MIP-1β, granulocyte colony-stimulating factor (G-CSF), interleukin-12/23 (IL-12/23), and IL-13 trended significantly higher in SIV-infected AGM milk than in that of RMs, while IL-18 and IL-6 trended significantly higher in SIV-infected RM milk than in that of AGMs. Taken together, our findings imply that nonviral maternal factors, such as the cytokine milieu, rather than unique characteristics of SIV populations in the milk contribute to the low postnatal transmission rates observed in AGMs. IMPORTANCE Due to the ongoing global incidence of pediatric HIV-1 infections, including many that occur via breastfeeding, development of effective vaccine strategies capable of preventing vertical HIV transmission through breastfeeding remains an important goal. Unlike HIV-1-infected humans, African green monkeys (AGMs), the natural SIV host species, sustain nonpathogenic SIV infections, rarely transmit the virus postnatally to their infants, and exhibit anatomically compartmentalized SIV populations in milk and plasma. Identifying unique features of the anatomically compartmentalized milk SIV populations could enhance our understanding of how AGMs may have evolved to avoid transmission through breastfeeding. While this study identified limited phenotypic distinctions between AGM plasma and milk SIV populations, potential differences in milk cytokine profiles of natural and nonnatural SIV hosts were observed. These findings imply the potential importance of nonviral factors in natural SIV host species, such as innate SIV/HIV immune factors in milk, as a means of naturally preventing vertical transmission.
Collapse
|
20
|
The well-tempered SIV infection: Pathogenesis of SIV infection in natural hosts in the wild, with emphasis on virus transmission and early events post-infection that may contribute to protection from disease progression. INFECTION GENETICS AND EVOLUTION 2016; 46:308-323. [PMID: 27394696 DOI: 10.1016/j.meegid.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
African NHPs are infected by over 40 different simian immunodeficiency viruses. These viruses have coevolved with their hosts for long periods of time and, unlike HIV in humans, infection does not generally lead to disease progression. Chronic viral replication is maintained for the natural lifespan of the host, without loss of overall immune function. Lack of disease progression is not correlated with transmission, as SIV infection is highly prevalent in many African NHP species in the wild. The exact mechanisms by which these natural hosts of SIV avoid disease progression are still unclear, but a number of factors might play a role, including: (i) avoidance of microbial translocation from the gut lumen by preventing or repairing damage to the gut epithelium; (ii) control of immune activation and apoptosis following infection; (iii) establishment of an anti-inflammatory response that resolves chronic inflammation; (iv) maintenance of homeostasis of various immune cell populations, including NK cells, monocytes/macrophages, dendritic cells, Tregs, Th17 T-cells, and γδ T-cells; (v) restriction of CCR5 availability at mucosal sites; (vi) preservation of T-cell function associated with down-regulation of CD4 receptor. Some of these mechanisms might also be involved in protection of natural hosts from mother-to-infant SIV transmission during breastfeeding. The difficulty of performing invasive studies in the wild has prohibited investigation of the exact events surrounding transmission in natural hosts. Increased understanding of the mechanisms of SIV transmission in natural hosts, and of the early events post-transmission which may contribute to avoidance of disease progression, along with better comprehension of the factors involved in protection from SIV breastfeeding transmission in the natural hosts, could prove invaluable for the development of new prevention strategies for HIV.
Collapse
|
21
|
Kang H, Minder P, Park MA, Mesquitta WT, Torbett BE, Slukvin II. CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e268. [PMID: 26670276 DOI: 10.1038/mtna.2015.42] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/24/2015] [Indexed: 12/19/2022]
Abstract
The chemokine (C-C motif) receptor 5 (CCR5) serves as an HIV-1 co-receptor and is essential for cell infection with CCR5-tropic viruses. Loss of functional receptor protects against HIV infection. Here, we report the successful targeting of CCR5 in GFP-marked human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 with single and dual guide RNAs (gRNAs). Following CRISPER/Cas9-mediated gene editing using a single gRNA, 12.5% of cell colonies demonstrated CCR5 editing, of which 22.2% showed biallelic editing as determined by a Surveyor nuclease assay and direct sequencing. The use of dual gRNAs significantly increased the efficacy of CCR5 editing to 27% with a biallelic gene alteration frequency of 41%. To ensure the homogeneity of gene editing within cells, we used single cell sorting to establish clonal iPSC lines. Single cell-derived iPSC lines with homozygous CCR5 mutations displayed the typical characteristics of pluripotent stem cells and differentiated efficiently into hematopoietic cells, including macrophages. Although macrophages from both wild-type and CCR5-edited iPSCs supported CXCR4-tropic virus replication, macrophages from CCR5-edited iPSCs were uniquely resistant to CCR5-tropic virus challenge. This study demonstrates the feasibility of applying iPSC technology for the study of the role of CCR5 in HIV infection in vitro, and generation of HIV-resistant cells for potential therapeutic applications.
Collapse
Affiliation(s)
- HyunJun Kang
- National Primate Research Center, University of Wisconsin Graduate School, Madison, Wisconsin, USA
| | - Petra Minder
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Mi Ae Park
- National Primate Research Center, University of Wisconsin Graduate School, Madison, Wisconsin, USA
| | - Walatta-Tseyon Mesquitta
- National Primate Research Center, University of Wisconsin Graduate School, Madison, Wisconsin, USA
| | - Bruce E Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Igor I Slukvin
- National Primate Research Center, University of Wisconsin Graduate School, Madison, Wisconsin, USA.,Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison, Wisconsin, USA
| |
Collapse
|
22
|
Simian Immunodeficiency Virus SIVagm Efficiently Utilizes Non-CCR5 Entry Pathways in African Green Monkey Lymphocytes: Potential Role for GPR15 and CXCR6 as Viral Coreceptors. J Virol 2015; 90:2316-31. [PMID: 26656714 DOI: 10.1128/jvi.02529-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED African green monkeys (AGM) are natural hosts of simian immunodeficiency virus (SIV), and infection in these animals is generally nonpathogenic, whereas infection of nonnatural hosts, such as rhesus macaques (RM), is commonly pathogenic. CCR5 has been described as the primary entry coreceptor for SIV in vivo, while human-derived CXCR6 and GPR15 also appear to be used in vitro. However, sooty mangabeys that are genetically deficient in CCR5 due to an out-of-frame deletion are infectible with SIVsmm, indicating that SIVsmm can use alternative coreceptors in vivo. In this study, we examined the CCR5 dependence of SIV strains derived from vervet AGM (SIVagmVer) and the ability of AGM-derived GPR15 and CXCR6 to serve as potential entry coreceptors. We found that SIVagmVer replicated efficiently in AGM and RM peripheral blood mononuclear cells (PBMC) in the presence of the CCR5 antagonist maraviroc, despite the fact that maraviroc was capable of blocking the CCR5-tropic strains SIVmac239, SIVsmE543-3, and simian-human immunodeficiency virus SHIV-AD8 in RM PBMC. We also found that AGM CXCR6 and AGM GPR15, to a lesser extent, supported entry of pseudotype viruses bearing SIVagm envelopes, including SIVagm transmitted/founder envelopes. Lastly, we found that CCR5, GPR15, and CXCR6 mRNAs were detected in AGM and RM memory CD4(+) T cells. These results suggest that GPR15 and CXCR6 are expressed on AGM CD4(+) T cells and are potential alternative coreceptors for SIVagm use in vivo. These data suggest that the use of non-CCR5 entry pathways may be a common feature of SIV replication in natural host species, with the potential to contribute to nonpathogenicity in these animals. IMPORTANCE African green monkeys (AGM) are natural hosts of SIV, and infection in these animals generally does not cause AIDS, whereas SIV-infected rhesus macaques (RM) typically develop AIDS. Although it has been reported that SIV generally uses CD4 and CCR5 to enter target cells in vivo, other molecules, such as GPR15 and CXCR6, also function as SIV coreceptors in vitro. In this study, we investigated whether SIV from vervet AGM can use non-CCR5 entry pathways, as has been observed in sooty mangabeys. We found that SIVagmVer efficiently replicated in AGM and RM peripheral blood mononuclear cells in the presence of the CCR5 antagonist maraviroc, suggesting that non-CCR5 entry pathways can support SIVagm entry. We found that AGM-derived GPR15 and CXCR6 support SIVagmVer entry in vitro and may serve as entry coreceptors for SIVagm in vivo, since their mRNAs were detected in AGM memory CD4(+) T cells, the preferred target cells of SIV.
Collapse
|
23
|
Dualtropic CXCR6/CCR5 Simian Immunodeficiency Virus (SIV) Infection of Sooty Mangabey Primary Lymphocytes: Distinct Coreceptor Use in Natural versus Pathogenic Hosts of SIV. J Virol 2015; 89:9252-61. [PMID: 26109719 DOI: 10.1128/jvi.01236-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/20/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Natural-host sooty mangabeys (SM) infected with simian immunodeficiency virus (SIV) exhibit high viral loads but do not develop disease, whereas infection of rhesus macaques (RM) causes CD4(+) T cell loss and AIDS. Several mechanisms have been proposed to explain these divergent outcomes, including differences in cell targeting, which have been linked to low expression of the canonical SIV entry receptor CCR5 on CD4(+) T cells of SM and other natural hosts. We previously showed that infection and high-level viremia occur even in a subset of SM that genetically lack functional CCR5, which indicates that alternative entry coreceptors are used by SIV in vivo in these animals. We also showed that SM CXCR6 is a robust coreceptor for SIVsmm in vitro. Here we identify CXCR6 as a principal entry pathway for SIV in SM primary lymphocytes. We show that ex vivo SIV infection of lymphocytes from CCR5 wild-type SM is mediated by both CXCR6 and CCR5. In contrast, infection of RM lymphocytes is fully dependent on CCR5. These data raise the possibility that CXCR6-directed tropism in CCR5-low natural hosts may alter CD4(+) T cell subset targeting compared with that in nonnatural hosts, enabling SIV to maintain high-level replication without leading to widespread CD4(+) T cell loss. IMPORTANCE Natural hosts of SIV, such as sooty mangabeys, sustain high viral loads but do not develop disease, while nonnatural hosts, like rhesus macaques, develop AIDS. Understanding this difference may help elucidate mechanisms of pathogenesis. Natural hosts have very low levels of the SIV entry coreceptor CCR5, suggesting that restricted entry may limit infection of certain target cells, although it is unclear how the virus replicates so robustly. Here we show that in sooty mangabey lymphocytes, infection is mediated by the alternative entry coreceptor CXCR6, as well as CCR5. In rhesus macaque lymphocytes, however, infection occurs entirely through CCR5. The use of CXCR6 for entry, combined with very low CCR5 levels, may redirect the virus to different cell targets in natural hosts. It is possible that differential targeting may favor infection of nonessential cells and limit infection of critical cells in natural hosts, thus contributing to benign outcome of infection.
Collapse
|
24
|
Nakano Y, Matsuda K, Yoshikawa R, Yamada E, Misawa N, Hirsch VM, Koyanagi Y, Sato K. Down-modulation of primate lentiviral receptors by Nef proteins of simian immunodeficiency virus (SIV) of chimpanzees (SIVcpz) and related SIVs: implication for the evolutionary event at the emergence of SIVcpz. J Gen Virol 2015; 96:2867-2877. [PMID: 26041873 DOI: 10.1099/vir.0.000207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been estimated that human immunodeficiency virus type 1 originated from the zoonotic transmission of simian immunodeficiency virus (SIV) of chimpanzees, SIVcpz, and that SIVcpz emerged by the recombination of two lineages of SIVs in Old World monkeys (SIVgsn/mon/mus in guenons and SIVrcm in red-capped mangabeys) and SIVcpz Nef is most closely related to SIVrcm Nef. These observations suggest that SIVrcm Nef had an advantage over SIVgsn/mon/mus during the evolution of SIVcpz in chimpanzees, although this advantage remains uncertain. Nef is a multifunctional protein which downregulates CD4 and coreceptor proteins from the surface of infected cells, presumably to limit superinfection. To assess the possibility that SIVrcm Nef was selected by its superior ability to downregulate viral entry receptors in chimpanzees, we compared its ability to down-modulate viral receptor proteins from humans, chimpanzees and red-capped mangabeys with Nef proteins from eight other different strains of SIVs. Surprisingly, the ability of SIVrcm Nef to downregulate CCR5, CCR2B and CXCR6 was comparable to or lower than SIVgsn/mon/mus Nef, indicating that ability to down-modulate chemokine receptors was not the selective pressure. However, SIVrcm Nef significantly downregulates chimpanzee CD4 over SIVgsn/mon/mus Nefs. Our findings suggest the possibility that the selection of SIVrcm Nef by ancestral SIVcpz is due to its superior capacity to down-modulate chimpanzees CD4 rather than coreceptor proteins.
Collapse
Affiliation(s)
- Yusuke Nakano
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
- Department of Medical Virology, Faculty of Life Sciences, Kumamoto University, Kumamoto 8608556, Japan
| | - Kenta Matsuda
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rokusuke Yoshikawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
| | - Eri Yamada
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
| | - Vanessa M Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
| | - Kei Sato
- CREST, Japan Science and Technology Agency, Saitama 3220012, Japan
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
| |
Collapse
|
25
|
Santos-Costa Q, Lopes MM, Calado M, Azevedo-Pereira JM. HIV-2 interaction with cell coreceptors: amino acids within the V1/V2 region of viral envelope are determinant for CCR8, CCR5 and CXCR4 usage. Retrovirology 2014; 11:99. [PMID: 25421818 PMCID: PMC4251929 DOI: 10.1186/s12977-014-0099-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/24/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus 1 and 2 (HIV-1 and HIV-2) use cellular receptors in distinct ways. Besides a more promiscuous usage of coreceptors by HIV-2 and a more frequent detection of CD4-independent HIV-2 isolates, we have previously identified two HIV-2 isolates (HIV-2MIC97 and HIV-2MJC97) that do not use the two major HIV coreceptors: CCR5 and CXCR4. All these features suggest that in HIV-2 the Env glycoprotein subunits may have a different structural organization enabling distinct - although probably less efficient - interactions with cellular receptors. RESULTS By infectivity assays using GHOST cell line expressing CD4 and CCR8 and blocking experiments using CCR8-specific ligand, I-309, we show that efficient replication of HIV-2MIC97 and HIV-2MJC97 requires the presence of CCR8 at plasma cell membrane. Additionally, we disclosed the determinants of chemokine receptor usage at the molecular level, and deciphered the amino acids involved in the usage of CCR8 (R8 phenotype) and in the switch from CCR8 to CCR5 or to CCR5/CXCR4 usage (R5 or R5X4 phenotype). The data obtained from site-directed mutagenesis clearly indicates that the main genetic determinants of coreceptor tropism are located within the V1/V2 region of Env surface glycoprotein of these two viruses. CONCLUSIONS We conclude that a viral population able to use CCR8 and unable to infect CCR5 or CXCR4-positive cells, may exist in some HIV-2 infected individuals during an undefined time period, in the course of the asymptomatic stage of infection. This suggests that in vivo alternate molecules might contribute to HIV infection of natural target cells, at least under certain circumstances. Furthermore we provide direct and unequivocal evidence that the usage of CCR8 and the switch from R8 to R5 or R5X4 phenotype is determined by amino acids located in the base and tip of V1 and V2 loops of HIV-2 Env surface glycoprotein.
Collapse
Affiliation(s)
- Quirina Santos-Costa
- Host-Pathogen Interaction Unit, Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal. .,Instituto de Medicina Molecular (IMM), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal. .,Centro de Patogénese Molecular, Unidade dos Retrovírus e Infecções Associadas (CPM-URIA), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| | - Maria Manuel Lopes
- Centro de Patogénese Molecular, Unidade dos Retrovírus e Infecções Associadas (CPM-URIA), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| | - Marta Calado
- Host-Pathogen Interaction Unit, Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal. .,Instituto de Medicina Molecular (IMM), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal. .,Centro de Patogénese Molecular, Unidade dos Retrovírus e Infecções Associadas (CPM-URIA), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interaction Unit, Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal. .,Instituto de Medicina Molecular (IMM), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal. .,Centro de Patogénese Molecular, Unidade dos Retrovírus e Infecções Associadas (CPM-URIA), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
26
|
Characterization of red-capped mangabey tetherin: implication for the co-evolution of primates and their lentiviruses. Sci Rep 2014; 4:5529. [PMID: 24984862 PMCID: PMC4078312 DOI: 10.1038/srep05529] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/11/2014] [Indexed: 11/11/2022] Open
Abstract
Primate lentiviruses including human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency viruses (SIVs) evolved through the acquisition of antagonists against intrinsic host restriction factors, such as tetherin. It is widely accepted that HIV-1 has emerged by zoonotic transmission of SIV in chimpanzee (SIVcpz), and that SIVcpz Nef protein antagonizes chimpanzee tetherin. Although Nef of SIVcpz shares a common ancestor with that of SIVrcm, an SIV in red-capped mangabey (Cercocebus torquatus), it remains unclear whether SIVrcm Nef can antagonize tetherin of its natural host. In this study, we determine the sequence of red-capped mangabey tetherin for the first time and directly demonstrate that SIVrcm Nef is the bona fide antagonist of red-capped mangabey tetherin. These findings suggest that SIVrcm Nef is the functional ancestor of SIVcpz Nef. Moreover, molecular phylogenetic analyses reveal that tetherins of the genus Cercocebus have experienced adaptive evolution, which is presumably promoted by primate lentiviruses.
Collapse
|
27
|
Xiang Y, Liu W, Chen Y, Zhang C, Su W, Zhang Y, Sun J, Gao F, Jiang C. The variable loop 3 in the envelope glycoprotein is critical for the atypical coreceptor usage of an HIV-1 strain. PLoS One 2014; 9:e98058. [PMID: 24897520 PMCID: PMC4045670 DOI: 10.1371/journal.pone.0098058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022] Open
Abstract
The majority of HIV-1 strains enter CD4+ T cells using the CCR5 and/or CXCR4 co-receptor. However, we recently identified a transmitted/founder (T/F) virus (ZP6248) that efficiently used an alternative coreceptor GPR15, rather than commonly used CXCR4 and CCR5, to establish clinical infection. To understand which regions in the env gene were critical for the atypical coreceptor usage, we generated a set of V3 mutants and determined their infectivity in GHOST cells that expressed different coreceptors. When the variable loop 3 (V3) in YU2 was replaced with the ZP6248 V3 (YU2.6248V3), the chimera YU2.6248V3 infected GPR15+ cells but not CCR5+ cells. To determine which amino acids in V3 was responsible for this phenotype change, each of the eight amino acids that differed from the subtype B consensus V3 was substituted with alanine. The G306A and S322A mutations significantly reduced the replication capacity of YU2.6248V3 in GPR15+ cells, while all other alanine substitutions at positions 307, 314, 315, 316, 317 and 318 completely abrogated the infectivity of YU2.6248V3 in GPR15+ cells. The E314A mutation, as the E314G mutation reported before, also rendered the YU2.6248V3 infectious in CCR5+ cells, while none of other alanine mutants could infect CCR5+ cells. These results demonstrated that amino acids in ZP6248 V3 might form a unique conformation that was critical for the interaction with GPR15 while the amino acids at position 314 in the V3 crown of ZP6248 played a key role in interaction with both CCR5 and GPR15. The unique phenotypes of ZP6248 can serve as a model to understand how HIV-1 explores the diverse coreceptor reservoir through novel genetic variants to establish clinical infection.
Collapse
Affiliation(s)
- Yue Xiang
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Wei Liu
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Yue Chen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Chuntao Zhang
- The 2nd Division of In Vitro Diagnostic, National Institutes for Food and Drug Control, Beijing, China
| | - Weiheng Su
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Yan Zhang
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Jiaxi Sun
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Feng Gao
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Chunlai Jiang
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
28
|
|
29
|
Gorry PR, Francella N, Lewin SR, Collman RG. HIV-1 envelope-receptor interactions required for macrophage infection and implications for current HIV-1 cure strategies. J Leukoc Biol 2014; 95:71-81. [PMID: 24158961 PMCID: PMC3868190 DOI: 10.1189/jlb.0713368] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 01/25/2023] Open
Abstract
Myeloid cells residing in the CNS and lymphoid tissues are targets for productive HIV-1 replication, and their infection contributes to the pathological manifestations of HIV-1 infection. The Envs can adopt altered configurations to overcome entry restrictions in macrophages via a more efficient and/or altered mechanism of engagement with cellular receptors. This review highlights evidence supporting an important role for macrophages in HIV-1 pathogenesis and persistence, which need to be considered for strategies aimed at achieving a functional or sterilizing cure. We also highlight that the molecular mechanisms underlying HIV-1 tropism for macrophages are complex, involving enhanced and/or altered interactions with CD4, CCR5, and/or CXCR4, and that the nature of these interactions may depend on the anatomical location of the virus.
Collapse
Affiliation(s)
- Paul R. Gorry
- Center for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia; and
| | - Nicholas Francella
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sharon R. Lewin
- Center for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ronald G. Collman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Francella N, Elliott STC, Yi Y, Gwyn SE, Ortiz AM, Li B, Silvestri G, Paiardini M, Derdeyn CA, Collman RG. Decreased plasticity of coreceptor use by CD4-independent SIV Envs that emerge in vivo. Retrovirology 2013; 10:133. [PMID: 24219995 PMCID: PMC3833851 DOI: 10.1186/1742-4690-10-133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/31/2013] [Indexed: 12/02/2022] Open
Abstract
Background HIV and SIV generally require CD4 binding prior to coreceptor engagement, but Env can acquire the ability to use CCR5 independently of CD4 under various circumstances. The ability to use CCR5 coupled with low-to-absent CD4 levels is associated with enhanced macrophage infection and increased neutralization sensitivity, but the additional features of these Envs that may affect cell targeting is not known. Results Here we report that CD4-independent SIV variants that emerged in vivo in a CD4+ T cell-depleted rhesus macaque model display markedly decreased plasticity of co-receptor use. While CD4-dependent Envs can use low levels of macaque CCR5 for efficient entry, CD4-independent variants required high levels of CCR5 even in the presence of CD4. CD4-independent Envs were also more sensitive to the CCR5 antagonist Maraviroc. CD4-dependent variants mediated efficient entry using human CCR5, whereas CD4-independent variants had impaired use of human CCR5. Similarly, CD4-independent Envs used the alternative coreceptors GPR15 and CXCR6 less efficiently than CD4-dependent variants. Env amino acids D470N and E84K that confer the CD4-independent phenotype also regulated entry through low CCR5 levels and GPR15, indicating a common structural basis. Treatment of CD4-dependent Envs with soluble CD4 enhanced entry through CCR5 but reduced entry through GPR15, suggesting that induction of CD4-induced conformational changes by non-cell surface-associated CD4 impairs use of this alternative co-receptor. Conclusions CD4 independence is associated with more restricted coreceptor interactions. While the ability to enter target cells through CCR5 independently of CD4 may enable infection of CD4 low-to-negative cells such as macrophages, this phenotype may conversely reduce the potential range of targets such as cells expressing low levels of CCR5, conformational variants of CCR5, or possibly even alternative coreceptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ronald G Collman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, 522 Johnson Pavilion, 36th & Hamilton Walk, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Cashin K, Jakobsen MR, Sterjovski J, Roche M, Ellett A, Flynn JK, Borm K, Gouillou M, Churchill MJ, Gorry PR. Linkages between HIV-1 specificity for CCR5 or CXCR4 and in vitro usage of alternative coreceptors during progressive HIV-1 subtype C infection. Retrovirology 2013; 10:98. [PMID: 24041034 PMCID: PMC3849974 DOI: 10.1186/1742-4690-10-98] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) subtype C (C-HIV) is spreading rapidly and is now responsible for >50% of HIV-1 infections worldwide, and >95% of infections in southern Africa and central Asia. These regions are burdened with the overwhelming majority of HIV-1 infections, yet we know very little about the pathogenesis of C-HIV. In addition to CCR5 and CXCR4, the HIV-1 envelope glycoproteins (Env) may engage a variety of alternative coreceptors for entry into transfected cells. Whilst alternative coreceptors do not appear to have a broad role in mediating the entry of HIV-1 into primary cells, characterizing patterns of alternative coreceptor usage in vitro can provide valuable insights into mechanisms of Env-coreceptor engagement that may be important for HIV-1 pathogenesis. RESULTS Here, we characterized the ability of luciferase reporter viruses pseudotyped with HIV-1 Envs (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects experiencing progression from chronic to advanced C-HIV infection over an approximately 3-year period, who either exclusively maintained CCR5-using (R5) variants (n = 20 subjects) or who experienced a coreceptor switch to CXCR4-using (X4) variants (n = 1 subject), to utilize alternative coreceptors for entry. At a population level, CCR5 usage by R5 C-HIV Envs was strongly linked to usage of FPRL1, CCR3 and CCR8 as alternative coreceptors, with the linkages to FPRL1 and CCR3 usage becoming statistically more robust as infection progressed from chronic to advanced stages of disease. In contrast, acquisition of an X4 Env phenotype at advanced infection was accompanied by a dramatic loss of FPRL1 usage. Env mutagenesis studies confirmed a direct link between CCR5 and FPRL1 usage, and showed that the V3 loop crown, but not other V3 determinants of CCR5-specificity, was the principal Env determinant governing the ability of R5 C-HIV Envs from one particular subject to engage FPRL1. CONCLUSIONS Our results suggest that, in the absence of coreceptor switching, the ability of R5 C-HIV viruses to engage certain alternative coreceptors in vitro, in particular FPRL1, may reflect an altered use of CCR5 that is selected for during progressive C-HIV infection, and which may contribute to C-HIV pathogenicity.
Collapse
Affiliation(s)
- Kieran Cashin
- Center for Biomedical Research, Burnet Institute, 85 Commercial Rd, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Systemic chronic immune activation is considered today as the driving force of CD4(+) T-cell depletion and acquired immunodeficiency syndrome (AIDS). A residual chronic immune activation persists even in HIV-infected patients in which viral replication is successfully inhibited by anti-retroviral therapy, with the extent of this residual immune activation being associated with CD4(+) T-cell loss. Unfortunately, the causal link between chronic immune activation and CD4(+) T-cell loss has not been formally established. This article provides first a brief historical overview on how the perception of the causative role of immune activation has changed over the years and lists the different kinds of immune activation characteristic of human immunodeficiency virus (HIV) infection. The mechanisms proposed to explain the chronic immune activation are multiple and are enumerated here, as well as the mechanisms proposed on how chronic immune activation could lead to AIDS. In addition, we summarize the lessons learned from natural hosts that know how to 'show AIDS the door', and discuss how these studies informed the design of novel immune modulatory interventions that are currently being tested. Finally, we review the current approaches aimed at targeting chronic immune activation and evoke future perspectives.
Collapse
Affiliation(s)
- Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30329, USA.
| | | |
Collapse
|
33
|
Demogines A, Abraham J, Choe H, Farzan M, Sawyer SL. Dual host-virus arms races shape an essential housekeeping protein. PLoS Biol 2013; 11:e1001571. [PMID: 23723737 PMCID: PMC3665890 DOI: 10.1371/journal.pbio.1001571] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/17/2013] [Indexed: 02/07/2023] Open
Abstract
Relentless selective pressures exerted by viruses trigger arms race dynamics that shape the evolution of even critical host genes like those involved in iron homeostasis. Transferrin Receptor (TfR1) is the cell-surface receptor that regulates iron uptake into cells, a process that is fundamental to life. However, TfR1 also facilitates the cellular entry of multiple mammalian viruses. We use evolutionary and functional analyses of TfR1 in the rodent clade, where two families of viruses bind this receptor, to mechanistically dissect how essential housekeeping genes like TFR1 successfully balance the opposing selective pressures exerted by host and virus. We find that while the sequence of rodent TfR1 is generally conserved, a small set of TfR1 residue positions has evolved rapidly over the speciation of rodents. Remarkably, all of these residues correspond to the two virus binding surfaces of TfR1. We show that naturally occurring mutations at these positions block virus entry while simultaneously preserving iron-uptake functionalities, both in rodent and human TfR1. Thus, by constantly replacing the amino acids encoded at just a few residue positions, TFR1 divorces adaptation to ever-changing viruses from preservation of key cellular functions. These dynamics have driven genetic divergence at the TFR1 locus that now enforces species-specific barriers to virus transmission, limiting both the cross-species and zoonotic transmission of these viruses. Genetic differences between mammalian species dictate the patterns of viral infection observed in nature. They also define how viruses must evolve in order to infect new mammalian hosts, giving rise to new and sometimes pandemic diseases. Because viruses must enter cells before they can replicate, new diseases often emerge when existing viruses evolve the ability to bind to the cell-surface receptor of a new species. At the same time, host cell receptors also evolve to counteract virus attacks. This back-and-forth evolution between virus and host can lead to an arms race that shapes the sequences of the proteins involved. In wild rodent populations, the retrovirus MMTV and New World arenaviruses both exploit Transferrin Receptor 1 (TfR1) to enter the cells of their hosts. Here we show that the physical interactions between these viruses and TfR1 have triggered evolutionary arms race dynamics that have directly modified the sequence of TfR1 and at least one of the viruses involved. Computational evolutionary analysis allowed us to identify specific residues in TfR1 that define patterns of viral infection in nature. The approach presented here can theoretically be applied to the study of any virus, through analysis of host genes known to be key to controlling viral infection. As such, this approach can expand our understanding of how viruses emerge from wildlife reservoirs, and how they drive the evolution of host genes.
Collapse
Affiliation(s)
- Ann Demogines
- Department of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jonathan Abraham
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyeryun Choe
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Farzan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara L. Sawyer
- Department of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kang Y, Guo J, Chen Z. Closing the door to human immunodeficiency virus. Protein Cell 2013; 4:86-102. [PMID: 23479426 DOI: 10.1007/s13238-012-2111-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022] Open
Abstract
The pandemic of human immunodeficiency virus type one (HIV-1), the major etiologic agent of acquired immunodeficiency disease (AIDS), has led to over 33 million people living with the virus, among which 18 million are women and children. Until now, there is neither an effective vaccine nor a therapeutic cure despite over 30 years of efforts. Although the Thai RV144 vaccine trial has demonstrated an efficacy of 31.2%, an effective vaccine will likely rely on a breakthrough discovery of immunogens to elicit broadly reactive neutralizing antibodies, which may take years to achieve. Therefore, there is an urgency of exploring other prophylactic strategies. Recently, antiretroviral treatment as prevention is an exciting area of progress in HIV-1 research. Although effective, the implementation of such strategy faces great financial, political and social challenges in heavily affected regions such as developing countries where drug resistant viruses have already been found with growing incidence. Activating latently infected cells for therapeutic cure is another area of challenge. Since it is greatly difficult to eradicate HIV-1 after the establishment of viral latency, it is necessary to investigate strategies that may close the door to HIV-1. Here, we review studies on non-vaccine strategies in targeting viral entry, which may have critical implications for HIV-1 prevention.
Collapse
Affiliation(s)
- Yuanxi Kang
- AIDS Institute and Department of Microbiology of Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | | |
Collapse
|
35
|
Kiene M, Marzi A, Urbanczyk A, Bertram S, Fisch T, Nehlmeier I, Gnirß K, Karsten CB, Palesch D, Münch J, Chiodi F, Pöhlmann S, Steffen I. The role of the alternative coreceptor GPR15 in SIV tropism for human cells. Virology 2012; 433:73-84. [DOI: 10.1016/j.virol.2012.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 04/25/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
|
36
|
Abstract
Recent years have seen a significant increase in understanding of the host genetic and genomic determinants of susceptibility to HIV-1 infection and disease progression, driven in large part by candidate gene studies, genome-wide association studies, genome-wide transcriptome analyses, and large-scale in vitro genome screens. These studies have identified common variants in some host loci that clearly influence disease progression, characterized the scale and dynamics of gene and protein expression changes in response to infection, and provided the first comprehensive catalogs of genes and pathways involved in viral replication. Experimental models of AIDS and studies in natural hosts of primate lentiviruses have complemented and in some cases extended these findings. As the relevant technology continues to progress, the expectation is that such studies will increase in depth (e.g., to include host whole exome and whole genome sequencing) and in breadth (in particular, by integrating multiple data types).
Collapse
Affiliation(s)
- Amalio Telenti
- Institute of Microbiology, University Hospital and University of Lausanne, 1011 Lausanne, Switzerland.
| | | |
Collapse
|
37
|
Kang Y, Wu Z, Lau TCK, Lu X, Liu L, Cheung AKL, Tan Z, Ng J, Liang J, Wang H, Li S, Zheng B, Li B, Chen L, Chen Z. CCR5 antagonist TD-0680 uses a novel mechanism for enhanced potency against HIV-1 entry, cell-mediated infection, and a resistant variant. J Biol Chem 2012; 287:16499-509. [PMID: 22447925 DOI: 10.1074/jbc.m112.354084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regardless of the route of transmission, R5-tropic HIV-1 predominates early in infection, rendering C-C chemokine receptor type 5 (CCR5) antagonists as attractive agents not only for antiretroviral therapy but also for prevention. Here, we report the specificity, potency, and underlying mechanism of action of a novel small molecule CCR5 antagonist, TD-0680. TD-0680 displayed the greatest potency against a diverse group of R5-tropic HIV-1 and SIV strains when compared with its prodrug, TD-0232, the Food and Drug Administration-approved CCR5 antagonist Maraviroc, and TAK-779, with EC(50) values in the subnanomolar range (0.09-2.29 nm). Importantly, TD-0680 was equally potent at blocking envelope-mediated cell-cell fusion and cell-mediated viral transmission as well as the replication of a TAK-779/Maraviroc-resistant HIV-1 variant. Interestingly, TD-0232 and TD-0680 functioned differently despite binding to a similar transmembrane pocket of CCR5. Site-directed mutagenesis, drug combination, and antibody blocking assays identified a novel mechanism of action of TD-0680. In addition to binding to the transmembrane pocket, the unique exo configuration of this molecule protrudes and sterically blocks access to the extracellular loop 2 (ECL2) region of CCR5, thereby interrupting the interaction between virus and its co-receptor more effectively. This mechanism of action was supported by the observations of similar TD-0680 potency against CD4-dependent and -independent SIV strains and by molecular docking analysis using a CCR5 model. TD-0680, therefore, merits development as an anti-HIV-1 agent for therapeutic purposes and/or as a topical microbicide for the prevention of sexual transmission of R5-tropic HIV-1.
Collapse
Affiliation(s)
- Yuanxi Kang
- AIDS Institute, Department of Microbiology and Research Center for Infection and Immunity, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gifford RJ. Viral evolution in deep time: lentiviruses and mammals. Trends Genet 2011; 28:89-100. [PMID: 22197521 DOI: 10.1016/j.tig.2011.11.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/29/2022]
Abstract
Lentiviruses are a distinctive genus of retroviruses that cause chronic, persistent infections in mammals, including humans. The emergence of pandemic HIV type-1 (HIV-1) infection during the late 20th century shaped a view of lentiviruses as 'modern' viruses. However, recent research has revealed an entirely different perspective, elucidating aspects of an evolutionary relationship with mammals that extends across many millions of years. Such deep evolutionary history is likely to be typical of many host-virus systems, fundamentally underpinning their interactions in the present day. For this reason, establishing the deep history of virus and host interaction is key to developing a fully informed approach to tackling viral diseases. Here, I use the example of lentiviruses to illustrate how paleovirological, geographic and genetic calibrations allow observations of virus and host interaction across a wide range of temporal and spatial scales to be integrated into a coherent ecological and evolutionary framework.
Collapse
Affiliation(s)
- Robert J Gifford
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
39
|
Cloning and analysis of sooty mangabey alternative coreceptors that support simian immunodeficiency virus SIVsmm entry independently of CCR5. J Virol 2011; 86:898-908. [PMID: 22090107 DOI: 10.1128/jvi.06415-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural host sooty mangabeys (SM) infected with simian immunodeficiency virus SIVsmm do not develop AIDS despite high viremia. SM and other natural hosts express very low levels of CCR5 on CD4(+) T cells, and we recently showed that SIVsmm infection and robust replication occur in vivo in SM genetically lacking CCR5, indicating the use of additional entry pathways. SIVsmm uses several alternative coreceptors of human origin in vitro, but which molecules of SM origin support entry is unknown. We cloned a panel of putative coreceptors from SM and tested their ability to mediate infection, in conjunction with smCD4, by pseudotypes carrying Envs from multiple SIVsmm subtypes. smCXCR6 supported efficient infection by all SIVsmm isolates with entry levels comparable to those for smCCR5, and smGPR15 enabled entry by all isolates at modest levels. smGPR1 and smAPJ supported low and variable entry, whereas smCCR2b, smCCR3, smCCR4, smCCR8, and smCXCR4 were not used by most isolates. In contrast, SIVsmm from rare infected SM with profound CD4(+) T cell loss, previously reported to have expanded use of human coreceptors, including CXCR4, used smCXCR4, smCXCR6, and smCCR5 efficiently and also exhibited robust entry through smCCR3, smCCR8, smGPR1, smGPR15, and smAPJ. Entry was similar with both known alleles of smCD4. These alternative coreceptors, particularly smCXCR6 and smGPR15, may support virus replication in SM that have restricted CCR5 expression as well as SM genetically lacking CCR5. Defining expression of these molecules on SM CD4(+) subsets may delineate distinct natural host target cell populations capable of supporting SIVsmm replication without CD4(+) T cell loss.
Collapse
|
40
|
Jiang C, Parrish NF, Wilen CB, Li H, Chen Y, Pavlicek JW, Berg A, Lu X, Song H, Tilton JC, Pfaff JM, Henning EA, Decker JM, Moody MA, Drinker MS, Schutte R, Freel S, Tomaras GD, Nedellec R, Mosier DE, Haynes BF, Shaw GM, Hahn BH, Doms RW, Gao F. Primary infection by a human immunodeficiency virus with atypical coreceptor tropism. J Virol 2011; 85:10669-81. [PMID: 21835785 PMCID: PMC3187499 DOI: 10.1128/jvi.05249-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/02/2011] [Indexed: 01/23/2023] Open
Abstract
The great majority of human immunodeficiency virus type 1 (HIV-1) strains enter CD4+ target cells by interacting with one of two coreceptors, CCR5 or CXCR4. Here we describe a transmitted/founder (T/F) virus (ZP6248) that was profoundly impaired in its ability to utilize CCR5 and CXCR4 coreceptors on multiple CD4+ cell lines as well as primary human CD4+ T cells and macrophages in vitro yet replicated to very high titers (>80 million RNA copies/ml) in an acutely infected individual. Interestingly, the envelope (Env) glycoprotein of this clade B virus had a rare GPEK sequence in the crown of its third variable loop (V3) rather than the consensus GPGR sequence. Extensive sequencing of sequential plasma samples showed that the GPEK sequence was present in virtually all Envs, including those from the earliest time points after infection. The molecularly cloned (single) T/F virus was able to replicate, albeit poorly, in cells obtained from ccr5Δ32 homozygous donors. The ZP6248 T/F virus could also infect cell lines overexpressing the alternative coreceptors GPR15, APJ, and FPRL-1. A single mutation in the V3 crown sequence (GPEK->GPGK) of ZP6248 restored its infectivity in CCR5+ cells but reduced its ability to replicate in GPR15+ cells, indicating that the V3 crown motif played an important role in usage of this alternative coreceptor. These results suggest that the ZP6248 T/F virus established an acute in vivo infection by using coreceptor(s) other than CCR5 or CXCR4 or that the CCR5 coreceptor existed in an unusual conformation in this individual.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Substitution/genetics
- Apelin Receptors
- CD4-Positive T-Lymphocytes/virology
- Cells, Cultured
- Gene Expression
- HIV-1/physiology
- Humans
- Macrophages/virology
- Receptors, Formyl Peptide/genetics
- Receptors, Formyl Peptide/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, HIV/metabolism
- Receptors, Lipoxin/genetics
- Receptors, Lipoxin/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Viral Tropism
- env Gene Products, Human Immunodeficiency Virus/genetics
Collapse
Affiliation(s)
| | | | - Craig B. Wilen
- Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Yue Chen
- Duke Human Vaccine Institute
- Departments of Medicine
| | | | - Anna Berg
- Duke Human Vaccine Institute
- Departments of Medicine
| | - Xiaozhi Lu
- Duke Human Vaccine Institute
- Departments of Medicine
| | | | - John C. Tilton
- Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jennifer M. Pfaff
- Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | | | - M. Anthony Moody
- Duke Human Vaccine Institute
- Pediatrics, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | - Rebecca Nedellec
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| | - Donald E. Mosier
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| | | | - George M. Shaw
- Departments of Medicine
- Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Beatrice H. Hahn
- Departments of Medicine
- Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Robert W. Doms
- Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Feng Gao
- Duke Human Vaccine Institute
- Departments of Medicine
| |
Collapse
|
41
|
Meyerson NR, Sawyer SL. Two-stepping through time: mammals and viruses. Trends Microbiol 2011; 19:286-94. [PMID: 21531564 DOI: 10.1016/j.tim.2011.03.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/08/2011] [Accepted: 03/16/2011] [Indexed: 12/14/2022]
Abstract
Recent studies have identified ancient virus genomes preserved as fossils within diverse animal genomes. These fossils have led to the revelation that a broad range of mammalian virus families are older and more ubiquitous than previously appreciated. Long-term interactions between viruses and their hosts often develop into genetic arms races where both parties continually jockey for evolutionary dominance. It is difficult to imagine how mammalian hosts have kept pace in the evolutionary race against rapidly evolving viruses over large expanses of time, given their much slower evolutionary rates. However, recent data has begun to reveal the evolutionary strategy of slowly-evolving hosts. We review these data and suggest a modified arms race model where the evolutionary possibilities of viruses are relatively constrained. Such a model could allow more accurate forecasting of virus evolution.
Collapse
Affiliation(s)
- Nicholas R Meyerson
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
42
|
Abstract
SIV or SHIV infection of nonhuman primates (NHP) has been used to investigate the impact of coreceptor usage on the composition and dynamics of the CD4+ T cell compartment, mechanisms of disease induction and development of clinical syndrome. As the entire course of infection can be followed, with frequent access to tissue compartments, infection of rhesus macaques with CCR5-tropic SHIVs further allows for study of HIV-1 coreceptor switch after intravenous and mucosal inoculation, with longitudinal and systemic analysis to determine the timing, anatomical sites and cause for the change in envelope glycoprotein and coreceptor preference. Here, we review our current understanding of coreceptor use in NHPs and their impact on the pathobiological characteristics of the infection, and discuss recent advances in NHP studies to uncover the underlying selective pressures for the change in coreceptor preference in vivo.
Collapse
Affiliation(s)
- Silvana Tasca Sina
- Aaron Diamond AIDS Research Center, 455 First Ave, 7th Floor, New York, New York, USA
| | | | | |
Collapse
|
43
|
Minang JT, Trivett MT, Barsov EV, Del Prete GQ, Trubey CM, Thomas JA, Gorelick RJ, Piatak M, Ott DE, Ohlen C. TCR triggering transcriptionally downregulates CCR5 expression on rhesus macaque CD4(+) T-cells with no measurable effect on susceptibility to SIV infection. Virology 2011; 409:132-40. [PMID: 21035160 PMCID: PMC3001627 DOI: 10.1016/j.virol.2010.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/28/2010] [Accepted: 10/03/2010] [Indexed: 12/24/2022]
Abstract
Studies using transformed human cell lines suggest that most SIV strains use CCR5 as co-receptor. Our analysis of primary rhesus macaque CD4(+) T-cell clones revealed marked differences in susceptibility to SIV(mac)239 infection. We investigated whether different levels of CCR5 expression account for clonal differences in SIV(mac)239 susceptibility. Macaque CD4(+) T-cells showed significant CCR5 downregulation 1-2days following CD3 mAb stimulation, which gradually recovered at resting state, 7-10days after activation. Exposure of clones to SIV(mac)239 during their CCR5(low) or CCR5(high) expression states revealed differences in SIV susceptibility independent of surface CCR5 levels. Furthermore, a CCR5 antagonist similarly reduced SIV(mac)239 infection of clones during their CCR5(low) or CCR5(high) expression states. Our data suggest a model where i) very low levels of CCR5 are sufficient for efficient SIV infection, ii) CCR5 levels above this threshold do not enhance infection, and iii) low level infection can occur in the absence of CCR5.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- CCR5 Receptor Antagonists
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- Cell Line
- DNA, Viral/analysis
- Down-Regulation
- Female
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Humans
- Macaca mulatta
- Male
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/pathogenicity
Collapse
Affiliation(s)
- Jacob T. Minang
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Eugene V Barsov
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Charles M. Trubey
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - James A. Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - David E. Ott
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Claes Ohlen
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| |
Collapse
|
44
|
Baron B, Schembri-Wismayer P. Using the distribution of the CCR5-Δ32 allele in third-generation Maltese citizens to disprove the Black Death hypothesis. Int J Immunogenet 2010; 38:139-43. [DOI: 10.1111/j.1744-313x.2010.00984.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Riddick NE, Hermann EA, Loftin LM, Elliott ST, Wey WC, Cervasi B, Taaffe J, Engram JC, Li B, Else JG, Li Y, Hahn BH, Derdeyn CA, Sodora DL, Apetrei C, Paiardini M, Silvestri G, Collman RG. A novel CCR5 mutation common in sooty mangabeys reveals SIVsmm infection of CCR5-null natural hosts and efficient alternative coreceptor use in vivo. PLoS Pathog 2010; 6:e1001064. [PMID: 20865163 PMCID: PMC2928783 DOI: 10.1371/journal.ppat.1001064] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/22/2010] [Indexed: 11/19/2022] Open
Abstract
In contrast to HIV infection in humans and SIV in macaques, SIV infection of natural hosts including sooty mangabeys (SM) is non-pathogenic despite robust virus replication. We identified a novel SM CCR5 allele containing a two base pair deletion (Δ2) encoding a truncated molecule that is not expressed on the cell surface and does not support SIV entry in vitro. The allele was present at a 26% frequency in a large SM colony, along with 3% for a CCR5Δ24 deletion allele that also abrogates surface expression. Overall, 8% of animals were homozygous for defective CCR5 alleles and 41% were heterozygous. The mutant allele was also present in wild SM in West Africa. CD8+ and CD4+ T cells displayed a gradient of CCR5 expression across genotype groups, which was highly significant for CD8+ cells. Remarkably, the prevalence of natural SIVsmm infection was not significantly different in animals lacking functional CCR5 compared to heterozygous and homozygous wild-type animals. Furthermore, animals lacking functional CCR5 had robust plasma viral loads, which were only modestly lower than wild-type animals. SIVsmm primary isolates infected both homozygous mutant and wild-type PBMC in a CCR5-independent manner in vitro, and Envs from both CCR5-null and wild-type infected animals used CXCR6, GPR15 and GPR1 in addition to CCR5 in transfected cells. These data clearly indicate that SIVsmm relies on CCR5-independent entry pathways in SM that are homozygous for defective CCR5 alleles and, while the extent of alternative coreceptor use in SM with CCR5 wild type alleles is uncertain, strongly suggest that SIVsmm tropism and host cell targeting in vivo is defined by the distribution and use of alternative entry pathways in addition to CCR5. SIVsmm entry through alternative pathways in vivo raises the possibility of novel CCR5-negative target cells that may be more expendable than CCR5+ cells and enable the virus to replicate efficiently without causing disease in the face of extremely restricted CCR5 expression seen in SM and several other natural host species.
Collapse
Affiliation(s)
- Nadeene E. Riddick
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Emilia A. Hermann
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Lamorris M. Loftin
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sarah T. Elliott
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Winston C. Wey
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Barbara Cervasi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jessica Taaffe
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jessica C. Engram
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Bing Li
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - James G. Else
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yingying Li
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Cynthia A. Derdeyn
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Donald L. Sodora
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Cristian Apetrei
- Department of Microbiology and Molecular Genetics, University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Mirko Paiardini
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Guido Silvestri
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ronald G. Collman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
46
|
Ahuka-Mundeke S, Liegeois F, Ayouba A, Foupouapouognini Y, Nerrienet E, Delaporte E, Peeters M. Full-length genome sequence of a simian immunodeficiency virus (SIV) infecting a captive agile mangabey (Cercocebus agilis) is closely related to SIVrcm infecting wild red-capped mangabeys (Cercocebus torquatus) in Cameroon. J Gen Virol 2010; 91:2959-64. [PMID: 20797968 PMCID: PMC3052563 DOI: 10.1099/vir.0.025767-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Simian immunodeficiency viruses (SIVs) are lentiviruses that infect an extensive number of wild African primate species. Here we describe for the first time SIV infection in a captive agile mangabey (Cercocebus agilis) from Cameroon. Phylogenetic analysis of the full-length genome sequence of SIVagi-00CM312 showed that this novel virus fell into the SIVrcm lineage and was most closely related to a newly characterized SIVrcm strain (SIVrcm-02CM8081) from a wild-caught red-capped mangabey (Cercocebus torquatus) from Cameroon. In contrast to red-capped mangabeys, no 24 bp deletion in CCR5 has been observed in the agile mangabey. Further studies on wild agile mangabeys are needed to determine whether agile and red-capped mangabeys are naturally infected with the same SIV lineage, or whether this agile mangabey became infected with an SIVrcm strain in captivity. However, our study shows that agile mangabeys are susceptible to SIV infection.
Collapse
Affiliation(s)
- Steve Ahuka-Mundeke
- UMR145, Institut de Recherche pour le Developpement (IRD) and University of Montpellier 1, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Pandrea I, Apetrei C. Where the wild things are: pathogenesis of SIV infection in African nonhuman primate hosts. Curr HIV/AIDS Rep 2010; 7:28-36. [PMID: 20425055 PMCID: PMC2824118 DOI: 10.1007/s11904-009-0034-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
African nonhuman primates that are natural hosts of simian immunodeficiency virus (SIV) are generally spared from disease progression. Pathogenic and nonpathogenic SIV infections share some major features: high viral replication, massive acute depletion of mucosal CD4(+) T cells, and partial control of the virus by both adaptive and innate immune responses. A key distinction of natural SIV infections is rapid and active control of immune activation and apoptosis of T cells that contributes to the integrity of mucosal barrier and lack of microbial translocation. This allows partial recovery of CD4(+) T cells and preservation of the function of other immune cell subsets. A better understanding of the mechanisms underlying the lack of disease in natural hosts for SIV infection will likely provide important clues as to the therapy of HIV-1 infection.
Collapse
Affiliation(s)
- Ivona Pandrea
- Center for Vaccine Research and Department of Pathology, University of Pittsburgh, 9014 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15261-9045, USA.
| | | |
Collapse
|
48
|
Accelerated immunodeficiency by anti-CCR5 treatment in HIV infection. PLoS Comput Biol 2009; 5:e1000467. [PMID: 19680436 PMCID: PMC2715863 DOI: 10.1371/journal.pcbi.1000467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 07/13/2009] [Indexed: 11/19/2022] Open
Abstract
In 50% of progressing HIV-1 patients, CXCR4-tropic (X4) virus emerges late in infection, often overtaking CCR5-tropic (R5) virus as the dominant viral strain. This "phenotypic switch" is strongly associated with rapidly declining CD4(+) T cell counts and AIDS onset, yet its causes remain unknown. Here, we analyze a mathematical model for the mechanism of X4 emergence in late-stage HIV infection and use this analysis to evaluate the utility of a promising new class of antiretroviral drugs -- CCR5 inhibitors -- in dual R5, X4 infection. The model shows that the R5-to-X4 switch occurs as CD4(+) T cell activation levels increase above a threshold and as CD4(+) T cell counts decrease below a threshold during late-stage HIV infection. Importantly, the model also shows that highly active antiretroviral therapy (HAART) can inhibit X4 emergence but that monotherapy with CCR5 blockers can accelerate X4 onset and immunodeficiency if X4 infection of memory CD4(+) T cells occurs at a high rate. Fortunately, when CXCR4 blockers or HAART are used in conjunction with CCR5 blockers, this risk of accelerated immunodeficiency is eliminated. The results suggest that CCR5 blockers will be more effective when used in combination with CXCR4 blockers and caution against CCR5 blockers in the absence of an effective HAART regimen or during HAART failure.
Collapse
|
49
|
Simian immunodeficiency virus SIVrcm, a unique CCR2-tropic virus, selectively depletes memory CD4+ T cells in pigtailed macaques through expanded coreceptor usage in vivo. J Virol 2009; 83:7894-908. [PMID: 19493994 DOI: 10.1128/jvi.00444-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus SIVrcm, which naturally infects red-capped mangabeys (RCMs), is the only SIV that uses CCR2 as its main coreceptor due to the high frequency of a CCR5 deletion in RCMs. We investigated the dynamics of SIVrcm infection to identify specific pathogenic mechanisms associated with this major difference in SIV biology. Four pigtailed macaques (PTMs) were infected with SIVrcm, and infection was monitored for over 2 years. The dynamics of in vivo SIVrcm replication in PTMs was similar to that of other pathogenic and nonpathogenic lymphotropic SIVs. Plasma viral loads (VLs) peaked at 10(7) to 10(9) SIVrcm RNA copies/ml by day 10 postinoculation (p.i.). A viral set point was established by day 42 p.i. at 10(3) to 10(5) SIVrcm RNA copies/ml and lasted up to day 180 p.i., when plasma VLs decreased below the threshold of detection, with blips of viral replication during the follow-up. Intestinal SIVrcm replication paralleled that of plasma VLs. Up to 80% of the CD4(+) T cells were depleted by day 28 p.i. in the gut. The most significant depletion (>90%) involved memory CD4(+) T cells. Partial CD4(+) T-cell restoration was observed in the intestine at later time points. Effector memory CD4(+) T cells were the least restored. SIVrcm strains isolated from acutely infected PTMs used CCR2 coreceptor, as reported, but expansion of coreceptor usage to CCR4 was also observed. Selective depletion of effector memory CD4(+) T cells is in contrast with predicted in vitro tropism of SIVrcm for macrophages and is probably due to expansion of coreceptor usage. Taken together, these findings emphasize the importance of understanding the selective forces driving viral adaptation to a new host.
Collapse
|
50
|
|