1
|
Degn SE, Tolar P. Towards a unifying model for B-cell receptor triggering. Nat Rev Immunol 2025; 25:77-91. [PMID: 39256626 DOI: 10.1038/s41577-024-01073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/12/2024]
Abstract
Antibodies are exceptionally versatile molecules with remarkable flexibility in their binding properties. Their natural targets range from small-molecule toxins, across viruses of different sizes, to bacteria and large multicellular parasites. The molecular determinants bound by antibodies include proteins, peptides, carbohydrates, nucleic acids, lipids and even synthetic molecules that have never existed in nature. Membrane-anchored antibodies also serve as receptors on the surface of the B cells that produce them. Despite recent structural insights, there is still no unifying molecular mechanism to explain how antibody targets (antigens) trigger the activation of these B-cell receptors (BCRs). After cognate antigen encounter, somatic hypermutation and class-switch recombination allow BCR affinity maturation and immunoglobulin class-specific responses, respectively. This raises the fundamental question of how one receptor activation mechanism can accommodate a plethora of variant receptors and ligands, and how it can ensure that individual B cells remain responsive to antigen after somatic hypermutation and class switching. There is still no definite answer. Here we give a brief historical account of the different models proposed to explain BCR triggering and discuss their merit in the context of the current knowledge of the structure of BCRs, their dynamic membrane distribution, and recent biochemical and cell biological insights.
Collapse
Affiliation(s)
- Søren E Degn
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark.
| | - Pavel Tolar
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
2
|
Neurath MF, Berg LJ. VAV1 as a putative therapeutic target in autoimmune and chronic inflammatory diseases. Trends Immunol 2024; 45:580-596. [PMID: 39060140 DOI: 10.1016/j.it.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
The guanine nucleotide exchange factor (GEF) VAV1, a previously 'undruggable' protein integral to T/B lymphocyte antigen-receptor signaling, promotes actin polymerization, immunological synapse formation, T cell activation and differentiation, and cytokine production. With the development of novel modalities for targeting proteins, we hypothesize that interventions targeting VAV1 will have therapeutic potential in T and T/B cell-mediated autoimmune and chronic inflammatory diseases. This opinion is supported by recent CRISPR-Cas9 studies showing VAV1 as a key positive regulator of T cell receptor (TCR) activation and cytokine production in primary human CD4+ and CD8+ T cells; data demonstrating that loss/suppression of VAV1 regulates autoimmunity and inflammation; and promising preclinical data from T and T/B cell-mediated disease models of arthritis and colitis showing the effectiveness of selective VAV1 targeting via protein degradation.
Collapse
Affiliation(s)
- Markus F Neurath
- Department of Medicine, 1 & Deutsches Zentrum Immuntherapie, University of Erlangen-Nürnberg, Kussmaul Campus for Medical Research, 91054 Erlangen, Germany
| | - Leslie J Berg
- Department of Immunology & Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Maier J, Sieme D, Wong LE, Dar F, Wienands J, Becker S, Griesinger C. Quantitative description of the phase-separation behavior of the multivalent SLP65-CIN85 complex. PNAS NEXUS 2024; 3:pgae079. [PMID: 38463037 PMCID: PMC10923291 DOI: 10.1093/pnasnexus/pgae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Biomolecular condensates play a major role in cell compartmentalization, besides membrane-enclosed organelles. The multivalent SLP65 and CIN85 proteins are proximal B-cell antigen receptor (BCR) signal effectors and critical for proper immune responses. In association with intracellular vesicles, the two effector proteins form phase separated condensates prior to antigen stimulation, thereby preparing B lymphocytes for rapid and effective activation upon BCR ligation. Within this tripartite system, 6 proline-rich motifs (PRMs) of SLP65 interact promiscuously with 3 SH3 domains of the CIN85 monomer, establishing 18 individual SH3-PRM interactions whose individual dissociation constants we determined. Based on these 18 dissociation constants, we measured the phase-separation properties of the natural SLP65/CIN85 system as well as designer constructs that emphasize the strongest SH3/PRM interactions. By modeling these various SLP65/CIN85 constructs with the program LASSI (LAttice simulation engine for Sticker and Spacer Interactions), we reproduced the observed phase-separation properties. In addition, LASSI revealed a deviation in the experimental measurement, which was independently identified as a previously unknown intramolecular interaction. Thus, thermodynamic properties of the individual PRM/SH3 interactions allow us to model the phase-separation behavior of the SLP65/CIN85 system faithfully.
Collapse
Affiliation(s)
- Joachim Maier
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Daniel Sieme
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Leo E Wong
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Furqan Dar
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130, USA
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Stefan Becker
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Edwards ESJ, Ojaimi S, Ngui J, Seo GH, Kim J, Chunilal S, Yablonski D, O'Hehir RE, van Zelm MC. Combined immunodeficiency and impaired PI3K signaling in a patient with biallelic LCP2 variants. J Allergy Clin Immunol 2023; 152:807-813.e7. [PMID: 37211057 DOI: 10.1016/j.jaci.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Inborn errors affecting components of the T-cell receptor signaling cascade cause combined immunodeficiency with various degrees of severity. Recently, homozygous variants in LCP2 were reported to cause pediatric onset of severe combined immunodeficiency with neutrophil, platelet, and T- and B-cell defects. OBJECTIVE We sought to unravel the genetic cause of combined immunodeficiency and early-onset immune dysregulation in a 26-year-old man who presented with specific antibody deficiency, autoimmunity, and inflammatory bowel disease since early childhood. METHODS The patient was subjected to whole-exome sequencing of genomic DNA and examination of blood neutrophils, platelets, and T and B cells. Expression levels of the Src homology domain 2-containing leukocyte protein of 76 kDa (SLP76) and tonic and ligand-induced PI3K signaling were evaluated by flow-cytometric detection of phosphorylated ribosomal protein S6 in B and T cells. RESULTS Compound heterozygous missense variants were identified in LCP2, affecting the proline-rich repeat domain of SLP76 (p.P190R and p.R204W). The patient's total B- and T-cell numbers were within the normal range, as was platelet function. However, neutrophil function, numbers of unswitched and class-switched memory B cells, and serum IgA were decreased. Moreover, intracellular SLP76 protein levels were reduced in the patient's B cells, CD4+ and CD8+ T cells, and natural killer cells. Tonic and ligand-induced levels of phosphorylated ribosomal protein S6 and ligand-induced phosphorylated PLCγ1 were decreased in the patient's B cells and CD4+ and CD8+ T cells. CONCLUSIONS Biallelic variants in LCP2 impair neutrophil function and T-cell and B-cell antigen-receptor signaling and can cause combined immunodeficiency with early-onset immune dysregulation, even in the absence of platelet defects.
Collapse
Affiliation(s)
- Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia
| | - Samar Ojaimi
- Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia; Monash Pathology, Monash Health, Melbourne, Australia; Monash Infectious Diseases, Monash Health, Melbourne, Australia; Monash Lung Sleep Allergy Immunology, Monash Health, Melbourne, Australia; Department of Medicine, Southern Clinical School, Monash Health and Monash University, Melbourne, Australia.
| | - James Ngui
- Monash Pathology, Monash Health, Melbourne, Australia
| | - Go Hun Seo
- Division of Medical Genetics, 3billion Inc, Seoul, Korea
| | - JiHye Kim
- Division of Medical Genetics, 3billion Inc, Seoul, Korea
| | - Sanjeev Chunilal
- Department of Pathology and Radiology, Monash Health, Melbourne, Australia
| | - Deborah Yablonski
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Robyn E O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia; Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Alfred Hospital, Melbourne, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia; Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Alfred Hospital, Melbourne, Australia.
| |
Collapse
|
5
|
Sonowal H, Rice WG, Howell SB. Luxeptinib interferes with LYN-mediated activation of SYK and modulates BCR signaling in lymphoma. PLoS One 2023; 18:e0277003. [PMID: 36888611 PMCID: PMC9994718 DOI: 10.1371/journal.pone.0277003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
Luxeptinib (LUX) is a novel oral kinase inhibitor that inhibits FLT3 and also interferes with signaling from the BCR and cell surface TLRs, as well as activation of the NLRP3 inflammasome. Ongoing clinical trials are testing its activity in patients with lymphoma and AML. This study sought to refine understanding of how LUX modulates the earliest steps downstream of the BCR following its activation by anti-IgM in lymphoma cells in comparison to ibrutinib (IB). LUX decreased anti-IgM-induced phosphorylation of BTK at Y551 and Y223 but its ability to reduce phosphorylation of kinases further upstream suggests that BTK is not the primary target. LUX was more effective than IB at reducing both steady state and anti-IgM-induced phosphorylation of LYN and SYK. LUX decreased phosphorylation of SYK (Y525/Y526) and BLNK (Y96) which are necessary regulators of BTK activation. Further upstream, LUX blunted the anti-IgM-induced phosphorylation of LYN (Y397) whose activation is required for phosphorylation of SYK and BLNK. These results indicate that LUX is targeting autophosphorylation of LYN or a step further upstream of LYN in the cascade of signal generated by BCR and that it does so more effectively than IB. The fact that LUX has activity at or upstream of LYN is important because LYN is an essential signaling intermediate in multiple cellular signaling processes that regulate growth, differentiation, apoptosis, immunoregulation, migration and EMT in normal and cancer cells.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Moores Cancer Center, Division of Hematology, Department of Medicine, University of California, San Diego, San Diego, California, United States of America
| | - William G. Rice
- Aptose Biosciences, Inc., San Diego, California, United States of America
| | - Stephen B. Howell
- Moores Cancer Center, Division of Hematology, Department of Medicine, University of California, San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Wen Y, Ma J. Phase separation drives the formation of biomolecular condensates in the immune system. Front Immunol 2022; 13:986589. [PMID: 36439121 PMCID: PMC9685520 DOI: 10.3389/fimmu.2022.986589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/19/2022] [Indexed: 08/12/2023] Open
Abstract
When the external conditions change, such as the temperature or the pressure, the multi-component system sometimes separates into several phases with different components and structures, which is called phase separation. Increasing studies have shown that cells condense related biomolecules into independent compartments in order to carry out orderly and efficient biological reactions with the help of phase separation. Biomolecular condensates formed by phase separation play a significant role in a variety of cellular processes, including the control of signal transduction, the regulation of gene expression, and the stress response. In recent years, many phase separation events have been discovered in the immune response process. In this review, we provided a comprehensive and detailed overview of the role and mechanism of phase separation in the innate and adaptive immune responses, which will help the readers to appreciate the advance and importance of this field.
Collapse
Affiliation(s)
- Yuqing Wen
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| |
Collapse
|
7
|
Pathmanathan S, Yao Z, Coelho P, Valla R, Drecun L, Benz C, Snider J, Saraon P, Grozavu I, Kotlyar M, Jurisica I, Park M, Stagljar I. B cell linker protein (BLNK) is a regulator of Met receptor signaling and trafficking in non-small cell lung cancer. iScience 2022; 25:105419. [DOI: 10.1016/j.isci.2022.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
|
8
|
Vadakumchery A, Faraidun H, Ayoubi OE, Outaleb I, Schmid V, Abdelrasoul H, Amendt T, Khadour A, Setz C, Göhring K, Lodd K, Hitzing C, Alkhatib A, Bilal M, Benckendorff J, Al Shugri AK, Brakebusch CH, Engels N, Datta M, Hobeika E, Alsadeq A, Jumaa H. The Small GTPase RHOA Links SLP65 Activation to PTEN Function in Pre B Cells and Is Essential for the Generation and Survival of Normal and Malignant B Cells. Front Immunol 2022; 13:842340. [PMID: 35371049 PMCID: PMC8965026 DOI: 10.3389/fimmu.2022.842340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
The generation, differentiation, survival and activation of B cells are coordinated by signals emerging from the B cell antigen receptor (BCR) or its precursor, the pre-BCR. The adaptor protein SLP65 (also known as BLNK) is an important signaling factor that controls pre-B cell differentiation by down-regulation of PI3K signaling. Here, we investigated the mechanism by which SLP65 interferes with PI3K signaling. We found that SLP65 induces the activity of the small GTPase RHOA, which activates PTEN, a negative regulator of PI3K signaling, by enabling its translocation to the plasma membrane. The essential role of RHOA is confirmed by the complete block in early B cell development in conditional RhoA-deficient mice. The RhoA-deficient progenitor B cells showed defects in activation of immunoglobulin gene rearrangement and fail to survive both in vitro and in vivo. Reconstituting the RhoA-deficient cells with RhoA or Foxo1, a transcription factor repressed by PI3K signaling and activated by PTEN, completely restores the survival defect. However, the defect in differentiation can only be restored by RhoA suggesting a unique role for RHOA in B cell generation and selection. In full agreement, conditional RhoA-deficient mice develop increased amounts of autoreactive antibodies with age. RHOA function is also required at later stage, as inactivation of RhoA in peripheral B cells or in a transformed mature B cell line resulted in cell loss. Together, these data show that RHOA is the key signaling factor for B cell development and function by providing a crucial SLP65-activated link between BCR signaling and activation of PTEN. Moreover, the identified essential role of RHOA for the survival of transformed B cells offers the opportunity for targeting B cell malignancies by blocking RHOA function.
Collapse
Affiliation(s)
| | - Hemin Faraidun
- Department of Molecular Immunology, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Omar El Ayoubi
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Issame Outaleb
- Department of Molecular Immunology, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Vera Schmid
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Hend Abdelrasoul
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Timm Amendt
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Ahmad Khadour
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Corinna Setz
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Katharina Göhring
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Karoline Lodd
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Christoffer Hitzing
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Alabbas Alkhatib
- Department of Molecular Immunology, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Mayas Bilal
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | | | | | - Cord Herbert Brakebusch
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Moumita Datta
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Elias Hobeika
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Ameera Alsadeq
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Hassan Jumaa
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany.,Department of Molecular Immunology, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 1177] [Impact Index Per Article: 235.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
10
|
Görtler F, Schön M, Simeth J, Solbrig S, Wettig T, Oefner PJ, Spang R, Altenbuchinger M. Loss-Function Learning for Digital Tissue Deconvolution. J Comput Biol 2020; 27:342-355. [DOI: 10.1089/cmb.2019.0462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Franziska Görtler
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Marian Schön
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Jakob Simeth
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Stefan Solbrig
- Department of Physics, University of Regensburg, Regensburg, Germany
| | - Tilo Wettig
- Department of Physics, University of Regensburg, Regensburg, Germany
| | - Peter J. Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Rainer Spang
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Michael Altenbuchinger
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Tripartite phase separation of two signal effectors with vesicles priming B cell responsiveness. Nat Commun 2020; 11:848. [PMID: 32051419 PMCID: PMC7016142 DOI: 10.1038/s41467-020-14544-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 01/13/2020] [Indexed: 01/12/2023] Open
Abstract
Antibody-mediated immune responses rely on antigen recognition by the B cell antigen receptor (BCR) and the proper engagement of its intracellular signal effector proteins. Src homology (SH) 2 domain-containing leukocyte protein of 65 kDa (SLP65) is the key scaffold protein mediating BCR signaling. In resting B cells, SLP65 colocalizes with Cbl-interacting protein of 85 kDa (CIN85) in cytoplasmic granules whose formation is not fully understood. Here we show that effective B cell activation requires tripartite phase separation of SLP65, CIN85, and lipid vesicles into droplets via vesicle binding of SLP65 and promiscuous interactions between nine SH3 domains of the trimeric CIN85 and the proline-rich motifs (PRMs) of SLP65. Vesicles are clustered and the dynamical structure of SLP65 persists in the droplet phase in vitro. Our results demonstrate that phase separation driven by concerted transient interactions between scaffold proteins and vesicles is a cellular mechanism to concentrate and organize signal transducers. Antibody-mediated immune responses rely on antigen recognition by the B cell antigen receptor (BCR) and SLP65 is a key scaffold protein mediating BCR signaling. Here authors show that effective B cell activation requires tripartite phase separation of SLP65, CIN85, and lipid vesicles.
Collapse
|
12
|
Luo L, Lucas RM, Liu L, Stow JL. Signalling, sorting and scaffolding adaptors for Toll-like receptors. J Cell Sci 2019; 133:133/5/jcs239194. [PMID: 31889021 DOI: 10.1242/jcs.239194] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs) are danger-sensing receptors that typically propagate self-limiting inflammatory responses, but can unleash uncontrolled inflammation in non-homeostatic or disease settings. Activation of TLRs by pathogen- and/or host-derived stimuli triggers a range of signalling and transcriptional pathways to programme inflammatory and anti-microbial responses, including the production of a suite of inflammatory cytokines and other mediators. Multiple sorting and signalling adaptors are recruited to receptor complexes on the plasma membrane or endosomes where they act as scaffolds for downstream signalling kinases and effectors at these sites. So far, seven proximal TLR adaptors have been identified: MyD88, MAL, TRIF (also known as TICAM1), TRAM (TICAM2), SARM (SARM1), BCAP (PIK3AP1) and SCIMP. Most adaptors tether directly to TLRs through homotypic Toll/interleukin-1 receptor domain (TIR)-TIR interactions, whereas SCIMP binds to TLRs through an atypical TIR-non-TIR interaction. In this Review, we highlight the key roles for these adaptors in TLR signalling, scaffolding and receptor sorting and discuss how the adaptors thereby direct the differential outcomes of TLR-mediated responses. We further summarise TLR adaptor regulation and function, and make note of human diseases that might be associated with mutations in these adaptors.
Collapse
Affiliation(s)
- Lin Luo
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard M Lucas
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Liping Liu
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
13
|
Kulathu Y, Zuern C, Yang J, Reth M. Synthetic biology of B cell activation: understanding signal amplification at the B cell antigen receptor using a rebuilding approach. Biol Chem 2019; 400:555-563. [PMID: 30465710 DOI: 10.1515/hsz-2018-0308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
Abstract
Upon activation of the B cell antigen receptor (BCR), the spleen tyrosine kinase (Syk) and the Src family kinase Lyn phosphorylate tyrosines of the immunoreceptor tyrosine-based activation motif (ITAM) of Igα and Igβ which further serve as binding sites for the SH2 domains of these kinases. Using a synthetic biology approach, we dissect the roles of different ITAM residues of Igα in Syk activation. We found that a leucine to glycine mutation at the Y+3 position after the first ITAM tyrosine prevents Syk binding and activation. However, a pre-activated Syk can still phosphorylate this tyrosine in trans. Our data show that the formation of a Syk/ITAM initiation complex and trans-ITAM phosphorylation is crucial for BCR signal amplification. In contrast, the interaction of Lyn with the first ITAM tyrosine is not altered by the leucine to glycine mutation. In addition, our study suggests that an ITAM-bound Syk phosphorylates the non-ITAM tyrosine Y204 of Igα only in cis. Collectively, our reconstitution experiments suggest a model whereby first trans-phosphorylation amplifies the BCR signal and subsequently cis-phosphorylation couples the receptor to downstream signaling elements.
Collapse
Affiliation(s)
- Yogesh Kulathu
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Christa Zuern
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jianying Yang
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
14
|
Mo ZQ, Wang JL, Han R, Han Q, Li YW, Sun HY, Luo XC, Dan XM. Identification and functional analysis of grouper (Epinephelus coioides) B-cell linker protein BLNK. FISH & SHELLFISH IMMUNOLOGY 2018; 81:399-407. [PMID: 30055251 DOI: 10.1016/j.fsi.2018.07.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
B-cell linker protein (BLNK) is an adaptor protein that plays a crucial role in the B cell antigen receptor (BCR) signal pathway. To investigate the function of BLNK in teleost fish, we cloned a BLNK ortholog gene from the orange-spotted grouper (Epinephelus coioides). Homology analysis showed that the grouper BLNK (EcBLNK) had a 34%-77% amino acid identity in comparison to other vertebrates and shared the highest amino acid identity with BLNK from the Asian seabass Lates calcarifer. EcBLNK comprises an N-terminal SAM domain and a C-terminal B-cell linker SH2 domain. Ten tyrosine residues were well conserved between teleost fish and mammals. Tissue distribution analysis showed that EcBLNK was expressed mainly in immune organs and expression was at the highest level in head kidney. Co-localization of EcBLNK and EcCD79a was observed in transfected HEK293T cells. Overexpression of EcBLNK did not activate nuclear factor kappa-light-chain-enhancer of activated B cells. The protein level of EcBLNK in grouper head kidney leukocytes was increased by stimulation with lipopolysaccharide. In groupers infected with Cryptocaryon irritans, EcBLNK was regulated in the infected sites and the systemic organ which suggests that EcBLNK was activated in the immune response to parasite infection.
Collapse
Affiliation(s)
- Ze-Quan Mo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jiu-Le Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Rui Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Qing Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yan-Wei Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Hong-Yan Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, PR China.
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| |
Collapse
|
15
|
Chakraborty S, Karasu E, Huber-Lang M. Complement After Trauma: Suturing Innate and Adaptive Immunity. Front Immunol 2018; 9:2050. [PMID: 30319602 PMCID: PMC6165897 DOI: 10.3389/fimmu.2018.02050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
The overpowering effect of trauma on the immune system is undisputed. Severe trauma is characterized by systemic cytokine generation, activation and dysregulation of systemic inflammatory response complementopathy and coagulopathy, has been immensely instrumental in understanding the underlying mechanisms of the innate immune system during systemic inflammation. The compartmentalized functions of the innate and adaptive immune systems are being gradually recognized as an overlapping, interactive and dynamic system of responsive elements. Nonetheless the current knowledge of the complement cascade and its interaction with adaptive immune response mediators and cells, including T- and B-cells, is limited. In this review, we discuss what is known about the bridging effects of the complement system on the adaptive immune system and which unexplored areas could be crucial in understanding how the complement and adaptive immune systems interact following trauma.
Collapse
Affiliation(s)
- Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Ebru Karasu
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
16
|
He X, Kläsener K, Iype JM, Becker M, Maity PC, Cavallari M, Nielsen PJ, Yang J, Reth M. Continuous signaling of CD79b and CD19 is required for the fitness of Burkitt lymphoma B cells. EMBO J 2018; 37:e97980. [PMID: 29669863 PMCID: PMC5983214 DOI: 10.15252/embj.201797980] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 01/05/2023] Open
Abstract
Expression of the B-cell antigen receptor (BCR) is essential not only for the development but also for the maintenance of mature B cells. Similarly, many B-cell lymphomas, including Burkitt lymphoma (BL), require continuous BCR signaling for their tumor growth. This growth is driven by immunoreceptor tyrosine-based activation motif (ITAM) and PI3 kinase (PI3K) signaling. Here, we employ CRISPR/Cas9 to delete BCR and B-cell co-receptor genes in the human BL cell line Ramos. We find that Ramos B cells require the expression of the BCR signaling component Igβ (CD79b), and the co-receptor CD19, for their fitness and competitive growth in culture. Furthermore, we show that in the absence of any other BCR component, Igβ can be expressed on the B-cell surface, where it is found in close proximity to CD19 and signals in an ITAM-dependent manner. These data suggest that Igβ and CD19 are part of an alternative B-cell signaling module that use continuous ITAM/PI3K signaling to promote the survival of B lymphoma and normal B cells.
Collapse
Affiliation(s)
- Xiaocui He
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Kathrin Kläsener
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Joseena M Iype
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Martin Becker
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Palash C Maity
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marco Cavallari
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Peter J Nielsen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jianying Yang
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Reth
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
17
|
Mo ZQ, Han Q, Zeng YL, Wang JL, Li XZ, Li YW, Sun HY, Li AX, Luo XC, Dan XM. Molecular characterization and function analysis of grouper (Epinephelus coioides) Bruton's tyrosine kinase BTK. FISH & SHELLFISH IMMUNOLOGY 2018; 77:91-99. [PMID: 29567142 DOI: 10.1016/j.fsi.2018.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 03/17/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Bruton's tyrosine kinase (BTK) is a Tec-family tyrosine kinase and plays a crucial role in B cell antigen receptor (BCR) signal pathway. Mutations in humans and mice BTK gene results in X-linked agammaglobulinemia (XLA) and X-linked immunodeficiency (XLD), respectively. To study the function of BTK in teleost, we cloned a BTK gene from orange-spotted grouper. Homology analysis showed that the grouper BTK (EcBTK) had a high amino acid identity with other vertebrates (63%-92%) and shared the highest amino acid identity with ballan wrasse Labrus bergylta BTK. EcBTK comprises a Bruton's tyrosine kinase pleckstrin homology (PH) domain, a Tec homology (TH) domain, a Src homology 3 (SH3) domain, a Src homology 2 (SH2) domain and a Protein Kinases, catalytic (PKc) domain. Tissue distribution analysis showed that EcBTK was mainly expressed in immune organs. EcBTK was uniform distributed throughout the cytoplasm of transfected HEK293T cells and overexpression of EcBTK slightly down-regulates NF-κB activity. Ibrutinib treatment can reduce the phosphorylation level of grouper's BTK. In groupers infected with Cryptocaryon irritans, up-regulation of EcBTK were not seen in the early stage of infected skin and gill until days 14-21. The phosphorylation level of grouper BTK was significantly increased in infected skin and gill.
Collapse
Affiliation(s)
- Ze-Quan Mo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qing Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Long Zeng
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiu-Le Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xue-Zhu Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wei Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Yan Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Key Laboratory of Aquatic Product Safety, Ministry of Education, The School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, PR China.
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Vanshylla K, Bartsch C, Hitzing C, Krümpelmann L, Wienands J, Engels N. Grb2 and GRAP connect the B cell antigen receptor to Erk MAP kinase activation in human B cells. Sci Rep 2018; 8:4244. [PMID: 29523808 PMCID: PMC5844867 DOI: 10.1038/s41598-018-22544-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/19/2018] [Indexed: 11/09/2022] Open
Abstract
The B cell antigen receptor (BCR) employs enzymatically inactive adaptor proteins to facilitate activation of intracellular signaling pathways. In animal model systems, adaptor proteins of the growth factor receptor-bound 2 (Grb2) family have been shown to serve critical functions in lymphocytes. However, the roles of Grb2 and the Grb2-related adaptor protein (GRAP) in human B lymphocytes remain unclear. Using TALEN-mediated gene targeting, we show that in human B cells Grb2 and GRAP amplify signaling by the immunoglobulin tail tyrosine (ITT) motif of mIgE-containing BCRs and furthermore connect immunoreceptor tyrosine-based activation motif (ITAM) signaling to activation of the Ras-controlled Erk MAP kinase pathway. In contrast to mouse B cells, BCR-induced activation of Erk in human B cells is largely independent of phospholipase C-ɣ activity and diacylglycerol-responsive members of Ras guanine nucleotide releasing proteins. Together, our results demonstrate that Grb2 family adaptors are critical regulators of ITAM and ITT signaling in naïve and IgE-switched human B cells.
Collapse
Affiliation(s)
- Kanika Vanshylla
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Caren Bartsch
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Christoffer Hitzing
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Laura Krümpelmann
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Jürgen Wienands
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Niklas Engels
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany.
| |
Collapse
|
19
|
Wong LE, Maier J, Wienands J, Becker S, Griesinger C. Sensitivity-Enhanced Four-Dimensional Amide–Amide Correlation NMR Experiments for Sequential Assignment of Proline-Rich Disordered Proteins. J Am Chem Soc 2018; 140:3518-3522. [DOI: 10.1021/jacs.8b00215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Leo E. Wong
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Joachim Maier
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
20
|
|
21
|
Arya R, Dangi RS, Makwana PK, Kumar A, Upadhyay SK, Sundd M. Grb2 carboxyl-terminal SH3 domain can bivalently associate with two ligands, in an SH3 dependent manner. Sci Rep 2017; 7:1284. [PMID: 28455498 PMCID: PMC5430726 DOI: 10.1038/s41598-017-01364-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/28/2017] [Indexed: 11/09/2022] Open
Abstract
Src homology domain containing leukocyte protein of 65 kDa (SLP65), the growth factor receptor binding protein 2 (Grb2), and the guanine nucleotide exchange factor for the Rho family GTPases (Vav), self associate in unstimulated B cells as components of the preformed B cell receptor transducer module, in an SH3-dependent manner. The complex enables the B cell to promptly respond to BCR aggregation, resulting in signal amplification. It also facilitates Vav translocation to the membrane rafts, for activation. Here we uncover the molecular mechanism by which the complex may be formed in the B cell. The C-terminal SH3 domain (SH3C) of Grb2 bivalently interacts with the atypical non-PxxP proline rich region of SLP65, and the N-terminal SH3 domain (SH3N) of Vav, both the interactions crucial for the proper functioning of the B cell. Most surprisingly, the two ligands bind the same ligand binding site on the surface of Grb2 SH3C. Addition of SLP65 peptide to the Grb2-Vav complex abrogates the interaction completely, displacing Vav. However, the addition of Vav SH3N to the SLP65-Grb2 binary complex, results in a trimeric complex. Extrapolating these results to the in vivo conditions, Grb2 should bind the SLP65 transducer module first, and then Vav should associate.
Collapse
Affiliation(s)
- Richa Arya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India
| | - Rohit Singh Dangi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Pinakin K Makwana
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Ambrish Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Santosh Kumar Upadhyay
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110 020, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
22
|
Abstract
Immune tolerance hinders the potentially destructive responses of lymphocytes to host tissues. Tolerance is regulated at the stage of immature B cell development (central tolerance) by clonal deletion, involving apoptosis, and by receptor editing, which reprogrammes the specificity of B cells through secondary recombination of antibody genes. Recent mechanistic studies have begun to elucidate how these divergent mechanisms are controlled. Single-cell antibody cloning has revealed defects of B cell central tolerance in human autoimmune diseases and in several human immunodeficiency diseases caused by single gene mutations, which indicates the relevance of B cell tolerance to disease and suggests possible genetic pathways that regulate tolerance.
Collapse
|
23
|
Development of SH2 probes and pull‐down assays to detect pathogen‐induced, site‐specific tyrosine phosphorylation of the TLR adaptor SCIMP. Immunol Cell Biol 2017; 95:564-570. [DOI: 10.1038/icb.2017.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 01/12/2023]
|
24
|
Walliser C, Hermkes E, Schade A, Wiese S, Deinzer J, Zapatka M, Désiré L, Mertens D, Stilgenbauer S, Gierschik P. The Phospholipase Cγ2 Mutants R665W and L845F Identified in Ibrutinib-resistant Chronic Lymphocytic Leukemia Patients Are Hypersensitive to the Rho GTPase Rac2 Protein. J Biol Chem 2016; 291:22136-22148. [PMID: 27542411 PMCID: PMC5063995 DOI: 10.1074/jbc.m116.746842] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/18/2016] [Indexed: 12/29/2022] Open
Abstract
Mutations in the gene encoding phospholipase C-γ2 (PLCγ2) have been shown to be associated with resistance to targeted therapy of chronic lymphocytic leukemia (CLL) with the Bruton's tyrosine kinase inhibitor ibrutinib. The fact that two of these mutations, R665W and L845F, imparted upon PLCγ2 an ∼2-3-fold ibrutinib-insensitive increase in the concentration of cytosolic Ca2+ following ligation of the B cell antigen receptor (BCR) led to the assumption that the two mutants exhibit constitutively enhanced intrinsic activity. Here, we show that the two PLCγ2 mutants are strikingly hypersensitive to activation by Rac2 such that even wild-type Rac2 suffices to activate the mutant enzymes upon its introduction into intact cells. Enhanced "basal" activity of PLCγ2 in intact cells is shown using the pharmacologic Rac inhibitor EHT 1864 and the PLCγ2F897Q mutation mediating Rac resistance to be caused by Rac-stimulated rather than by constitutively enhanced PLCγ2 activity. We suggest that R665W and L845F be referred to as allomorphic rather than hypermorphic mutations of PLCG2 Rerouting of the transmembrane signals emanating from BCR and converging on PLCγ2 through Rac in ibrutinib-resistant CLL cells may provide novel drug treatment strategies to overcome ibrutinib resistance mediated by PLCG2 mutations or to prevent its development in ibrutinib-treated CLL patients.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Amino Acid Substitution
- Animals
- COS Cells
- Chlorocebus aethiops
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Mutation, Missense
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phospholipase C gamma/antagonists & inhibitors
- Phospholipase C gamma/genetics
- Phospholipase C gamma/metabolism
- Piperidines
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Pyrones/pharmacology
- Quinolines/pharmacology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/metabolism
- RAC2 GTP-Binding Protein
Collapse
Affiliation(s)
| | | | - Anja Schade
- From the Institute of Pharmacology and Toxicology and
| | - Sebastian Wiese
- the Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Julia Deinzer
- From the Institute of Pharmacology and Toxicology and
| | - Marc Zapatka
- the Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany, and
| | - Laurent Désiré
- the Diaxonhit, 63-65 Boulevard Masséna, 75013 Paris, France
| | - Daniel Mertens
- Department of Internal Medicine III, Ulm University Medical Center, 89070 Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Medical Center, 89070 Ulm, Germany
| | | |
Collapse
|
25
|
Volkmann C, Brings N, Becker M, Hobeika E, Yang J, Reth M. Molecular requirements of the B-cell antigen receptor for sensing monovalent antigens. EMBO J 2016; 35:2371-2381. [PMID: 27634959 PMCID: PMC5090217 DOI: 10.15252/embj.201694177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/16/2016] [Indexed: 11/22/2022] Open
Abstract
How the B‐cell antigen receptor (BCR) is activated upon interaction with its cognate antigen or with anti‐BCR antibodies is not fully understood. We have recently shown that B‐cell activation is accompanied by the opening of the pre‐organized BCR oligomers, an observation that strengthens the role of receptor reorganization in signalling. We have now analysed the BCR oligomer opening and signalling upon treatment with different monovalent stimuli. Our results indicate that monovalent antigens are able to disturb and open the BCR oligomer, but that this requires the presence and activity of the Src family kinase (SFK) Lyn. We have also shown that monovalent Fab fragments of anti‐BCR antibodies can open the BCR oligomers as long as they directly interact with the antigen‐binding site. We found that monovalent antigen binding opens both the IgM‐BCR and IgD‐BCR, but calcium signalling is only seen in cells expressing IgM‐BCR; this provides a molecular basis for IgM‐ and IgD‐BCR functional segregation.
Collapse
Affiliation(s)
- Christoph Volkmann
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Naema Brings
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Martin Becker
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Elias Hobeika
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Institute of Immunology University Hospital Ulm, Ulm, Germany
| | - Jianying Yang
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany .,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS) University of Freiburg, Freiburg, Germany.,University of Strasbourg Institute for Advanced Study (USIAS) University of Strasbourg, Strasbourg, France
| | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany .,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
26
|
Mohammad DK, Nore BF, Gustafsson MO, Mohamed AJ, Smith CIE. Protein kinase B (AKT) regulates SYK activity and shuttling through 14-3-3 and importin 7. Int J Biochem Cell Biol 2016; 78:63-74. [PMID: 27381982 DOI: 10.1016/j.biocel.2016.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 01/10/2023]
Abstract
The Protein kinase B (AKT) regulates a plethora of intracellular signaling proteins to fine-tune signaling of multiple pathways. Here, we found that following B-cell receptor (BCR)-induced tyrosine phosphorylation of the cytoplasmic tyrosine kinase SYK and the adaptor BLNK, the AKT/PKB enzyme strongly induced BLNK (>100-fold) and SYK (>100-fold) serine/threonine phosphorylation (pS/pT). Increased phosphorylation promoted 14-3-3 binding to BLNK (37-fold) and SYK (2.5-fold) in a pS/pT-concentration dependent manner. We also demonstrated that the AKT inhibitor MK2206 reduced pS/pT of both BLNK (3-fold) and SYK (2.5-fold). Notably, the AKT phosphatase, PHLPP2 maintained the activating phosphorylation of BLNK at Y84 and increased protein stability (8.5-fold). In addition, 14-3-3 was required for the regulation SYK's interaction with BLNK and attenuated SYK binding to Importin 7 (5-fold), thereby perturbing shuttling to the nucleus. Moreover, 14-3-3 proteins also sustained tyrosine phosphorylation of SYK and BLNK. Furthermore, substitution of S295 or S297 for alanine abrogated SYK's binding to Importin 7. SYK with S295A or S297A replacements showed intense pY525/526 phosphorylation, and BLNK pY84 phosphorylation correlated with the SYK pY525/526 phosphorylation level. Conversely, the corresponding mutations to aspartic acid in SYK reduced pY525/526 phosphorylation. Collectively, these and previous results suggest that AKT and 14-3-3 proteins down-regulate the activity of several BCR-associated components, including BTK, BLNK and SYK and also inhibit SYK's interaction with Importin 7.
Collapse
Affiliation(s)
- Dara K Mohammad
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden; Department of Biology, College of Science, University of Salahaddin, Erbil, Kurdistan Region, Iraq.
| | - Beston F Nore
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden; Department of Biochemistry, School of Medicine, University of Sulaimani, Sulaimaniyah, Kurdistan Region, Iraq
| | - Manuela O Gustafsson
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden
| | - Abdalla J Mohamed
- Universiti Brunei Darussalam, Environmental and Life Sciences, Faculty of Science, Jalan Tungku Link, Gadong BE1410 Negara Brunei Darussalam, Brunei
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden.
| |
Collapse
|
27
|
Kühn J, Wong LE, Pirkuliyeva S, Schulz K, Schwiegk C, Fünfgeld KG, Keppler S, Batista FD, Urlaub H, Habeck M, Becker S, Griesinger C, Wienands J. The adaptor protein CIN85 assembles intracellular signaling clusters for B cell activation. Sci Signal 2016; 9:ra66. [PMID: 27353366 DOI: 10.1126/scisignal.aad6275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The adaptor molecule Cbl-interacting protein of 85 kD (CIN85) regulates signaling from a number of cell surface receptors, such as growth factor receptors and antigen receptors on lymphocytes. Because of its multidomain structure, CIN85 is thought to act as a classical adaptor protein that connects functionally distinct components of a given signaling pathway through diverse protein domains. However, we found that in B lymphocytes, CIN85 functions to oligomerize SLP-65, which is the central effector protein of the B cell receptor (BCR). Therefore, CIN85 trimerizes through a carboxyl-terminal, coiled-coil domain. The multiple Src homology 3 (SH3) domains of trimeric CIN85 molecules associated with multiple SLP-65 molecules, which recruited further CIN85 trimers, thereby perpetuating the oligomerization process. Formation of this oligomeric signaling complex in resting B cells rendered the cells poised for the efficient initiation of intracellular signaling upon BCR stimulation. Our data suggest that the functionality of signaling cascades does not rely solely on the qualitative linkage of their various components but requires a critical number of effectors to become concentrated in signaling complexes.
Collapse
Affiliation(s)
- Julius Kühn
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Leo E Wong
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sona Pirkuliyeva
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Kathrin Schulz
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Claudia Schwiegk
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kevser Gencalp Fünfgeld
- Department for Cellular Logistic, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Selina Keppler
- Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, Lincoln's Inn Fields 44, London WC2A 3LY, UK
| | - Facundo D Batista
- Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, Lincoln's Inn Fields 44, London WC2A 3LY, UK
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Michael Habeck
- Statistical Inverse Problems in Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany.
| |
Collapse
|
28
|
Sicard A, Koenig A, Graff-Dubois S, Dussurgey S, Rouers A, Dubois V, Blanc P, Chartoire D, Errazuriz-Cerda E, Paidassi H, Taillardet M, Morelon E, Moris A, Defrance T, Thaunat O. B Cells Loaded with Synthetic Particulate Antigens: A Versatile Platform To Generate Antigen-Specific Helper T Cells for Cell Therapy. NANO LETTERS 2016; 16:297-308. [PMID: 26650819 DOI: 10.1021/acs.nanolett.5b03801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Adoptive cell therapy represents a promising approach for several chronic diseases. This study describes an innovative strategy for biofunctionalization of nanoparticles, allowing the generation of synthetic particulate antigens (SPAg). SPAg activate polyclonal B cells and vectorize noncognate proteins into their endosomes, generating highly efficient stimulators for ex vivo expansion of antigen-specific CD4+ T cells. This method also allows harnessing the ability of B cells to polarize CD4+ T cells into effectors or regulators.
Collapse
Affiliation(s)
- Antoine Sicard
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
- Edouard Herriot Hospital , Transplantation, Nephrology and Clinical Immunology Department, 69003 Lyon, France
| | - Alice Koenig
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
- Edouard Herriot Hospital , Transplantation, Nephrology and Clinical Immunology Department, 69003 Lyon, France
| | - Stéphanie Graff-Dubois
- Sorbonne University , UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, F-75013, Paris, France
| | - Sébastien Dussurgey
- SFR Biosciences, UMS344/US8, Inserm, CNRS, Claude Bernard Lyon-1 University, Ecole Normale Supérieure , 69007 Lyon, France
| | - Angéline Rouers
- Sorbonne University , UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, F-75013, Paris, France
| | - Valérie Dubois
- French National Blood Service (EFS) , 69007 Lyon, France
| | - Pascal Blanc
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | - Dimitri Chartoire
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | | | - Helena Paidassi
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | - Morgan Taillardet
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | - Emmanuel Morelon
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
- Edouard Herriot Hospital , Transplantation, Nephrology and Clinical Immunology Department, 69003 Lyon, France
| | - Arnaud Moris
- Sorbonne University , UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, F-75013, Paris, France
| | - Thierry Defrance
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | - Olivier Thaunat
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
- Edouard Herriot Hospital , Transplantation, Nephrology and Clinical Immunology Department, 69003 Lyon, France
| |
Collapse
|
29
|
Sun H, Liu P, Nolan LK, Lamont SJ. Avian pathogenic Escherichia coli (APEC) infection alters bone marrow transcriptome in chickens. BMC Genomics 2015; 16:690. [PMID: 26369556 PMCID: PMC4570614 DOI: 10.1186/s12864-015-1850-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/17/2015] [Indexed: 11/23/2022] Open
Abstract
Background Avian pathogenic Escherichia coli (APEC) is a major cause of disease impacting animal health. The bone marrow is the reservoir of immature immune cells; however, it has not been examined to date for gene expression related to developmental changes (cell differentiation, maturation, programming) after APEC infection. Here, we study gene expression in the bone marrow between infected and non-infected animals, and between infected animals with mild (resistant) versus severe (susceptible) pathology, at two times post-infection. Results We sequenced 24 bone marrow RNA libraries generated from the six different treatment groups with four replicates each, and obtained an average of 22 million single-end, 100-bp reads per library. Genes were detected as differentially expressed (DE) between APEC treatments (mild pathology, severe pathology, and mock-challenged) at a given time point, or DE between 1 and 5 days post-infection (dpi) within the same treatment group. Results demonstrate that many immune cells, genes and related pathways are key contributors to the different responses to APEC infection between susceptible and resistant birds and between susceptible and non-challenged birds, at both times post-infection. In susceptible birds, lymphocyte differentiation, proliferation, and maturation were greatly impaired, while the innate and adaptive immune responses, including dendritic cells, monocytes and killer cell activity, TLR- and NOD-like receptor signaling, as well as T helper cells and many cytokine activities, were markedly enhanced. The resistant birds’ immune system, however, was similar to that of non-challenged birds. Conclusion The DE genes in the immune cells and identified signaling models are representative of activation and resolution of infection in susceptible birds at both post-infection days. These novel results characterizing transcriptomic response to APEC infection reveal that there is combinatorial activity of multiple genes controlling myeloid cells, and B and T cell lymphopoiesis, as well as immune responses occurring in the bone marrow in these early stages of response to infection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1850-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongyan Sun
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA.
| | - Lisa K Nolan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, 50011, USA.
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
| |
Collapse
|
30
|
Fiala GJ, Janowska I, Prutek F, Hobeika E, Satapathy A, Sprenger A, Plum T, Seidl M, Dengjel J, Reth M, Cesca F, Brummer T, Minguet S, Schamel WWA. Kidins220/ARMS binds to the B cell antigen receptor and regulates B cell development and activation. ACTA ACUST UNITED AC 2015; 212:1693-708. [PMID: 26324445 PMCID: PMC4577850 DOI: 10.1084/jem.20141271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/14/2015] [Indexed: 01/04/2023]
Abstract
Fiala et al. report that Kidins220/ARMS is a novel interactor of the B cell antigen receptor (BCR) and its deletion impairs B cell development and B cell functioning. B cell antigen receptor (BCR) signaling is critical for B cell development and activation. Using mass spectrometry, we identified a protein kinase D–interacting substrate of 220 kD (Kidins220)/ankyrin repeat–rich membrane-spanning protein (ARMS) as a novel interaction partner of resting and stimulated BCR. Upon BCR stimulation, the interaction increases in a Src kinase–independent manner. By knocking down Kidins220 in a B cell line and generating a conditional B cell–specific Kidins220 knockout (B-KO) mouse strain, we show that Kidins220 couples the BCR to PLCγ2, Ca2+, and extracellular signal-regulated kinase (Erk) signaling. Consequently, BCR-mediated B cell activation was reduced in vitro and in vivo upon Kidins220 deletion. Furthermore, B cell development was impaired at stages where pre-BCR or BCR signaling is required. Most strikingly, λ light chain–positive B cells were reduced sixfold in the B-KO mice, genetically placing Kidins220 in the PLCγ2 pathway. Thus, our data indicate that Kidins220 positively regulates pre-BCR and BCR functioning.
Collapse
Affiliation(s)
- Gina J Fiala
- Department of Molecular Immunology, BioIII, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Iga Janowska
- Department of Molecular Immunology, BioIII, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Fabiola Prutek
- Department of Molecular Immunology, BioIII, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Elias Hobeika
- Department of Molecular Immunology, BioIII, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Annyesha Satapathy
- Center of Synaptic Neuroscience, Italian Institute of Technology, 16163 Genova, Italy
| | - Adrian Sprenger
- Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Plum
- Department of Molecular Immunology, BioIII, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Seidl
- Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Jörn Dengjel
- Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Michael Reth
- Department of Molecular Immunology, BioIII, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Fabrizia Cesca
- Center of Synaptic Neuroscience, Italian Institute of Technology, 16163 Genova, Italy
| | - Tilman Brummer
- Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Susana Minguet
- Department of Molecular Immunology, BioIII, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Wolfgang W A Schamel
- Department of Molecular Immunology, BioIII, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany Centre for Biological Signaling Studies (BIOSS), Spemann Graduate School of Biology and Medicine (SGBM), Centre of Chronic Immunodeficiency (CCI), Department of Dermatology, Center for Biological Systems Analysis (ZBSA), Institute of Molecular Medicine and Cell Research, Comprehensive Cancer Centre Freiburg, and Institute of Pathology, University Medical Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
31
|
Walliser C, Tron K, Clauss K, Gutman O, Kobitski AY, Retlich M, Schade A, Röcker C, Henis YI, Nienhaus GU, Gierschik P. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling. J Biol Chem 2015; 290:17056-72. [PMID: 25903139 DOI: 10.1074/jbc.m115.645739] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca(2+). The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca(2+) and regulation of Ca(2+)-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca(2+) release from intracellular stores; (iii) Ca(2+) entry from the extracellular compartment; and (iv) nuclear translocation of the Ca(2+)-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca(2+) signaling.
Collapse
Affiliation(s)
- Claudia Walliser
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany
| | - Kyrylo Tron
- the Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | - Karen Clauss
- the Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | - Orit Gutman
- the Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrei Yu Kobitski
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Michael Retlich
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany
| | - Anja Schade
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany
| | - Carlheinz Röcker
- the Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | - Yoav I Henis
- the Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - G Ulrich Nienhaus
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany, the Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany, and the Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Peter Gierschik
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany,
| |
Collapse
|
32
|
Baba Y, Kurosaki T. Role of Calcium Signaling in B Cell Activation and Biology. Curr Top Microbiol Immunol 2015; 393:143-174. [PMID: 26369772 DOI: 10.1007/82_2015_477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan.
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan
| |
Collapse
|
33
|
Sprissler C, Belenki D, Maurer H, Aumann K, Pfeifer D, Klein C, Müller TA, Kissel S, Hülsdünker J, Alexandrovski J, Brummer T, Jumaa H, Duyster J, Dierks C. Depletion of STAT5 blocks TEL-SYK-induced APMF-type leukemia with myelofibrosis and myelodysplasia in mice. Blood Cancer J 2014; 4:e240. [PMID: 25148222 PMCID: PMC4219468 DOI: 10.1038/bcj.2014.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/27/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022] Open
Abstract
The spleen tyrosine kinase (SYK) was identified as an oncogenic driver in a broad spectrum of hematologic malignancies. The in vivo comparison of three SYK containing oncogenes, SYK(wt), TEL-SYK and IL-2-inducible T-cell kinase (ITK)-SYK revealed a general myeloexpansion and the establishment of three different hematologic (pre)diseases. SYK(wt) enhanced the myeloid and T-cell compartment, without leukemia/lymphoma development. ITK-SYK caused lethal T-cell lymphomas and the cytoplasmic TEL-SYK fusion induced an acute panmyelosis with myelofibrosis-type acute myeloid leukemia (AML) with up to 50% immature megakaryoblasts infiltrating bone marrow, spleen and liver, additional MPN features (myelofibrosis and granulocyte expansion) and MDS stigmata with megakaryocytic and erythroid dysplasia. LKS cells were reduced and all subsets (LT/ST/MPP) showed reduced proliferation rates. SYK inhibitor treatment (R788) of diseased TEL-SYK mice reduced leukocytosis, spleen and liver infiltration, enhanced the hematocrit and prolonged survival time, but could not significantly reduce myelofibrosis. Stat5 was identified as a major downstream mediator of TEL-SYK in vitro as well as in vivo. Consequently, targeted deletion of Stat5 in vivo completely abrogated TEL-SYK-induced AML and myelofibrosis development, proving Stat5 as a major driver of SYK-induced transformation. Our experiments highlight the important role of SYK in AML and myelofibrosis and prove SYK and STAT5 inhibitors as potent treatment options for those diseases.
Collapse
MESH Headings
- Animals
- Cell Line
- Gene Deletion
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/prevention & control
- Male
- Mice
- Mice, Inbred BALB C
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/prevention & control
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Primary Myelofibrosis/genetics
- Primary Myelofibrosis/metabolism
- Primary Myelofibrosis/pathology
- Primary Myelofibrosis/prevention & control
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Syk Kinase
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- C Sprissler
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
- University of Freiburg, Schaenzlestrasse 1, Freiburg, Germany
| | - D Belenki
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - H Maurer
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - K Aumann
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - D Pfeifer
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - C Klein
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - T A Müller
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - S Kissel
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - J Hülsdünker
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - J Alexandrovski
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - T Brummer
- Institut für Molekulare Medizin und Zellforschung, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, Freiburg, Germany
| | - H Jumaa
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
- Institut für Molekulare Medizin und Zellforschung, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, Freiburg, Germany
| | - J Duyster
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - C Dierks
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, Freiburg, Germany
| |
Collapse
|
34
|
Engelke M, Pirkuliyeva S, Kühn J, Wong L, Boyken J, Herrmann N, Becker S, Griesinger C, Wienands J. Macromolecular assembly of the adaptor SLP-65 at intracellular vesicles in resting B cells. Sci Signal 2014; 7:ra79. [PMID: 25140054 DOI: 10.1126/scitranslmed.2005104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The traditional view of how intracellular effector proteins are recruited to the B cell antigen receptor (BCR) complex at the plasma membrane is based on the occurrence of direct protein-protein interactions, as exemplified by the recruitment of the tyrosine kinase Syk (spleen tyrosine kinase) to phosphorylated motifs in BCR signaling subunits. By contrast, the subcellular targeting of the cytosolic adaptor protein SLP-65 (Src homology 2 domain-containing leukocyte adaptor protein of 65 kD), which serves as a proximal Syk substrate, is unclear. We showed that SLP-65 activation required its association at vesicular compartments in resting B cells. A module of ~50 amino acid residues located at the amino terminus of SLP-65 anchored SLP-65 to the vesicles. Nuclear magnetic resonance spectroscopy showed that the SLP-65 amino terminus was structurally disordered in solution but could bind in a structured manner to noncharged lipid components of cellular membranes. Our finding that preformed vesicular signaling scaffolds are required for B cell activation indicates that vesicles may deliver preassembled signaling cargo to sites of BCR activation.
Collapse
Affiliation(s)
- Michael Engelke
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Sona Pirkuliyeva
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Julius Kühn
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Leo Wong
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Janina Boyken
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Nadine Herrmann
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany.
| |
Collapse
|
35
|
Rosenlöw J, Isaksson L, Mayzel M, Lengqvist J, Orekhov VY. Tyrosine phosphorylation within the intrinsically disordered cytosolic domains of the B-cell receptor: an NMR-based structural analysis. PLoS One 2014; 9:e96199. [PMID: 24769851 PMCID: PMC4000212 DOI: 10.1371/journal.pone.0096199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/04/2014] [Indexed: 11/19/2022] Open
Abstract
Intrinsically disordered proteins are found extensively in cell signaling pathways where they often are targets of posttranslational modifications e.g. phosphorylation. Such modifications can sometimes induce or disrupt secondary structure elements present in the modified protein. CD79a and CD79b are membrane-spanning, signal-transducing components of the B-cell receptor. The cytosolic domains of these proteins are intrinsically disordered and each has an immunoreceptor tyrosine-based activation motif (ITAM). When an antigen binds to the receptor, conserved tyrosines located in the ITAMs are phosphorylated which initiate further downstream signaling. Here we use NMR spectroscopy to examine the secondary structure propensity of the cytosolic domains of CD79a and CD79b in vitro before and after phosphorylation. The phosphorylation patterns are identified through analysis of changes of backbone chemical shifts found for the affected tyrosines and neighboring residues. The number of the phosphorylated sites is confirmed by mass spectrometry. The secondary structure propensities are calculated using the method of intrinsic referencing, where the reference random coil chemical shifts are measured for the same protein under denaturing conditions. Our analysis revealed that CD79a and CD79b both have an overall propensity for α-helical structure that is greatest in the C-terminal region of the ITAM. Phosphorylation of CD79a caused a decrease in helical propensity in the C-terminal ITAM region. For CD79b, the opposite was observed and phosphorylation resulted in an increase of helical propensity in the C-terminal part.
Collapse
Affiliation(s)
- Joakim Rosenlöw
- The Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Linnéa Isaksson
- The Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Maxim Mayzel
- The Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Johan Lengqvist
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
36
|
Correale J, Farez MF, Ysrraelit MC. Role of prolactin in B cell regulation in multiple sclerosis. J Neuroimmunol 2014; 269:76-86. [DOI: 10.1016/j.jneuroim.2014.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/22/2023]
|
37
|
Leu CM. Nck, a missing adaptor between the B-cell receptor complex and the BCAP/PI3K/Akt pathway. Cell Mol Immunol 2014; 11:120-2. [PMID: 24270472 PMCID: PMC4003375 DOI: 10.1038/cmi.2013.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022] Open
|
38
|
|
39
|
Engelke M, Oellerich T, Dittmann K, Hsiao HH, Urlaub H, Serve H, Griesinger C, Wienands J. Cutting Edge: Feed-Forward Activation of Phospholipase Cγ2 via C2 Domain–Mediated Binding to SLP65. THE JOURNAL OF IMMUNOLOGY 2013; 191:5354-8. [DOI: 10.4049/jimmunol.1301326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Hatton O, Lambert SL, Phillips LK, Vaysberg M, Natkunam Y, Esquivel CO, Krams SM, Martinez OM. Syk-induced phosphatidylinositol-3-kinase activation in Epstein-Barr virus posttransplant lymphoproliferative disorder. Am J Transplant 2013; 13:883-890. [PMID: 23398911 PMCID: PMC4008139 DOI: 10.1111/ajt.12137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 01/25/2023]
Abstract
Posttransplant lymphoproliferative disorder (PTLD)-associated Epstein-Barr virus (EBV)+ B cell lymphomas are serious complications of solid organ and bone marrow transplantation. The EBV protein LMP2a, a B cell receptor (BCR) mimic, provides survival signals to virally infected cells through Syk tyrosine kinase. Therefore, we explored whether Syk inhibition is a viable therapeutic strategy for EBV-associated PTLD. We have shown that R406, the active metabolite of the Syk inhibitor fostamatinib, induces apoptosis and cell cycle arrest while decreasing downstream phosphatidylinositol-3'-kinase (PI3K)/Akt signaling in EBV+ B cell lymphoma PTLD lines in vitro. However, Syk inhibition did not inhibit or delay the in vivo growth of solid tumors established from EBV-infected B cell lines. Instead, we observed tumor growth in adjacent inguinal lymph nodes exclusively in fostamatinib-treated animals. In contrast, direct inhibition of PI3K/Akt significantly reduced tumor burden in a xenogeneic mouse model of PTLD without evidence of tumor growth in adjacent inguinal lymph nodes. Taken together, our data indicate that Syk activates PI3K/Akt signaling which is required for survival of EBV+ B cell lymphomas. PI3K/Akt signaling may be a promising therapeutic target for PTLD, and other EBV-associated malignancies.
Collapse
Affiliation(s)
- O. Hatton
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Surgery / Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - S. L. Lambert
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Surgery / Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - L. K. Phillips
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Surgery / Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - M. Vaysberg
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Surgery / Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Y. Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - C. O. Esquivel
- Department of Surgery / Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - S. M. Krams
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Surgery / Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - O. M. Martinez
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Surgery / Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
41
|
Lösing M, Goldbeck I, Manno B, Oellerich T, Schnyder T, Bohnenberger H, Stork B, Urlaub H, Batista FD, Wienands J, Engelke M. The Dok-3/Grb2 protein signal module attenuates Lyn kinase-dependent activation of Syk kinase in B cell antigen receptor microclusters. J Biol Chem 2013; 288:2303-13. [PMID: 23223229 PMCID: PMC3554902 DOI: 10.1074/jbc.m112.406546] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/20/2012] [Indexed: 02/02/2023] Open
Abstract
Recruitment of the growth factor receptor-bound protein 2 (Grb2) by the plasma membrane-associated adapter protein downstream of kinase 3 (Dok-3) attenuates signals transduced by the B cell antigen receptor (BCR). Here we describe molecular details of Dok-3/Grb2 signal integration and function, showing that the Lyn-dependent activation of the BCR transducer kinase Syk is attenuated by Dok-3/Grb2 in a site-specific manner. This process is associated with the SH3 domain-dependent translocation of Dok-3/Grb2 complexes into BCR microsignalosomes and augmented phosphorylation of the inhibitory Lyn target SH2 domain-containing inositol 5' phosphatase. Hence, our findings imply that Dok-3/Grb2 modulates the balance between activatory and inhibitory Lyn functions with the aim to adjust BCR signaling efficiency.
Collapse
Affiliation(s)
- Marion Lösing
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Xu LS, Sokalski KM, Hotke K, Christie DA, Zarnett O, Piskorz J, Thillainadesan G, Torchia J, DeKoter RP. Regulation of B Cell Linker Protein Transcription by PU.1 and Spi-B in Murine B Cell Acute Lymphoblastic Leukemia. THE JOURNAL OF IMMUNOLOGY 2012; 189:3347-54. [DOI: 10.4049/jimmunol.1201267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Hatton O, Lambert SL, Krams SM, Martinez OM. Src kinase and Syk activation initiate PI3K signaling by a chimeric latent membrane protein 1 in Epstein-Barr virus (EBV)+ B cell lymphomas. PLoS One 2012; 7:e42610. [PMID: 22880054 PMCID: PMC3411813 DOI: 10.1371/journal.pone.0042610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
The B lymphotrophic γ-herpesvirus EBV is associated with a variety of lymphoid- and epithelial-derived malignancies, including B cell lymphomas in immunocompromised and immunosuppressed individuals. The primary oncogene of EBV, latent membrane protein 1 (LMP1), activates the PI3K/Akt pathway to induce the autocrine growth factor, IL-10, in EBV-infected B cells, but the mechanisms underlying PI3K activation remain incompletely understood. Using small molecule inhibition and siRNA strategies in human B cell lines expressing a chimeric, signaling-inducible LMP1 protein, nerve growth factor receptor (NGFR)-LMP1, we show that NGFR-LMP1 utilizes Syk to activate PI3K/Akt signaling and induce IL-10 production. NGFR-LMP1 signaling induces phosphorylation of BLNK, a marker of Syk activation. Whereas Src kinases are often required for Syk activation, we show here that PI3K/Akt activation and autocrine IL-10 production by NGFR-LMP1 involves the Src family kinase Fyn. Finally, we demonstrate that NGFR-LMP1 induces phosphorylation of c-Cbl in a Syk- and Fyn-dependent fashion. Our results indicate that the EBV protein LMP1, which lacks the canonical ITAM required for Syk activation, can nevertheless activate Syk, and the Src kinase Fyn, resulting in downstream c-Cbl and PI3K/Akt activation. Fyn, Syk, and PI3K/Akt antagonists thus may present potential new therapeutic strategies that target the oncogene LMP1 for treatment of EBV+ B cell lymphomas.
Collapse
Affiliation(s)
- Olivia Hatton
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stacie L. Lambert
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sheri M. Krams
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| | - Olivia M. Martinez
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
44
|
Junek S, Engelke M, Schild D, Wienands J. Spatiotemporal resolution of Ca2+signaling events by real time imaging of single B cells. FEBS Lett 2012; 586:1452-8. [DOI: 10.1016/j.febslet.2012.03.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/13/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
|
45
|
Hatton O, Phillips LK, Vaysberg M, Hurwich J, Krams SM, Martinez OM. Syk activation of phosphatidylinositol 3-kinase/Akt prevents HtrA2-dependent loss of X-linked inhibitor of apoptosis protein (XIAP) to promote survival of Epstein-Barr virus+ (EBV+) B cell lymphomas. J Biol Chem 2011; 286:37368-78. [PMID: 21908615 DOI: 10.1074/jbc.m111.255125] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
B cell lymphoma survival requires tonic or ligand-independent signals through activation of Syk by the B cell receptor. The Epstein-Barr virus (EBV) protein latent membrane 2a (LMP2a), a mimic of the B cell receptor, provides constitutive survival signals for latently infected cells through Syk activation; however, the precise downstream mechanisms coordinating this survival response in EBV+ B cell lymphomas remain to be elucidated. Herein, we assess the mechanism of Syk survival signaling in EBV+ B cell lymphomas from post-transplant lymphoproliferative disorder (PTLD) to discover virally controlled therapeutic targets involved in lymphomagenesis and tumor progression. Using small molecule inhibition and siRNA strategies, we show that Syk inhibition reduces proliferation and induces apoptosis of PTLD-derived EBV+ B cell lines. Syk inhibition also reduces autocrine IL-10 production. Although Syk inhibition attenuates signaling through both the PI3K/Akt and Erk pathways, only PI3K/Akt inhibition causes apoptosis of PTLD-derived cell lines. Loss of the endogenous caspase inhibitor XIAP is observed after Syk or PI3K/Akt inhibition. The loss of XIAP and apoptosis that results from Syk or PI3K/Akt inhibition is reversed by inhibition of the mitochondrial protease HtrA2. Thus, Syk drives EBV+ B cell lymphoma survival through PI3K/Akt activation, which prevents the HtrA2-dependent loss of XIAP. Syk, Akt, and XIAP antagonists may present potential new therapeutic strategies for PTLD through targeting of EBV-driven survival signals.
Collapse
Affiliation(s)
- Olivia Hatton
- Program in Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
46
|
The B-cell antigen receptor signals through a preformed transducer module of SLP65 and CIN85. EMBO J 2011; 30:3620-34. [PMID: 21822214 PMCID: PMC3181483 DOI: 10.1038/emboj.2011.251] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/05/2011] [Indexed: 12/27/2022] Open
Abstract
Spleen tyrosine kinase Syk and its substrate SLP65 (also called BLNK) are proximal signal transducer elements of the B-cell antigen receptor (BCR). Yet, our understanding of signal initiation and processing is limited owing to the incomplete list of SLP65 interaction partners and our ignorance of their association kinetics. We have now determined and quantified the in vivo interactomes of SLP65 in resting and stimulated B cells by mass spectrometry. SLP65 orchestrated a complex signal network of about 30 proteins that was predominantly based on dynamic interactions. However, a stimulation-independent and constant association of SLP65 with the Cbl-interacting protein of 85 kDa (CIN85) was requisite for SLP65 phosphorylation and its inducible plasma membrane translocation. In the absence of a steady SLP65/CIN85 complex, BCR-induced Ca(2+) and NF-κB responses were abrogated. Finally, live cell imaging and co-immunoprecipitation experiments further confirmed that both SLP65 and CIN85 are key components of the BCR-associated primary transducer module required for the onset and progression phases of BCR signal transduction.
Collapse
|
47
|
Sequential phosphorylation of SLP-76 at tyrosine 173 is required for activation of T and mast cells. EMBO J 2011; 30:3160-72. [PMID: 21725281 DOI: 10.1038/emboj.2011.213] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/03/2011] [Indexed: 02/03/2023] Open
Abstract
Cooperatively assembled signalling complexes, nucleated by adaptor proteins, integrate information from surface receptors to determine cellular outcomes. In T and mast cells, antigen receptor signalling is nucleated by three adaptors: SLP-76, Gads and LAT. Three well-characterized SLP-76 tyrosine phosphorylation sites recruit key components, including a Tec-family tyrosine kinase, Itk. We identified a fourth, evolutionarily conserved SLP-76 phosphorylation site, Y173, which was phosphorylated upon T-cell receptor stimulation in primary murine and Jurkat T cells. Y173 was required for antigen receptor-induced phosphorylation of phospholipase C-γ1 (PLC-γ1) in both T and mast cells, and for consequent downstream events, including activation of the IL-2 promoter in T cells, and degranulation and IL-6 production in mast cells. In intact cells, Y173 phosphorylation depended on three, ZAP-70-targeted tyrosines at the N-terminus of SLP-76 that recruit and activate Itk, a kinase that selectively phosphorylated Y173 in vitro. These data suggest a sequential mechanism whereby ZAP-70-dependent priming of SLP-76 at three N-terminal sites triggers reciprocal regulatory interactions between Itk and SLP-76, which are ultimately required to couple active Itk to its substrate, PLC-γ1.
Collapse
|
48
|
Kometani K, Yamada T, Sasaki Y, Yokosuka T, Saito T, Rajewsky K, Ishiai M, Hikida M, Kurosaki T. CIN85 drives B cell responses by linking BCR signals to the canonical NF-kappaB pathway. ACTA ACUST UNITED AC 2011; 208:1447-57. [PMID: 21708930 PMCID: PMC3135365 DOI: 10.1084/jem.20102665] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CIN85 transduces B cell receptor signals to IKK-β, and its expression in B cells is essential for T cell–independent type II antibody responses in mice. CIN85, an adaptor protein which binds the C-terminal domain of tyrosine phosphorylated Cbl and Cbl-b, has been thought to be involved in the internalization and subsequent degradation of receptors. However, its physiological function remains unclear. To determine its role in B cells, we used Mb1-cre to generate mice with a B cell–specific deletion of CIN85. These mice had impaired T cell–independent type II antibody responses in vivo and diminished IKK-β activation and cellular responses to B cell receptor (BCR) cross-linking in vitro. Introduction of a constitutively active IKK-β construct corrected the defective antibody responses as well as cellular responses in the mutant mice. Together, our results suggest that CIN85 links the BCR to IKK-β activation, thereby contributing to T cell–independent immune responses.
Collapse
Affiliation(s)
- Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Turumi-ku, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bohnenberger H, Oellerich T, Engelke M, Hsiao HH, Urlaub H, Wienands J. Complex phosphorylation dynamics control the composition of the Syk interactome in B cells. Eur J Immunol 2011; 41:1550-62. [PMID: 21469132 DOI: 10.1002/eji.201041326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/14/2011] [Accepted: 03/25/2011] [Indexed: 11/08/2022]
Abstract
Spleen tyrosine kinase Syk provides critical transducer functions for a number of immune cell receptors and has been implicated in the generation of several forms of leukemias. Catalytic activity and the ability of Syk to interact with other signaling elements depend on the phosphorylation status of Syk. We have now identified and quantified the full spectrum of phosphoacceptor sites in human Syk as well as the interactome of Syk in resting and activated B cells by high-resolution mass spectrometry. While the majority of inducible phosphorylations occurred on tyrosine residues, one of the most frequently detected phosphosites encompassed serine 297 located within the linker insert distinguishing the long and short isoforms of Syk. Full-length Syk can associate with more than 25 distinct ligands including the 14-3-3γ adaptor protein, which binds directly to phosphoserine 297. The latter complex attenuates inducible plasma membrane recruitment of Syk, thereby limiting antigen receptor-proximal signaling pathways. Collectively, the established ligand library provides a basis to understand the complexity of the Syk signaling network.
Collapse
Affiliation(s)
- Hanibal Bohnenberger
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Humboldtallee, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Neumann K, Oellerich T, Heine I, Urlaub H, Engelke M. Fc gamma receptor IIb modulates the molecular Grb2 interaction network in activated B cells. Cell Signal 2011; 23:893-900. [DOI: 10.1016/j.cellsig.2011.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/14/2011] [Indexed: 12/13/2022]
|