1
|
Nath PR, Maclean M, Nagarajan V, Lee JW, Yakin M, Kumar A, Nadali H, Schmidt B, Kaya KD, Kodati S, Young A, Caspi RR, Kuiper JJW, Sen HN. Single-cell profiling identifies a CD8 bright CD244 bright Natural Killer cell subset that reflects disease activity in HLA-A29-positive birdshot chorioretinopathy. Nat Commun 2024; 15:6443. [PMID: 39085199 PMCID: PMC11291632 DOI: 10.1038/s41467-024-50472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Birdshot chorioretinopathy is an inflammatory eye condition strongly associated with MHC-I allele HLA-A29. The striking association with MHC-I suggests involvement of T cells, whereas natural killer (NK) cell involvement remains largely unstudied. Here we show that HLA-A29-positive birdshot chorioretinopathy patients have a skewed NK cell pool containing expanded CD16 positive NK cells which produce more proinflammatory cytokines. These NK cells contain populations that express CD8A which is involved in MHC-I recognition on target cells, display gene signatures indicative of high cytotoxic activity (GZMB, PRF1 and ISG15), and signaling through NK cell receptor CD244 (SH2D1B). Long-term monitoring of a cohort of birdshot chorioretinopathy patients with active disease identifies a population of CD8bright CD244bright NK cells, which rapidly declines to normal levels upon clinical remission following successful treatment. Collectively, these studies implicate CD8bright CD244bright NK cells in birdshot chorioretinopathy.
Collapse
Affiliation(s)
- Pulak R Nath
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA.
- Lentigen Technology Inc., A Miltenyi Biotec Company, 910 Clopper Road, Gaithersburg, MD, 20878, USA.
| | - Mary Maclean
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
- Translational Immunology Section, Office of Science and Technology, NIAMS, Bethesda, NIH, USA
| | - Vijay Nagarajan
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
- Immunoregulation Section, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Jung Wha Lee
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Mehmet Yakin
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Aman Kumar
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Hadi Nadali
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Brian Schmidt
- NIH Intramural Sequencing Center, NIH, Rockville, USA
| | - Koray D Kaya
- Medical Genetics and Ophthalmic Genomics Unit, NEI, NIH, Bethesda, USA
| | - Shilpa Kodati
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Alice Young
- NIH Intramural Sequencing Center, NIH, Rockville, USA
| | - Rachel R Caspi
- Immunoregulation Section, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.
| | - H Nida Sen
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| |
Collapse
|
2
|
Huszenicza Z, Gilmour BC, Koll L, Kjelstrup H, Chan H, Sundvold V, Granum S, Spurkland A. Interaction of T-cell-specific adapter protein with Src- and Tec-family kinases. Scand J Immunol 2024; 99:e13358. [PMID: 38605535 DOI: 10.1111/sji.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 04/13/2024]
Abstract
Adapter proteins are flexible and dynamic modulators of cellular signalling that are important for immune cell function. One of these, the T-cell-specific adapter protein (TSAd), interacts with the non-receptor tyrosine kinases Src and Lck of the Src family kinases (SFKs) and Itk of the Tec family kinases (TFKs). Three tyrosine residues in the TSAd C-terminus are phosphorylated by Lck and serve as docking sites for the Src homology 2 (SH2) domains of Src and Lck. The TSAd proline-rich region (PRR) binds to the Src homology 3 (SH3) domains found in Lck, Src and Itk. Despite known interactors, the role TSAd plays in cellular signalling remains largely unknown. TSAd's ability to bind both SFKs and TFKs may point to its function as a general scaffold for both kinase families. Using GST-pulldown as well as peptide array experiments, we found that both the SH2 and SH3 domains of the SFKs Fyn and Hck, as well as the TFKs Tec and Txk, interact with TSAd. This contrasts with Itk, which interacts with TSAd only through its SH3 domain. Although our analysis showed that TSAd is both co-expressed and may interact with Fyn, we were unable to co-precipitate Fyn with TSAd from Jurkat cells, as detected by Western blotting and affinity purification mass spectrometry. This may suggest that TSAd-Fyn interaction in intact cells may be limited by other factors, such as the subcellular localization of the two molecules or the co-expression of competing binding partners.
Collapse
Affiliation(s)
- Zsuzsa Huszenicza
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Brian C Gilmour
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lise Koll
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hanna Kjelstrup
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hanna Chan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vibeke Sundvold
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stine Granum
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Creeden JF, Alganem K, Imami AS, Henkel ND, Brunicardi FC, Liu SH, Shukla R, Tomar T, Naji F, McCullumsmith RE. Emerging Kinase Therapeutic Targets in Pancreatic Ductal Adenocarcinoma and Pancreatic Cancer Desmoplasia. Int J Mol Sci 2020; 21:ijms21228823. [PMID: 33233470 PMCID: PMC7700673 DOI: 10.3390/ijms21228823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Kinase drug discovery represents an active area of therapeutic research, with previous pharmaceutical success improving patient outcomes across a wide variety of human diseases. In pancreatic ductal adenocarcinoma (PDAC), innovative pharmaceutical strategies such as kinase targeting have been unable to appreciably increase patient survival. This may be due, in part, to unchecked desmoplastic reactions to pancreatic tumors. Desmoplastic stroma enhances tumor development and progression while simultaneously restricting drug delivery to the tumor cells it protects. Emerging evidence indicates that many of the pathologic fibrotic processes directly or indirectly supporting desmoplasia may be driven by targetable protein tyrosine kinases such as Fyn-related kinase (FRK); B lymphoid kinase (BLK); hemopoietic cell kinase (HCK); ABL proto-oncogene 2 kinase (ABL2); discoidin domain receptor 1 kinase (DDR1); Lck/Yes-related novel kinase (LYN); ephrin receptor A8 kinase (EPHA8); FYN proto-oncogene kinase (FYN); lymphocyte cell-specific kinase (LCK); tec protein kinase (TEC). Herein, we review literature related to these kinases and posit signaling networks, mechanisms, and biochemical relationships by which this group may contribute to PDAC tumor growth and desmoplasia.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
- Correspondence: ; Tel.: +1-419-383-6474
| | - Khaled Alganem
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Ali S. Imami
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Nicholas D. Henkel
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - F. Charles Brunicardi
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Shi-He Liu
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Rammohan Shukla
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Tushar Tomar
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Faris Naji
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Neurosciences Institute, ProMedica, Toledo, OH 6038, USA
| |
Collapse
|
4
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|
5
|
Yi FS, Zhang X, Zhai K, Huang ZY, Wu XZ, Wu MT, Shi XY, Pei XB, Dong SF, Wang W, Yang Y, Du J, Luo ZT, Shi HZ. TSAd Plays a Major Role in Myo9b-Mediated Suppression of Malignant Pleural Effusion by Regulating T H1/T H17 Cell Response. THE JOURNAL OF IMMUNOLOGY 2020; 205:2926-2935. [PMID: 33046503 DOI: 10.4049/jimmunol.2000307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/11/2020] [Indexed: 11/19/2022]
Abstract
Emerging evidence indicates that Myo9b is a cancer metastasis-related protein and functions in a variety of immune-related diseases. However, it is not clear whether and how Myo9b functions in malignant pleural effusion (MPE). In this study, our data showed that Myo9b expression levels correlated with lung cancer pleural metastasis, and nucleated cells in MPE from either patients or mice expressed a lower level of Myo9b than those in the corresponding blood. Myo9b deficiency in cancer cells suppressed MPE development via inhibition of migration. Myo9b deficiency in mice suppressed MPE development by decreasing TH1 cells and increasing TH17 cells. CD4+ naive T cells isolated from Myo9b-/- mouse spleens exhibited less TH1 cell differentiation and more TH17 cell differentiation in vitro. mRNA sequencing of nucleated cells showed that T cell-specific adaptor protein (TSAd) was downregulated in Myo9b-/- mouse MPE, and enrichment of the H3K27me3 mark in the TSAd promoter region was found in the Myo9b-/- group. Naive T cells purified from wild type mouse spleens transfected with TSAd-specific small interfering RNAs (siRNAs) also showed less TH1 cell differentiation and more TH17 cell differentiation than those from the siRNA control group. Furthermore, downregulation of TSAd in mice using cholesterol-conjugated TSAd-specific siRNA suppressed MPE development, decreased TH1 cells, and increased TH17 cells in MPE in vivo. Taken together, Myo9b deficiency suppresses MPE development not only by suppressing pleural cancer metastasis but also by regulating TH1/TH17 cell response via a TSAd-dependent pathway. This work suggests Myo9b and TSAd as novel candidates for future basic and clinical investigations of cancer.
Collapse
Affiliation(s)
- Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhong-Yin Huang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiu-Zhi Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Min-Ting Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin-Yu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xue-Bin Pei
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Shu-Feng Dong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuan Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Juan Du
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zeng-Tao Luo
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
6
|
Wedel J, Stack MP, Seto T, Sheehan MM, Flynn EA, Stillman IE, Kong SW, Liu K, Briscoe DM. T Cell-Specific Adaptor Protein Regulates Mitochondrial Function and CD4 + T Regulatory Cell Activity In Vivo following Transplantation. THE JOURNAL OF IMMUNOLOGY 2019; 203:2328-2338. [PMID: 31541025 DOI: 10.4049/jimmunol.1801604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 08/10/2019] [Indexed: 12/29/2022]
Abstract
The T cell-specific adaptor protein (TSAd), encoded by the SH2D2A gene, is an intracellular molecule that binds Lck to elicit signals that result in cytokine production in CD4+ T effector cells (Teff). Nevertheless, using Sh2d2a knockout (KO; also called TSAd-/-) mice, we find that alloimmune CD4+ Teff responses are fully competent in vivo. Furthermore, and contrary to expectations, we find that allograft rejection is accelerated in KO recipients of MHC class II-mismatched B6.C-H-2bm12 heart transplants versus wild-type (WT) recipients. Also, KO recipients of fully MHC-mismatched cardiac allografts are resistant to the graft-prolonging effects of costimulatory blockade. Using adoptive transfer models, we find that KO T regulatory cells (Tregs) are less efficient in suppressing Teff function and they produce IFN-γ following mitogenic activation. In addition, pyrosequencing demonstrated higher levels of methylation of CpG regions within the Treg-specific demethylated region of KO versus WT Tregs, suggesting that TSAd, in part, promotes Treg stability. By Western blot, Lck is absent in the mitochondria of KO Tregs, and reactive oxygen species production by mitochondria is reduced in KO versus WT Tregs. Full transcriptomic analysis demonstrated that the key mechanism of TSAd function in Tregs relates to its effects on cellular activation rather than intrinsic effects on mitochondria/metabolism. Nevertheless, KO Tregs compensate for a lack of activation by increasing the number of mitochondria per cell. Thus, TSAd serves as a critical cell-intrinsic molecule in CD4+Foxp3+ Tregs to regulate the translocation of Lck to mitochondria, cellular activation responses, and the development of immunoregulation following solid organ transplantation.
Collapse
Affiliation(s)
- Johannes Wedel
- Transplant Research Program, Boston Children's Hospital, Boston, MA 02115.,Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Maria P Stack
- Transplant Research Program, Boston Children's Hospital, Boston, MA 02115.,Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Tatsuichiro Seto
- Transplant Research Program, Boston Children's Hospital, Boston, MA 02115.,Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Matthew M Sheehan
- Transplant Research Program, Boston Children's Hospital, Boston, MA 02115.,Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115
| | - Evelyn A Flynn
- Transplant Research Program, Boston Children's Hospital, Boston, MA 02115.,Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215.,Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Sek Won Kong
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115.,Computational Health Informatics Program, Boston Children's Hospital, Boston, MA 02115; and
| | - Kaifeng Liu
- Transplant Research Program, Boston Children's Hospital, Boston, MA 02115.,Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115.,Division of Pulmonary Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115
| | - David M Briscoe
- Transplant Research Program, Boston Children's Hospital, Boston, MA 02115; .,Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
7
|
Andersen TCB, Kristiansen PE, Huszenicza Z, Johansson MU, Gopalakrishnan RP, Kjelstrup H, Boyken S, Sundvold-Gjerstad V, Granum S, Sørli M, Backe PH, Fulton DB, Karlsson BG, Andreotti AH, Spurkland A. The SH3 domains of the protein kinases ITK and LCK compete for adjacent sites on T cell-specific adapter protein. J Biol Chem 2019; 294:15480-15494. [PMID: 31484725 DOI: 10.1074/jbc.ra119.008318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
T-cell activation requires stimulation of specific intracellular signaling pathways in which protein-tyrosine kinases, phosphatases, and adapter proteins interact to transmit signals from the T-cell receptor to the nucleus. Interactions of LCK proto-oncogene, SRC family tyrosine kinase (LCK), and the IL-2-inducible T cell kinase (ITK) with the T cell-specific adapter protein (TSAD) promotes LCK-mediated phosphorylation and thereby ITK activation. Both ITK and LCK interact with TSAD's proline-rich region (PRR) through their Src homology 3 (SH3) domains. Whereas LCK may also interact with TSAD through its SH2 domain, ITK interacts with TSAD only through its SH3 domain. To begin to understand on a molecular level how the LCK SH3 and ITK SH3 domains interact with TSAD in human HEK293T cells, here we combined biochemical analyses with NMR spectroscopy. We found that the ITK and LCK SH3 domains potentially have adjacent and overlapping binding sites within the TSAD PRR amino acids (aa) 239-274. Pulldown experiments and NMR spectroscopy revealed that both domains may bind to TSAD aa 239-256 and aa 257-274. Co-immunoprecipitation experiments further revealed that both domains may also bind simultaneously to TSAD aa 242-268. Accordingly, NMR spectroscopy indicated that the SH3 domains may compete for these two adjacent binding sites. We propose that once the associations of ITK and LCK with TSAD promote the ITK and LCK interaction, the interactions among TSAD, ITK, and LCK are dynamically altered by ITK phosphorylation status.
Collapse
Affiliation(s)
- Thorny Cesilie Bie Andersen
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | | | - Zsuzsa Huszenicza
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Maria U Johansson
- Swedish NMR Centre at the University of Gothenburg, Gothenburg 413 90, Sweden
| | | | - Hanna Kjelstrup
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Scott Boyken
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - Vibeke Sundvold-Gjerstad
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Stine Granum
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Morten Sørli
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Paul Hoff Backe
- Department of Microbiology, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - B Göran Karlsson
- Swedish NMR Centre at the University of Gothenburg, Gothenburg 413 90, Sweden
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - Anne Spurkland
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
8
|
Polarity of CD4+ T cells towards the antigen presenting cell is regulated by the Lck adapter TSAd. Sci Rep 2018; 8:13319. [PMID: 30190583 PMCID: PMC6127336 DOI: 10.1038/s41598-018-31510-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/08/2018] [Indexed: 01/02/2023] Open
Abstract
Polarization of T cells towards the antigen presenting cell (APC) is critically important for appropriate activation and differentiation of the naïve T cell. Here we used imaging flow cytometry (IFC) and show that the activation induced Lck and Itk adapter T cell specific adapter protein (TSAd), encoded by SH2D2A, modulates polarization of T cells towards the APC. Upon exposure to APC presenting the cognate antigen Id, Sh2d2a−/− CD4+ T cells expressing Id-specific transgenic T cell receptor (TCR), displayed impaired polarization of F-actin and TCR to the immunological synapse (IS). Sh2d2a−/− T-cells that did polarize F-actin and TCR still displayed impaired polarization of PKCξ, PAR3 and the microtubule-organizing center (MTOC). In vitro differentiation of activated Sh2d2a−/− T cells was skewed towards an effector memory (Tem) rather than a central memory (Tcm) phenotype. A similar trend was observed for Id-specific TCR Sh2d2a−/− T cells stimulated with APC and cognate antigen. Taken together our data suggest that TSAd modulates differentiation of experienced T cells possibly through polarization of CD4+ T cells towards the APC.
Collapse
|
9
|
Hem CD, Ekornhol M, Granum S, Sundvold-Gjerstad V, Spurkland A. CD6 and Linker of Activated T Cells are Potential Interaction Partners for T Cell-Specific Adaptor Protein. Scand J Immunol 2017; 85:104-112. [DOI: 10.1111/sji.12513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/27/2023]
Affiliation(s)
- C. D. Hem
- Department of Molecular Medicine; Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| | - M. Ekornhol
- Department of Molecular Medicine; Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| | - S. Granum
- Department of Molecular Medicine; Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| | - V. Sundvold-Gjerstad
- Department of Molecular Medicine; Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| | - A. Spurkland
- Department of Molecular Medicine; Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| |
Collapse
|
10
|
Gordon EJ, Fukuhara D, Weström S, Padhan N, Sjöström EO, van Meeteren L, He L, Orsenigo F, Dejana E, Bentley K, Spurkland A, Claesson-Welsh L. The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation. Sci Signal 2016; 9:ra72. [PMID: 27436360 DOI: 10.1126/scisignal.aad9256] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by VEGF binding is critical for vascular morphogenesis. In addition, VEGF disrupts the endothelial barrier by triggering the phosphorylation and turnover of the junctional molecule VE-cadherin, a process mediated by the VEGFR2 downstream effectors T cell-specific adaptor (TSAd) and the tyrosine kinase c-Src. We investigated whether the VEGFR2-TSAd-c-Src pathway was required for angiogenic sprouting. Indeed, Tsad-deficient embryoid bodies failed to sprout in response to VEGF. Tsad-deficient mice displayed impaired angiogenesis specifically during tracheal vessel development, but not during retinal vasculogenesis, and in VEGF-loaded Matrigel plugs, but not in those loaded with FGF. The SH2 and proline-rich domains of TSAd bridged VEGFR2 and c-Src, and this bridging was critical for the localization of activated c-Src to endothelial junctions and elongation of the growing sprout, but not for selection of the tip cell. These results revealed that vascular sprouting and permeability are both controlled through the VEGFR2-TSAd-c-Src signaling pathway in a subset of tissues, which may be useful in developing strategies to control tissue-specific pathological angiogenesis.
Collapse
Affiliation(s)
- Emma J Gordon
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden.
| | - Daisuke Fukuhara
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Simone Weström
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Narendra Padhan
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Elisabet O Sjöström
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Laurens van Meeteren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Fabrizio Orsenigo
- FIRC Institute of Molecular Oncology Foundation, IFOM, Milan 20139, Italy
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden. FIRC Institute of Molecular Oncology Foundation, IFOM, Milan 20139, Italy
| | - Katie Bentley
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden. Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo 0317, Norway
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden.
| |
Collapse
|
11
|
Sargent KM, McFee RM, Spuri Gomes R, Cupp AS. Vascular endothelial growth factor A: just one of multiple mechanisms for sex-specific vascular development within the testis? J Endocrinol 2015; 227:R31-50. [PMID: 26562337 PMCID: PMC4646736 DOI: 10.1530/joe-15-0342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 01/25/2023]
Abstract
Testis development from an indifferent gonad is a critical step in embryogenesis. A hallmark of testis differentiation is sex-specific vascularization that occurs as endothelial cells migrate from the adjacent mesonephros into the testis to surround Sertoli-germ cell aggregates and induce seminiferous cord formation. Many in vitro experiments have demonstrated that vascular endothelial growth factor A (VEGFA) is a critical regulator of this process. Both inhibitors to VEGFA signal transduction and excess VEGFA isoforms in testis organ cultures impaired vascular development and seminiferous cord formation. However, in vivo models using mice which selectively eliminated all VEGFA isoforms: in Sertoli and germ cells (pDmrt1-Cre;Vegfa(-/-)); Sertoli and Leydig cells (Amhr2-Cre;Vegfa(-/-)) or Sertoli cells (Amh-Cre;Vegfa(-/-) and Sry-Cre;Vegfa(-/-)) displayed testes with observably normal cords and vasculature at postnatal day 0 and onwards. Embryonic testis development may be delayed in these mice; however, the postnatal data indicate that VEGFA isoforms secreted from Sertoli, Leydig or germ cells are not required for testis morphogenesis within the mouse. A Vegfa signal transduction array was employed on postnatal testes from Sry-Cre;Vegfa(-/-) versus controls. Ptgs1 (Cox1) was the only upregulated gene (fivefold). COX1 stimulates angiogenesis and upregulates, VEGFA, Prostaglandin E2 (PGE2) and PGD2. Thus, other gene pathways may compensate for VEGFA loss, similar to multiple independent mechanisms to maintain SOX9 expression. Multiple independent mechanism that induce vascular development in the testis may contribute to and safeguard the sex-specific vasculature development responsible for inducing seminiferous cord formation, thus ensuring appropriate testis morphogenesis in the male.
Collapse
Affiliation(s)
- Kevin M Sargent
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Renee M McFee
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Renata Spuri Gomes
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Andrea S Cupp
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| |
Collapse
|
12
|
Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood 2015; 126:2016-26. [PMID: 26286848 DOI: 10.1182/blood-2015-03-631572] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is upregulated during hypoxia and is the major regulator of angiogenesis. VEGF-A expression has also been found to recruit myeloid cells to ischemic tissues where they contribute to angiogenesis. This study investigates the mechanisms underlying neutrophil recruitment to VEGF-A as well as the characteristics of these neutrophils. A previously undefined circulating subset of neutrophils shown to be CD49d(+)VEGFR1(high)CXCR4(high) was identified in mice and humans. By using chimeric mice with impaired VEGF receptor 1 (VEGFR1) or VEGFR2 signaling (Flt-1tk(-/-), tsad(-/-)), we found that parallel activation of VEGFR1 on neutrophils and VEGFR2 on endothelial cells was required for VEGF-A-induced recruitment of circulating neutrophils to tissue. Intravital microscopy of mouse microcirculation revealed that neutrophil recruitment by VEGF-A versus by the chemokine macrophage inflammatory protein 2 (MIP-2 [CXCL2]) involved the same steps of the recruitment cascade but that an additional neutrophil integrin (eg, VLA-4 [CD49d/CD29]) played a crucial role in neutrophil crawling and emigration to VEGF-A. Isolated CD49d(+) neutrophils featured increased chemokinesis but not chemotaxis compared with CD49d(-) neutrophils in the presence of VEGF-A. Finally, by targeting the integrin α4 subunit (CD49d) in a transplantation-based angiogenesis model that used avascular pancreatic islets transplanted to striated muscle, we demonstrated that inhibiting the recruitment of circulating proangiogenic neutrophils to hypoxic tissue impairs vessel neoformation. Thus, angiogenesis can be modulated by targeting cell-surface receptors specifically involved in VEGF-A-dependent recruitment of proangiogenic neutrophils without compromising recruitment of the neutrophil population involved in the immune response to pathogens.
Collapse
|
13
|
Hem CD, Sundvold-Gjerstad V, Granum S, Koll L, Abrahamsen G, Buday L, Spurkland A. T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells. Cell Commun Signal 2015; 13:31. [PMID: 26163016 PMCID: PMC4499191 DOI: 10.1186/s12964-015-0109-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/03/2015] [Indexed: 11/12/2022] Open
Abstract
Background The Lck and Src binding adaptor protein TSAd (T cell specific adaptor) regulates actin polymerization in T cells and endothelial cells. The molecular details as to how TSAd regulates this process remain to be elucidated. Results To identify novel interaction partners for TSAd, we used a scoring matrix-assisted ligand algorithm (SMALI), and found that the Src homology 2 (SH2) domain of the actin regulator Non-catalytic region of tyrosine kinase adaptor protein (Nck) potentially binds to TSAd phosphorylated on Tyr280 (pTyr280) and pTyr305. These predictions were confirmed by peptide array analysis, showing direct binding of recombinant Nck SH2 to both pTyr280 and pTyr305 on TSAd. In addition, the SH3 domains of Nck interacted with the proline rich region (PRR) of TSAd. Pull-down and immunoprecipitation experiments further confirmed the Nck-TSAd interactions through Nck SH2 and SH3 domains. In line with this Nck and TSAd co-localized in Jurkat cells as assessed by confocal microscopy and imaging flow cytometry. Co-immunoprecipitation experiments in Jurkat TAg cells lacking TSAd revealed that TSAd promotes interaction of Nck with Lck and SLP-76, but not Vav1. TSAd expressing Jurkat cells contained more polymerized actin, an effect dependent on TSAd exon 7, which includes interactions sites for both Nck and Lck. Conclusions TSAd binds to and co-localizes with Nck. Expression of TSAd increases both Nck-Lck and Nck-SLP-76 interaction in T cells. Recruitment of Lck and SLP-76 to Nck by TSAd could be one mechanism by which TSAd promotes actin polymerization in activated T cells.
Collapse
Affiliation(s)
- Cecilie Dahl Hem
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Vibeke Sundvold-Gjerstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Stine Granum
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Lise Koll
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Greger Abrahamsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Laszlo Buday
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway. .,Institute of Basal Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, 0317, Norway.
| |
Collapse
|
14
|
Reduced MCMV Δm157 viral clearance in the absence of TSAd. Sci Rep 2015; 5:9219. [PMID: 25783199 PMCID: PMC4363830 DOI: 10.1038/srep09219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/19/2015] [Indexed: 12/14/2022] Open
Abstract
The T cell specific adapter protein (TSAd) is expressed in activated T cells and NK cells. While TSAd is beginning to emerge as a critical regulator of Lck and Itk activity in T cells, its role in NK cells has not yet been explored. Here we have examined susceptibility to virus infections in a murine model using various viral infection models. We report that TSAd-deficient mice display reduced clearance of murine cytomegalovirus (MCMV) that lack the viral MHC class I homologue m157, which is critical for Ly49H-mediated NK cell recognition of infected cells. In this infection model, NK cells contribute in the early stages of the disease, whereas CD8+ T cells are critical for viral clearance. We found that mice infected with MCMV Δm157 displayed reduced viral clearance in the spleen as well as reduced proliferation in spleen NK cells and CD8+ T cells in the absence of TSAd. Though no other immunophenotype was detected in the infection models tested, these data suggests that in the absence of the Ly49H ligand activation, NK cell and CD8+ T cell responses may be compromised in TSAd-deficient mice.
Collapse
|
15
|
Pandya AD, Leergaard TB, Dissen E, Haraldsen G, Spurkland A. Expression of the T cell-specific adapter protein in human tissues. Scand J Immunol 2014; 80:169-79. [PMID: 24910151 DOI: 10.1111/sji.12199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/24/2014] [Indexed: 12/15/2022]
Abstract
T cell-specific adapter protein (TSAd) encoded by the SH2D2A gene is expressed in activated T cells, NK cells and endothelial cells, but its tissue expression has not yet been mapped. Here, we have defined the specificity of two commercially available anti-TSAd monoclonal reagents using peptide arrays. We found them to bind separate epitopes in the C-terminal part of TSAd. We then used immunohistochemistry to examine TSAd expression in various human lymphoid and non-lymphoid tissues. Immunostaining of adjacent tissue sections revealed that a substantial fraction of CD3-positive cells in normal lymphoid and non-lymphoid tissues expressed TSAd. In particular, essentially all intra-epithelial T cells appeared to coexpress TSAd. In addition, TSAd expression was observed in endothelial cells of dermal microvessels, while it was not detected in endothelial cells of the other tested tissues. This work provides insight into the expression pattern of TSAd in various healthy human tissues.
Collapse
Affiliation(s)
- A D Pandya
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
16
|
Bentley K, Franco CA, Philippides A, Blanco R, Dierkes M, Gebala V, Stanchi F, Jones M, Aspalter IM, Cagna G, Weström S, Claesson-Welsh L, Vestweber D, Gerhardt H. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 2014; 16:309-21. [DOI: 10.1038/ncb2926] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/30/2014] [Indexed: 12/17/2022]
|
17
|
Berge T, Grønningsæter IHB, Lorvik KB, Abrahamsen G, Granum S, Sundvold-Gjerstad V, Corthay A, Bogen B, Spurkland A. SH2D2A modulates T cell mediated protection to a B cell derived tumor in transgenic mice. PLoS One 2012; 7:e48239. [PMID: 23144743 PMCID: PMC3483153 DOI: 10.1371/journal.pone.0048239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/21/2012] [Indexed: 12/20/2022] Open
Abstract
Background T cell specific adapter protein (TSAd), encoded by the SH2D2A gene, modulates signaling downstream of the T cell receptor (TCR). Young, unchallenged SH2D2A-deficient C57BL/6 mice exhibit a relatively normal immune phenotype. To address whether SH2D2A regulates physiologic immune responses, SH2D2A-deficient TCR-transgenic BALB/c mice were generated. The transgenic TCR recognizes a myeloma-derived idiotypic (Id) peptide in the context of the major histocompatibility complex (MHC) class II molecule I-Ed, and confers T cell mediated resistance to transplanted multiple myeloma development in vivo. Principal Findings The immune phenotype of SH2D2A-deficient C57BL/6 and BALB/c mice did not reveal major differences compared to the corresponding wild type mice. When challenged with myeloma cells, Id-specific TCR-transgenic BALB/c mice lacking SH2D2A displayed increased resistance towards tumor development. Tumor free TCR-transgenic SH2D2A-deficient mice had higher numbers of Id-specific single positive CD4+ thymocytes compared to TCR-transgenic wild-type mice. Conclusion Our results suggest a modulatory role for SH2D2A in T cell mediated immune surveillance of cancer. However, it remains to be established whether its effect is T-cell intrinsic. Further studies are required to determine whether targeting SH2D2A function in T cells may be a potential adjuvant in cancer immunotherapy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Flow Cytometry
- Histocompatibility Antigens Class II/immunology
- Lymphocyte Count
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymocytes/immunology
- Thymocytes/metabolism
Collapse
Affiliation(s)
- Tone Berge
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vieira JM, Ruhrberg C, Schwarz Q. VEGF receptor signaling in vertebrate development. Organogenesis 2012; 6:97-106. [PMID: 20885856 DOI: 10.4161/org.6.2.11686] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 04/10/2008] [Indexed: 01/27/2023] Open
Abstract
The secreted glycoprotein vascular endothelial growth factor A (VEGF or VEGFA) affects many different cell types and modifies a wide spectrum of cellular behaviors in tissue culture models, including proliferation, migration, differentiation and survival. The versatility of VEGF signaling is reflected in the complex composition of its cell surface receptors and their ability to activate a variety of different downstream signaling molecules. A major challenge for VEGF research is to determine which of the specific signaling pathways identified in vitro control development and homeostasis of tissues containing VEGF-responsive cell types in vivo.
Collapse
|
19
|
Sun Z, Li X, Massena S, Kutschera S, Padhan N, Gualandi L, Sundvold-Gjerstad V, Gustafsson K, Choy WW, Zang G, Quach M, Jansson L, Phillipson M, Abid MR, Spurkland A, Claesson-Welsh L. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. ACTA ACUST UNITED AC 2012; 209:1363-77. [PMID: 22689825 PMCID: PMC3405501 DOI: 10.1084/jem.20111343] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
VEGFR2 activates c-Src and induces vascular permeability by binding to the adaptor protein TSAd Regulation of vascular endothelial (VE) growth factor (VEGF)–induced permeability is critical in physiological and pathological processes. We show that tyrosine phosphorylation of VEGF receptor 2 (VEGFR2) at Y951 facilitates binding of VEGFR2 to the Rous sarcoma (Src) homology 2-domain of T cell–specific adaptor (TSAd), which in turn regulates VEGF-induced activation of the c-Src tyrosine kinase and vascular permeability. c-Src was activated in vivo and in vitro in a VEGF/TSAd-dependent manner, and was regulated via increased phosphorylation at pY418 and reduced phosphorylation at pY527. Tsad silencing blocked VEGF-induced c-Src activation, but did not affect pathways involving phospholipase Cγ, extracellular regulated kinase, and endothelial nitric oxide. VEGF-induced rearrangement of VE–cadherin–positive junctions in endothelial cells isolated from mouse lungs, or in mouse cremaster vessels, was dependent on TSAd expression, and TSAd formed a complex with VE-cadherin, VEGFR2, and c-Src at endothelial junctions. Vessels in tsad−/− mice showed undisturbed flow and pressure, but impaired VEGF-induced permeability, as measured by extravasation of Evans blue, dextran, and microspheres in the skin and the trachea. Histamine-induced extravasation was not affected by TSAd deficiency. We conclude that TSAd is required for VEGF-induced, c-Src-mediated regulation of endothelial cell junctions and for vascular permeability.
Collapse
Affiliation(s)
- Zuyue Sun
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Boucheron N, Ellmeier W. The Role of Tec Family Kinases in the Regulation of T-helper-cell Differentiation. Int Rev Immunol 2012; 31:133-54. [DOI: 10.3109/08830185.2012.664798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Itk: the rheostat of the T cell response. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:297868. [PMID: 21747996 PMCID: PMC3116522 DOI: 10.1155/2011/297868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/19/2011] [Indexed: 12/28/2022]
Abstract
The nonreceptor tyrosine kinase Itk plays a key role in TCR-initiated signaling that directly and significantly affects the regulation of PLCγ1 and the consequent mobilization of Ca2+. Itk also participates in the regulation of cytoskeletal reorganization as well as cellular adhesion, which is necessary for a productive T cell response. The functional cellular outcome of these molecular regulations by Itk renders it an important mediator of T cell development and differentiation. This paper encompasses the structure of Itk, the signaling parameters leading to Itk activation, and Itk effects on molecular pathways resulting in functional cellular outcomes. The incorporation of these factors persuades one to believe that Itk serves as a modulator, or rheostat, critically fine-tuning the T cell response.
Collapse
|
22
|
Park E, Choi Y, Ahn E, Park I, Yun Y. The adaptor protein LAD/TSAd mediates laminin-dependent T cell migration via association with the 67 kDa laminin binding protein. Exp Mol Med 2010; 41:728-36. [PMID: 19561400 DOI: 10.3858/emm.2009.41.10.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The adaptor protein, LAD/TSAd, plays essential roles in T cell activation. To further understand the functions of this protein, we performed yeast two-hybrid screening using TSAd as bait and identified 67 kDa laminin binding protein (LBP) as the interacting partner. Subsequently, TSAd-LBP interaction was confirmed in D1.1 T cell line. Upon costimulation by T cell receptor (TCR) plus laminin crosslinking or TCR plus integrin alpha6 crosslinking, LBP was coimmunoprecipitated with TSAd. Moreover, TCR plus laminin costimulation-dependent T cell migration was enhanced in D1.1 T cells overexpressing TSAd but was disrupted in D1.1 cells overexpressing dominant negative form of TSAd or TSAd shRNA. These data show that, upon TCR plus integrin costimulation, TSAd associates with LBP and mediates T lymphocyte migration.
Collapse
Affiliation(s)
- Eunkyung Park
- Department of Life Science, Ewha Womans' University, Seoul 120-750, Korea
| | | | | | | | | |
Collapse
|
23
|
Kolltveit KM, Schreurs O, Østrem J, Søland TM, Khuu C, Berge T, Messelt E, Hayashi K, Granum S, Spurkland A, Schenck K. Expression of the T-cell-specific adapter protein in oral epithelium. Eur J Oral Sci 2010; 118:159-67. [DOI: 10.1111/j.1600-0722.2010.00719.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Berge T, Sundvold-Gjerstad V, Granum S, Andersen TCB, Holthe GB, Claesson-Welsh L, Andreotti AH, Inngjerdingen M, Spurkland A. T cell specific adapter protein (TSAd) interacts with Tec kinase ITK to promote CXCL12 induced migration of human and murine T cells. PLoS One 2010; 5:e9761. [PMID: 20305788 PMCID: PMC2841202 DOI: 10.1371/journal.pone.0009761] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/28/2010] [Indexed: 01/30/2023] Open
Abstract
Background The chemokine CXCL12/SDF-1α interacts with its G-protein coupled receptor CXCR4 to induce migration of lymphoid and endothelial cells. T cell specific adapter protein (TSAd) has been found to promote migration of Jurkat T cells through interaction with the G protein β subunit. However, the molecular mechanisms for how TSAd influences cellular migration have not been characterized in detail. Principal Findings We show that TSAd is required for tyrosine phosphorylation of the Lck substrate IL2-inducible T cell kinase (Itk). Presence of Itk Y511 was necessary to boost TSAd's effect on CXCL12 induced migration of Jurkat T cells. In addition, TSAd's ability to promote CXCL12-induced actin polymerization and migration of Jurkat T lymphocytes was dependent on the Itk-interaction site in the proline-rich region of TSAd. Furthermore, TSAd-deficient murine thymocytes failed to respond to CXCL12 with increased Itk phosphorylation, and displayed reduced actin polymerization and cell migration responses. Conclusion We propose that TSAd, through its interaction with both Itk and Lck, primes Itk for Lck mediated phosphorylation and thereby regulates CXCL12 induced T cell migration and actin cytoskeleton rearrangements.
Collapse
Affiliation(s)
- Tone Berge
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Stine Granum
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Thorny C. B. Andersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gunn B. Holthe
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lena Claesson-Welsh
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Amy H. Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Marit Inngjerdingen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anne Spurkland
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
25
|
Lapinski PE, Oliver JA, Bodie JN, Marti F, King PD. The T-cell-specific adapter protein family: TSAd, ALX, and SH2D4A/SH2D4B. Immunol Rev 2009; 232:240-54. [PMID: 19909368 DOI: 10.1111/j.1600-065x.2009.00829.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adapter proteins play key roles in intracellular signal transduction through complex formation with catalytically active signaling molecules. In T lymphocytes, the role of several different types of adapter proteins in T-cell antigen receptor signal transduction is well established. An exception to this is the family of T-cell-specific adapter (TSAd) proteins comprising of TSAd, adapter protein of unknown function (ALX), SH2D4A, and SH2D4B. Only recently has the function of these adapters in T-cell signal transduction been explored. Here, we discuss advances in our understanding of the role of this family of adapter proteins in T cells. Their function as regulators of signal transduction in other cell types is also discussed.
Collapse
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| | | | | | | | | |
Collapse
|
26
|
Choi Y, Park E, Ahn E, Park I, Yun Y. The effector functions of mature T lymphocytes are impaired in transgenic mice expressing the SH2 domain of TSAd/Lad. Mol Cells 2009; 28:183-8. [PMID: 19756394 DOI: 10.1007/s10059-009-0121-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/20/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022] Open
Abstract
TSAd/Lad is a T cell adaptor molecule involved in p56(lck)-mediated T cell activation. To investigate the functions of TSAd in T cells, we generated transgenic (TG) mice expressing the SH2 domain of TSAd (TSAd-SH2) under the control of the p56(lck) proximal promoter. In T cells from TSAd-SH2 TG mice, T cell receptor (TCR)-mediated early signaling events, such as Ca(2+) flux and ERK activation, were normal; however, late activation events, such as IL-2 production and proliferation, were significantly reduced. Moreover, TCR-induced cell adhesion to extracellular matrix (ECM) proteins and migration through ECM proteins were defective in T cells from TSAd-SH2 TG mice. Furthermore, the contact hypersensitivity (CHS) reaction, an inflammatory response mainly mediated by T helper 1 (Th1) cells, was inhibited in TSAd-SH2 TG mice. Taken together, these results show that TSAd, particularly the SH2 domain of TSAd, is essential for the effector functions of T cells.
Collapse
Affiliation(s)
- Youngbong Choi
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | | | | | | | | |
Collapse
|
27
|
Abstract
CD4 effector T cells, also called helper T (Th) cells, are the functional cells for executing immune functions. Balanced immune responses can only be achieved by proper regulation of the differentiation and function of Th cells. Dysregulated Th cell function often leads to inefficient clearance of pathogens and causes inflammatory diseases and autoimmunity. Since the establishment of the Th1-Th2 dogma in the 1980s, different lineages of effector T cells have been identified that not only promote but also suppress immune responses. Through years of collective efforts, much information was gained on the function and regulation of different subsets of Th cells. In this review, we attempt to sample the essence of what has been learnt in this field over the past two decades. We will discuss the classification and immunological functions of effector T cells, the determinants for effector T cell differentiation, as well as the relationship between different lineages of effector T cells.
Collapse
Affiliation(s)
- Yisong Y Wan
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 27599, USA.
| | | |
Collapse
|
28
|
Lapinski PE, Oliver JA, Kamen LA, Hughes ED, Saunders TL, King PD. Genetic analysis of SH2D4A, a novel adapter protein related to T cell-specific adapter and adapter protein in lymphocytes of unknown function, reveals a redundant function in T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:2019-27. [PMID: 18641339 PMCID: PMC2613811 DOI: 10.4049/jimmunol.181.3.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell-specific adapter (TSAd) protein and adapter protein in lymphocytes of unknown function (ALX) are two related Src homology 2 (SH2) domain-containing signaling adapter molecules that have both been shown to regulate TCR signal transduction in T cells. TSAd is required for normal TCR-induced synthesis of IL-2 and other cytokines in T cells and acts at least in part by promoting activation of the LCK protein tyrosine kinase at the outset of the TCR signaling cascade. By contrast, ALX functions as a negative-regulator of TCR-induced IL-2 synthesis through as yet undetermined mechanisms. In this study, we report a novel T cell-expressed adapter protein named SH2D4A that contains an SH2 domain that is highly homologous to the TSAd protein and ALX SH2 domains and that shares other structural features with these adapters. To examine the function of SH2D4A in T cells we produced SH2D4A-deficient mice by homologous recombination in embryonic stem cells. T cell development, homeostasis, proliferation, and function were all found to be normal in these mice. Furthermore, knockdown of SH2D4A expression in human T cells did not impact upon their function. We conclude that in contrast to TSAd and ALX proteins, SH2D4A is dispensable for TCR signal transduction in T cells.
Collapse
Affiliation(s)
- Philip E. Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jennifer A. Oliver
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lynn A. Kamen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Elizabeth D. Hughes
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Thomas L. Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Internal Medicine, Division of Molecular Medicine and Genetics University of Michigan Medical School, Ann Arbor, MI 48109
| | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
29
|
Notturno F, Pace M, De Angelis MV, Caporale CM, Giovannini A, Uncini A. Susceptibility to chronic inflammatory demyelinating polyradiculoneuropathy is associated to polymorphic GA repeat in the SH2D2A gene. J Neuroimmunol 2008; 197:124-7. [DOI: 10.1016/j.jneuroim.2008.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 04/03/2008] [Accepted: 04/08/2008] [Indexed: 11/25/2022]
|
30
|
Lorentzen AR, Smestad C, Lie BA, Oturai AB, Akesson E, Saarela J, Myhr KM, Vartdal F, Celius EG, Sørensen PS, Hillert J, Spurkland A, Harbo HF. The SH2D2A gene and susceptibility to multiple sclerosis. J Neuroimmunol 2008; 197:152-8. [PMID: 18554728 DOI: 10.1016/j.jneuroim.2008.04.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/25/2008] [Accepted: 04/29/2008] [Indexed: 01/16/2023]
Abstract
We previously reported an association between the SH2D2A gene encoding TSAd and multiple sclerosis (MS). Here a total of 2128 Nordic MS patients and 2004 controls were genotyped for the SH2D2A promoter GA repeat polymorphism and rs926103 encoding a serine to asparagine substitution at amino acid position 52 in TSAd. The GA(16)-rs926103()A haplotype was associated with MS in Norwegians (OR 1.4, P=0.04). A similar trend was observed among Danes. In the independent Norwegian, Danish and Swedish sample sets the GA(16) allele showed a combined OR of 1.13, P=0.05. Thus, the present study shows that the SH2D2A gene may contribute to susceptibility to MS.
Collapse
Affiliation(s)
- Aslaug R Lorentzen
- Department of Neurology, University of Oslo, Oslo, Norway; Institute of Immunology, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Granum S, Andersen TCB, Sørlie M, Jørgensen M, Koll L, Berge T, Lea T, Fleckenstein B, Spurkland A, Sundvold-Gjerstad V. Modulation of Lck function through multisite docking to T cell-specific adapter protein. J Biol Chem 2008; 283:21909-19. [PMID: 18541536 DOI: 10.1074/jbc.m800871200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T cell-specific adapter protein (TSAd), encoded by the SH2D2A gene, interacts with Lck through its C terminus and thus modulates Lck activity. Here we mapped Lck phosphorylation and interaction sites on TSAd and evaluated their functional importance. The three C-terminal TSAd tyrosines Tyr(280), Tyr(290), and Tyr(305) were phosphorylated by Lck and functioned as docking sites for the Lck Src homology 2 (SH2) domain. Binding affinities of the TSAd Tyr(P)(280) and Tyr(P)(290) phosphopeptides to the isolated Lck SH2 domain were similar to that observed for the Lck Tyr(P)(505) phosphopeptide, whereas the TSAd Tyr(P)(305) peptide displayed a 10-fold higher affinity. The proline-rich Lck SH3-binding site on TSAd as well as the Lck SH2 domain were required for efficient tyrosine phosphorylation of TSAd by Lck. Interaction sites on TSAd for both Lck SH2 and Lck SH3 were necessary for TSAd-mediated modulation of proximal TCR signaling events. We found that 20-30% of TSAd molecules are phosphorylated in activated T cells and that the proportion of TSAd to Lck molecules in such cells is approximately 1:1. Therefore, in activated T cells, a considerable number of Lck molecules may potentially be engaged by TSAd. In conclusion, Lck binds to TSAd prolines and phosphorylates and interacts with the three C-terminal TSAd tyrosines. We propose that through multivalent interactions with Lck, TSAd diverts Lck from phosphorylating other substrates, thus modulating its functional activity through substrate competition.
Collapse
Affiliation(s)
- Stine Granum
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Box 1105, Blindern, N-0317 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mihara S, Suzuki N. Role of Txk, a member of the Tec family of tyrosine kinases, in immune-inflammatory diseases. Int Rev Immunol 2008; 26:333-48. [PMID: 18027204 DOI: 10.1080/08830180701690835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Txk/Rlk, a member of the Tec family of tyrosine kinases, is an important signaling mediator. We previously reported that human Txk is expressed in Th1/Th0 cells, and Txk translocates from cytoplasm into nuclei upon activation. Txk regulates specifically interferon-gamma gene transcription. Txk, poly(ADP-ribose) polymerase 1, and elongation factor 1alpha make a complex to bind to interferon-gamma gene promoter region-53/-39 (Txk responsive element) to exert positive effects on transcription as a Th1 cell-associated transcription factor. Txk expression is enhanced in rheumatoid arthritis and Behçet's disease, where Th1 dominant immunity occurs. In bronchial asthma and atopic dermatitis, typical Th2 diseases, Txk expression is reduced. Modulation of Txk expression by gene transfer or similar modality may lead to the correction of aberrant immunity and, consequently, disease treatment.
Collapse
Affiliation(s)
- Shoji Mihara
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | | |
Collapse
|
33
|
Kolltveit KM, Granum S, Aasheim HC, Forsbring M, Sundvold-Gjerstad V, Dai KZ, Molberg O, Schjetne KW, Bogen B, Shapiro VS, Johansen FE, Schenck K, Spurkland A. Expression of SH2D2A in T-cells is regulated both at the transcriptional and translational level. Mol Immunol 2007; 45:2380-90. [PMID: 18160104 DOI: 10.1016/j.molimm.2007.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 11/13/2007] [Indexed: 12/01/2022]
Abstract
The T-cell specific adapter protein (TSAd) encoded by the SH2D2A gene is up-regulated in activated human CD4+ T-cells in a cAMP-dependent manner. Expression of SH2D2A is important for proper activation of T-cells. Here, we show that SH2D2A expression is regulated both at the transcriptional and translational level. cAMP signaling alone induces TSAd-mRNA expression but fails to induce increased TSAd protein levels. By contrast, TCR engagement provides signals for both TSAd transcription and translation. We further show that cAMP signaling can prime T-cells for a more prompt expression of TSAd protein upon TCR stimulation. Our study thus points to a novel mechanism for how cAMP signaling may modulate T-cell activation through transcriptional priming of resting cells.
Collapse
|
34
|
Perchonock CE, Pajerowski AG, Nguyen C, Shapiro MJ, Shapiro VS. The related adaptors, adaptor in lymphocytes of unknown function X and Rlk/Itk-binding protein, have nonredundant functions in lymphocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:1768-75. [PMID: 17641043 DOI: 10.4049/jimmunol.179.3.1768] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adaptors play a critical role in regulating signaling pathways that control lymphocyte development and activation. Adaptor in lymphocytes of unknown function X (ALX) and Rlk/Itk-binding protein (RIBP) are adaptors related by structure and sequence, coexpressed in T cells. Mice deficient for each adaptor demonstrated that ALX and RIBP, respectively, negatively and positively regulate T cell activation in response to TCR/CD28 stimulation. However, these results did not preclude that they may function redundantly in other cell populations, or in response to other stimuli. Therefore, to understand the relationship between these related adaptors, ALX/RIBP-deficient mice were generated. We demonstrate that although ALX and RIBP are expressed throughout T cell development, T cell development occurs normally in these mice. Using the H-Y TCR transgenic model, positive and negative selection were found to proceed unimpeded in the absence of ALX and RIBP. We demonstrate that RIBP is also expressed in B cells; however, RIBP- and ALX/RIBP-deficient mice had normal B cell development, and responded equivalently to wild type in response to IgM, CD40, B cell-activating factor/B lymphocyte stimulator, CpG, and LPS. Interestingly, T cells deficient in both ALX and RIBP behaved similarly to those deficient in ALX alone during T cell activation in response to TCR/CD28, exhibiting increased IL-2 production, CD25 expression, and proliferation, thus showing that ALX deficiency masked the effect of RIBP deficiency. ALX/RIBP-deficient T cells did not have any alterations in either activation-induced cell death or Th1/2 polarization. Therefore, we did not find any functional redundancy or synergy during lymphocyte development, selection, activation, or survival in ALX/RIBP-deficient mice, demonstrating that these molecules function independently.
Collapse
Affiliation(s)
- Claire E Perchonock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
35
|
Kasler HG, Verdin E. Histone deacetylase 7 functions as a key regulator of genes involved in both positive and negative selection of thymocytes. Mol Cell Biol 2007; 27:5184-200. [PMID: 17470548 PMCID: PMC1951960 DOI: 10.1128/mcb.02091-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase 7 (HDAC7) is highly expressed in CD4(+)/CD8(+) thymocytes and functions as a signal-dependent repressor of gene transcription during T-cell development. In this study, we expressed HDAC7 mutant proteins in a T-cell line and use DNA microarrays to identify transcriptional targets of HDAC7 in T cells. The changes in gene expression levels were compared to differential gene expression profiles associated with positive and negative thymic selection. This analysis reveals that HDAC7 regulates an extensive set of genes that are differentially expressed during both positive and negative thymic selection. Many of these genes play important functional roles in thymic selection, primarily via modulating the coupling between antigen receptor engagement and downstream signaling events. Consistent with the model that HDAC7 may play an important role in both positive and negative thymic selection, the expression of distinct HDAC7 mutants or the abrogation of HDAC7 expression can either enhance or inhibit the signal-dependent differentiation of a CD4(+)/CD8(+) cell line.
Collapse
Affiliation(s)
- Herbert G Kasler
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
36
|
Maruyama T, Nara K, Yoshikawa H, Suzuki N. Txk, a member of the non-receptor tyrosine kinase of the Tec family, forms a complex with poly(ADP-ribose) polymerase 1 and elongation factor 1alpha and regulates interferon-gamma gene transcription in Th1 cells. Clin Exp Immunol 2007; 147:164-75. [PMID: 17177976 PMCID: PMC1810450 DOI: 10.1111/j.1365-2249.2006.03249.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have found previously that Txk, a member of the Tec family tyrosine kinases, is involved importantly in T helper 1 (Th1) cytokine production. However, how Txk regulates interferon (IFN)-gamma gene transcription in human T lymphocytes was not fully elucidated. In this study, we identified poly(ADP-ribose) polymerase 1 (PARP1) and elongation factor 1alpha (EF-1alpha) as Txk-associated molecules that bound to the Txk responsive element of the IFN-gamma gene promoter. Txk phosphorylated EF-1alpha and PARP1 formed a complex with them, and bound to the IFN-gamma gene promoter in vitro. In particular, the N terminal region containing the DNA binding domain of PARP1 was important for the trimolecular complex formation involving Txk, EF-1alpha and PARP1. Several mutant Txk which lacked kinase activity were unable to form the trimolecular complex. A PARP1 inhibitor, PJ34, suppressed IFN-gamma but not interleukin (IL)-4 production by normal peripheral blood lymphocytes (PBL). Multi-colour confocal analysis revealed that Txk and EF-1alpha located in the cytoplasm in the resting condition. Upon activation, a complex involving Txk, EF-1alpha and PARP1 was formed and was located in the nucleus. Collectively, Txk in combination with EF-1alpha and PARP1 bound to the IFN-gamma gene promoter, and exerted transcriptional activity on the IFN-gamma gene.
Collapse
Affiliation(s)
- T Maruyama
- Departments of Immunology and Medicine, St Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | |
Collapse
|
37
|
Park D, Park I, Lee D, Choi YB, Lee H, Yun Y. The adaptor protein Lad associates with the G protein beta subunit and mediates chemokine-dependent T-cell migration. Blood 2007; 109:5122-8. [PMID: 17327418 DOI: 10.1182/blood-2005-10-061838] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lck-interacting adaptor protein/Rlk/Itk-binding protein (Lad/RIBP) was previously identified as an adaptor protein involved in TCR-mediated T-cell activation. To elucidate the functions of Lad further, we here performed yeast 2-hybrid screening using Lad as bait and discovered that the G protein beta subunit (G beta) is a Lad-binding partner. Since the most well-known G protein-coupled receptor in T cells is the chemokine receptor, we investigated whether Lad is involved in chemokine signaling. We found that, upon chemokine treatment, Lad associated with G beta in Jurkat T cells. Furthermore, ectopic expression of dominant-negative Lad or the reduction of endogenous Lad expression by siRNA impaired the chemokine-induced migration of T cells, indicating that Lad is required for chemokine-induced T-cell migration. Subsequent investigation of the signaling pathways revealed that, in response to chemokine, Lad associated with the tyrosine kinases Lck and Zap-70 and that Lad was essential for the activation of Zap-70. Moreover, Lad was required for the chemokine-dependent tyrosine phosphorylation of focal adhesion molecules that included Pyk2 and paxillin. Taken together, these data show that, upon chemokine stimulation, Lad acts as an adaptor protein that links the G protein beta subunit to the tyrosine kinases Lck and Zap-70, thereby mediating T-cell migration.
Collapse
Affiliation(s)
- Dongsu Park
- Department of Life Science, Ewha Woman's University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
38
|
Lapinski PE, MacGregor JN, Marti F, King PD. The T cell-specific adapter protein functions as a regulator of peripheral but not central immunological tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 584:73-87. [PMID: 16802600 DOI: 10.1007/0-387-34132-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | | | | | |
Collapse
|
39
|
Perchonock CE, Fernando MC, Quinn WJ, Nguyen CT, Sun J, Shapiro MJ, Shapiro VS. Negative regulation of interleukin-2 and p38 mitogen-activated protein kinase during T-cell activation by the adaptor ALX. Mol Cell Biol 2006; 26:6005-15. [PMID: 16880512 PMCID: PMC1592799 DOI: 10.1128/mcb.02067-05] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Activation of naïve T cells requires synergistic signals produced by the T-cell receptor (TCR) and by CD28. We previously identified the novel adaptor ALX, which, upon overexpression in Jurkat T cells, inhibited activation of the interleukin-2 (IL-2) promoter by TCR/CD28, suggesting that it is a negative regulator of T-cell activation. To further understand the physiological role of ALX, ALX-deficient mice were generated. Purified T cells from ALX-deficient mice demonstrated increased IL-2 production, CD25 expression, and proliferation in response to TCR/CD28 stimulation. Enhanced IL-2 production and proliferation were also observed when ALX-deficient mice were primed in vivo with ovalbumin-complete Freund's adjuvant and then restimulated ex vivo. Consistent with our initial overexpression studies, these data demonstrate that ALX is a negative regulator of T-cell activation. While TCR/CD28-mediated activations of phosphotyrosine induction, extracellular signal-regulated kinase 1/2, Jun N-terminal protein kinase, IkappaB kinase alpha/beta, and Akt were unaltered, constitutive activation of p38 mitogen-activated protein kinase and its upstream regulators MKK3/6 were observed for ALX-deficient splenocytes. The phenotype of ALX-deficient mice resembled the phenotype of those deficient in the transmembrane adaptor LAX, and an association between ALX and LAX proteins was demonstrated. These results suggest that ALX, in association with LAX, negatively regulates T-cell activation through inhibition of p38.
Collapse
Affiliation(s)
- Claire E Perchonock
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 2006; 22:851-868. [PMID: 16793553 DOI: 10.1016/j.molcel.2006.06.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/19/2006] [Accepted: 06/02/2006] [Indexed: 01/07/2023]
Abstract
SH2 domains are interaction modules uniquely dedicated to the recognition of phosphotyrosine sites and are embedded in proteins that couple protein-tyrosine kinases to intracellular signaling pathways. Here, we report a comprehensive bioinformatics, structural, and functional view of the human and mouse complement of SH2 domain proteins. This information delimits the set of SH2-containing effectors available for PTK signaling and will facilitate the systems-level analysis of pTyr-dependent protein-protein interactions and PTK-mediated signal transduction. The domain-based architecture of SH2-containing proteins is of more general relevance for understanding the large family of protein interaction domains and the modular organization of the majority of human proteins.
Collapse
Affiliation(s)
- Bernard A Liu
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Karl Jablonowski
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Monica Raina
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Michael Arcé
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.
| | - Piers D Nash
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
41
|
Richard KC, Bertolesi GE, Dunfield LD, McMaster CR, Nachtigal MW. TSAd interacts with Smad2 and Smad3. Biochem Biophys Res Commun 2006; 347:266-72. [PMID: 16806069 DOI: 10.1016/j.bbrc.2006.06.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 06/13/2006] [Indexed: 11/20/2022]
Abstract
Smad-dependent signalling initiated by TGFbeta superfamily members can be modulated by a variety of interacting proteins. Using yeast two-hybrid, co-immunoprecipitation, and GST pull-down assays we identified T-cell SH2 adapter (TSAd) as a protein that interacts with Smad2 and Smad3. TSAd is an adapter protein thought to participate in many different signalling pathways. The objective of this study was to elucidate the domains important for interaction between TSAd and Smad proteins. Our results suggest a model for TSAd-Smad interaction that is facilitated by multiple TSAd domains, but primarily through the TSAd type I SH2 domain. Interestingly, we also found that both Smad2 and Smad3 interact with the Lck type I SH2 domain, but not the PI3K type III SH2 domain. This research raises the possibility that interaction between SH2-containing proteins and Smad proteins may represent another method to modulate Smad-dependent signalling.
Collapse
Affiliation(s)
- K C Richard
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|
42
|
Granum S, Sundvold-Gjerstad V, Dai KZ, Kolltveit KM, Hildebrand K, Huitfeldt HS, Lea T, Spurkland A. Structure function analysis of SH2D2A isoforms expressed in T cells reveals a crucial role for the proline rich region encoded by SH2D2A exon 7. BMC Immunol 2006; 7:15. [PMID: 16839418 PMCID: PMC1553471 DOI: 10.1186/1471-2172-7-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 07/13/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The activation induced T cell specific adapter protein (TSAd), encoded by SH2D2A, interacts with and modulates Lck activity. Several transcript variants of TSAd mRNA exist, but their biological significance remains unknown. Here we examined expression of SH2D2A transcripts in activated CD4+ T cells and used the SH2D2A variants as tools to identify functionally important regions of TSAd. RESULTS TSAd was found to interact with Lck in human CD4+ T cells ex vivo. Three interaction modes of TSAd with Lck were identified. TSAd aa239-256 conferred binding to the Lck-SH3 domain, whereas one or more of the four tyrosines within aa239-334 encoded by SH2D2A exon 7 was found to confer interaction with the Lck-SH2-domain. Finally the TSAd-SH2 domain was found to interact with Lck. The SH2D2A exon 7 encoding TSAd aa 239-334 was found to harbour information essential not only for TSAd interaction with Lck, but also for TSAd modulation of Lck activity and translocation of TSAd to the nucleus. All five SH2D2A transcripts were found to be expressed in CD3 stimulated CD4+ T cells. CONCLUSION These data show that TSAd and Lck may interact through several different domains and that Lck TSAd interaction occurs in CD4+ T cells ex vivo. Alternative splicing of exon 7 encoding aa239-334 results in loss of the majority of protein interaction motives of TSAd and yields truncated TSAd molecules with altered ability to modulate Lck activity. Whether TSAd is regulated through differential alternative splicing of the SH2D2A transcript remains to be determined.
Collapse
Affiliation(s)
- Stine Granum
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| | - Vibeke Sundvold-Gjerstad
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| | - Ke-Zheng Dai
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| | | | - Kjersti Hildebrand
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| | - Henrik S Huitfeldt
- Institute of Pathology, Rikshospitalet University Hospital, N-0027, Norway
| | - Tor Lea
- Institute of Immunology, Rikshospitalet University Hospital, N-0027, Norway
| | - Anne Spurkland
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| |
Collapse
|
43
|
Marti F, Garcia GG, Lapinski PE, MacGregor JN, King PD. Essential role of the T cell-specific adapter protein in the activation of LCK in peripheral T cells. ACTA ACUST UNITED AC 2006; 203:281-7. [PMID: 16446380 PMCID: PMC2118198 DOI: 10.1084/jem.20051637] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
T cell-specific adapter protein (TSAd) is a SRC-homology-2 (SH2) domain-containing intracellular signaling molecule that is required for T cell antigen receptor (TCR)-induced cytokine synthesis in T cells. How TSAd functions in TCR signal transduction is not clear. Previous work has suggested a nuclear role for this adapter. However, other evidence suggests that TSAd also functions in the cytoplasm. Using T cells from TSAd-deficient mice, we now show that the major role of TSAd in the cytoplasm is in activation of the LCK protein tyrosine kinase at the outset of TCR signal transduction. Consequently, TSAd regulates several downstream signaling events, including intracellular calcium mobilization and activation of the Ras-extracellular signal-regulated kinase signaling pathway. TSAd regulates LCK activity directly through physical interaction with LCK SH3 and SH2 domains. These studies reveal TSAd as a positive regulator of proximal TCR signal transduction and provide important new information on the mechanism of TCR-induced LCK activation.
Collapse
Affiliation(s)
- Francesc Marti
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
44
|
Matsumoto T, Mugishima H. Signal Transduction via Vascular Endothelial Growth Factor (VEGF) Receptors and Their Roles in Atherogenesis. J Atheroscler Thromb 2006; 13:130-5. [PMID: 16835467 DOI: 10.5551/jat.13.130] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vascular endothelial growth factor (VEGF)-A plays a critical role in vascular development and angiogenesis through its binding and activation of VEGF receptor-2 (VEGFR-2). The binding of VEGF-A to VEGFR-2 causes receptor dimerization, kinase activation and autophosphorylation of specific tyrosine residues within the dimeric complex. Tyrosine(Y)951 in the kinase-insert domain, Y1054 and Y1059 in the kinase domain and Y1175 and Y1214 in the C-terminal tail have been shown to serve as autophosphorylation sites. Phosphorylated Y1175 creates a binding site for phospholipase Cgamma1 (PLC-gamma1) and Shb. Activation of PLC-gamma1 and Shb regulates VEGF-A-dependent cell proliferation and cell migration, respectively. Phosphorylated Y951 binds and mediates tyrosine phosphorylation of the T-cell-specific adaptor protein (TSAd), which is expressed in endothelial cells. Y951-mediated coupling of VEGFR-2 and TSAd is critical for VEGF-A-induced cell migration and actin reorganization, and for pathological angiogenesis. These phosphorylation sites may be useful targets for the development of anti-angiogenic therapies to treat atherosclerosis and cancer.
Collapse
Affiliation(s)
- Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
45
|
Shapiro MJ, Chen YY, Shapiro VS. The carboxyl-terminal segment of the adaptor protein ALX directs its nuclear export during T cell activation. J Biol Chem 2005; 280:38242-6. [PMID: 16169852 DOI: 10.1074/jbc.m507441200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adaptor protein ALX acts downstream of CD28 to regulate the interleukin-2 (IL-2) promoter during T cell activation. Whereas ALX is predominantly localized to the cytoplasm, ALX partially resides in the nucleus, and the nuclear pool is rapidly depleted in response to T cell receptor (TCR)/CD28 signaling. Here it is shown that this depletion occurs via nuclear export of ALX, which depends on a leucine-rich nuclear export signal (NES) in its carboxyl segment and on the CRM-1 transport protein. Nuclear import of ALX also depends on its carboxyl-terminal segment. Blocking nuclear export of ALX, either pharmacologically, by leptomycin B, or by site-directed mutation of the ALX NES, impairs CD28-mediated phosphorylation of ALX. Additionally, upon overexpression, the ALX NES mutant was found to be impaired in inhibiting TCR/CD28-induced transcriptional up-regulation of the RE/AP composite element from the IL-2 promoter, whereas a truncated form of ALX that is a potent inhibitor of RE/AP activation was found to reside entirely in the cytoplasm. Together, these results show that ALX exerts its effect on IL-2 up-regulation in the cytoplasm and suggest an intricate relationship between the nuclear localization/export, phosphorylation, and activity of ALX in response to TCR and CD28 signaling.
Collapse
Affiliation(s)
- Michael J Shapiro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
46
|
Matsumoto T, Bohman S, Dixelius J, Berge T, Dimberg A, Magnusson P, Wang L, Wikner C, Qi JH, Wernstedt C, Wu J, Bruheim S, Mugishima H, Mukhopadhyay D, Spurkland A, Claesson-Welsh L. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 2005; 24:2342-53. [PMID: 15962004 PMCID: PMC1173150 DOI: 10.1038/sj.emboj.7600709] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 05/18/2005] [Indexed: 11/09/2022] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) activation by VEGF-A is essential in vasculogenesis and angiogenesis. We have generated a pan-phosphorylation site map of VEGFR-2 and identified one major tyrosine phosphorylation site in the kinase insert (Y951), in addition to two major sites in the C-terminal tail (Y1175 and Y1214). In developing vessels, phosphorylation of Y1175 and Y1214 was detected in all VEGFR-2-expressing endothelial cells, whereas phosphorylation of Y951 was identified in a subset of vessels. Phosphorylated Y951 bound the T-cell-specific adapter (TSAd), which was expressed in tumor vessels. Mutation of Y951 to F and introduction of phosphorylated Y951 peptide or TSAd siRNA into endothelial cells blocked VEGF-A-induced actin stress fibers and migration, but not mitogenesis. Tumor vascularization and growth was reduced in TSAd-deficient mice, indicating a critical role of Y951-TSAd signaling in pathological angiogenesis.
Collapse
Affiliation(s)
- Taro Matsumoto
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, Nihon University School of Medicine, Ohyaguchikamimachi, Itabashi-ku, Tokyo, Japan
| | - Svante Bohman
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Dixelius
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tone Berge
- Department of Anatomy, Institute of Basal Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Anna Dimberg
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peetra Magnusson
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ling Wang
- Mayo Clinic Foundation, Gugg, Rochester, MN, USA
| | - Charlotte Wikner
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jian Hua Qi
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Christer Wernstedt
- Ludwig Institute for Cancer Research, Uppsala Branch, Biomedical Center, Uppsala, Sweden
| | - Jiong Wu
- Cell Signaling Technology, Cummings Center, Beverly, MA, USA
| | - Skjalg Bruheim
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Hideo Mugishima
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, Nihon University School of Medicine, Ohyaguchikamimachi, Itabashi-ku, Tokyo, Japan
| | | | - Anne Spurkland
- Department of Anatomy, Institute of Basal Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Lena Claesson-Welsh
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Dag Hammarskjöldsv. 20, 75185 Uppsala, Sweden. Tel.: +46 18 471 43 63; Fax: +46 18 55 89 31; E-mail:
| |
Collapse
|
47
|
Zucchelli S, Holler P, Yamagata T, Roy M, Benoist C, Mathis D. Defective central tolerance induction in NOD mice: genomics and genetics. Immunity 2005; 22:385-96. [PMID: 15780994 DOI: 10.1016/j.immuni.2005.01.015] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/04/2005] [Accepted: 01/06/2005] [Indexed: 01/20/2023]
Abstract
The genetic determinism of type-1 diabetes in NOD mice likely involves complementary defects in central T cell tolerance induction and peripheral immunoregulation. To study the contribution of the NOD genetic background to central tolerance, we followed the behavior of BDC2.5 clonotype thymocytes in fetal thymic organ cultures (FTOC). The NOD genetic background encodes a quantitative deficiency in the ability to delete these self-reactive thymocytes and to divert them to the CD8alphaalpha lineage. In genetic analyses, comparing NOD and B6.H2g7 FTOCs, the NOD defect incorporated the influence of several loci (notably ones on chr1 and 3). Microarray analyses assessing FTOCs from the same two strains argued that the NOD abnormality reflects the combined effects of turning down the gene expression program that provokes apoptosis and turning on a new program promoting cell survival. Intersection of the data from the two approaches points to a small set of attractive candidate genes.
Collapse
Affiliation(s)
- Silvia Zucchelli
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
48
|
Sundvold-Gjerstad V, Granum S, Mustelin T, Andersen TCB, Berge T, Shapiro MJ, Shapiro VS, Spurkland A, Lea T. The C?terminus of T?cell-specific adapter protein (TSAd) is necessary for TSAd-mediated inhibition of Lck activity. Eur J Immunol 2005; 35:1612-20. [PMID: 15827961 DOI: 10.1002/eji.200425638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
T cell-specific adapter protein (TSAd), encoded by the SH2D2A gene, is expressed in activated T cells. The function of TSAd is as yet unknown. We previously showed that TSAd may modulate T cell receptor-triggered signaling events. TSAd contains a Src homology (SH)2 domain, ten tyrosines and a C-terminal proline-rich region. Here, we show that human TSAd interacts with Lck through the Lck SH2 and SH3 domains and is a substrate for Lck. The TSAd C terminus, including the proline-rich region and five tyrosines, is both necessary and sufficient for TSAd interaction with and phosphorylation by Lck. Expression of TSAd in Jurkat TAg cells results in hyperphosphorylation of endogenous Lck on Y394 and to an even larger extent on Y505, resulting in a reduced Y394/Y505 phosphorylation ratio in these cells. Furthermore, full-length TSAd, but not TSAd lacking the C terminus, inhibits the hyperactive Lck Y505F mutant when both are expressed in Jurkat T cells. In contrast, expression of the TSAd C terminus alone is sufficient to inhibit Lck Y505F in phosphorylating its substrates in Jurkat T cells. Our results indicate that the TSAd C terminus is essential for inhibition of Lck activity by TSAd, and suggest a mechanism for how TSAd may inhibit early T cell activation events.
Collapse
Affiliation(s)
- Vibeke Sundvold-Gjerstad
- Institute of Basic Medical Sciences, Department of Anatomy, University of Oslo, Blindern, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The Tec family tyrosine kinases are now recognized as important mediators of antigen receptor signaling in lymphocytes. Three members of this family, Itk, Rlk, and Tec, are expressed in T cells and activated in response to T cell receptor (TCR) engagement. Although initial studies demonstrated a role for these proteins in TCR-mediated activation of phospholipase C-gamma, recent data indicate that Tec family kinases also regulate actin cytoskeletal reorganization and cellular adhesion following TCR stimulation. In addition, Tec family kinases are activated downstream of G protein-coupled chemokine receptors, where they play parallel roles in the regulation of Rho GTPases, cell polarization, adhesion, and migration. In all these systems, however, Tec family kinases are not essential signaling components, but instead function to modulate or amplify signaling pathways. Although they quantitatively reduce proximal signaling, mutations that eliminate Tec family kinases in T cells nonetheless qualitatively alter T cell development and differentiation.
Collapse
Affiliation(s)
- Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | | | |
Collapse
|
50
|
Marti F, Lapinski PE, King PD. The emerging role of the T cell-specific adaptor (TSAd) protein as an autoimmune disease-regulator in mouse and man. Immunol Lett 2005; 97:165-70. [PMID: 15752554 DOI: 10.1016/j.imlet.2004.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 10/21/2004] [Accepted: 10/25/2004] [Indexed: 11/29/2022]
Abstract
T cell-specific adapter protein is a relatively recently described signaling adapter molecule expressed predominantly in T cells and NK cells. Studies in mouse and man have indicated that reduced expression of TSAd in T cells may predispose toward the development of autoimmune disease. In lupus-prone TSAd-deficient mice the development of autoimmunity is associated with an impaired T cell death response to antigens in vivo. Probably, this impaired death response is consequent to reduced T cell antigen receptor (TCR)-induced synthesis of the interleukin-2 (IL-2) cytokine in TSAd-deficient T cells. TSAd appears to contribute to IL-2 synthesis at multiple different levels acting in both the nucleus and cytoplasm of T cells. Recent advances relating to the role of TSAd in T cell signal transduction and as a regulator of autoimmune responses are discussed.
Collapse
Affiliation(s)
- Francesc Marti
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Medical Science Building II, Ann Arbor, MI 48109-0620, USA
| | | | | |
Collapse
|