1
|
Shin H, Prasad V, Lupancu T, Malik S, Achuthan A, Biondo M, Kingwell BA, Thiem M, Gottschalk M, Weighardt H, Förster I, de Steiger R, Hamilton JA, Lee KMC. The GM-CSF/CCL17 pathway in obesity-associated osteoarthritic pain and disease in mice. Osteoarthritis Cartilage 2023; 31:1327-1341. [PMID: 37225052 DOI: 10.1016/j.joca.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVES We have previously identified a granulocyte macrophage-colony stimulating factor (GM-CSF)/C-C motif ligand 17 (CCL17) pathway in monocytes/macrophages, in which GM-CSF regulates the formation of CCL17, and it is important for an experimental osteoarthritis (OA) model. We explore here additional OA models, including in the presence of obesity, such as a requirement for this pathway. DESIGN The roles of GM-CSF, CCL17, CCR4, and CCL22 in various experimental OA models, including those incorporating obesity (eight-week high-fat diet), were investigated using gene-deficient male mice. Pain-like behavior and arthritis were assessed by relative static weight distribution and histology, respectively. Cell populations (flow cytometry) and cytokine messenger RNA (mRNA) expression (qPCR) in knee infrapatellar fat pad were analyzed. Human OA sera were collected for circulating CCL17 levels (ELISA) and OA knee synovial tissue for gene expression (qPCR). RESULTS We present evidence that: i) GM-CSF, CCL17, and CCR4, but not CCL22, are required for the development of pain-like behavior and optimal disease in three experimental OA models, as well as for exacerbated OA development due to obesity, ii) obesity alone leads to spontaneous knee joint damage in a GM-CSF- and CCL17-dependent manner, and iii) in knee OA patients, early indications are that BMI correlates with a lower Oxford Knee Score (r = -0.458 and p = 0.0096), with elevated circulating CCL17 levels (r = 0.2108 and p = 0.0153) and with elevated GM-CSF and CCL17 gene expression in OA synovial tissue. CONCLUSIONS The above findings indicate that GM-CSF, CCL17, and CCR4 are involved in obesity-associated OA development, broadening their potential as targets for possible treatments for OA.
Collapse
Affiliation(s)
- Heonsu Shin
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Varun Prasad
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Tanya Lupancu
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Shveta Malik
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Adrian Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Mark Biondo
- CSL Ltd, Bio21 Institute, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Bronwyn A Kingwell
- CSL Ltd, Bio21 Institute, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Manja Thiem
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Marlene Gottschalk
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Richard de Steiger
- Department of Surgery, Epworth Healthcare, University of Melbourne, Richmond, Victoria 3121, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Victoria 3021, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
2
|
Lupancu TJ, Eivazitork M, Hamilton JA, Achuthan AA, Lee KMC. CCL17/TARC in autoimmunity and inflammation-not just a T-cell chemokine. Immunol Cell Biol 2023; 101:600-609. [PMID: 36975092 DOI: 10.1111/imcb.12644] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Chemokine (C-C) ligand 17 (CCL17) was first identified as thymus- and activation-regulated chemokine when it was found to be constitutively expressed in the thymus and identified as a T-cell chemokine. This chemoattractant molecule has subsequently been found at elevated levels in a range of autoimmune and inflammatory diseases, as well as in cancer. CCL17 is a C-C chemokine receptor type 4 (CCR4) ligand, with chemokine (C-C) ligand 22 being the other major ligand and, as CCR4 is highly expressed on helper T cells, CCL17 can play a role in T-cell-driven diseases, usually considered to be via its chemotactic activity on T helper 2 cells; however, given that CCR4 is also expressed by other cell types and there is elevated expression of CCL17 in many diseases, a broader CCL17 biology is suggested. In this review, we summarize the biology of CCL17, its regulation and its potential contribution to the pathogenesis of various preclinical models. Reference is made, for example, to recent literature indicating a role for CCL17 in the control of pain as part of a granulocyte macrophage-colony-stimulating factor/CCL17 pathway in lymphocyte-independent models and thus not as a T-cell chemokine. The review also discusses the potential for CCL17 to be a biomarker and a therapeutic target in human disorders.
Collapse
Affiliation(s)
- Tanya J Lupancu
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Mahtab Eivazitork
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Liu S, Zhang Z, Wang Y, Zhang Y, Min J, Li X, Liu S. The chemokine CCL1 facilitates pulmonary fibrosis by promoting macrophage migration and M2 polarization. Int Immunopharmacol 2023; 120:110343. [PMID: 37220693 DOI: 10.1016/j.intimp.2023.110343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
Macrophage M2 polarization has been identified in the pathogenesis of pulmonary fibrosis (PF), but the mediators that drive the macrophage M2 program in PF need to be clarified. We showed that the expression of AMFR and CCR8, two known receptors of CCL1, was increased in macrophages from lungs of mice with bleomycin (BLM)-induced PF. Deficiency in either AMFR or CCR8 in macrophages protected mice from BLM-induced PF. In vitro experiments revealed that CCL1 recruited macrophages by binding to its classical receptor CCR8 and drove the macrophage M2 phenotype via its interaction with the recently identified receptor AMFR. Mechanistic studies revealed that the CCL1-AMFR interaction enhanced CREB/C/EBPβ signaling to promote the macrophage M2 program. Together, our findings reveal that CCL1 acts as a mediator of macrophage M2 polarization and could be a therapeutic target in PF.
Collapse
Affiliation(s)
- Suosi Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziying Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yu Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
4
|
Mora DSO, Cox M, Magunda F, Williams AB, Linke L. An optimized live bacterial delivery vehicle safely and efficaciously delivers bacterially transcribed therapeutic nucleic acids. Eng Life Sci 2023; 23:e2200037. [PMID: 36874611 PMCID: PMC9978928 DOI: 10.1002/elsc.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/03/2022] [Accepted: 12/09/2022] [Indexed: 02/07/2023] Open
Abstract
There is an unmet need for delivery platforms that realize the full potential of next-generation nucleic acid therapeutics. The in vivo usefulness of current delivery systems is limited by numerous weaknesses, including poor targeting specificity, inefficient access to target cell cytoplasm, immune activation, off-target effects, small therapeutic windows, limited genetic encoding and cargo capacity, and manufacturing challenges. Here we characterize the safety and efficacy of a delivery platform comprising engineered live, tissue-targeting, non-pathogenic bacteria (Escherichia coli SVC1) for intracellular cargo delivery. SVC1 bacteria are engineered to specifically bind to epithelial cells via a surface-expressed targeting ligand, to allow escape of their cargo from the phagosome, and to have minimal immunogenicity. We describe SVC1's ability to deliver short hairpin RNA (shRNA), localized SVC1 administration to various tissues, and its minimal immunogenicity. To validate the therapeutic potential of SVC1, we used it to deliver influenza-targeting antiviral shRNAs to respiratory tissues in vivo. These data are the first to establish the safety and efficacy of this bacteria-based delivery platform for use in multiple tissue types and as an antiviral in the mammalian respiratory tract. We expect that this optimized delivery platform will enable a variety of advanced therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Forgivemore Magunda
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | | | | |
Collapse
|
5
|
Zhu S, Lalani AI, Jin J, Sant’Angelo D, Covey LR, Liu K, Young HA, Ostrand-Rosenberg S, Xie P. The adaptor protein TRAF3 is an immune checkpoint that inhibits myeloid-derived suppressor cell expansion. Front Immunol 2023; 14:1167924. [PMID: 37207205 PMCID: PMC10189059 DOI: 10.3389/fimmu.2023.1167924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are aberrantly expanded in cancer patients and under other pathological conditions. These cells orchestrate the immunosuppressive and inflammatory network to facilitate cancer metastasis and mediate patient resistance to therapies, and thus are recognized as a prime therapeutic target of human cancers. Here we report the identification of the adaptor protein TRAF3 as a novel immune checkpoint that critically restrains MDSC expansion. We found that myeloid cell-specific Traf3-deficient (M-Traf3 -/-) mice exhibited MDSC hyperexpansion during chronic inflammation. Interestingly, MDSC hyperexpansion in M-Traf3 -/- mice led to accelerated growth and metastasis of transplanted tumors associated with an altered phenotype of T cells and NK cells. Using mixed bone marrow chimeras, we demonstrated that TRAF3 inhibited MDSC expansion via both cell-intrinsic and cell-extrinsic mechanisms. Furthermore, we elucidated a GM-CSF-STAT3-TRAF3-PTP1B signaling axis in MDSCs and a novel TLR4-TRAF3-CCL22-CCR4-G-CSF axis acting in inflammatory macrophages and monocytes that coordinately control MDSC expansion during chronic inflammation. Taken together, our findings provide novel insights into the complex regulatory mechanisms of MDSC expansion and open up unique perspectives for the design of new therapeutic strategies that aim to target MDSCs in cancer patients.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Almin I. Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Derek Sant’Angelo
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Lori R. Covey
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, United States
| | - Howard A. Young
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, The University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Ping Xie,
| |
Collapse
|
6
|
Bogacka J, Pawlik K, Ciapała K, Ciechanowska A, Mika J. CC Chemokine Receptor 4 (CCR4) as a Possible New Target for Therapy. Int J Mol Sci 2022; 23:ijms232415638. [PMID: 36555280 PMCID: PMC9779674 DOI: 10.3390/ijms232415638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chemokines and their receptors participate in many biological processes, including the modulation of neuroimmune interactions. Approximately fifty chemokines are distinguished in humans, which are classified into four subfamilies based on the N-terminal conserved cysteine motifs: CXC, CC, C, and CX3C. Chemokines activate specific receptors localized on the surface of various immune and nervous cells. Approximately twenty chemokine receptors have been identified, and each of these receptors is a seven-transmembrane G-protein coupled receptor. Recent studies provide new evidence that CC chemokine receptor 4 (CCR4) is important in the pathogenesis of many diseases, such as diabetes, multiple sclerosis, asthma, dermatitis, and cancer. This review briefly characterizes CCR4 and its ligands (CCL17, CCL22, and CCL2), and their contributions to immunological and neoplastic diseases. The review notes a significant role of CCR4 in nociceptive transmission, especially in painful neuropathy, which accompanies many diseases. The pharmacological blockade of CCR4 seems beneficial because of its pain-relieving effects and its influence on opioid efficacy. The possibilities of using the CCL2/CCL17/CCL22/CCR4 axis as a target in new therapies for many diseases are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Mika
- Correspondence: or ; Tel.: +48-12-6623-298; Fax: +48-12-6374-500
| |
Collapse
|
7
|
Pottash AE, Levy D, Jeyaram A, Kuo L, Kronstadt SM, Chao W, Jay SM. Combinatorial microRNA Loading into Extracellular Vesicles for Increased Anti-Inflammatory Efficacy. Noncoding RNA 2022; 8:71. [PMID: 36287123 PMCID: PMC9611452 DOI: 10.3390/ncrna8050071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as promising therapeutic entities in part due to their potential to regulate multiple signaling pathways in target cells. This potential is derived from the broad array of constituent and/or cargo molecules associated with EVs. Among these, microRNAs (miRNAs) are commonly implicated as important and have been associated with a wide variety of EV-induced biological phenomena. While controlled loading of single miRNAs is a well-documented approach for enhancing EV bioactivity, loading of multiple miRNAs has not been fully leveraged to maximize the potential of EV-based therapies. Here, an established approach to extrinsic nucleic acid loading of EVs, sonication, was utilized to load multiple miRNAs in HEK293T EVs. Combinations of miRNAs were compared to single miRNAs with respect to anti-inflammatory outcomes in assays of increasing stringency, with the combination of miR-146a, miR-155, and miR-223 found to have the most potential amongst the tested groups.
Collapse
Affiliation(s)
- Alex Eli Pottash
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Anjana Jeyaram
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Leo Kuo
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Stephanie M. Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, MD 21201, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
- Program in Molecular and Cell Biology, University of Maryland, 4062 Campus Drive, College Park, MD 20742, USA
| |
Collapse
|
8
|
Hong JH, Lee YC. Anti-Inflammatory Effects of Cicadidae Periostracum Extract and Oleic Acid through Inhibiting Inflammatory Chemokines Using PCR Arrays in LPS-Induced Lung inflammation In Vitro. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060857. [PMID: 35743888 PMCID: PMC9225349 DOI: 10.3390/life12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
In this study, we aimed to evaluate the anti-inflammatory effects and mechanisms of CP and OA treatments in LPS-stimulated lung epithelial cells on overall chemokines and their receptors using PCR arrays. In addition, we aimed to confirm those effects and mechanisms in LPS-stimulated lung macrophages on some chemokines and cytokines. In our study, CP treatments significantly inhibited the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL6, CCL9, CCL11, CCL17, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL10, TNF-α, and IL-6, while markedly suppressing NF-κB p65 nuclear translocation and the phosphorylations of PI3K p55, Akt, Erk1/2, p38, and NF-κB p65 in LPS-stimulated lung epithelial cells. CP treatments also significantly decreased the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, and CXCL2, while markedly inhibiting phospho-PI3K p55 and iNOS expression in LPS-stimulated lung macrophages. Likewise, OA treatments significantly suppressed the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL8, CCL11, CXCL1, CXCL3, CXCL5, CXCL7, CXCL10, CCRL2, TNF-α, and IL-6, while markedly reducing the phosphorylations of PI3K p85, PI3K p55, p38, JNK, and NF-κB p65 in LPS-stimulated lung epithelial cells. Finally, OA treatments significantly inhibited the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, CXCL2, TNF-α, and IL-6, while markedly suppressing phospho-PI3K p55, iNOS, and Cox-2 in LPS-stimulated lung macrophages. These results prove that CP and OA treatments have anti-inflammatory effects on the inflammatory chemokines and cytokines by inhibiting pro-inflammatory mediators, including PI3K, Akt, MAPKs, NF-κB, iNOS, and Cox-2. These findings suggest that CP and OA are potential chemokine-based therapeutic substances for treating the lung and airway inflammation seen in allergic disorders.
Collapse
Affiliation(s)
| | - Young-Cheol Lee
- Correspondence: ; Tel.: +82-33-730-0672; Fax: +82-33-730-0653
| |
Collapse
|
9
|
Kim JY, Kim J, Huang M, Kosonen R, Lee JE. CCR4 and CCR5 Involvement in Monocyte-Derived Macrophage Migration in Neuroinflammation. Front Immunol 2022; 13:876033. [PMID: 35634277 PMCID: PMC9133420 DOI: 10.3389/fimmu.2022.876033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia, resident macrophages in the brain, play major roles in neuroinflammation after an acute many neurological diseases, including stroke. Our recent animal stroke model showed that interleukin (IL)-4 and IL-13 released by microglia are converted into monocyte-derived macrophages. However, the correlation with the migration mechanism of these cells is still unclear. This study aimed to clarify the effect of these cells on their migration and to identify potential targets that influence neuroinflammatory conditions. Inflammatory conditions were induced by lipopolysaccharide (LPS) treatment in in vitro and in vivo models. Cell migration was observed using transwell assay, and target chemokines were screened using the proteome profiler array in the in vitro model. Intravital, IVIS, and CLARITY imaging were used in the in vivo model. After LPS (1 ng/ml) treatment in BV2 (microglia cell line) and J774 (monocyte/macrophage cell line) cells, BV2 migration was approximately two-fold more enhanced compared to J774 migration. Overall, six types of chemokine C-C motif ligands (CCLs) were detected from the BV2 conditioned medium with LPS. These CCLs were related to C-C motif receptor (CCR)4 and CCR5. In the in vivo model, CCR4 and CCR5 antagonist significantly inhibited the migration of monocyte-derived macrophages to brain tissue following LPS (5 µg) treatment. In conclusion, the chemokines released by microglia may influence migration of monocyte-derived macrophages in necroinflammation conditions inducted by microglial activation. CCR4 and CCR5 expressed on monocyte-derived macrophages interacted with these chemokines and induced migration. Therefore, CCR4 and CCR5 may be explored as new therapeutic targets for neuroinflammation.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Meiying Huang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Renée Kosonen
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Machida H, Inoue S, Igarashi A, Saitoh S, Yamauchi K, Nishiwaki M, Nemoto T, Otaki Y, Sato M, Sato K, Nakano H, Yang S, Furuyama K, Murano H, Ishibashi Y, Ota T, Nakayama T, Shibata Y, Watanabe M. Role of CC Chemokine Ligand 17 in Mouse Models of Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2022; 66:428-438. [PMID: 35081017 DOI: 10.1165/rcmb.2021-0069oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung function deterioration is significantly associated with poor prognosis in patients with chronic obstructive pulmonary disease (COPD). We previously reported that CC chemokine ligand 17/thymus and activation-regulated chemokine (CCL17/TARC) could be a predictive factor of lung function decline in patients with COPD. However, the role of CCL17 in the pathogenesis of COPD is unclear. Here we examined the role of CCL17 in lung inflammation using mouse COPD models. Exposure to cigarette smoking induced CCL17 production in bronchial epithelial cells and accumulation of alveolar macrophages in the lungs. Intranasal administration of recombinant CCL17 further enhanced cigarette smoke-induced macrophage accumulation and also aggravated elastase-induced pulmonary emphysema. We confirmed that cigarette smoke extract as well as H2O2 upregulated CCL17 in BAES-2B cells. Of note, macrophages of both M1 and M2 surface markers were accumulated by cigarette smoke. Both alveolar macrophage accumulation via exposure to cigarette smoking and emphysematous changes induced by elastase administration were significantly reduced in CCL17-deficient mice. We further demonstrated that CCL17 strongly induced the expression of CC chemokine ligand 2 (CCL2), a chemoattractant for macrophages, in RAW264.7 cells, and its production was inhibited by knockdown of CCR4, the receptor of CCL17. Collectively, the present results demonstrate that CCL17 is produced by lung epithelial cells upon cigarette smoke (CS) exposure. Furthermore, CCL17 is involved in CS-induced accumulation of alveolar macrophages and development of elastase-induced pulmonary emphysema, possibly through CCL17-induced production of CCL2 by macrophages. Our findings may provide a new insight into the pathogenesis of COPD.
Collapse
Affiliation(s)
- Hiroyoshi Machida
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Sumito Inoue
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan;
| | - Akira Igarashi
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Shinichi Saitoh
- Yamagata University, 13149, Department of Immunology, Yamagata, Japan
| | - Keiko Yamauchi
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Michiko Nishiwaki
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Takako Nemoto
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Yoichiro Otaki
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Masamichi Sato
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Kento Sato
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Hiroshi Nakano
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Sujeong Yang
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Kodai Furuyama
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Hiroaki Murano
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Yu Ishibashi
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Takahito Ota
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| | - Takashi Nakayama
- Kindai University, 12872, Division of Chemotherapy, Faculty of Pharmacy, Higashiosaka, Japan
| | - Yoko Shibata
- Fukushima Medical University, Department of Pulmonary Medicine, Fukushima, Japan
| | - Masafumi Watanabe
- Yamagata University, 13149, Faculty of Medicine, Department of Cardiology, Pulmonology, and Nephrology, Yamagata, Japan
| |
Collapse
|
11
|
Catherine J, Roufosse F. What does elevated TARC/CCL17 expression tell us about eosinophilic disorders? Semin Immunopathol 2021; 43:439-458. [PMID: 34009399 PMCID: PMC8132044 DOI: 10.1007/s00281-021-00857-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Eosinophilic disorders encompass a large spectrum of heterogeneous diseases sharing the presence of elevated numbers of eosinophils in blood and/or tissues. Among these disorders, the role of eosinophils can vary widely, ranging from a modest participation in the disease process to the predominant perpetrator of tissue damage. In many cases, eosinophilic expansion is polyclonal, driven by enhanced production of interleukin-5, mainly by type 2 helper cells (Th2 cells) with a possible contribution of type 2 innate lymphoid cells (ILC2s). Among the key steps implicated in the establishment of type 2 immune responses, leukocyte recruitment toward inflamed tissues is particularly relevant. Herein, the contribution of the chemo-attractant molecule thymus and activation-regulated chemokine (TARC/CCL17) to type 2 immunity will be reviewed. The clinical relevance of this chemokine and its target, C-C chemokine receptor 4 (CCR4), will be illustrated in the setting of various eosinophilic disorders. Special emphasis will be put on the potential diagnostic, prognostic, and therapeutic implications related to activation of the TARC/CCL17-CCR4 axis.
Collapse
Affiliation(s)
- Julien Catherine
- Department of Internal Medicine, Hôpital Erasme, 808 Route de Lennik, 1070, Brussels, Belgium. .,Institute for Medical Immunology, Université Libre de Bruxelles, 6041 Gosselies, Brussels, Belgium.
| | - Florence Roufosse
- Department of Internal Medicine, Hôpital Erasme, 808 Route de Lennik, 1070, Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles, 6041 Gosselies, Brussels, Belgium
| |
Collapse
|
12
|
Mygind L, Bergh MSS, Tejsi V, Vaitheeswaran R, Lambertsen KL, Finsen B, Metaxas A. Tumor Necrosis Factor (TNF) Is Required for Spatial Learning and Memory in Male Mice under Physiological, but Not Immune-Challenged Conditions. Cells 2021; 10:608. [PMID: 33803476 PMCID: PMC8002217 DOI: 10.3390/cells10030608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence demonstrates that inflammatory cytokines-such as tumor necrosis factor (TNF)-are produced at low levels in the brain under physiological conditions and may be crucial for synaptic plasticity, neurogenesis, learning and memory. Here, we examined the effects of developmental TNF deletion on spatial learning and memory using 11-13-month-old TNF knockout (KO) and C57BL6/J wild-type (WT) mice. The animals were tested in the Barnes maze (BM) arena under baseline conditions and 48 h following an injection of the endotoxin lipopolysaccharide (LPS), which was administered at a dose of 0.5 mg/kg. Vehicle-treated KO mice were impaired compared to WT mice during the acquisition and memory-probing phases of the BM test. No behavioral differences were observed between WT and TNF-KO mice after LPS treatment. Moreover, there were no differences in the hippocampal content of glutamate and noradrenaline between groups. The effects of TNF deletion on spatial learning and memory were observed in male, but not female mice, which were not different compared to WT mice under baseline conditions. These results indicate that TNF is required for spatial learning and memory in male mice under physiological, non-inflammatory conditions, however not following the administration of LPS. Inflammatory signalling can thereby modulate spatial cognition in male subjects, highlighting the importance of sex- and probably age-stratified analysis when examining the role of TNF in the brain.
Collapse
Affiliation(s)
- Leda Mygind
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense C, Denmark; (L.M.); (V.T.); (R.V.); (K.L.L.)
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense C, Denmark
| | - Marianne Skov-Skov Bergh
- Department of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Loviseberggata, 60456 Oslo, Norway;
| | - Vivien Tejsi
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense C, Denmark; (L.M.); (V.T.); (R.V.); (K.L.L.)
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense C, Denmark
| | - Ramanan Vaitheeswaran
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense C, Denmark; (L.M.); (V.T.); (R.V.); (K.L.L.)
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense C, Denmark
| | - Kate L. Lambertsen
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense C, Denmark; (L.M.); (V.T.); (R.V.); (K.L.L.)
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense C, Denmark
- Department of Neurology, Odense University Hospital, J.B. Winsløws Vej 4, DK-5000 Odense C, Denmark
| | - Bente Finsen
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense C, Denmark; (L.M.); (V.T.); (R.V.); (K.L.L.)
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense C, Denmark
| | - Athanasios Metaxas
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense C, Denmark; (L.M.); (V.T.); (R.V.); (K.L.L.)
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense C, Denmark
- School of Science, Department of Life Sciences, European University Cyprus, 6 Diogenis Str., Nicosia 1516, Cyprus
| |
Collapse
|
13
|
Deng S, Jin P, Sherchan P, Liu S, Cui Y, Huang L, Zhang JH, Gong Y, Tang J. Recombinant CCL17-dependent CCR4 activation alleviates neuroinflammation and neuronal apoptosis through the PI3K/AKT/Foxo1 signaling pathway after ICH in mice. J Neuroinflammation 2021; 18:62. [PMID: 33648537 PMCID: PMC7923481 DOI: 10.1186/s12974-021-02112-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Background Intracerebral hemorrhage (ICH), a devastating subtype of stroke, is associated with high mortality and morbidity. Neuroinflammation is an important factor leading to ICH-induced neurological injuries. C-C Chemokine Receptor 4 (CCR4) plays an important role in enhancing hematoma clearance after ICH. However, it is unclear whether CCR4 activation can ameliorate neuroinflammation and apoptosis of neurons following ICH. The aim of the present study was to examine the effects of recombinant CCL17 (rCCL17)-dependent CCR4 activation on neuroinflammation and neuronal apoptosis in an intrastriatal autologous blood injection ICH model, and to determine whether the PI3K/AKT/Foxo1 signaling pathway was involved. Methods Two hundred twenty-six adult (8-week-old) male CD1 mice were randomly assigned to sham and ICH surgery groups. An intrastriatal autologous blood injection ICH model was used. rCCL17, a CCR4 ligand, was delivered by intranasal administration at 1 h, 3 h, and 6 h post-ICH. CCL17 antibody was administrated by intraventricular injection at 1 h post-ICH. C021, a specific inhibitor of CCR4 and GDC0068, an AKT inhibitor were delivered intraperitoneally 1 h prior to ICH induction. Brain edema, neurobehavioral assessments, western blotting, Fluoro-Jade C staining, terminal deoxynucleotidyl transferase dUTP nick end labeling, and immunofluorescence staining were conducted. Results Endogenous expression of CCL17 and CCR4 were increased following ICH, peaking at 5 days post-induction. CCR4 was found to co-localize with microglia, neurons, and astrocytes. rCCL17 treatment decreased brain water content, attenuated short- and long-term neurological deficits, deceased activation of microglia/macrophages and infiltration of neutrophils, and inhibited neuronal apoptosis in the perihematomal region post-ICH. Moreover, rCCL17 treatment post-ICH significantly increased the expression of CCR4, PI3K, phosphorylated AKT, and Bcl-2, while Foxo1, IL-1β, TNF-α, and Bax expression were decreased. The neuroprotective effects of rCCL17 were reversed with the administration of C021 or GDC0068. Conclusions rCCL17-dependent CCR4 activation ameliorated neurological deficits, reduced brain edema, and ameliorated neuroinflammation and neuronal apoptosis, at least in part, through the PI3K/AKT/Foxo1 signaling pathway after ICH. Thus, activation of CCR4 may provide a promising therapeutic approach for the early management of ICH. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02112-3.
Collapse
Affiliation(s)
- Shuixiang Deng
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, 12 middle WuLuMuQi, Shanghai, 200040, China.,Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Peng Jin
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, 12 middle WuLuMuQi, Shanghai, 200040, China.,Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Shengpeng Liu
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Yuhui Cui
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Ye Gong
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, 12 middle WuLuMuQi, Shanghai, 200040, China. .,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.
| |
Collapse
|
14
|
Machida H, Inoue S, Shibata Y, Kimura T, Sato K, Abe K, Murano H, Yang S, Nakano H, Sato M, Nemoto T, Sato C, Nishiwaki M, Yamauchi K, Igarashi A, Tokairin Y, Watanabe M. Thymus and activation-regulated chemokine (TARC/CCL17) predicts decline of pulmonary function in patients with chronic obstructive pulmonary disease. Allergol Int 2021; 70:81-88. [PMID: 32444304 DOI: 10.1016/j.alit.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The deterioration of pulmonary function, such as FEV1-decline, is strongly associated with poor prognosis in patients with chronic obstructive pulmonary disease (COPD). However, few investigations shed light on useful biomarkers for predicting the decline of pulmonary function. We evaluated whether thymus and activation-regulated chemokine (TARC), a Th2 inflammation marker, could predict rapid FEV1-decline in COPD patients. METHODS We recruited 161 patients with stable COPD and performed pulmonary function test once every six months. At the time of registration, blood tests, including serum levels of TARC were performed. We assessed the correlation between changes in parameters of pulmonary function tests and serum levels of TARC. The rapid-decline in pulmonary function was determined using 25th percentile of change in FEV1 or FEV1 percent predicted (%FEV1) per year. RESULTS In the FEV1-rapid-decline group, the frequency of exacerbations, the degree of emphysema, and serum levels of TARC was higher than in the non-rapid-decline group. When using %FEV1 as a classifier instead of FEV1, age, the frequency of exacerbations, the degree of emphysema and serum levels of TARC in the rapid-decline group was significantly greater than those in the non-rapid-decline group. In univariate logistic regression analysis, TARC was the significant predictive factor for rapid-decline group. In multivariate analysis adjusted for emphysema, serum levels of TARC are independently significant predicting factors for the rapid-decline group. CONCLUSIONS TARC is an independent predictive biomarker for the rapid-decline in FEV1. Measuring serum TARC levels may help the management of COPD patients by predicting the risk of FEV1 decline.
Collapse
|
15
|
Zhang X, Zhao H, Shi X, Jia X, Yang Y. Identification and validation of an immune-related gene signature predictive of overall survival in colon cancer. Aging (Albany NY) 2020; 12:26095-26120. [PMID: 33401247 PMCID: PMC7803520 DOI: 10.18632/aging.202317] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
The heterogeneity and complexity of tumor-immune microenvironments lead to diverse immunotherapy effects among colon cancer patients. It is crucial to identify immune microenvironment-related biomarkers and construct prognostic risk models. In this study, the immune and stromal scores of 415 cases from TCGA were calculated using the ESTIMATE algorithm. AXIN2, CCL22, CLEC10A, CRIP2, RUNX3, and TRPM5 were screened and established a prognostic immune-related gene (IRG) signature using by univariate, LASSO, and multivariate Cox regression models. The predicted performance of IRG signature was external validated by GSE39582 (n=519). Stratified survival analysis showed IRG signature was an effective predictor of survival in patients with different clinical characteristics. The protein expression level of six genes was validated by immunohistochemistry analysis. Difference analysis indicated the mutation rate, immune cell of resting NK cells and regulatory T cells infiltration and four immune checkpoints of PD-1, PD-L1, LAG3 and VSIR expression levels in the high-risk group were significantly higher than those in the low-risk group. A nomogram incorporating the gene signatures and clinical factors was demonstrated had a good accuracy (1-, 3-, and 5-year AUC= 0.799, 0.791, 0.738). Our study identified a novel IRG signature, which may provide some references for the clinical precision immunotherapy of patients.
Collapse
Affiliation(s)
- Xuening Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hao Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xuezhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaocan Jia
- Zhengzhou University Library, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
16
|
Lee KMC, Jarnicki A, Achuthan A, Fleetwood AJ, Anderson GP, Ellson C, Feeney M, Modis LK, Smith JE, Hamilton JA, Cook A. CCL17 in Inflammation and Pain. THE JOURNAL OF IMMUNOLOGY 2020; 205:213-222. [PMID: 32461237 DOI: 10.4049/jimmunol.2000315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
It has been reported that a GM-CSF→CCL17 pathway, originally identified in vitro in macrophage lineage populations, is implicated in the control of inflammatory pain, as well as arthritic pain and disease. We explore, in this study and in various inflammation models, the cellular CCL17 expression and its GM-CSF dependence as well as the function of CCL17 in inflammation and pain. This study used models allowing the convenient cell isolation from Ccl17E/+ reporter mice; it also exploited both CCL17-dependent and unique CCL17-driven inflammatory pain and arthritis models, the latter permitting a radiation chimera approach to help identify the CCL17 responding cell type(s) and the mediators downstream of CCL17 in the control of inflammation and pain. We present evidence that 1) in the particular inflammation models studied, CCL17 expression is predominantly in macrophage lineage populations and is GM-CSF dependent, 2) for its action in arthritic pain and disease development, CCL17 acts on CCR4+ non-bone marrow-derived cells, and 3) for inflammatory pain development in which a GM-CSF→CCL17 pathway appears critical, nerve growth factor, CGRP, and substance P all appear to be required.
Collapse
Affiliation(s)
- Kevin M-C Lee
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia;
| | - Andrew Jarnicki
- Department of Pharmacology, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Adrian Achuthan
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Andrew J Fleetwood
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Gary P Anderson
- Department of Pharmacology, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Christian Ellson
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - Maria Feeney
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - Louise K Modis
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - Julia E Smith
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - John A Hamilton
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St. Albans, Victoria 3021, Australia
| | - Andrew Cook
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
17
|
Françozo MCS, Costa FRC, Guerra-Gomes IC, Silva JS, Sesti-Costa R. Dendritic cells and regulatory T cells expressing CCR4 provide resistance to coxsackievirus B5-induced pancreatitis. Sci Rep 2019; 9:14766. [PMID: 31611578 PMCID: PMC6791842 DOI: 10.1038/s41598-019-51311-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Type B coxsackieviruses (CVB) are enteroviruses responsible for a common infectious myocarditis and pancreatitis. DCs and regulatory T cells (Tregs) are key players in controlling virus replication and regulating the immune response and tissue damage, respectively. However, the mechanisms underlying cellular migration to target tissues remain unclear. In the present study, we found that CVB5 infection induced CCL17 production and controlled the migration of CCR4+ DCs and CCR4+ Tregs to the pancreatic lymph nodes (pLN). CVB5 infection of CCR4-/- mice reduced the migration of the CD8α+ DC subset and reduced DC activation and production of IFN-β and IL-12. Consequently, CCR4-/- mice presented decreased IFN-γ-producing CD4+ and CD8+ T cells, an increased viral load and more severe pancreatitis. In addition, CCR4-/- mice had impaired Treg accumulation in pLN as well as increased T lymphocyte activation. Adoptive transfer of CCR4+ Tregs but not CCR4- Tregs was able to regulate T lymphocyte activation upon CVB5 infection. The present data reveal a previously unknown role for CCR4 in coordinating immune cell migration to CVB-infected tissues and in controlling subsequent pancreatitis. These new insights may contribute to the design of future therapies for acute and chronic infection of non-polio enteroviruses.
Collapse
Affiliation(s)
| | - Frederico R C Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Isabel C Guerra-Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil. .,Fiocruz- Bi-Institutional Translational Medicine Project, Ribeirão Preto, São Paulo, Brazil.
| | - Renata Sesti-Costa
- Hematology Center, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
18
|
Knipfer L, Schulz-Kuhnt A, Kindermann M, Greif V, Symowski C, Voehringer D, Neurath MF, Atreya I, Wirtz S. A CCL1/CCR8-dependent feed-forward mechanism drives ILC2 functions in type 2-mediated inflammation. J Exp Med 2019; 216:2763-2777. [PMID: 31537642 PMCID: PMC6888976 DOI: 10.1084/jem.20182111] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/17/2019] [Accepted: 09/03/2019] [Indexed: 01/03/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) possess indispensable roles during type 2-mediated inflammatory diseases. Although their physiological and detrimental immune functions seem to depend on the anatomical compartment they reside, their tissue tropism and the molecular and immunological processes regulating the self-renewal of the local pool of ILC2s in the context of inflammation or infection are incompletely understood. Here, we analyzed the role of the CC-chemokine receptor CCR8 for the biological functions of ILC2s. In vitro and in vivo experiments indicated that CCR8 is in comparison to the related molecule CCR4 less important for migration of these cells. However, we found that activated mouse and human ILC2s produce the CCR8 ligand CCL1 and are a major source of CCL1 in vivo. CCL1 signaling to ILC2s regulates their proliferation and supports their capacity to protect against helminthic infections. In summary, we identify a novel chemokine receptor-dependent mechanism by which ILC2s are regulated during type 2 responses.
Collapse
Affiliation(s)
- Lisa Knipfer
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Anja Schulz-Kuhnt
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Markus Kindermann
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Vicky Greif
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Cornelia Symowski
- Department of Infection Biology, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| |
Collapse
|
19
|
Hanakawa S, Kitoh A, Shibuya R, Dainichi T, Nomura T, Honda T, Egawa G, Otsuka A, Nakajima S, Fujita M, Kabashima K. Percutaneous sensitization is limited by in situ inhibition of cutaneous dendritic cell migration through skin-resident regulatory T cells. J Allergy Clin Immunol 2019; 144:1343-1353.e8. [PMID: 31194988 DOI: 10.1016/j.jaci.2019.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Percutaneous sensitization is associated with various allergic diseases, including asthma and food allergies. However, the immunologic mechanisms underlying how the skin regulates percutaneous sensitization are still unclear. OBJECTIVE We aimed to investigate whether and how CD4+Foxp3+ regulatory T (Treg) cells residing in the skin regulate percutaneous sensitization in the skin. METHODS Selective reduction of numbers of cutaneous Treg cells was achieved by means of intradermal injection of diphtheria toxin into the ear skin of Foxp3DTR mice, in which Treg cells specifically express the diphtheria toxin receptor fused with green fluorescent protein. RESULTS Thirty percent to 40% of cutaneous Treg cells were capable of IL-10 production in both mice and human subjects. Selective reduction of cutaneous Treg cells at the sensitization site promoted migration of antigen-bearing dendritic cells (DCs) to the draining lymph nodes (dLNs). Accordingly, sensitization through the skin with reduced numbers of Treg cells led to enhanced antigen-specific immune responses in the dLNs, including both effector T-cell differentiation and T cell-dependent B-cell responses, such as the development of germinal center B cells expressing IgG1 and IgE. Furthermore, antigen-bearing cutaneous DC migration was enhanced in mice with IL-10 deficiency restricted to the cutaneous Treg cell compartment, suggesting an important role of cutaneous IL-10+ Treg cells in limiting percutaneous sensitization. Treg cells with a skin-homing phenotype in skin dLNs expressed high levels of IL-10, suggesting that they contribute to renewal and maintenance of the cutaneous IL-10+ Treg cell population. CONCLUSION Skin-resident Treg cells limit percutaneous sensitization by suppressing antigen-bearing DC migration through in situ IL-10 production.
Collapse
Affiliation(s)
- Sho Hanakawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Rintaro Shibuya
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
20
|
Galvão-Filho B, de Castro JT, Figueiredo MM, Rosmaninho CG, Antonelli LRDV, Gazzinelli RT. The emergence of pathogenic TNF/iNOS producing dendritic cells (Tip-DCs) in a malaria model of acute respiratory distress syndrome (ARDS) is dependent on CCR4. Mucosal Immunol 2019; 12:312-322. [PMID: 30337650 PMCID: PMC6375779 DOI: 10.1038/s41385-018-0093-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 02/04/2023]
Abstract
Malaria-associated acute respiratory distress syndrome (MA-ARDS) and acute lung injury (ALI) are complications that cause lung damage and often leads to death. The MA-ARDS/ALI is associated with a Type 1 inflammatory response mediated by T lymphocytes and IFN-γ. Here, we used the Plasmodium berghei NK65 (PbN)-induced MA-ALI/ARDS model that resembles human disease and confirmed that lung CD4+ and CD8+ T cells predominantly expressed Tbet and IFN-γ. Surprisingly, we found that development of MA-ALI/ARDS was dependent on functional CCR4, known to mediate the recruitment of Th2 lymphocytes and regulatory T cells. However, in this Type 1 inflammation-ARDS model, CCR4 was not involved in the recruitment of T lymphocytes, but was required for the emergence of TNF-α/iNOS producing dendritic cells (Tip-DCs) in the lungs. In contrast, recruitment of Tip-DCs and development of MA-ALI/ARDS were not altered in CCR2-/- mice. Importantly, we showed that NOS2-/- mice are resistant to PbN-induced lung damage, indicating that reactive nitrogen species produced by Tip-DCs play an essential role in inducing MA-ARDS/ALI. Lastly, our experiments suggest that production of IFN-γ primarily by CD8+ T cells is required for inducing Tip-DCs differentiation in the lungs and the development of MA-ALI/ARDS model.
Collapse
Affiliation(s)
- Bruno Galvão-Filho
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil,Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Júlia Teixeira de Castro
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Maria Marta Figueiredo
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Claudio Gonçalves Rosmaninho
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Lis Ribeiro do Valle Antonelli
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil,Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto Rene Rachou, FIOCRUZ-MG, 30190-002, Belo Horizonte, MG, Brazil
| | - Ricardo Tostes Gazzinelli
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil,Department of Medicine, University of Massachusetts Medical School, 01605, Worcester, MA, USA,Plataforma de Medicinal Translacional-Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto-Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Fülle L, Offermann N, Hansen JN, Breithausen B, Erazo AB, Schanz O, Radau L, Gondorf F, Knöpper K, Alferink J, Abdullah Z, Neumann H, Weighardt H, Henneberger C, Halle A, Förster I. CCL17 exerts a neuroimmune modulatory function and is expressed in hippocampal neurons. Glia 2018; 66:2246-2261. [DOI: 10.1002/glia.23507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Lorenz Fülle
- Immunology & Environment; Life and Medical Sciences (LIMES) Institute, University of Bonn; Bonn Germany
| | - Nina Offermann
- Immunology & Environment; Life and Medical Sciences (LIMES) Institute, University of Bonn; Bonn Germany
| | - Jan Niklas Hansen
- Neuroimmunology, Center of Advanced European Studies and Research (CAESAR); Bonn Germany
| | - Björn Breithausen
- Institute of Cellular Neurosciences; University of Bonn Medical School; Bonn Germany
| | - Anna Belen Erazo
- Immunology & Environment; Life and Medical Sciences (LIMES) Institute, University of Bonn; Bonn Germany
| | - Oliver Schanz
- Immunology & Environment; Life and Medical Sciences (LIMES) Institute, University of Bonn; Bonn Germany
| | - Luca Radau
- Immunology & Environment; Life and Medical Sciences (LIMES) Institute, University of Bonn; Bonn Germany
| | - Fabian Gondorf
- Immunology & Environment; Life and Medical Sciences (LIMES) Institute, University of Bonn; Bonn Germany
| | - Konrad Knöpper
- Immunology & Environment; Life and Medical Sciences (LIMES) Institute, University of Bonn; Bonn Germany
| | - Judith Alferink
- Department of Psychiatry; University of Münster; Münster Germany
| | - Zeinab Abdullah
- Institute of Experimental Immunology and Molecular Medicine; University of Bonn; Bonn Germany
| | - Harald Neumann
- Neural Regeneration Group, Institute of Reconstructive Neurobiology; University of Bonn; Bonn Germany
| | - Heike Weighardt
- Immunology & Environment; Life and Medical Sciences (LIMES) Institute, University of Bonn; Bonn Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences; University of Bonn Medical School; Bonn Germany
- Institute of Neurology; University College London; London United Kingdom
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Annett Halle
- Neuroimmunology, Center of Advanced European Studies and Research (CAESAR); Bonn Germany
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Irmgard Förster
- Immunology & Environment; Life and Medical Sciences (LIMES) Institute, University of Bonn; Bonn Germany
| |
Collapse
|
22
|
Ruytinx P, Proost P, Van Damme J, Struyf S. Chemokine-Induced Macrophage Polarization in Inflammatory Conditions. Front Immunol 2018; 9:1930. [PMID: 30245686 PMCID: PMC6137099 DOI: 10.3389/fimmu.2018.01930] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
Macrophages represent a heterogeneous cell population and are known to display a remarkable plasticity. In response to distinct micro-environmental stimuli, e.g., tumor stroma vs. infected tissue, they polarize into different cell subtypes. Originally, two subpopulations were defined: classically activated macrophages or M1, and alternatively activated macrophages or M2. Nowadays, the M1/M2 classification is considered as an oversimplified approach that does not adequately cover the total spectrum of macrophage phenotypes observed in vivo. Especially in pathological circumstances, macrophages behave as plastic cells modifying their expression and transcription profile along a continuous spectrum with M1 and M2 phenotypes as extremes. Here, we focus on the effect of chemokines on macrophage differentiation and polarization in physiological and pathological conditions. In particular, we discuss chemokine-induced macrophage polarization in inflammatory diseases, including obesity, cancer, and atherosclerosis.
Collapse
Affiliation(s)
- Pieter Ruytinx
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, REGA Institute KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, REGA Institute KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, REGA Institute KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, REGA Institute KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Lin R, Choi YH, Zidar DA, Walker JKL. β-Arrestin-2-Dependent Signaling Promotes CCR4-mediated Chemotaxis of Murine T-Helper Type 2 Cells. Am J Respir Cell Mol Biol 2018; 58:745-755. [PMID: 29361236 PMCID: PMC6002661 DOI: 10.1165/rcmb.2017-0240oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/10/2017] [Indexed: 12/24/2022] Open
Abstract
Allergic asthma is a complex inflammatory disease that leads to significant healthcare costs and reduction in quality of life. Although many cell types are implicated in the pathogenesis of asthma, CD4+ T-helper cell type 2 (Th2) cells are centrally involved. We previously reported that the asthma phenotype is virtually absent in ovalbumin-sensitized and -challenged mice that lack global expression of β-arrestin (β-arr)-2 and that CD4+ T cells from these mice displayed significantly reduced CCL22-mediated chemotaxis. Because CCL22-mediated activation of CCR4 plays a role in Th2 cell regulation in asthmatic inflammation, we hypothesized that CCR4-mediated migration of CD4+ Th2 cells to the lung in asthma may use β-arr-dependent signaling. To test this hypothesis, we assessed the effect of various signaling inhibitors on CCL22-induced chemotaxis using in vitro-polarized primary CD4+ Th2 cells from β-arr2-knockout and wild-type mice. Our results show, for the first time, that CCL22-induced, CCR4-mediated Th2 cell chemotaxis is dependent, in part, on a β-arr2-dependent signaling pathway. In addition, we show that this chemotactic signaling mechanism involves activation of P-p38 and Rho-associated protein kinase. These findings point to a proinflammatory role for β-arr2-dependent signaling and support β-arr2 as a novel therapeutic target in asthma.
Collapse
Affiliation(s)
- Rui Lin
- Duke University Division of Pulmonary Medicine and
| | - Yeon ho Choi
- Duke University Division of Pulmonary Medicine and
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Julia K. L. Walker
- Duke University Division of Pulmonary Medicine and
- Duke University School of Nursing, Duke University, Durham, North Carolina; and
| |
Collapse
|
24
|
Lee MC, Saleh R, Achuthan A, Fleetwood AJ, Förster I, Hamilton JA, Cook AD. CCL17 blockade as a therapy for osteoarthritis pain and disease. Arthritis Res Ther 2018; 20:62. [PMID: 29622035 PMCID: PMC5887260 DOI: 10.1186/s13075-018-1560-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/06/2018] [Indexed: 01/12/2023] Open
Abstract
Background Granulocyte macrophage-colony stimulating factor (GM-CSF) has been implicated in the pathogenesis of a number of inflammatory diseases and in osteoarthritis (OA). We identified previously a new GM-CSF→Jmjd3→interferon regulatory factor 4 (IRF4)→chemokine (c-c motif) ligand 17 (CCL17) pathway, which is important for the development of inflammatory arthritis pain and disease. Tumour necrosis factor (TNF) can also be linked with this pathway. Here we investigated the involvement of the pathway in OA pain and disease development using the GM-CSF-dependent collagenase-induced OA (CiOA) model. Methods CiOA was induced in C57BL/6 wild-type (WT), Irf4−/−, Ccl17E/E, Ccr4−/−, Tnf−/− and GM-CSF−/− mice. Additionally, therapeutic targeting of CCL17, Jmjd3 and cyclooxygenase 2 (COX-2) was evaluated. Development of pain (assessment of weight distribution) and OA disease (histologic scoring of synovitis, cartilage destruction and osteophyte size) were assessed. Synovial joint cells, including neutrophils, macrophages, fibroblasts and endothelial cells, were isolated (cell sorting) and gene expression analyzed (quantitative PCR). Results Studies in the gene-deficient mice indicated that IRF4, CCL17 and the CCL17 receptor, CCR4, but not TNF, were required for CiOA pain and optimal cartilage destruction and osteophyte size. Therapeutic neutralization of CCL17 and Jmjd3 ameliorated both pain and disease, whereas the COX-2 inhibitor only ameliorated pain. In the synovium Ccl17 mRNA was expressed only in the macrophages in a GM-CSF-dependent and IRF4-dependent manner. Conclusions The GM-CSF→Jmjd3→IRF4→CCL17 pathway is important for the development of CiOA, with CCL17 thus being a potential therapeutic target for the treatment of both OA pain and disease. Electronic supplementary material The online version of this article (10.1186/s13075-018-1560-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Chin Lee
- The University of Medicine, Department of Medicine, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
| | - Reem Saleh
- The University of Medicine, Department of Medicine, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
| | - Adrian Achuthan
- The University of Medicine, Department of Medicine, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
| | - Andrew J Fleetwood
- The University of Medicine, Department of Medicine, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - John A Hamilton
- The University of Medicine, Department of Medicine, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
| | - Andrew D Cook
- The University of Medicine, Department of Medicine, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.
| |
Collapse
|
25
|
The C-C Chemokines CCL17 and CCL22 and Their Receptor CCR4 in CNS Autoimmunity. Int J Mol Sci 2017; 18:ijms18112306. [PMID: 29099057 PMCID: PMC5713275 DOI: 10.3390/ijms18112306] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). It affects more than two million people worldwide, mainly young adults, and may lead to progressive neurological disability. Chemokines and their receptors have been shown to play critical roles in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a murine disease model induced by active immunization with myelin proteins or transfer of encephalitogenic CD4+ T cells that recapitulates clinical and neuropathological features of MS. Chemokine ligand-receptor interactions orchestrate leukocyte trafficking and influence multiple pathophysiological cellular processes, including antigen presentation and cytokine production by dendritic cells (DCs). The C-C class chemokines 17 (CCL17) and 22 (CCL22) and their C-C chemokine receptor 4 (CCR4) have been shown to play an important role in homeostasis and inflammatory responses. Here, we provide an overview of the involvement of CCR4 and its ligands in CNS autoimmunity. We review key clinical studies of MS together with experimental studies in animals that have demonstrated functional roles of CCR4, CCL17, and CCL22 in EAE pathogenesis. Finally, we discuss the therapeutic potential of newly developed CCR4 antagonists and a humanized anti-CCR4 antibody for treatment of MS.
Collapse
|
26
|
Perera LP, Zhang M, Nakagawa M, Petrus MN, Maeda M, Kadin ME, Waldmann TA, Perera PY. Chimeric antigen receptor modified T cells that target chemokine receptor CCR4 as a therapeutic modality for T-cell malignancies. Am J Hematol 2017; 92:892-901. [PMID: 28543380 DOI: 10.1002/ajh.24794] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023]
Abstract
With the emerging success of treating CD19 expressing B cell malignancies with ex vivo modified, autologous T cells that express CD19-directed chimeric antigen receptors (CAR), there is intense interest in expanding this evolving technology to develop effective modalities to treat other malignancies including solid tumors. Exploiting this approach to develop a therapeutic modality for T cell malignancies for which the available regimens are neither curative, nor confer long term survival we generated a lentivirus-based CAR gene transfer system to target the chemokine receptor CCR4 that is over-expressed in a spectrum of T cell malignancies as well as in CD4+ CD25+ Foxp3+ T regulatory cells that accumulate in the tumor microenvironment constituting a barrier against anti-tumor immunity. Ex vivo modified, donor-derived T cells that expressed CCR4 directed CAR displayed antigen-dependent potent cytotoxicity against patient-derived cell lines representing ATL, CTCL, ALCL and a subset of HDL. Furthermore, these CAR T cells also eradicated leukemia in a mouse xenograft model of ATL illustrating the potential utility of this modality in the treatment of a wide spectrum of T cell malignancies.
Collapse
Affiliation(s)
- Liyanage P. Perera
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Meili Zhang
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Masao Nakagawa
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Michael N. Petrus
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Michiyuki Maeda
- Institute for Virus Research, Kyoto University; Sakyo-ku Kyoto Japan
| | - Marshall E. Kadin
- Boston University School of Medicine, Department of Dermatology and Skin Surgery; Roger Williams Medical Center; Providence Rhode 02908
| | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Pin-Yu Perera
- Veterans Affairs Medical Center; Washington D.C. 20422 USA
| |
Collapse
|
27
|
Castan L, Magnan A, Bouchaud G. Chemokine receptors in allergic diseases. Allergy 2017; 72:682-690. [PMID: 27864967 DOI: 10.1111/all.13089] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Under homeostatic conditions, as well as in various diseases, leukocyte migration is a crucial issue for the immune system that is mainly organized through the activation of bone marrow-derived cells in various tissues. Immune cell trafficking is orchestrated by a family of small proteins called chemokines. Leukocytes express cell-surface receptors that bind to chemokines and trigger transendothelial migration. Most allergic diseases, such as asthma, rhinitis, food allergies, and atopic dermatitis, are generally classified by the tissue rather than the type of inflammation, making the chemokine/chemokine receptor system a key point of the immune response. Moreover, because small antagonists can easily block such receptors, various molecules have been developed to suppress the recruitment of immune cells during allergic reactions, representing potential new drugs for allergies. We review the chemokines and chemokine receptors that are important in asthma, food allergies, and atopic dermatitis and their respectively developed antagonists.
Collapse
Affiliation(s)
- L. Castan
- INRA; UR1268 BIA; Nantes France
- INSERM; UMR1087; lnstitut du thorax; Nantes France
- CNRS; UMR6291; Nantes France
- Université de Nantes; Nantes France
| | - A. Magnan
- INSERM; UMR1087; lnstitut du thorax; Nantes France
- CNRS; UMR6291; Nantes France
- CHU de Nantes; Service de Pneumologie; Institut du thorax; Nantes France
| | | |
Collapse
|
28
|
Ambrée O, Klassen I, Förster I, Arolt V, Scheu S, Alferink J. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice. Behav Brain Res 2016; 314:87-95. [PMID: 27469058 DOI: 10.1016/j.bbr.2016.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior.
Collapse
Affiliation(s)
- Oliver Ambrée
- Department of Psychiatry, University of Münster, Münster, Germany; Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany.
| | - Irene Klassen
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Irmgard Förster
- Immunology and Environment, Life & Medical Sciences Institute (LIMES), University of Bonn, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Department of Psychiatry, University of Münster, Münster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, University of Münster, Münster, Germany
| |
Collapse
|
29
|
Sézary Syndrome and Atopic Dermatitis: Comparison of Immunological Aspects and Targets. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9717530. [PMID: 27294147 PMCID: PMC4886049 DOI: 10.1155/2016/9717530] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/30/2016] [Indexed: 12/27/2022]
Abstract
Sézary syndrome (SS), an aggressive form of erythrodermic pruritic cutaneous T cell lymphoma (CTCL), from an immunological perspective characterized by increased Th2 cytokine levels, elevated serum IgE and impaired cellular immunity. Not only the clinical appearance but also the hallmark immunological characteristics of SS often share striking similarities with acute flares of atopic dermatitis (AD), a common benign chronic inflammatory skin disease. Given the overlap of several immunological features, the application of similar or even identical therapeutic approaches in certain stages of both diseases may come into consideration. The aim of this review is to compare currently accepted immunological aspects and possible therapeutic targets in AD and SS.
Collapse
|
30
|
Abstract
Leukocyte infiltration of the lung is a characteristic feature of allergic asthma and it is thought that these cells are selectively recruited by chemokines. Extensive research has confirmed that chemokine receptors are expressed on the main cell types involved in asthma, including eosinophils, T helper type 2 cells, mast cells and even neutrophils. Moreover, animal experiments have outlined a functional role for these receptors and their ligands. Chemokines signal via seven-transmembrane spanning G-protein coupled receptors, which are favored targets of the pharmaceutical industry due to the possibility of designing small-molecule inhibitors. In fact, this family represents the first group of cytokines where small-molecule inhibitors have been designed. However, the search for efficient antagonists of chemokine/chemokine receptors has not been easy; a particular feature of the chemokine system is the number of molecules with overlapping functions and binding specificities, as well as the difficulty in reconciling the in vivo biologic functional validation of chemokines in rodent models with the development of antagonists which bind the human receptor, because of the lack of species cross-reactivity. The chemokines and their receptors that are active during allergic reactions are reviewed. Possible points of interaction that may be a target for development of new therapies, as well as the progress to date in developing inhibitors of key chemokine receptors for asthma therapy, are also discussed.
Collapse
Affiliation(s)
- Clare M Lloyd
- Leukocyte Biology Section, NHLI, Faculty of Medicine, Imperial College, London, England
| | | |
Collapse
|
31
|
McLane JS, Ligon LA. Palladin mediates stiffness-induced fibroblast activation in the tumor microenvironment. Biophys J 2016. [PMID: 26200861 DOI: 10.1016/j.bpj.2015.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mechanical properties of the tumor microenvironment have emerged as key factors in tumor progression. It has been proposed that increased tissue stiffness can transform stromal fibroblasts into carcinoma-associated fibroblasts. However, it is unclear whether the three to five times increase in stiffness seen in tumor-adjacent stroma is sufficient for fibroblast activation. In this study we developed a three-dimensional (3D) hydrogel model with precisely tunable stiffness and show that a physiologically relevant increase in stiffness is sufficient to lead to fibroblast activation. We found that soluble factors including CC-motif chemokine ligand (CCL) chemokines and fibronectin are necessary for this activation, and the combination of C-C chemokine receptor type 4 (CCR4) chemokine receptors and β1 and β3 integrins are necessary to transduce these chemomechanical signals. We then show that these chemomechanical signals lead to the gene expression changes associated with fibroblast activation via a network of intracellular signaling pathways that include focal adhesion kinase (FAK) and phosphoinositide 3-kinase (PI3K). Finally, we identify the actin-associated protein palladin as a key node in these signaling pathways that result in fibroblast activation.
Collapse
Affiliation(s)
- Joshua S McLane
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Lee A Ligon
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York.
| |
Collapse
|
32
|
Santulli-Marotto S, Wheeler J, Lacy ER, Boakye K, Luongo J, Wu SJ, Ryan M. CCL22-specific Antibodies Reveal That Engagement of Two Distinct Binding Domains on CCL22 Is Required for CCR4-mediated Function. Monoclon Antib Immunodiagn Immunother 2015; 34:373-80. [DOI: 10.1089/mab.2015.0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - John Wheeler
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Eilyn R. Lacy
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Ken Boakye
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Jennifer Luongo
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Sheng-Jiun Wu
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Mary Ryan
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| |
Collapse
|
33
|
Abboud D, Daubeuf F, Do QT, Utard V, Villa P, Haiech J, Bonnet D, Hibert M, Bernard P, Galzi JL, Frossard N. A strategy to discover decoy chemokine ligands with an anti-inflammatory activity. Sci Rep 2015; 5:14746. [PMID: 26442456 PMCID: PMC4595804 DOI: 10.1038/srep14746] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/12/2015] [Indexed: 01/10/2023] Open
Abstract
Excessive signaling by chemokines has been associated with chronic inflammation or cancer, thus attracting substantial attention as promising therapeutic targets. Inspired by chemokine-clearing molecules shaped by pathogens to escape the immune system, we designed a generic screening assay to discover chemokine neutralizing molecules (neutraligands) and unambiguously distinguish them from molecules that block the receptor (receptor antagonists). This assay, called TRIC-r, combines time-resolved intracellular calcium recordings with pre-incubation of bioactive compounds either with the chemokine or the receptor-expressing cells. We describe here the identification of high affinity neutraligands of CCL17 and CCL22, two chemokines involved in the Th2-type of lung inflammation. The decoy molecules inhibit in vitro CCL17- or CCL22-induced intracellular calcium responses, CCR4 endocytosis and human T cell migration. In vivo, they inhibit inflammation in a murine model of asthma, in particular the recruitment of eosinophils, dendritic cells and CD4+T cells. Altogether, we developed a successful strategy to discover as new class of pharmacological tools to potently control cell chemotaxis in vitro and in vivo.
Collapse
Affiliation(s)
- Dayana Abboud
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS/Université de Strasbourg, and Labex Medalis, ESBS, 300 Boulevard Sébastien Brant, 67412 Illkirch, France
| | - François Daubeuf
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, and Labex Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Quoc Tuan Do
- GreenPharma, 3 allée du Titane, 45100 Orléans, France
| | - Valérie Utard
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS/Université de Strasbourg, and Labex Medalis, ESBS, 300 Boulevard Sébastien Brant, 67412 Illkirch, France
| | - Pascal Villa
- PCBIS Plate-forme de Chimie Biologique Intégrative de Strasbourg, UMS 3286 CNRS/Université de Strasbourg, and Labex Medalis, ESBS, 300 Boulevard Sébastien Brant, 67412 Illkirch, France
| | - Jacques Haiech
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, and Labex Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, and Labex Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Marcel Hibert
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, and Labex Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | | | - Jean-Luc Galzi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS/Université de Strasbourg, and Labex Medalis, ESBS, 300 Boulevard Sébastien Brant, 67412 Illkirch, France
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, and Labex Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
34
|
Hu Z, Lancaster JN, Sasiponganan C, Ehrlich LIR. CCR4 promotes medullary entry and thymocyte-dendritic cell interactions required for central tolerance. ACTA ACUST UNITED AC 2015; 212:1947-65. [PMID: 26417005 PMCID: PMC4612092 DOI: 10.1084/jem.20150178] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/20/2015] [Indexed: 11/24/2022]
Abstract
Hu et al. show that the chemokine receptor CCR4 is involved in thymocyte medullary entry, interactions with dendritic cells, and negative selection. In the absence of CCR4, central tolerance is not established, promoting autoimmunity. Autoimmunity results from a breakdown in central or peripheral tolerance. To establish central tolerance, developing T cells must enter the thymic medulla, where they scan antigen-presenting cells (APCs) displaying a diverse array of autoantigens. If a thymocyte is activated by a self-antigen, the cell undergoes either deletion or diversion into the regulatory T cell (T reg) lineage, thus maintaining self-tolerance. Mechanisms promoting thymocyte medullary entry and interactions with APCs are incompletely understood. CCR4 is poised to contribute to central tolerance due to its expression by post-positive selection thymocytes, and expression of its ligands by medullary thymic dendritic cells (DCs). Here, we use two-photon time-lapse microscopy to demonstrate that CCR4 promotes medullary entry of the earliest post-positive selection thymocytes, as well as efficient interactions between medullary thymocytes and DCs. In keeping with the contribution of thymic DCs to central tolerance, CCR4 is involved in regulating negative selection of polyclonal and T cell receptor (TCR) transgenic thymocytes. In the absence of CCR4, autoreactive T cells accumulate in secondary lymphoid organs and autoimmunity ensues. These studies reveal a previously unappreciated role for CCR4 in the establishment of central tolerance.
Collapse
Affiliation(s)
- Zicheng Hu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Jessica N Lancaster
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Chayanit Sasiponganan
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
35
|
Solari R, Pease JE. Targeting chemokine receptors in disease--a case study of CCR4. Eur J Pharmacol 2015; 763:169-77. [PMID: 25981299 PMCID: PMC4784718 DOI: 10.1016/j.ejphar.2015.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/17/2015] [Accepted: 05/12/2015] [Indexed: 01/14/2023]
Abstract
Since their early 1990s, the chemokine receptor family of G protein-coupled receptors (GPCRs) has been the source of much pharmacological endeavour. Best known for their key roles in recruiting leukocytes to sites of infection and inflammation, the receptors present themselves as plausible drug targets for therapeutic intervention. In this article, we will focus our attention upon CC Chemokine Receptor Four (CCR4) which has been implicated in diseases as diverse as allergic asthma and lymphoma. We will review the discovery of the receptors and their ligands, their perceived roles in disease and the successful targeting of CCR4 by both small molecule antagonists and monoclonal antibodies. We will also discuss future directions and strategies for drug discovery in this field.
Collapse
Affiliation(s)
- Roberto Solari
- Airway Disease Infection Section, MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom
| | - James E Pease
- Leukocyte Biology Section, MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
36
|
Molinaro R, Pecli C, Guilherme RF, Alves-Filho JC, Cunha FQ, Canetti C, Kunkel SL, Bozza MT, Benjamim CF. CCR4 Controls the Suppressive Effects of Regulatory T Cells on Early and Late Events during Severe Sepsis. PLoS One 2015. [PMID: 26197455 PMCID: PMC4511514 DOI: 10.1371/journal.pone.0133227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sepsis is a deadly disease characterized by an overwhelming release of inflammatory mediators and the activation of different types of cells. This altered state of cell activation, termed leukocyte reprogramming, contributes to patient outcome. However, the understanding of the process underlying sepsis and the role of regulatory T cells (Tregs) in sepsis remains to be elucidated. In this study, we investigated the role of CCR4, the CCL17/CCL22 chemokine receptor, in the innate and acquired immune responses during severe sepsis and the role of Tregs in effecting the outcome. In contrast with wild-type (WT) mice subjected to cecal ligation and puncture (CLP) sepsis, CCR4-deficient (CCR4-/-) septic mice presented an increased survival rate, significant neutrophil migration toward the infection site, a low bacterial count in the peritoneum, and reduced lung inflammation and serum cytokine levels. Thus, a better early host response may favor an adequate long-term response. Consequently, the CCR4-/- septic mice were not susceptible to secondary fungal infection, in contrast with the WT septic mice. Furthermore, Tregs cells from the CCR4-/- septic mice showed reduced suppressive effects on neutrophil migration (both in vivo and in vitro), lymphocyte proliferation and ROS production from activated neutrophils, in contrast with what was observed for Tregs from the WT septic mice. These data show that CCR4 is involved in immunosuppression after severe sepsis and suggest that CCR4+ Tregs negatively modulate the short and long-term immune responses.
Collapse
Affiliation(s)
- Raphael Molinaro
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cyntia Pecli
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rafael F. Guilherme
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Carlos Alves-Filho
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando Q. Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Claudio Canetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Steven L. Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, United States of America
| | - Marcelo T. Bozza
- Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia F. Benjamim
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
37
|
Macrophage-derived chemokine (CCL22) is a novel mediator of lung inflammation following hemorrhage and resuscitation. Shock 2015; 42:525-31. [PMID: 25136780 DOI: 10.1097/shk.0000000000000253] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Resuscitation of patients after hemorrhage often results in pulmonary inflammation and places them at risk for the development of acute respiratory distress syndrome. Our previous data indicate that macrophage-derived chemokine (MDC/CCL22) is elevated after resuscitation, but its direct role in this inflammatory response is unknown. Macrophage-derived chemokine signaling through the C-C chemokine receptor type 4 (CCR4) is implicated in other pulmonary proinflammatory conditions, leading us to hypothesize that MDC may also play a role in the pathogenesis of lung inflammation following hemorrhage and resuscitation. To test this, C57BL/6 mice underwent pressure-controlled hemorrhage followed by resuscitation with lactated Ringer's solution. Pulmonary inflammation and inflammatory cell recruitment were analyzed with histological staining, and serum- and tissue-level cytokines were measured by enzyme-linked immunosorbent assay. Pulmonary inflammation and cell recruitment following hemorrhage and resuscitation were associated with systemic MDC levels. Inhibition of MDC via injection of a specific neutralizing antibody prior to hemorrhage and resuscitation significantly reduced pulmonary levels of the chemotactic cytokines keratinocyte-derived chemokine and macrophage inflammatory proteins 2 and 1α, as well as inflammatory cell recruitment to the lungs. Intravenous administration of recombinant MDC prior to resuscitation augmented pulmonary inflammation and cell recruitment. Histological evaluation revealed the expression of CCR4 within the bronchial epithelium, and in vitro treatment of activated bronchial epithelial cells with MDC resulted in production and secretion of neutrophil chemokines. The present study identifies MDC as a novel mediator of lung inflammation after hemorrhage and resuscitation. Macrophage-derived chemokine neutralization may provide a therapeutic strategy to mitigate this inflammatory response.
Collapse
|
38
|
Jaguin M, Fardel O, Lecureur V. Exposure to diesel exhaust particle extracts (DEPe) impairs some polarization markers and functions of human macrophages through activation of AhR and Nrf2. PLoS One 2015; 10:e0116560. [PMID: 25710172 PMCID: PMC4339390 DOI: 10.1371/journal.pone.0116560] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
Macrophages (MΦ), well-known to play an important role in immune response, also respond to environmental toxic chemicals such as diesel exhaust particles (DEP). Potential effects of DEPs towards MΦ polarization, a key hall-mark of MΦ physiology, remain however poorly documented. This study was therefore designed to evaluate the effects of a reference DEP extract (DEPe) on human MΦ polarization. Human blood monocytes-derived MΦ were incubated with IFNγ+LPS or IL-4 to obtain M1 and M2 subtypes, respectively; a 24 h exposure of polarizing MΦ to 10 μg/ml DEPe was found to impair expression of some macrophagic M1 and M2 markers, without however overall inhibition of M1 and M2 polarization processes. Notably, DEPe treatment increased the secretion of the M1 marker IL-8 and the M2 marker IL-10 in both MΦ subtypes, whereas it reduced lipopolysaccharide-induced IL-6 and IL-12p40 secretion in M1 MΦ. In M2 MΦ, DEPe exposure led to a reduction of CD200R expression and of CCL17, CCL18 and CCL22 secretion, associated with a lower chemotaxis of CCR4-positive cells. DEPe activated the Nrf2 and AhR pathways and induced expression of their reference target genes such as Hmox-1 and cytochrome P-4501B1 in M1 and M2 MΦ. Nrf2 or AhR silencing through RNA interference prevented DEPe-related down-regulation of IL-6. AhR silencing also inhibited the down-secretion of IL-12p40 and CCL18 in M1- and M2-DEPe-exposed MΦ, respectively. DEPs are therefore likely to alter expression of some M1 and M2 markers in an AhR- and Nrf2-dependent manner; such regulations may contribute to deleterious immune effects of atmospheric DEP.
Collapse
Affiliation(s)
- Marie Jaguin
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
| | - Olivier Fardel
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Valérie Lecureur
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
- * E-mail:
| |
Collapse
|
39
|
Gadhe CG, Kim MH. Insights into the binding modes of CC chemokine receptor 4 (CCR4) inhibitors: a combined approach involving homology modelling, docking, and molecular dynamics simulation studies. MOLECULAR BIOSYSTEMS 2014; 11:618-34. [PMID: 25474265 DOI: 10.1039/c4mb00568f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CC chemokine receptor 4 (CCR4), a G protein-coupled receptor (GPCR), plays a vital role in the progression of asthma, T-cell lymphoma, inflammation, and Alzheimer's disease. To date, the structure of CCR4 has not been determined. Therefore, the nature of the interactions between inhibitors and CCR4 is not well known. In this study, we used CCR5 as a template to model the structure of CCR4. Docking studies were performed for four naphthalene-sulphonamide derivatives and crucial ligand-protein interactions were analysed. Molecular dynamics (MD) simulations of these complexes (100 ns each) were carried out to gain insights into the interactions between ligands and CCR4. MD simulations revealed that the residues identified by the docking were displaced and new residues were inserted near the ligands. Results of a principal component analysis (PCA) suggested that CCR4 unfolds at the extracellular site surrounding the ligands. Our simulations identified crucial residues involved in CCR4 antagonism, which were supported by previous mutational studies. Additionally, we identified Ser3.29, Leu3.33, Ser5.39, Phe6.47, Ile7.35, Thr7.38, Thr7.40, and Ala7.42 as residues that play crucial roles in CCR4 antagonism. Mutational studies will help elucidate the significance of these residues in CCR4 antagonism. An understanding of ligand-CCR4 interactions might aid in the design of novel CCR4 inhibitors.
Collapse
Affiliation(s)
- Changdev G Gadhe
- Department of Pharmacy, College of Pharmacy, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Incheon, Republic of Korea.
| | | |
Collapse
|
40
|
Sugaya M. Chemokines and Skin Diseases. Arch Immunol Ther Exp (Warsz) 2014; 63:109-15. [DOI: 10.1007/s00005-014-0313-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
41
|
Cowan JE, McCarthy NI, Parnell SM, White AJ, Bacon A, Serge A, Irla M, Lane PJL, Jenkinson EJ, Jenkinson WE, Anderson G. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive αβT cells in the adult thymus. THE JOURNAL OF IMMUNOLOGY 2014; 193:1204-12. [PMID: 24990081 PMCID: PMC4105241 DOI: 10.4049/jimmunol.1400993] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
αβT cell development depends upon serial migration of thymocyte precursors through cortical and medullary microenvironments, enabling specialized stromal cells to provide important signals at specific stages of their development. Although conventional αβT cells are subject to clonal deletion in the medulla, entry into the thymus medulla also fosters αβT cell differentiation. For example, during postnatal periods, the medulla is involved in the intrathymic generation of multiple αβT cell lineages, notably the induction of Foxp3(+) regulatory T cell development and the completion of invariant NKT cell development. Although migration of conventional αβT cells to the medulla is mediated by the chemokine receptor CCR7, how other T cell subsets gain access to medullary areas during their normal development is not clear. In this study, we show that combining a panel of thymocyte maturation markers with cell surface analysis of CCR7 and CCR4 identifies distinct stages in the development of multiple αβT cell lineages in the thymus. Although Aire regulates expression of the CCR4 ligands CCL17 and CCL22, we show that CCR4 is dispensable for thymocyte migration and development in the adult thymus, demonstrating defective T cell development in Aire(-/-) mice is not because of a loss of CCR4-mediated migration. Moreover, we reveal that CCR7 controls the development of invariant NKT cells by enabling their access to IL-15 trans-presentation in the thymic medulla and influences the balance of early and late intrathymic stages of Foxp3(+) regulatory T cell development. Collectively, our data identify novel roles for CCR7 during intrathymic T cell development, highlighting its importance in enabling multiple αβT cell lineages to access the thymic medulla.
Collapse
Affiliation(s)
- Jennifer E Cowan
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Nicholas I McCarthy
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sonia M Parnell
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Andrea J White
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Andrea Bacon
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Arnauld Serge
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM Unité Mixte de Recherche 1068, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7258, Aix-Marseille University, UM 105, F-13009 Marseille, France; and
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM Unité Mixte de Recherche 631, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6102, Aix-Marseille University, UM 2, F-13009 Marseille, France
| | - Peter J L Lane
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Eric J Jenkinson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - William E Jenkinson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Graham Anderson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
42
|
Pease JE, Horuk R. Recent progress in the development of antagonists to the chemokine receptors CCR3 and CCR4. Expert Opin Drug Discov 2014; 9:467-83. [PMID: 24641500 DOI: 10.1517/17460441.2014.897324] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The chemokine receptors CCR3 and CCR4 have been shown to be important therapeutic targets for the treatment of a variety of diseases. Although only two chemokine receptor inhibitors have been approved so far, there are numerous compounds that are in various stages of development. AREAS COVERED In this review article, the authors provide an update on the progress made in the identification of antagonists against the chemokine receptors CCR3 and CCR4 from 2009 to the present. The rationale of writing this review article is to cover the most important approaches to identifying antagonists to these two receptors, which could prove to be useful therapeutics in treating proinflammatory diseases. EXPERT OPINION Pharmaceutical companies have expended a considerable amount of money and effort to identify potent inhibitors of CCR3 and CCR4 for the treatment of asthma and atopic diseases. Although a variety of compounds have been described and several have progressed into the clinic, none have so far made it as approved drugs. There are, however, novel approaches such as mogamulizumab, a monoclonal antibody to CCR4 currently is in clinical trials for cancer and ASM8, an antisense nucleotide to CCR3, which is in Phase II clinical trials for asthma that might still prove to be successful new therapeutics.
Collapse
Affiliation(s)
- James Edward Pease
- National Heart and Lung Institute, Imperial College London, Faculty of Medicine, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Leukocyte Biology Section , SW7 2AZ , UK
| | | |
Collapse
|
43
|
Viney JM, Andrew DP, Phillips RM, Meiser A, Patel P, Lennartz-Walker M, Cousins DJ, Barton NP, Hall DA, Pease JE. Distinct conformations of the chemokine receptor CCR4 with implications for its targeting in allergy. THE JOURNAL OF IMMUNOLOGY 2014; 192:3419-27. [PMID: 24563252 DOI: 10.4049/jimmunol.1300232] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CC chemokine receptor 4 (CCR4) is expressed by Th2 and regulatory T cells and directs their migration along gradients of the chemokines CCL17 and CCL22. Both chemokines and receptor are upregulated in allergic disease, making CCR4 a therapeutic target for the treatment of allergy. We set out to assess the mechanisms underlying a previous report that CCL22 is a dominant ligand of CCR4, which may have implications for its therapeutic targeting. Human T cells expressing endogenous CCR4 and transfectants engineered to express CCR4 were assessed for receptor function, using assays of calcium release, chemotaxis, receptor endocytosis, and ligand binding. Despite the two ligands having equal potency in calcium flux and chemotaxis assays, CCL22 showed dominance in both receptor endocytosis assays and heterologous competitive binding assays. Using two different CCR4-specific Abs, we showed that CCR4 exists in at least two distinct conformations, which are differentially activated by ligand. A major population is activated by both CCL17 and CCL22, whereas a minor population is activated only by CCL22. Mutation of a single C-terminal residue K310 within a putative CCR4 antagonist binding site ablated activation of CCR4 by CCL17, but not by CCL22, despite having no effect on the binding of either ligand. We conclude that CCL17 and CCL22 are conformationally selective ligands of CCR4 and interact with the receptor by substantially different mechanisms. This finding suggests that the selective blockade of CCR4 in allergy may be feasible when one CCR4 ligand dominates, allowing the inhibition of Th2 signaling via one ligand while sparing regulatory T cell recruitment via another.
Collapse
Affiliation(s)
- Jonathan M Viney
- Leukocyte Biology Section, Medical Research Council-Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Globisch T, Steiner N, Fülle L, Lukacs-Kornek V, Degrandi D, Dresing P, Alferink J, Lang R, Pfeffer K, Beyer M, Weighardt H, Kurts C, Ulas T, Schultze JL, Förster I. Cytokine-dependent regulation of dendritic cell differentiation in the splenic microenvironment. Eur J Immunol 2014; 44:500-10. [PMID: 24136200 DOI: 10.1002/eji.201343820] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/02/2013] [Accepted: 09/18/2013] [Indexed: 12/21/2022]
Abstract
The DC-derived chemokine CCL17, a ligand of CCR4, has been shown to promote various inflammatory diseases such as atopic dermatitis, atherosclerosis, and inflammatory bowel disease. Under steady-state conditions, and even after systemic stimulation with LPS, CCL17 is not expressed in resident splenic DCs as opposed to CD8α⁻CD11b⁺ LN DCs, which produce large amounts of CCL17 in particular after maturation. Upon systemic NKT cell activation through α-galactosylceramide stimulation however, CCL17 can be upregulated in both CD8α⁻ and CD8α⁺ splenic DC subsets and enhances cross-presentation of exogenous antigens. Based on genome-wide expression profiling, we now show that splenic CD11b⁺ DCs are susceptible to IFN-γ-mediated suppression of CCL17, whereas LN CD11b⁺CCL17⁺ DCs downregulate the IFN-γR and are much less responsive to IFN-γ. Under inflammatory conditions, particularly in the absence of IFN-γ signaling in IFN-γRKO mice, CCL17 expression is strongly induced in a major proportion of splenic DCs by the action of GM-CSF in concert with IL-4. Our findings demonstrate that the local cytokine milieu and differential cytokine responsiveness of DC subsets regulate lymphoid organ specific immune responses at the level of chemokine expression.
Collapse
Affiliation(s)
- Theresa Globisch
- Department of Molecular Immunology, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stolberg VR, Martin B, Mancuso P, Olszewski MA, Freeman CM, Curtis JL, Chensue SW. Role of CC chemokine receptor 4 in natural killer cell activation during acute cigarette smoke exposure. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:454-63. [PMID: 24333113 DOI: 10.1016/j.ajpath.2013.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/15/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022]
Abstract
Cigarette smoke (CS)-induced lung injury involves innate immune responses. The activation of innate effector cells is thought to require cross talk with dendritic cells (DCs) and macrophages, but the mediators of interaction are unknown. One candidate, CC chemokine receptor 4 (CCR4), is expressed by innate and adaptive effector cells, and its ligands are produced by DCs and macrophages. Using flow cytometry and confocal microscopy, we defined innate responses of lung myeloid DCs, macrophages, and conventional natural killer (NK) cells in mice exposed to CS over 4 days and examined the contribution of CCR4 using CCR4 knockout (CCR4(-/-)) mice. CS affected populations differently, causing an increase in F4/80(+) macrophages, a reduction in parenchymal CD11c(+)CD11b(+)CD103(-) DCs, but no effect on mucosal CD11c(+)CD11b(-)CD103(+) DCs. CS also induced a population of primed/activated CD69(+) NK cells and bronchoepithelial expression of the stress-related NKG2D receptor-activating protein, retinoic acid early transcript 1. CS-exposed CCR4(-/-) mice were similar to controls regarding effects on DCs and macrophages but displayed substantially impaired NK priming/activation and reduced expression of transcripts for interferon gamma, CXCL10, and retinoic acid early transcript 1. Quantitative confocal microscopy revealed that lungs of CS-exposed CCR4(-/-) mice had significantly reduced contacts of NK cells with CD11c(+) cells. These findings demonstrate that acute CS exposure elicits NK cell responses and suggest that CCR4 promotes NK cell priming/activation by mediating contacts with sentinel cells in the lung.
Collapse
Affiliation(s)
- Valerie R Stolberg
- Department of Pathology and Laboratory Medicine, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Brian Martin
- Department of Pathology and Laboratory Medicine, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Peter Mancuso
- Department of Environmental Health Sciences, University of Michigan Health System, Ann Arbor, Michigan
| | | | - Christine M Freeman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Stephen W Chensue
- Department of Pathology and Laboratory Medicine, VA Ann Arbor Healthcare System, Ann Arbor, Michigan; Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan.
| |
Collapse
|
46
|
Komiya T, Sugiyama T, Takeda K, Watanabe N, Imai M, Kokubo M, Tokuda N, Ochiai H, Habashita H, Shibayama S. Suppressive effects of a novel CC chemokine receptor 4 antagonist on Th2 cell trafficking in ligand- and antigen-induced mouse models. Eur J Pharmacol 2013; 720:335-43. [PMID: 24140571 DOI: 10.1016/j.ejphar.2013.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 12/24/2022]
Abstract
CC chemokine receptor 4 (CCR4) has been implicated as a preferential marker for T helper type 2 (Th2) cells, and is believed to be involved in the pathology of allergic diseases by controlling Th2 cell trafficking into inflamed tissues. The objective of the study was to characterize the pharmacological properties of E0001-163, a novel CCR4 antagonist. E0001-163 was tested in both in vitro chemotaxis assays as well as in vivo mouse models of CCR4 ligand-induced air pouch and antigen-induced airway inflammation by utilizing in vitro-polarized Th2 cells. In vitro, E0001-163 inhibited migratory response of human Th2-polarized cells to CCL22, a CCR4 ligand, with an IC50 value of 11.9 nM. E0001-163 significantly suppressed CCL22-induced Th2 cell trafficking into mouse air pouch in a dose-dependent manner at doses of 3 and 10mg/kg, suggesting that E0001-163 has an inhibitory effect on CCR4-mediated T cell trafficking in vivo. In addition, E0001-163 partially decreased Th2 cell trafficking and the level of IL-4 in the lungs in Th2-tansferred and ovalbumin (OVA)-challenged mice. T cell trafficking involves multiple chemokine receptors both in acute and chronic phases, and our findings suggest that CCR4, together with other chemokine receptors, may be involved in Th2 cell trafficking under disease conditions.
Collapse
Affiliation(s)
- Takaki Komiya
- Exploratory Research Laboratories, Ono Pharmaceutical Co. Ltd., 17-2, Wadai, Tsukuba, Ibaraki 300-4247, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Skerlj R, Bridger G, Zhou Y, Bourque E, McEachern E, Metz M, Harwig C, Li TS, Yang W, Bogucki D, Zhu Y, Langille J, Veale D, Ba T, Bey M, Baird I, Kaller A, Krumpak M, Leitch D, Satori M, Vocadlo K, Guay D, Nan S, Yee H, Crawford J, Chen G, Wilson T, Carpenter B, Gauthier D, Macfarland R, Mosi R, Bodart V, Wong R, Fricker S, Schols D. Design of substituted imidazolidinylpiperidinylbenzoic acids as chemokine receptor 5 antagonists: potent inhibitors of R5 HIV-1 replication. J Med Chem 2013; 56:8049-65. [PMID: 24090135 DOI: 10.1021/jm401101p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The redesign of the previously reported thiophene-3-yl-methyl urea series, as a result of potential cardiotoxicity, was successfully accomplished, resulting in the identification of a novel potent series of CCR5 antagonists containing the imidazolidinylpiperidinyl scaffold. The main redesign criteria were to reduce the number of rotatable bonds and to maintain an acceptable lipophilicity to mitigate hERG inhibition. The structure-activity relationship (SAR) that was developed was used to identify compounds with the best pharmacological profile to inhibit HIV-1. As a result, five advanced compounds, 6d, 6e, 6i, 6h, and 6k, were further evaluated for receptor selectivity, antiviral activity against CCR5 using (R5) HIV-1 clinical isolates, and in vitro and in vivo safety. On the basis of these results, 6d and 6h were selected for further development.
Collapse
Affiliation(s)
- Renato Skerlj
- LGCR Unit, Sanofi , 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nakamura K, White AJ, Parnell SM, Lane PJ, Jenkinson EJ, Jenkinson WE, Anderson G. Differential requirement for CCR4 in the maintenance but not establishment of the invariant Vγ5(+) dendritic epidermal T-cell pool. PLoS One 2013; 8:e74019. [PMID: 24069263 PMCID: PMC3771977 DOI: 10.1371/journal.pone.0074019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
Thymocytes expressing the invariant Vγ5 γδT-cell receptor represent progenitors of dendritic epidermal T-cells (DETC) that play an important immune surveillance role in the skin. In contrast to the bulk of αβT-cell development, Vγ5(+) DETC progenitor development occurs exclusively in fetal thymus. Whilst αβT-cell development is known to require chemokine receptor mediated migration through distinct thymus regions, culminating in medullary entry and thymic egress, the importance and control of intrathymic migration for DETC progenitors is unclear. We recently revealed a link between Vγ5(+) DETC progenitor development and medullary thymic epithelial cells expressing Aire, a known regulator of thymic chemokine expression, demonstrating that normal Vγ5(+) DETC progenitor development requires regulated intramedullary positioning. Here we investigate the role of chemokines and their receptors during intrathymic Vγ5(+) DETC progenitor development and establishment of the DETC pool in the skin. We report that thymic medullary accumulation of Vγ5(+) DETC progenitors is a G-protein coupled receptor dependent process. However, this process occurs independently of Aire's influences on intrathymic chemokines, and in the absence of CCR4 and CCR7 expression by DETC progenitors. In contrast, analysis of epidermal γδT-cells at neonatal and adult stages in CCR4(-/-) mice reveals that reduced numbers of DETC in adult epidermis are not a consequence of diminished intrathymic embryonic development, nor deficiencies in initial epidermal seeding in the neonate. Collectively, our data reveal differences in the chemokine receptor requirements for intrathymic migration of αβ and invariant γδT-cells, and highlight a differential role for CCR4 in the maintenance, but not initial seeding, of DETC in the epidermis.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Differentiation/genetics
- Epidermal Cells
- Epidermis/immunology
- Epidermis/metabolism
- Lymphoid Progenitor Cells/metabolism
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, CCR4/genetics
- Receptors, CCR4/metabolism
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
- Signal Transduction
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Transcription Factors/metabolism
- AIRE Protein
Collapse
Affiliation(s)
- Kyoko Nakamura
- Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | - Andrea J. White
- Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | - Sonia M. Parnell
- Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | - Peter J. Lane
- Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | - Eric J. Jenkinson
- Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | - William E. Jenkinson
- Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | - Graham Anderson
- Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
49
|
Mikhak Z, Strassner JP, Luster AD. Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4. ACTA ACUST UNITED AC 2013; 210:1855-69. [PMID: 23960189 PMCID: PMC3754856 DOI: 10.1084/jem.20130091] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cell trafficking into the lung is critical for lung immunity, but the mechanisms that mediate T cell lung homing are not well understood. Here, we show that lung dendritic cells (DCs) imprint T cell lung homing, as lung DC-activated T cells traffic more efficiently into the lung in response to inhaled antigen and at homeostasis compared with T cells activated by DCs from other tissues. Consequently, lung DC-imprinted T cells protect against influenza more effectively than do gut and skin DC-imprinted T cells. Lung DCs imprint the expression of CCR4 on T cells, and CCR4 contributes to T cell lung imprinting. Lung DC-activated, CCR4-deficient T cells fail to traffic into the lung as efficiently and to protect against influenza as effectively as lung DC-activated, CCR4-sufficient T cells. Thus, lung DCs imprint T cell lung homing and promote lung immunity in part through CCR4.
Collapse
Affiliation(s)
- Zamaneh Mikhak
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
50
|
Afshar R, Strassner JP, Seung E, Causton B, Cho JL, Harris RS, Hamilos DL, Medoff BD, Luster AD. Compartmentalized chemokine-dependent regulatory T-cell inhibition of allergic pulmonary inflammation. J Allergy Clin Immunol 2013; 131:1644-52. [PMID: 23632297 DOI: 10.1016/j.jaci.2013.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 02/08/2013] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Induction of endogenous regulatory T (Treg) cells represents an exciting new potential modality for treating allergic diseases, such as asthma. Treg cells have been implicated in the regulation of asthma, but the anatomic location in which they exert their regulatory function and the mechanisms controlling the migration necessary for their suppressive function in asthma are not known. Understanding these aspects of Treg cell biology will be important for harnessing their power in the clinic. OBJECTIVE We sought to determine the anatomic location at which Treg cells exert their regulatory function in the sensitization and effector phases of allergic asthma and to determine the chemokine receptors that control the migration of Treg cells to these sites in vivo in both mice and human subjects. METHODS The clinical efficacy and anatomic location of adoptively transferred chemokine receptor-deficient CD4(+)CD25(+) forkhead box protein 3-positive Treg cells was determined in the sensitization and effector phases of allergic airway inflammation in mice. The chemokine receptor expression profile was determined on Treg cells recruited into the human airway after bronchoscopic segmental allergen challenge of asthmatic patients. RESULTS We show that CCR7, but not CCR4, is required on Treg cells to suppress allergic airway inflammation during the sensitization phase. In contrast, CCR4, but not CCR7, is required on Treg cells to suppress allergic airway inflammation during the effector phase. Consistent with our murine studies, human subjects with allergic asthma had an increase in CCR4-expressing functional Treg cells in the lungs after segmental allergen challenge. CONCLUSION The location of Treg cell function differs during allergic sensitization and allergen-induced recall responses in the lung, and this differential localization is critically dependent on differential chemokine function.
Collapse
Affiliation(s)
- Roshi Afshar
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|