1
|
Qi D, Lu M, Xu P, Yao X, Chen Y, Gan L, Li Y, Cui Y, Tong X, Liu S, Zhao J, Liu N, Ye X. Transcription factor ETV4 promotes the development of hepatocellular carcinoma by driving hepatic TNF-α signaling. Cancer Commun (Lond) 2023; 43:1354-1372. [PMID: 37670477 PMCID: PMC10693303 DOI: 10.1002/cac2.12482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Hepatic inflammation is the major risk factor of hepatocellular carcinoma (HCC). However, the underlying mechanism by which hepatic inflammation progresses to HCC is poorly understood. This study was designed to investigate the role of ETS translocation variant 4 (ETV4) in linking hepatic inflammation to HCC. METHODS Quantitative real-time PCR and immunoblotting were used to detect the expression of ETV4 in HCC tissues and cell lines. RNA sequencing and luciferase reporter assays were performed to identify the target genes of ETV4. Hepatocyte-specific ETV4-knockout (ETV4fl/fl, alb-cre ) and transgenic (ETV4Hep-TG ) mice and diethylnitrosamine-carbon tetrachloride (DEN-CCL4 ) treatment experiments were applied to investigate the function of ETV4 in vivo. The Cancer Genome Atlas (TCGA) database mining and pathological analysis were carried out to determine the correlation of ETV4 with tumor necrosis factor-alpha (TNF-α) and mitogen-activated protein kinase 11 (MAPK11). RESULTS We revealed that ETV4 was highly expressed in HCC. High levels of ETV4 predicted a poor survival rate of HCC patients. Then we identified ETV4 as a transcription activator of TNF-α and MAPK11. ETV4 was positively correlated with TNF-α and MAPK11 in HCC patients. As expected, an increase in hepatic TNF-α secretion and macrophage accumulation were observed in the livers of ETV4Hep-TG mice. The protein levels of TNF-α, MAPK11, and CD68 were significantly higher in the livers of ETV4Hep-TG mice compared with wild type mice but lower in ETV4fl/fl, alb-cre mice compared with ETV4fl/fl mice as treated with DEN-CCL4 , indicating that ETV4 functioned as a driver of TNF-α/MAPK11 expression and macrophage accumulation during hepatic inflammation. Hepatocyte-specific knockout of ETV4 significantly prevented development of DEN-CCL4 -induced HCC, while transgenic expression of ETV4 promoted growth of HCC. CONCLUSIONS ETV4 promoted hepatic inflammation and HCC by activating transcription of TNF-α and MAPK11. Both the ETV4/TNF-α and ETV4/MAPK11 axes represented two potential therapeutic targets for highly associated hepatic inflammation and HCC. ETV4+TNF-α were potential prognostic markers for HCC patients.
Collapse
Affiliation(s)
- Dandan Qi
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
| | - Min Lu
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Pengfei Xu
- The Fifth Medical Center of Chinese People's Liberation Army General HospitalBeijingP. R. China
| | - Xinli Yao
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yongchen Chen
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Lipeng Gan
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yong Li
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yahua Cui
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Xiaomei Tong
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
| | - Shuhong Liu
- The Fifth Medical Center of Chinese People's Liberation Army General HospitalBeijingP. R. China
| | - Jingmin Zhao
- The Fifth Medical Center of Chinese People's Liberation Army General HospitalBeijingP. R. China
| | - Ningning Liu
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
| | - Xin Ye
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
2
|
Li J, Wang X, Ren M, He S, Zhao Y. Advances in experimental animal models of hepatocellular carcinoma. Cancer Med 2023; 12:15261-15276. [PMID: 37248746 PMCID: PMC10417182 DOI: 10.1002/cam4.6163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with insidious early symptoms, easy metastasis, postoperative recurrence, poor drug efficacy, and a high drug resistance rate when surgery is missed, leading to a low 5-year survival rate. Research on the pathogenesis and drugs is particularly important for clinical treatment. Animal models are crucial for basic research, which is conducive to studying pathogenesis and drug screening more conveniently and effectively. An appropriate animal model can better reflect disease occurrence and development, and the process of anti-tumor immune response in the human body. This review summarizes the classification, characteristics, and advances in experimental animal models of HCC to provide a reference for researchers on model selection.
Collapse
Affiliation(s)
- Jing Li
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xin Wang
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Mudan Ren
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Shuixiang He
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Yan Zhao
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
3
|
Ait-Ahmed Y, Lafdil F. Novel insights into the impact of liver inflammatory responses on primary liver cancer development. LIVER RESEARCH 2023; 7:26-34. [PMID: 39959704 PMCID: PMC11791919 DOI: 10.1016/j.livres.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 01/27/2023] [Indexed: 03/10/2023]
Abstract
Primary liver cancers rank among the deadliest cancers worldwide and often develop in patients with chronic liver diseases in an inflammatory context. This review highlights recent reports on the mechanisms of inflammatory-mediated hepatic cell transformation that trigger the tumorigenic process (initiation steps) and the impact of the immune response favoring tumor cell expansion (progression steps). Several cytokines, namely interleukin (IL)-6, IL-17, IL-1beta, and tumor necrosis factor-alpha, have been described to play a prominent role in the initiation of liver cancers. Additionally, inflammation contributes to cancer progression by favoring tumor escape from anti-tumor immune response, angiogenesis, and metastasis through tumor growth factor-beta and matrix metalloprotease upregulation. These recent studies allowed the development of novel therapeutic strategies aiming at regulating liver inflammation. These strategies are based on the use of anti-inflammatory agents, antibodies targeting immune checkpoint molecules such as programmed death ligand 1 and molecules targeting angiogenic factors, metastasis key factors, and microRNAs involved in tumor development. This review aims at summarizing the recent studies reporting different mechanisms by which the liver inflammatory responses could contribute to liver cancer development.
Collapse
Affiliation(s)
- Yeni Ait-Ahmed
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- Institut National de la Sante et de la Recherche Medicale (INSERM), U955, Créteil, France
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- Institut National de la Sante et de la Recherche Medicale (INSERM), U955, Créteil, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
4
|
Bagalagel A, Diri R, Noor A, Almasri D, Bakhsh H, Kutbi HI, Al-Gayyar MM. Evaluating the Anticancer Activity of Blocking TNF Type 1 Receptors in Thioacetamide-Induced Hepatocellular Carcinoma in a Rat Model. Cureus 2022; 14:e32519. [DOI: 10.7759/cureus.32519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 12/15/2022] Open
|
5
|
Liu L, Wu Y, Ye K, Cai M, Zhuang G, Wang J. Antibody-Targeted TNFRSF Activation for Cancer Immunotherapy: The Role of FcγRIIB Cross-Linking. Front Pharmacol 2022; 13:924197. [PMID: 35865955 PMCID: PMC9295861 DOI: 10.3389/fphar.2022.924197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Co-stimulation signaling in various types of immune cells modulates immune responses in physiology and disease. Tumor necrosis factor receptor superfamily (TNFRSF) members such as CD40, OX40 and CD137/4-1BB are expressed on myeloid cells and/or lymphocytes, and they regulate antigen presentation and adaptive immune activities. TNFRSF agonistic antibodies have been evaluated extensively in preclinical models, and the robust antitumor immune responses and efficacy have encouraged continued clinical investigations for the last two decades. However, balancing the toxicities and efficacy of TNFRSF agonistic antibodies remains a major challenge in the clinical development. Insights into the co-stimulation signaling biology, antibody structural roles and their functionality in immuno-oncology are guiding new advancement of this field. Leveraging the interactions between antibodies and the inhibitory Fc receptor FcγRIIB to optimize co-stimulation agonistic activities dependent on FcγRIIB cross-linking selectively in tumor microenvironment represents the current frontier, which also includes cross-linking through tumor antigen binding with bispecific antibodies. In this review, we will summarize the immunological roles of TNFRSF members and current clinical studies of TNFRSF agonistic antibodies. We will also cover the contribution of different IgG structure domains to these agonistic activities, with a focus on the role of FcγRIIB in TNFRSF cross-linking and clustering bridged by agonistic antibodies. We will review and discuss several Fc-engineering approaches to optimize Fc binding ability to FcγRIIB in the context of proper Fab and the epitope, including a cross-linking antibody (xLinkAb) model and its application in developing TNFRSF agonistic antibodies with improved efficacy and safety for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yi Wu
- Lyvgen Biopharma, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meichun Cai
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
6
|
ATXN2-mediated translation of TNFR1 promotes esophageal squamous cell carcinoma via m 6A-dependent manner. Mol Ther 2022; 30:1089-1103. [PMID: 34995801 PMCID: PMC8899599 DOI: 10.1016/j.ymthe.2022.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent RNA modification, and the effect of its dysregulation on esophageal squamous cell carcinoma (ESCC) development remains unclear. Here, by performing transcriptome-wide m6A sequencing in 16 ESCC tissue samples, we identified the key roles of m6A in TNFRSF1A (also known as TNFR1)-mediated MAPK and NF-κB activation in ESCC. Mechanistically, a functional protein involved in m6A methylation, ATXN2, is identified that augments the translation of TNFRSF1A by binding to m6A-modified TNFRSF1A mRNA. Upregulation of the TNFRSF1A protein level, a vital upstream switch for TNFRSF1A-mediated signaling events, activates the NF-κB and MAPK pathways and thus promotes ESCC development. Furthermore, TNFRSF1A m6A modifications and protein levels are upregulated in ESCC, and high levels of TNFRSF1A m6A and protein are correlated with poor ESCC patient survival. These results collectively indicate that the m6A-TNFRSF1A axis is critical for ESCC development and thus may serve as a potential druggable target.
Collapse
|
7
|
Maraviroc Prevents HCC Development by Suppressing Macrophages and the Liver Progenitor Cell Response in a Murine Chronic Liver Disease Model. Cancers (Basel) 2021; 13:cancers13194935. [PMID: 34638423 PMCID: PMC8508380 DOI: 10.3390/cancers13194935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Liver stem cells and activated macrophages have been implicated as contributors to liver cancer; hence, reducing their abundance is a potential avenue for therapy. In this article, we demonstrate that Maraviroc, a drug approved for human use, reduces the liver stem cell response and macrophage activation in a mouse model of liver cancer. These findings underline the preventive potential of this drug in liver cancer, a deadly disease for which there are few effective treatments. Abstract Maraviroc (MVC), a CCR5 antagonist, reduces liver fibrosis, injury and tumour burden in mice fed a hepatocarcinogenic diet, suggesting it has potential as a cancer therapeutic. We investigated the effect of MVC on liver progenitor cells (LPCs) and macrophages as both have a role in hepatocarcinogenesis. Mice were fed the hepatocarcinogenic choline-deficient, ethionine-supplemented diet (CDE) ± MVC, and immunohistochemistry, RNA and protein expression were used to determine LPC and macrophage abundance, migration and related molecular mechanisms. MVC reduced LPC numbers in CDE mice by 54%, with a smaller reduction seen in macrophages. Transcript and protein abundance of LPC-associated markers correlated with this reduction. The CDE diet activated phosphorylation of AKT and STAT3 and was inhibited by MVC. LPCs did not express Ccr5 in our model; in contrast, macrophages expressed high levels of this receptor, suggesting the effect of MVC is mediated by targeting macrophages. MVC reduced CD45+ cells and macrophage migration in liver and blocked the CDE-induced transition of liver macrophages from an M1- to M2-tumour-associated macrophage (TAM) phenotype. These findings suggest MVC has potential as a re-purposed therapeutic agent for treating chronic liver diseases where M2-TAM and LPC numbers are increased, and the incidence of HCC is enhanced.
Collapse
|
8
|
Goonetilleke M, Kuk N, Correia J, Hodge A, Moore G, Gantier MP, Yeoh G, Sievert W, Lim R. Addressing the liver progenitor cell response and hepatic oxidative stress in experimental non-alcoholic fatty liver disease/non-alcoholic steatohepatitis using amniotic epithelial cells. Stem Cell Res Ther 2021; 12:429. [PMID: 34321089 PMCID: PMC8317377 DOI: 10.1186/s13287-021-02476-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/26/2021] [Indexed: 12/29/2022] Open
Abstract
Background Non-alcoholic fatty liver disease is the most common liver disease globally and in its inflammatory form, non-alcoholic steatohepatitis (NASH), can progress to cirrhosis and hepatocellular carcinoma (HCC). Currently, patient education and lifestyle changes are the major tools to prevent the continued progression of NASH. Emerging therapies in NASH target known pathological processes involved in the progression of the disease including inflammation, fibrosis, oxidative stress and hepatocyte apoptosis. Human amniotic epithelial cells (hAECs) were previously shown to be beneficial in experimental models of chronic liver injury, reducing hepatic inflammation and fibrosis. Previous studies have shown that liver progenitor cells (LPCs) response plays a significant role in the development of fibrosis and HCC in mouse models of fatty liver disease. In this study, we examined the effect hAECs have on the LPC response and hepatic oxidative stress in an experimental model of NASH. Methods Experimental NASH was induced in C57BL/6 J male mice using a high-fat, high fructose diet for 42 weeks. Mice received either a single intraperitoneal injection of 2 × 106 hAECs at week 34 or an additional hAEC dose at week 38. Changes to the LPC response and oxidative stress regulators were measured. Results hAEC administration significantly reduced the expansion of LPCs and their mitogens, IL-6, IFNγ and TWEAK. hAEC administration also reduced neutrophil infiltration and myeloperoxidase production with a concurrent increase in heme oxygenase-1 production. These observations were accompanied by a significant increase in total levels of anti-fibrotic IFNβ in mice treated with a single dose of hAECs, which appeared to be independent of c-GAS-STING activation. Conclusions Expansion of liver progenitor cells, hepatic inflammation and oxidative stress associated with experimental NASH were attenuated by hAEC administration. Given that repeated doses did not significantly increase efficacy, future studies assessing the impact of dose escalation and/or timing of dose may provide insights into clinical translation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02476-6.
Collapse
Affiliation(s)
- Mihiri Goonetilleke
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Nathan Kuk
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Jeanne Correia
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Alex Hodge
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Gregory Moore
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Michael P Gantier
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.,Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - George Yeoh
- Centre for Medical Research, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - William Sievert
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia. .,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Lv D, Chen L, Du L, Zhou L, Tang H. Emerging Regulatory Mechanisms Involved in Liver Cancer Stem Cell Properties in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:691410. [PMID: 34368140 PMCID: PMC8339910 DOI: 10.3389/fcell.2021.691410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide. A growing body of evidence supports the hypothesis that HCC is driven by a population of cells called liver cancer stem cells (LCSCs). LCSCs have been proposed to contribute to malignant HCC progression, including promoting tumor occurrence and growth, mediating tumor metastasis, and treatment resistance, but the regulatory mechanism of LCSCs in HCC remains unclear. Understanding the signaling pathways responsible for LCSC maintenance and survival may provide opportunities to improve patient outcomes. Here, we review the current literature about the origin of LCSCs and the niche composition, describe the current evidence of signaling pathways that mediate LCSC stemness, then highlight several mechanisms that modulate LCSC properties in HCC progression, and finally, summarize the new developments in therapeutic strategies targeting LCSCs markers and regulatory pathways.
Collapse
Affiliation(s)
- Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Liyu Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Center of Infectious Diseases, Division of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Hodge A, Andrewartha N, Lourensz D, Strauss R, Correia J, Goonetilleke M, Yeoh G, Lim R, Sievert W. Human Amnion Epithelial Cells Produce Soluble Factors that Enhance Liver Repair by Reducing Fibrosis While Maintaining Regeneration in a Model of Chronic Liver Injury. Cell Transplant 2021; 29:963689720950221. [PMID: 32813573 PMCID: PMC7563845 DOI: 10.1177/0963689720950221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human amnion epithelial cells (hAECs) exert potent antifibrotic and anti-inflammatory effects when transplanted into preclinical models of tissue fibrosis. These effects are mediated in part via the secretion of soluble factors by hAECs which modulate signaling pathways and affect cell types involved in inflammation and fibrosis. Based on these reports, we hypothesized that these soluble factors may also support liver regeneration during chronic liver injury. To test this, we characterized the effect of both hAECs and hAEC-conditioned medium (CM) on liver repair in a mouse model of carbon tetrachloride (CCl4)-induced fibrosis. Liver repair was assessed by liver fibrosis, hepatocyte proliferation, and the liver progenitor cell (LPC) response. We found that the administration of hAECs or hAEC-CM reduced liver injury and fibrosis, sustained hepatocyte proliferation, and reduced LPC numbers during chronic liver injury. Additionally, we undertook in vitro studies to document both the cell-cell and paracrine-mediated effects of hAECs on LPCs by investigating the effects of co-culturing the LPCs and hAECs and hAEC-CM on LPCs. We found little change in LPCs co-cultured with hAECs. In contrast, hAEC-CM enhances LPC proliferation and differentiation. These findings suggest that paracrine factors secreted by hAECs enhance liver repair by reducing fibrosis while promoting regeneration during chronic liver injury.
Collapse
Affiliation(s)
- Alexander Hodge
- Gastroenterology and Hepatology Unit, 2538Monash Health, Melbourne, Victoria, Australia.,Centre for Inflammatory Disease, School of Clinical Sciences, 2538Monash University, Melbourne, Victoria, Australia.,Both the authors contributed equally to this article
| | - Neil Andrewartha
- Centre for Medical Research, 102804Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Both the authors contributed equally to this article
| | - Dinushka Lourensz
- Gastroenterology and Hepatology Unit, 2538Monash Health, Melbourne, Victoria, Australia.,Centre for Inflammatory Disease, School of Clinical Sciences, 2538Monash University, Melbourne, Victoria, Australia
| | - Robyn Strauss
- Centre for Medical Research, 102804Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jeanne Correia
- Gastroenterology and Hepatology Unit, 2538Monash Health, Melbourne, Victoria, Australia.,Centre for Inflammatory Disease, School of Clinical Sciences, 2538Monash University, Melbourne, Victoria, Australia
| | - Mihiri Goonetilleke
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, 2541Monash University, Melbourne, Victoria, Australia.,568369The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - George Yeoh
- Centre for Medical Research, 102804Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Rebecca Lim
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, 2541Monash University, Melbourne, Victoria, Australia.,568369The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - William Sievert
- Gastroenterology and Hepatology Unit, 2538Monash Health, Melbourne, Victoria, Australia.,Centre for Inflammatory Disease, School of Clinical Sciences, 2538Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Nutt MJ, Yee YS, Buyan A, Andrewartha N, Corry B, Yeoh GCT, Stewart SG. In pursuit of a selective hepatocellular carcinoma therapeutic agent: Novel thalidomide derivatives with antiproliferative, antimigratory and STAT3 inhibitory properties. Eur J Med Chem 2021; 217:113353. [PMID: 33773263 DOI: 10.1016/j.ejmech.2021.113353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022]
Abstract
Advanced stage liver cancer is predominantly treated with the multi-kinase inhibitor sorafenib; however, this therapeutic agent lacks selectivity in its cytotoxic actions and is associated with poor survival outcomes. Herein we report the design and preparation of several thalidomide derivatives, including a variety of novel thioether-containing forms that are especially rare in the literature. Importantly, two of the derivatives described are potent antiproliferative agents with dose-dependent selectivity for tumorigenic liver progenitor cells (LPC) growth inhibition (up to 36% increase in doubling time at 10 μM) over non-tumorigenic cells (no effect at 10 μM). Furthermore, these putative anti-liver cancer agents were also found to be potent inhibitors of tumorigenic LPC migration. This report also describes these derivatives' effects on several key signalling pathways in our novel liver cell lines by immunofluorescence and AlphaLISA assays. Aryl thioether derivative 7f significantly reduced STAT3 phosphorylation (23%) and its nuclear localisation (16%) at 10 μM in tumorigenic LPCs, implicating the IL-6/JAK/STAT3 axis is central in the mode of action of our derivatives.
Collapse
Affiliation(s)
- Michael J Nutt
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia; The Centre for Medical Research, The Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
| | - Yeung Sing Yee
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Amanda Buyan
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Neil Andrewartha
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia; The Centre for Medical Research, The Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - George C T Yeoh
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia; The Centre for Medical Research, The Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
| | - Scott G Stewart
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
12
|
Abstract
Heparanase is the only mammalian enzyme that cleaves heparan sulphate, an important component of the extracellular matrix. This leads to the remodelling of the extracellular matrix, whilst liberating growth factors and cytokines bound to heparan sulphate. This in turn promotes both physiological and pathological processes such as angiogenesis, immune cell migration, inflammation, wound healing and metastasis. Furthermore, heparanase exhibits non-enzymatic actions in cell signalling and in regulating gene expression. Cancer is underpinned by key characteristic features that promote malignant growth and disease progression, collectively termed the 'hallmarks of cancer'. Essentially, all cancers examined to date have been reported to overexpress heparanase, leading to enhanced tumour growth and metastasis with concomitant poor patient survival. With its multiple roles within the tumour microenvironment, heparanase has been demonstrated to regulate each of these hallmark features, in turn highlighting the need for heparanase-targeted therapies. However, recent discoveries which demonstrated that heparanase can also regulate vital anti-tumour mechanisms have cast doubt on this approach. This review will explore the myriad ways by which heparanase functions as a key regulator of the hallmarks of cancer and will highlight its role as a major component within the tumour microenvironment. The dual role of heparanase within the tumour microenvironment, however, emphasises the need for further investigation into defining its precise mechanism of action in different cancer settings.
Collapse
Affiliation(s)
- Krishnath M Jayatilleke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
13
|
Zou X, Zhang D, Song Y, Liu S, Long Q, Yao L, Li W, Duan Z, Wu D, Liu L. HRG switches TNFR1-mediated cell survival to apoptosis in Hepatocellular Carcinoma. Theranostics 2020; 10:10434-10447. [PMID: 32929358 PMCID: PMC7482824 DOI: 10.7150/thno.47286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Tumor necrosis factor receptor 1 (TNFR1) signaling plays a pleiotropic role in the development of hepatocellular carcinoma (HCC). The formation of TNFR1-complex I supports cell survival while TNFR1-complex II leads to apoptosis, and the underlying mechanisms of the transformation of these TNFR1 complexes in HCC remain poorly defined. Methods: The interaction protein of TNFR1 was identified by GST pulldown assay, immunoprecipitation and mass spectrometry. In vitro and in vivo assay were performed to explore the biological features and mechanisms underlying the regulation of TNFR1 signals by histidine-rich glycoprotein (HRG). Data from the public databases and HCC samples were utilized to analyze the expression and clinical relevance of HRG. Results: HRG directly interacted with TNFR1 and stabilized TNFR1 protein by decreasing the Lys(K)-48 ubiquitination mediated-degradation. The formation of TNFR1-complex II was prompted by HRG overexpression via upregulating Lys(K)-63 ubiquitination of TNFR1. Besides, overexpression of HRG suppressed expression of pro-survival genes by impairing the activation of NF-κB signaling in the presence of TNFR1. Moreover, downregulation of HRG was a result of feedback inhibition of NF-κB activation in HCC. In line with the pro-apoptotic switch of TNFR1 signaling after HRG induction, overexpression of HRG inhibited cell proliferation and increased apoptosis in HCC. Conclusions: Our findings illustrate a crucial role for HRG in suppressing HCC via inclining TNFR1 to a pro-apoptotic cellular phenotype. Restoring HRG expression in HCC tissues might be a promising pharmacological approach to blocking tumor progression by shifting cellular fate from cell survival to apoptosis.
Collapse
Affiliation(s)
- Xuejing Zou
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dongyan Zhang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yang Song
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qian Long
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liheng Yao
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenwen Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhijiao Duan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehua Wu
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
14
|
So J, Kim A, Lee SH, Shin D. Liver progenitor cell-driven liver regeneration. Exp Mol Med 2020; 52:1230-1238. [PMID: 32796957 PMCID: PMC8080804 DOI: 10.1038/s12276-020-0483-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022] Open
Abstract
The liver is a highly regenerative organ, but its regenerative capacity is compromised in severe liver diseases. Hepatocyte-driven liver regeneration that involves the proliferation of preexisting hepatocytes is a primary regeneration mode. On the other hand, liver progenitor cell (LPC)-driven liver regeneration that involves dedifferentiation of biliary epithelial cells or hepatocytes into LPCs, LPC proliferation, and subsequent differentiation of LPCs into hepatocytes is a secondary mode. This secondary mode plays a significant role in liver regeneration when the primary mode does not effectively work, as observed in severe liver injury settings. Thus, promoting LPC-driven liver regeneration may be clinically beneficial to patients with severe liver diseases. In this review, we describe the current understanding of LPC-driven liver regeneration by exploring current knowledge on the activation, origin, and roles of LPCs during regeneration. We also describe animal models used to study LPC-driven liver regeneration, given their potential to further deepen our understanding of the regeneration process. This understanding will eventually contribute to developing strategies to promote LPC-driven liver regeneration in patients with severe liver diseases.
Collapse
Affiliation(s)
- Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Angie Kim
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Seung-Hoon Lee
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
15
|
Lima FJ, Lopes MLDDS, Barros CCDS, Nonaka CFW, Silveira ÉJDD. Modification in CLIC4 Expression is Associated with P53, TGF-β, TNF-α and Myofibroblasts in Lip Carcinogenesis. Braz Dent J 2020; 31:290-297. [PMID: 32667519 DOI: 10.1590/0103-6440202003104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/11/2019] [Indexed: 11/21/2022] Open
Abstract
Chloride intracellular channel-4 (CLIC4) is regulated by p53 and tumor necrosis factor-α (TNF-α), it is linked to the increase of transforming growth factor-β (TGF-β), and myofibroblastic differentiation in skin carcinogenesis. This study analyzed the immunoexpression of CLIC4, p53, TGF-β, TNF-α, and α-SMA in 50 actinic cheilitis (AC) and 50 lower lip squamous cell carcinoma (LLSCC). AC and LLSCC immunoexpression were categorized as score 1 (<5% positive cells), 2 (5-50%) or 3 (>50%). For CLIC4, nuclear and cytoplasmic immunostaining of epithelial cells was considered individually. For morphologic analysis, the World Health Organization criteria were used to epithelial dysplasia grade of ACs, and Bryne grading of malignancy system was applied for LLSCC. Higher nuclear CLIC4 (CLIC4n) and TGF-β were observed in ACs with low-risk of transformation, while cytoplasmic CLIC4 (CLIC4c), p53 and TNF-α were higher in the high-risk cases (p<0.05). In LLSCCs, CLIC4c was higher in cases with lymph node metastasis, advanced clinical stages, and histological high-grade malignancy. p53 expression was higher in high-grade LLSCCs, whereas TGF-β decreased as the clinical stage and morphological grade progressed (p<0.05). ACs showed an increased expression of CLIC4n and TGF-β, while CLIC4c and α-SMA were higher in LLSCCs (p<0.0001). Both lesions showed negative correlation between CLIC4n and CLIC4c, while in LLSCCs, negative correlation was also verified between CLIC4c and p53, as well as CLIC4c and TGF-β (p<0.05). Change of CLIC4 from the nucleus to cytoplasm and alterations in p53, TGF-β, TNF-α, and α-SMA expression are involved in lip carcinogenesis.
Collapse
Affiliation(s)
- Francisco Jadson Lima
- Department of Dentistry, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | |
Collapse
|
16
|
Bellanti F, Pannone G, Tartaglia N, Serviddio G. Redox Control of the Immune Response in the Hepatic Progenitor Cell Niche. Front Cell Dev Biol 2020; 8:295. [PMID: 32435643 PMCID: PMC7218163 DOI: 10.3389/fcell.2020.00295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/06/2020] [Indexed: 02/05/2023] Open
Abstract
The liver commonly self-regenerates by a proliferation of mature cell types. Nevertheless, in case of severe or protracted damage, the organ renewal is mediated by the hepatic progenitor cells (HPCs), adult progenitors capable of differentiating toward the biliary and the hepatocyte lineages. This regeneration process is determined by the formation of a stereotypical niche surrounding the emerging progenitors. The organization of the HPC niche microenvironment is crucial to drive biliary or hepatocyte regeneration. Furthermore, this is the site of a complex immunological activity mediated by several immune and non-immune cells. Indeed, several cytokines produced by monocytes, macrophages and T-lymphocytes may promote the activation of HPCs in the niche. On the other side, HPCs may produce pro-inflammatory cytokines induced by liver inflammation. The inflamed liver is characterized by high generation of reactive oxygen and nitrogen species, which in turn lead to the oxidation of macromolecules and the alteration of signaling pathways. Reactive species and redox signaling are involved in both the immunological and the adult stem cell regeneration processes. It is then conceivable that redox balance may finely regulate the immune response in the HPC niche, modulating the regeneration process and the immune activity of HPCs. In this perspective article, we summarize the current knowledge on the role of reactive species in the regulation of hepatic immunity, suggesting future research directions for the study of redox signaling on the immunomodulatory properties of HPCs.
Collapse
Affiliation(s)
- Francesco Bellanti
- Center for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Pannone
- Institute of Anatomical Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Nicola Tartaglia
- Institute of General Surgery, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- Center for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
17
|
Elliot A, Myllymäki H, Feng Y. Inflammatory Responses during Tumour Initiation: From Zebrafish Transgenic Models of Cancer to Evidence from Mouse and Man. Cells 2020; 9:cells9041018. [PMID: 32325966 PMCID: PMC7226149 DOI: 10.3390/cells9041018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The zebrafish is now an important model organism for cancer biology studies and provides unique and complementary opportunities in comparison to the mammalian equivalent. The translucency of zebrafish has allowed in vivo live imaging studies of tumour initiation and progression at the cellular level, providing novel insights into our understanding of cancer. Here we summarise the available transgenic zebrafish tumour models and discuss what we have gleaned from them with respect to cancer inflammation. In particular, we focus on the host inflammatory response towards transformed cells during the pre-neoplastic stage of tumour development. We discuss features of tumour-associated macrophages and neutrophils in mammalian models and present evidence that supports the idea that these inflammatory cells promote early stage tumour development and progression. Direct live imaging of tumour initiation in zebrafish models has shown that the intrinsic inflammation induced by pre-neoplastic cells is tumour promoting. Signals mediating leukocyte recruitment to pre-neoplastic cells in zebrafish correspond to the signals that mediate leukocyte recruitment in mammalian tumours. The activation state of macrophages and neutrophils recruited to pre-neoplastic cells in zebrafish appears to be heterogenous, as seen in mammalian models, which provides an opportunity to study the plasticity of innate immune cells during tumour initiation. Although several potential mechanisms are described that might mediate the trophic function of innate immune cells during tumour initiation in zebrafish, there are several unknowns that are yet to be resolved. Rapid advancement of genetic tools and imaging technologies for zebrafish will facilitate research into the mechanisms that modulate leukocyte function during tumour initiation and identify targets for cancer prevention.
Collapse
Affiliation(s)
| | | | - Yi Feng
- Correspondence: ; Tel.: +44-(0)131-242-6685
| |
Collapse
|
18
|
Piotrowski I, Kulcenty K, Suchorska W. Interplay between inflammation and cancer. Rep Pract Oncol Radiother 2020; 25:422-427. [PMID: 32372882 PMCID: PMC7191124 DOI: 10.1016/j.rpor.2020.04.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/20/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-promoting inflammation is one of the hallmarks of cancer. It has been shown that cancer development is strongly influenced by both chronic and acute inflammation process. Progress in research on inflammation revealed a connection between inflammatory processes and neoplastic transformation, the progression of tumour, and the development of metastases and recurrences. Moreover, the tumour invasive procedures (both surgery and biopsy) affect the remaining tumour cells by increasing their survival, proliferation and migration. One of the concepts explaining this phenomena is an induction of a wound healing response. While in normal tissue it is necessary for tissue repair, in tumour tissue, induction of adaptive and innate immune response related to wound healing, stimulates tumour cell survival, angiogenesis and extravasation of circulating tumour cells. It has become evident that certain types of immune response and immune cells can promote tumour progression more than others. In this review, we focus on current knowledge on carcinogenesis and promotion of cancer growth induced by inflammatory processes.
Collapse
Key Words
- ANGPTL4, angiopoietin-like 4
- CDH1, cadherin 1
- COX, cyclooxygenase
- Cancer
- EMT, epithelail to mesenchymal transition
- EP, receptor - prostaglandin receptor
- GI, gastrointensinal cancer
- IL-6, interleukin 6
- Inflammation
- MPO, myeloperoxidase
- NADPH, nicotynamide adenine dinucleotide phosphate hydrogen
- NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NK, natural killer cells
- NO, nitric oxide
- NSAIDs, non-steroidal anti-inflammatory drugs
- PGE2, prostaglandin E2
- PTHrP, parathyroid hormone related protein
- RNS, reactive nitrogen species
- ROS, reactive oxigen species
- STAT3, signal transducer and activator of transcription 3
- TGF-β, transforming growth factor β
- TGFBRII, transforming growth factor, beta receptor II
- TNF-α, tumour necrosis factor α
- TNFR1, Tumor necrosis factor receptor 1
- TNFR2, Tumor necrosis factor receptor 2
- Tumor reccurence
- VEGF, vascular endothelail growth factor
- bFGF, fibroblast growth factor
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Igor Piotrowski
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznań, Poland.,Department of Electroradiology, University of Medical Sciences, Garbary 15 Street, 61-866 Poznań, Poland
| | - Katarzyna Kulcenty
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznań, Poland.,Department of Electroradiology, University of Medical Sciences, Garbary 15 Street, 61-866 Poznań, Poland
| | - Wiktoria Suchorska
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznań, Poland.,Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznań, Poland
| |
Collapse
|
19
|
Mahdavi Sharif P, Jabbari P, Razi S, Keshavarz-Fathi M, Rezaei N. Importance of TNF-alpha and its alterations in the development of cancers. Cytokine 2020; 130:155066. [PMID: 32208336 DOI: 10.1016/j.cyto.2020.155066] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
TNF-alpha is involved in many physiologic and pathologic cellular pathways, including cellular proliferation, differentiation, and death, regulation of immunologic reactions to different cells and molecules, local and vascular invasion of neoplasms, and destruction of tumor vasculature. It is obvious that because of integrated functions of TNF-alpha inside different physiologic systems, it cannot be used as a single-agent therapy for neoplasms; however, long-term investigation of its different cellular pathways has led to recognition of a variety of subsequent molecules with more specific interactions, and therefore, might be suitable as prognostic and therapeutic factors for neoplasms. Here, we will review different aspects of the TNF-alpha as a cytokine involved in both physiologic functions of cells and pathologic abnormalities, most importantly, cancers.
Collapse
Affiliation(s)
- Pouya Mahdavi Sharif
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Jabbari
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
20
|
Koo BW, Lim DJ, Oh AY, Na HS. Retrospective Comparison between the Effects of Propofol and Inhalation Anesthetics on Postoperative Recurrence of Early- and Intermediate-Stage Hepatocellular Carcinoma. Med Princ Pract 2020; 29:422-428. [PMID: 32074612 PMCID: PMC7511682 DOI: 10.1159/000506637] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Previous studies have reported that propofol has antitumor, anti-inflammatory, and antioxidant effects in addition to its anesthetic properties. To confirm this, a retrospective investigation was conducted to determine whether different anesthetic agents, particularly propofol and inhalation anesthetics, have an effect on the recurrence of hepatocellular carcinoma (HCC) in patients who were diagnosed with primary HCC and underwent laparoscopic hepatectomy. SUBJECTS AND METHODS Patients with Barcelona Clinic Liver Cancer stages 0, A, and B HCC, who underwent laparoscopic hepatic resection, were enrolled in this study. Post-operative HCC recurrence, which was determined from postoperative liver CT, was evaluated 24 months postoperatively with respect to the main anesthetic agents. The characteristics of HCC and other patient-related or surgery-related variables were evaluated together. RESULTS AND CONCLUSION During the 24-month period after hepatic resection, less HCC patients in the propofol group than in the inhalation group recurred (p = 0.046). The mean time to recurrence was 20.8 months (95% CI, 19.7-22.0) and 19.1 months (95% CI, 17.8-20.4) in the propofol group and the inhalation group, respectively. In addition, multivariable Cox proportional regression analysis revealed that the propofol group showed significantly decreased recurrence versus the inhalation group (hazard ratio, 0.57; 95% CI, 0.47-0.69; p = 0.029). When propofol was used as the main general anesthetic agent for laparoscopic hepatic resection, the postoperative 2-year recurrence rate decreased in early- and intermediate-stage HCC.
Collapse
Affiliation(s)
- Bon-Wook Koo
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dae-Jin Lim
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ah-Young Oh
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyo-Seok Na
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea,
| |
Collapse
|
21
|
Models for Understanding Resistance to Chemotherapy in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111677. [PMID: 31671735 PMCID: PMC6896032 DOI: 10.3390/cancers11111677] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
The lack of response to pharmacological treatment constitutes a substantial limitation in the handling of patients with primary liver cancers (PLCs). The existence of active mechanisms of chemoresistance (MOCs) in hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma hampers the usefulness of chemotherapy. A better understanding of MOCs is needed to develop strategies able to overcome drug refractoriness in PLCs. With this aim, several experimental models are commonly used. These include in vitro cell-free assays using subcellular systems; studies with primary cell cultures; cancer cell lines or heterologous expression systems; multicellular models, such as spheroids and organoids; and a variety of in vivo models in rodents, such as subcutaneous and orthotopic tumor xenografts or chemically or genetically induced liver carcinogenesis. Novel methods to perform programmed genomic edition and more efficient techniques to isolate circulating microvesicles offer new opportunities for establishing useful experimental tools for understanding the resistance to chemotherapy in PLCs. In the present review, using three criteria for information organization: (1) level of research; (2) type of MOC; and (3) type of PLC, we have summarized the advantages and limitations of the armamentarium available in the field of pharmacological investigation of PLC chemoresistance.
Collapse
|
22
|
Human Amnion Epithelial Cell Therapy for Chronic Liver Disease. Stem Cells Int 2019; 2019:8106482. [PMID: 31485235 PMCID: PMC6702811 DOI: 10.1155/2019/8106482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a common consequence of chronic liver disease. Over time, liver fibrosis can develop into liver cirrhosis. Current therapies for liver fibrosis are limited, and liver transplant is the only curative therapy for patients who progress to end-stage disease. A potential approach to treat chronic liver disease with increasing interest is cell-based therapy. Among the multiple cell types which have been proposed for therapeutic uses, human amnion epithelial cells and amniotic fluid-derived mesenchymal cells are promising. These cells are highly abundant, and their use poses no ethical concern. Furthermore, they exert potent anti-inflammatory and antifibrotic effects in animal models of liver injury. This review highlights the therapeutic characteristics and discusses how human amnion epithelial cells can be utilised as a therapeutic tool for chronic liver disease.
Collapse
|
23
|
Muto Y, Moroishi T, Ichihara K, Nishiyama M, Shimizu H, Eguchi H, Moriya K, Koike K, Mimori K, Mori M, Katayama Y, Nakayama KI. Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis. J Exp Med 2019; 216:950-965. [PMID: 30877170 PMCID: PMC6446870 DOI: 10.1084/jem.20180900] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/15/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular iron overload elicited by ablation of the iron-sensing ubiquitin ligase FBXL5 promotes liver carcinogenesis induced by exposure to a chemical carcinogen or hepatitis virus, suggesting that FBXL5 is a previously unrecognized oncosuppressor in liver carcinogenesis in mice. Hepatic iron overload is a risk factor for progression of hepatocellular carcinoma (HCC), although the molecular mechanisms underlying this association have remained unclear. We now show that the iron-sensing ubiquitin ligase FBXL5 is a previously unrecognized oncosuppressor in liver carcinogenesis in mice. Hepatocellular iron overload elicited by FBXL5 ablation gave rise to oxidative stress, tissue damage, inflammation, and compensatory proliferation of hepatocytes and to consequent promotion of liver carcinogenesis induced by exposure to a chemical carcinogen. The tumor-promoting outcome of FBXL5 deficiency in the liver was also found to be effective in a model of virus-induced HCC. FBXL5-deficient mice thus constitute the first genetically engineered mouse model of liver carcinogenesis promoted by iron overload. In addition, dysregulation of FBXL5-mediated cellular iron homeostasis was found to be associated with poor prognosis in human HCC, suggesting that FBXL5 plays a key role in defense against hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Toshiro Moroishi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kazuya Ichihara
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideyuki Shimizu
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University, Beppu Hospital, Beppu, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Liang S, Ma HY, Zhong Z, Dhar D, Liu X, Xu J, Koyama Y, Nishio T, Karin D, Karin G, Mccubbin R, Zhang C, Hu R, Yang G, Chen L, Ganguly S, Lan T, Karin M, Kisseleva T, Brenner DA. NADPH Oxidase 1 in Liver Macrophages Promotes Inflammation and Tumor Development in Mice. Gastroenterology 2019; 156:1156-1172.e6. [PMID: 30445007 PMCID: PMC6409207 DOI: 10.1053/j.gastro.2018.11.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Although there are associations among oxidative stress, reduced nicotinamide adenine dinucleotide phosphate oxidase (NOX) activation, and hepatocellular carcinoma (HCC) development, it is not clear how NOX contributes to hepatocarcinogenesis. We studied the functions of different NOX proteins in mice after administration of a liver carcinogen. METHODS Fourteen-day-old Nox1-/- mice, Nox4-/- mice, Nox1-/-Nox4-/- (double-knockout) mice, and wild-type (WT) C57BL/6 mice were given a single intraperitoneal injection of diethylnitrosamine (DEN) and liver tumors were examined at 9 months. We also studied the effects of DEN in mice with disruption of Nox1 specifically in hepatocytes (Nox1ΔHep), hepatic stellate cells (Nox1ΔHep), or macrophages (Nox1ΔMac). Some mice were also given injections of the NOX1-specific inhibitor ML171. To study the acute effects of DEN, 8-12-week-old mice were given a single intraperitoneal injection, and liver and serum were collected at 72 hours. Liver tissues were analyzed by histologic examination, quantitative polymerase chain reaction, and immunoblots. Hepatocytes and macrophages were isolated from WT and knockout mice and analyzed by immunoblots. RESULTS Nox4-/- mice and WT mice developed liver tumors within 9 months after administration of DEN, whereas Nox1-/- mice developed 80% fewer tumors, which were 50% smaller than those of WT mice. Nox1ΔHep and Nox1ΔHSC mice developed liver tumors of the same number and size as WT mice, whereas Nox1ΔMac developed fewer and smaller tumors, similar to Nox1-/- mice. After DEN injection, levels of tumor necrosis factor, interleukin 6 (IL6), and phosphorylated signal transducer and activator of transcription 3 were increased in livers from WT, but not Nox1-/- or Nox1ΔMac, mice. Conditioned medium from necrotic hepatocytes induced expression of NOX1 in cultured macrophages, followed by expression of tumor necrosis factor, IL6, and other inflammatory cytokines; this medium did not induce expression of IL6 or cytokines in Nox1ΔMac macrophages. WT mice given DEN followed by ML171 developed fewer and smaller liver tumors than mice given DEN followed by vehicle. CONCLUSIONS In mice given injections of a liver carcinogen (DEN), expression of NOX1 by macrophages promotes hepatic tumorigenesis by inducing the production of inflammatory cytokines. We propose that upon liver injury, damage-associated molecular patterns released from dying hepatocytes activate liver macrophages to produce cytokines that promote tumor development. Strategies to block NOX1 or these cytokines might be developed to slow hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hsiao-Yen Ma
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zhenyu Zhong
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Debanjan Dhar
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Xiao Liu
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jun Xu
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yukinori Koyama
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Nishio
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daniel Karin
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gabriel Karin
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ryan Mccubbin
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cuili Zhang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.,School of Public Health, Shandong University, Jinan, 250012, China
| | - Ronglin Hu
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guizhi Yang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li Chen
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Souradipta Ganguly
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tian Lan
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Michael Karin
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tatiana Kisseleva
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, California.
| | - David A. Brenner
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.,Correspondence: To whom correspondence should be addressed. ;
| |
Collapse
|
25
|
Wang Q, Zhang P, Li Z, Feng X, Lv C, Zhang H, Xiao H, Ding J, Chen X. Evaluation of Polymer Nanoformulations in Hepatoma Therapy by Established Rodent Models. Theranostics 2019; 9:1426-1452. [PMID: 30867842 PMCID: PMC6401493 DOI: 10.7150/thno.31683] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 01/10/2023] Open
Abstract
Hepatoma is one of the most severe malignancies usually with poor prognosis, and many patients are insensitive to the existing therapeutic agents, including the drugs for chemotherapy and molecular targeted therapy. Currently, researchers are committed to developing the advanced formulations with controlled drug delivery to improve the efficacy of hepatoma therapy. Numerous inoculated, induced, and genetically engineered hepatoma rodent models are now available for formulation screening. However, animal models of hepatoma cannot accurately represent human hepatoma in terms of histological characteristics, metastatic pathways, and post-treatment responses. Therefore, advanced animal hepatoma models with comparable pathogenesis and pathological features are in urgent need in the further studies. Moreover, the development of nanomedicines has renewed hope for chemotherapy and molecular targeted therapy of advanced hepatoma. As one kind of advanced formulations, the polymer-based nanoformulated drugs have many advantages over the traditional ones, such as improved tumor selectivity and treatment efficacy, and reduced systemic side effects. In this article, the construction of rodent hepatoma model and much information about the current development of polymer nanomedicines were reviewed in order to provide a basis for the development of advanced formulations with clinical therapeutic potential for hepatoma.
Collapse
Affiliation(s)
- Qilong Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Zhongmin Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Chengyue Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Huaiyu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| |
Collapse
|
26
|
Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation-Driven Liver and Colorectal Cancers. Cancers (Basel) 2018; 11:cancers11010024. [PMID: 30591653 PMCID: PMC6356226 DOI: 10.3390/cancers11010024] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity promotes the development of numerous cancers, such as liver and colorectal cancers, which is at least partly due to obesity-induced, chronic, low-grade inflammation. In particular, the recruitment and activation of immune cell subsets in the white adipose tissue systemically increase proinflammatory cytokines, such as tumor necrosis factor α (TNFα) and interleukin-6 (IL-6). These proinflammatory cytokines not only impair insulin action in metabolic tissues, but also favor cancer development. Here, we review the current state of knowledge on how obesity affects inflammatory TNFα and IL-6 signaling in hepatocellular carcinoma and colorectal cancers.
Collapse
|
27
|
Manco R, Leclercq IA, Clerbaux LA. Liver Regeneration: Different Sub-Populations of Parenchymal Cells at Play Choreographed by an Injury-Specific Microenvironment. Int J Mol Sci 2018; 19:E4115. [PMID: 30567401 PMCID: PMC6321497 DOI: 10.3390/ijms19124115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration is crucial for the maintenance of liver functional mass during homeostasis and diseases. In a disease context-dependent manner, liver regeneration is contributed to by hepatocytes or progenitor cells. As long as they are replicatively competent, hepatocytes are the main cell type responsible for supporting liver size homeostasisand regeneration. The concept that all hepatocytes within the lobule have the same proliferative capacity but are differentially recruited according to the localization of the wound, or whether a yet to be defined sub-population of hepatocytes supports regeneration is still debated. In a chronically or severely injured liver, hepatocytes may enter a state of replicative senescence. In such conditions, small biliary cells activate and expand, a process called ductular reaction (DR). Work in the last few decades has demonstrated that DR cells can differentiate into hepatocytes and thereby contribute to parenchymal reconstitution. In this study we will review the molecular mechanisms supporting these two processes to determine potential targets that would be amenable for therapeutic manipulation to enhance liver regeneration.
Collapse
Affiliation(s)
- Rita Manco
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| |
Collapse
|
28
|
Amicone L, Marchetti A. Microenvironment and tumor cells: two targets for new molecular therapies of hepatocellular carcinoma. Transl Gastroenterol Hepatol 2018; 3:24. [PMID: 29971255 DOI: 10.21037/tgh.2018.04.05] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC), is one of the most frequent human cancer and is characterized by a high mortality rate. The aggressiveness appears strictly related to the liver pathological background on which cancer develops. Inflammation and the consequent fibro/cirrhosis, derived from chronic injuries of several origins (viral, toxic and metabolic) and observable in almost all oncological patients, represents the most powerful risk factor for HCC and, at the same time, an important obstacle to the efficacy of systemic therapy. Multiple microenvironmental cues, indeed, play a pivotal role in the pathogenesis, evolution and recurrence of HCC as well as in the resistance to standard therapies observed in most of patients. The identification of altered pathways in cancer cells and of microenvironmental changes, strictly connected in pathogenic feedback loop, may permit to plan new therapeutic approaches targeting tumor cells and their permissive microenvironment, simultaneously.
Collapse
Affiliation(s)
- Laura Amicone
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Alessandra Marchetti
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
Immune response involved in liver damage and the activation of hepatic progenitor cells during liver tumorigenesis. Cell Immunol 2018; 326:52-59. [PMID: 28860007 DOI: 10.1016/j.cellimm.2017.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
|
30
|
Salomon BL, Leclerc M, Tosello J, Ronin E, Piaggio E, Cohen JL. Tumor Necrosis Factor α and Regulatory T Cells in Oncoimmunology. Front Immunol 2018; 9:444. [PMID: 29593717 PMCID: PMC5857565 DOI: 10.3389/fimmu.2018.00444] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor α (TNF) is a potent pro-inflammatory cytokine that has deleterious effect in some autoimmune diseases, which led to the use of anti-TNF drugs in some of these diseases. However, some rare patients treated with these drugs paradoxically develop an aggravation of their disease or new onset autoimmunity, revealing an immunosuppressive facet of TNF. A possible mechanism of this observation is the direct and positive effect of TNF on regulatory T cells (Tregs) through its binding to the TNF receptor type 2 (TNFR2). Indeed, TNF is able to increase expansion, stability, and possibly function of Tregs via TNFR2. In this review, we discuss the role of TNF in graft-versus-host disease as an example of the ambivalence of this cytokine in the pathophysiology of an immunopathology, highlighting the therapeutic potential of triggering TNFR2 to boost Treg expansion. We also describe new targets in immunotherapy of cancer, emphasizing on the putative suppressive effect of TNF in antitumor immunity and of the interest of blocking TNFR2 to regulate the Treg compartment.
Collapse
Affiliation(s)
- Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Mathieu Leclerc
- Université Paris-Est and INSERM U955, Créteil, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital H. Mondor, Créteil, France
| | - Jimena Tosello
- Center of Cancer Immunotherapy and Centre d'Investigation Clinique Biothérapie 1428, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Emilie Ronin
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Eliane Piaggio
- Center of Cancer Immunotherapy and Centre d'Investigation Clinique Biothérapie 1428, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - José L Cohen
- Université Paris-Est and INSERM U955, Créteil, France.,Centre d'Investigation Clinique Biothérapie, Assistance Publique Hôpitaux de Paris (APHP), Hôpital H. Mondor, Créteil, France
| |
Collapse
|
31
|
Kramer AS, Latham B, Diepeveen LA, Mou L, Laurent GJ, Elsegood C, Ochoa-Callejero L, Yeoh GC. InForm software: a semi-automated research tool to identify presumptive human hepatic progenitor cells, and other histological features of pathological significance. Sci Rep 2018; 8:3418. [PMID: 29467378 PMCID: PMC5821869 DOI: 10.1038/s41598-018-21757-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatic progenitor cells (HPCs) play an important regenerative role in acute and chronic liver pathologies. Liver disease research often necessitates the grading of disease severity, and pathologists’ reports are the current gold-standard for assessment. However, it is often impractical to recruit pathologists in large cohort studies. In this study we utilise PerkinElmer’s “InForm” software package to semi-automate the scoring of patient liver biopsies, and compare outputs to a pathologist’s assessment. We examined a cohort of eleven acute hepatitis samples and three non-alcoholic fatty liver disease (NAFLD) samples, stained with HPC markers (GCTM-5 and Pan Cytokeratin), an inflammatory marker (CD45), Sirius Red to detect collagen and haematoxylin/eosin for general histology. InForm was configured to identify presumptive HPCs, CD45+ve inflammatory cells, areas of necrosis, fat and collagen deposition (p < 0.0001). Hepatitis samples were then evaluated both by a pathologist using the Ishak-Knodell scoring system, and by InForm through customised algorithms. Necroinflammation as evaluated by a pathologist, correlated with InForm outputs (r2 = 0.8192, p < 0.05). This study demonstrates that the InForm software package provides a useful tool for liver disease research, allowing rapid, and objective quantification of the presumptive HPCs and identifies histological features that assist with assessing liver disease severity, and potentially can facilitate diagnosis.
Collapse
Affiliation(s)
- Anne S Kramer
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Bruce Latham
- PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Luke A Diepeveen
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Lingjun Mou
- WA Liver & Kidney Surgical Transplant Service, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Geoffrey J Laurent
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Caryn Elsegood
- School of Pharmacy and Biomedical Science, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Laura Ochoa-Callejero
- Angiogenesis group, Oncology Area, Centre for Biomedical Research of La Rioja, Logroño, Spain
| | - George C Yeoh
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia. .,School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia. .,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
32
|
Ji T, Li G, Chen J, Zhao J, Li X, Lin H, Cai X, Cang Y. Distinct role of interleukin-6 and tumor necrosis factor receptor-1 in oval cell- mediated liver regeneration and inflammation-associated hepatocarcinogenesis. Oncotarget 2018; 7:66635-66646. [PMID: 27556180 PMCID: PMC5341826 DOI: 10.18632/oncotarget.11365] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Interleukin 6 (IL6), tumor necrosis factor α (TNFα) and TNF receptor-1(TNFR1) have been shown to involve in oval cell proliferation and hepatocellular carcinoma (HCC) development. However, their role in these processes is still unclear. In the present study, by using hepatocytes-specific DDB1 deletion mouse models, we explored the role and mechanism of IL6, TNFα and TNFR1 in oval cell proliferation and HCC development in the context of inflammation, which is the common features of HCC pathogenesis in humans. Our results showed that IL6 promotes oval cell proliferation and liver regeneration, while TNFα/TNFR1 does not affect this process. Deletion of IL6 accelerates HCC development and increases tumor burden. The number of natural killer(NK) cells is significantly decreased in tumors without IL6, implying that IL6 suppresses HCC by NK cells. In contrast to IL6, TNFR1-mediated signaling pathway promotes HCC development, and deletion of TNFR1 reduced tumor incidence. Increased apoptosis, compensatory proliferation and activation of MAPK/MEK/ERK cascade contribute to the oncogenic function of TNFR1-mediated signaling pathway. Intriguingly, deletion of TNFα accelerates tumor development, which shows divergent roles of TNFα and TNFR1 in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Tong Ji
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gaofeng Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xi Li
- Oncology Business Unit and Innovation Center for Cell Signaling Network, WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yong Cang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
33
|
Chen J, Chen L, Zern MA, Theise ND, Diehl AM, Liu P, Duan Y. The diversity and plasticity of adult hepatic progenitor cells and their niche. Liver Int 2017; 37:1260-1271. [PMID: 28135758 PMCID: PMC5534384 DOI: 10.1111/liv.13377] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
The liver is a unique organ for homoeostasis with regenerative capacities. Hepatocytes possess a remarkable capacity to proliferate upon injury; however, in more severe scenarios liver regeneration is believed to arise from at least one, if not several facultative hepatic progenitor cell compartments. Newly identified pericentral stem/progenitor cells residing around the central vein is responsible for maintaining hepatocyte homoeostasis in the uninjured liver. In addition, hepatic progenitor cells have been reported to contribute to liver fibrosis and cancers. What drives liver homoeostasis, regeneration and diseases is determined by the physiological and pathological conditions, and especially the hepatic progenitor cell niches which influence the fate of hepatic progenitor cells. The hepatic progenitor cell niches are special microenvironments consisting of different cell types, releasing growth factors and cytokines and receiving signals, as well as the extracellular matrix (ECM) scaffold. The hepatic progenitor cell niches maintain and regulate stem cells to ensure organ homoeostasis and regeneration. In recent studies, more evidence has been shown that hepatic cells such as hepatocytes, cholangiocytes or myofibroblasts can be induced to be oval cell-like state through transitions under some circumstance, those transitional cell types as potential liver-resident progenitor cells play important roles in liver pathophysiology. In this review, we describe and update recent advances in the diversity and plasticity of hepatic progenitor cell and their niches and discuss evidence supporting their roles in liver homoeostasis, regeneration, fibrosis and cancers.
Collapse
Affiliation(s)
- Jiamei Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
- E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Long Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Neil D. Theise
- Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, New York, New York, USA
| | - Ann Mae Diehl
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ping Liu
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
- E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyou Duan
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
34
|
Wang X, Liu W, Xie X. Energy imbalance and cancer: Cause or consequence? IUBMB Life 2017; 69:776-784. [PMID: 28858429 DOI: 10.1002/iub.1674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
Obesity has been an epidemic worldwide over the past decades and significantly increases the risk of developing a variety of deadly diseases including type 2 diabetes, cardiovascular diseases and many cancers. The relationship between obesity and type 2 diabetes and cardiovascular disease has been well documented. The drastically increased frequency of a number of cancers in obesity has attracted growing interest. On one hand, how increased adiposity promotes cancer development remains poorly understood, despite the fact that considerable epidemiological evidence has suggested links between them. On the other hand, however, numerous studies have shown that tumorigenesis leads to substantial weight loss in a large portion of cancer patients. Here, we summarize the recent advances on our understanding of the link between obesity and cancer development with a focus on the molecular mechanisms accounting for the rising cancer incidence in the context of obesity. In addition, we also discuss how cancer-associated anorexia and cachexia causes weight loss. © 2017 IUBMB Life, 69(10):776-784, 2017.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Liu
- Department of Neurology, Beijing Haidian Hospital, Beijing 100080, China
| | - Xiangyang Xie
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| |
Collapse
|
35
|
Lukacs-Kornek V, Lammert F. The progenitor cell dilemma: Cellular and functional heterogeneity in assistance or escalation of liver injury. J Hepatol 2017; 66:619-630. [PMID: 27826058 DOI: 10.1016/j.jhep.2016.10.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022]
Abstract
Liver progenitor cells (LPCs) are quiescent cells that are activated during liver injury and thought to give rise to hepatocytes and cholangiocytes in order to support liver regeneration and tissue restitution. While hepatocytes are capable of self-renewal, during most chronic injuries the proliferative capacity of hepatocytes is inhibited, thus LPCs provide main source for regeneration. Despite extensive lineage tracing studies, their role and involvement in these processes are often controversial. Additionally, increasing evidence suggests that the LPC compartment consists of heterogeneous cell populations that are actively involved in cellular interactions with myeloid and lymphoid cells during regeneration. On the other hand, LPC expansion has been associated with an increased fibrogenic response, raising concerns about the therapeutic use of these cells. This review aims to summarize the current understanding of the identity, the cellular interactions and the key pathways affecting the biology of LPCs. Understanding the regulatory circuits and the specific role of LPCs is especially important as it could provide novel therapeutic platforms for the treatment of liver inflammation, fibrosis and regeneration.
Collapse
Affiliation(s)
- Veronika Lukacs-Kornek
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
36
|
Tan EK, Shuh M, Francois-Vaughan H, Sanders JA, Cohen AJ. Negligible Oval Cell Proliferation Following Ischemia-Reperfusion Injury With and Without Partial Hepatectomy. Ochsner J 2017; 17:31-37. [PMID: 28331445 PMCID: PMC5349633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Hepatic oval cells proliferate to replace hepatocytes and restore liver function when hepatocyte proliferation is compromised or inadequate. Exposure to chemical carcinogens, severe liver steatosis, and partial hepatectomy has been used in animal models to demonstrate the role of oval cells in liver regeneration. Ischemia-reperfusion injury (IRI) causes hepatocellular damage and death in the absence of confounding chemical toxicity; however, oval cell induction by IRI has not been demonstrated in vivo. We examine oval cell induction following partial IRI. METHODS Wistar rats were subjected to 2 IRI protocols: 70% warm liver ischemia for 30 minutes followed by reperfusion or 70% warm liver ischemia for 30 minutes with partial hepatectomy of the nonischemic lobes followed by reperfusion. Liver injury was monitored by serum alanine aminotransferase (ALT) at 1 day and 7 days of reperfusion. Oval cell proliferation was monitored by indirect immunofluorescence staining using the surface markers BD.2 and Thy-1. Cellular proliferation was quantified by 5-ethynyl-2'-deoxyuridine (EdU) incorporation in vivo. RESULTS Serum ALT elevation was only observed at the 1-day time point in the IRI with partial hepatectomy model. Oval cell marker expression was restricted to the biliary structures in both the ischemic and the nonischemic control lobes. Oval cell induction, measured by changes in the frequency of BD.2 and Thy-1 expression and EdU incorporation, was not significantly altered by IRI. CONCLUSION In both mild and moderate IRI models, we did not find evidence of oval cell induction or proliferation. EdU staining was restricted to hepatocytes, suggesting that liver regeneration following IRI is mediated by hepatocyte proliferation.
Collapse
Affiliation(s)
- Ek Khoon Tan
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA
- Department of General Surgery, Singapore General Hospital, Singapore
| | - Maureen Shuh
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA
| | | | - Jennifer A. Sanders
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Brown University, Providence, RI
| | - Ari J. Cohen
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA
- Multi-Organ Transplant Institute, Ochsner Clinic Foundation, New Orleans, LA
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| |
Collapse
|
37
|
Tumor necrosis factor α in the onset and progression of leukemia. Exp Hematol 2016; 45:17-26. [PMID: 27833035 DOI: 10.1016/j.exphem.2016.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor alpha (TNF-α), originally described as an anti-neoplastic cytokine, has been found, in apparent contradiction to its name, to play an important role in promoting the development and progression of malignant disease. Targeting TNF-α with TNF antagonists has elicited an objective response in certain solid tumors in phase I and II clinical trials. This review focuses on the relationship of TNF-α expressed by leukemia cells and adverse clinical features of leukemia. TNF-α is involved in all steps of leukemogenesis, including cellular transformation, proliferation, angiogenesis, and extramedullary infiltration. TNF-α is also an important factor in the tumor microenvironment and assists leukemia cells in immune evasion, survival, and resistance to chemotherapy. TNF-α may be a potent target for leukemia therapy.
Collapse
|
38
|
Tanaka M, Miyajima A. Liver regeneration and fibrosis after inflammation. Inflamm Regen 2016; 36:19. [PMID: 29259692 PMCID: PMC5725806 DOI: 10.1186/s41232-016-0025-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 02/08/2023] Open
Abstract
The liver is a unique organ with an extraordinary capacity to regenerate upon various injuries. In acute and transient liver injury by insults such as chemical hepatotoxins, the liver in rodents returns to the original architecture by proliferation and remodeling of the remaining cells within a week. In contrast, chronic liver inflammation due to various etiologies, e.g., virus infection and metabolic and immune disorders, results in liver fibrosis, often leading to cirrhosis and carcinogenesis. In both acute and chronic inflammation, a variety of immune and non-immune cells in the liver is involved in the processes resulting in either regeneration or fibrosis. In addition, chronic hepatitis often accompanies proliferation of atypical biliary cells, also known as liver progenitor cells or oval cells. Although the origin of liver progenitor cells and its contribution to hepatic repair is still under intense debate, recent studies have revealed a regulatory role for immune cells in progenitor proliferation and differentiation. In this review, we summarize recent studies on liver regeneration and fibrosis in the viewpoint of inflammation.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Atsushi Miyajima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Galheigo MRU, Cruz AR, Cabral ÁS, Faria PR, Cordeiro RS, Silva MJB, Tomiosso TC, Gonçalves BF, Pinto-Fochi ME, Taboga SR, Góes RM, Ribeiro DL. Role of the TNF-α receptor type 1 on prostate carcinogenesis in knockout mice. Prostate 2016; 76:917-26. [PMID: 27018768 DOI: 10.1002/pros.23181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/02/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND TNF-α is a key cytokine involved in prostate carcinogenesis and is mediated by the TNF-α receptor type 1 (TNFR-1). This receptor triggers two opposite pathways: cell death or cell survival and presents a protective or stimulator role in cancer. Thus, the purpose of this study was to evaluate the role of TNF signaling in chemically induced prostate carcinogenesis in mice. METHODS C57bl/6 wild type (WT) and p55 TNFR-1 knockout mice (KO) were treated with mineral oil (control) or N-methyl N-nitrosurea (MNU) in association with testosterone (MNU+T, single injection of 40 mg/kg and weekly injection 2 mg/kg, respectively) over the course of 6 months. After this induction period, prostate samples were processed for histological and biochemical analysis. RESULTS MNU+T treatment led to the development of prostate intraepithelial neoplasia (PIN) and adenocarcinoma (PCa) in both WT and KO animals; however, the incidence of PCa was lower in KO group than in WT. Cell proliferation analysis showed that PCNA levels were significantly lower in the KO group, even after carcinogenesis induction. Furthermore, the prostate of KO animals had lower levels of p65 and p-mTOR after treatment with MNU+T than WT. There was also a decrease in prostate androgen receptor levels after induction of carcinogenesis in both KO and WT mice. Regarding the extracellular matrix in the prostate, KO mice had higher levels of fibronectin and lower levels of matrix metalloproteinase 2 (MMP2) after carcinogenesis. Finally, there was a similar increase in apoptosis in both groups after carcinogenesis, indicating that the TNAFr1 pathway in prostate carcinogenesis presented proliferative, and not apoptotic, stimuli. CONCLUSIONS TNF-α, through its receptor TNFR-1, promoted cell proliferation and cell survival in prostate by activation of the AKT/mTOR and NFKB pathway, which stimulated prostate carcinogenesis in chemically induced mice. Prostate 76: 917-926, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Amanda Rodrigues Cruz
- Histology Sector, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Ágata Silva Cabral
- Histology Sector, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Paulo Rogério Faria
- Histology Sector, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Renato Simões Cordeiro
- Histology Sector, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Immunology Sector, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Tatiana Carla Tomiosso
- Histology Sector, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Bianca Fachim Gonçalves
- Department of Morphology, Institute of Biosciences, Univ Estadual Paulista (IBB/UNESP), Botucatu, SP, Brazil
| | - Maria Etelvina Pinto-Fochi
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista (IBILCE/UNESP), São José do Rio Preto, SP, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista (IBILCE/UNESP), São José do Rio Preto, SP, Brazil
| | - Rejane Maira Góes
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista (IBILCE/UNESP), São José do Rio Preto, SP, Brazil
| | - Daniele Lisboa Ribeiro
- Histology Sector, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| |
Collapse
|
40
|
Peerzada KJ, Faridi AH, Sharma L, Bhardwaj SC, Satti NK, Shashi B, Tasduq SA. Acteoside-mediates chemoprevention of experimental liver carcinogenesis through STAT-3 regulated oxidative stress and apoptosis. ENVIRONMENTAL TOXICOLOGY 2016; 31:782-798. [PMID: 26990576 DOI: 10.1002/tox.22089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 06/05/2023]
Abstract
In the absence of an effective therapy against Hepatocellular Carcinoma (HCC), chemoprevention remains an important strategy to circumvent morbidity and mortality. Here, we examined chemopreventive potential of Acteoside (ACT), a plant derived phenylethanoid glycoside against an environmental and dietary carcinogen, diethylnitrosamine (DEN)-induced rat hepatocarcinogenesis. ACT treatment (0.1 and 0.3% supplemented with diet) started 2 weeks before DEN challenge and continued for 18 weeks thereafter, showed a remarkable chemopreventive activity. ACT treatment resulted in reduced HCC nodules. Histopathology showed progressive tissue damage, necrosis (5 weeks), hepatocytic injury (10 weeks), anisonucleosis with presence of prominent nucleoli, sinusidal dilations, and lymphomono nuclear inflammation (18 weeks). Biochemical analysis showed hepatocytic injury (raised ALT, p < 0.001), inflammation [IL-6, IFN-γ (p < 0.05), and TNF-α (p < 0.001)], apoptosis [elevated Caspase-3 (p < 0.001)]. ACT at 0.1 and 0.3% ameliorated DEN-induced pre-hepatocarcinogenic manifestations. Mechanistic studies of ACT chemoprevention was elucidated using Hep3B cells with an aim to develop an in vitro DEN-induced toxicity model. Hep3B was found to be a reliable and more sensitive towards DEN toxicity compared to HepG2 and HuH7 cells. ACT prevented DEN-induced cytotoxicity (p < 0.001), DNA damage, and genotoxicity (micronuclei test, DNA ladder test, Hoechst staining, cell cycle analysis). ACT significantly (p < 0.001) scavenged DEN-induced reactive oxygen species (ROS) levels and prevented mitochondrial membrane potential (MMP) loss. Immunoblotting showed ACT treatment reversed DEN-induced NF-κB, Bax, Cytochrome C, Bcl-2, and Stat-3 levels. We conclude that chemoprotective effect of ACT is mediated by STAT-3 dependent regulation of oxidative stress and apoptosis and ACT has potential to be developed as a chemopreventive agent. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 782-798, 2016.
Collapse
Affiliation(s)
- Kaiser J Peerzada
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India
| | - Aamir H Faridi
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India
| | - Love Sharma
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Subhash C Bhardwaj
- Department of Pathology, Government Medical College, Jammu Tawi, Jammu and Kashmir, India
| | - Naresh K Satti
- Natural Products Chemistry (Plants), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India
| | - Bhushan Shashi
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India
| | - Sheikh A Tasduq
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
41
|
Balandaram G, Kramer LR, Kang BH, Murray IA, Perdew GH, Gonzalez FJ, Peters JM. Ligand activation of peroxisome proliferator-activated receptor-β/δ suppresses liver tumorigenesis in hepatitis B transgenic mice. Toxicology 2016; 363-364:1-9. [PMID: 27427494 PMCID: PMC5278792 DOI: 10.1016/j.tox.2016.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/05/2016] [Accepted: 07/13/2016] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits steatosis and inflammation, known risk factors for liver cancer. In this study, the effect of ligand activation of PPARβ/δ in modulating liver tumorigenesis in transgenic hepatitis B virus (HBV) mice was examined. Activation of PPARβ/δ in HBV mice reduced steatosis, the average number of liver foci, and tumor multiplicity. Reduced expression of hepatic CYCLIN D1 and c-MYC, tumor necrosis factor alpha (Tnfa) mRNA, serum levels of alanine aminotransaminase, and an increase in apoptotic signaling was also observed following ligand activation of PPARβ/δ in HBV mice compared to controls. Inhibition of Tnfa mRNA expression was not observed in wild-type hepatocytes. Ligand activation of PPARβ/δ inhibited lipopolysaccharide (LPS)-induced mRNA expression of Tnfa in wild-type, but not in Pparβ/δ-null Kupffer cells. Interestingly, LPS-induced expression of Tnfa mRNA was also inhibited in Kupffer cells from a transgenic mouse line that expressed a DNA binding mutant form of PPARβ/δ compared to controls. Combined, these results suggest that ligand activation of PPARβ/δ attenuates hepatic tumorigenesis in HBV transgenic mice by inhibiting steatosis and cell proliferation, enhancing hepatocyte apoptosis, and modulating anti-inflammatory activity in Kupffer cells.
Collapse
Affiliation(s)
- Gayathri Balandaram
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Lance R Kramer
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Boo-Hyon Kang
- Chemon Nonclinical Research Institute, 240 Nampyeong-ro, Yangji-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, USA
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
42
|
DJ-1 deficiency attenuates expansion of liver progenitor cells through modulating the inflammatory and fibrogenic niches. Cell Death Dis 2016; 7:e2257. [PMID: 27277679 PMCID: PMC5143389 DOI: 10.1038/cddis.2016.161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/27/2022]
Abstract
Our previous study suggested that DJ-1 has a critical role in initiating an inflammatory response, but its role in the liver progenitor cell (LPC) expansion, a process highly dependent on the inflammatory niche, remains elusive. The objective of this study is to determine the role of DJ-1 in LPC expansion. The correlation of DJ-1 expression with LPC markers was examined in the liver of patients with hepatitis B or hepatitis C virus (HBV and HCV, respectively) infection, primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), nonalcoholic fatty liver disease (NAFLD), cirrhosis or hepatocellular carcinoma (HCC), respectively. The role of DJ-1 in LPC expansion and the formation of LPC-associated fibrosis and inflammation was examined in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced liver injury murine model. We also determined the ability of hepatic stellate cells (HSCs) in recruiting macrophages in DJ-1 knockout (KO) mice. The expression levels of DJ-1 were upregulated in the liver of HBV, HCV, PBC and PSC patients and DDC-fed mice. Additionally, DJ-1 expression was positively correlated with LPC proliferation in patients with liver injury and mice with DDC exposure. DJ-1 has no direct effect on LPC proliferation. Reduced activation of HSCs and collagen deposition were observed in DJ-1 KO mice. Furthermore, infiltrated CD11b+Gr-1low macrophages and pro-inflammatory factors (IL-6, TNF-α) were attenuated in DJ-1 KO mice. Mechanistically, we found that HSCs isolated from DJ-1 KO mice had decreased secretion of macrophage-mobilizing chemokines, such as CCL2 and CX3CL1, resulting in impaired macrophage infiltration. DJ-1 positively correlates with LPC expansion during liver injury. DJ-1 deficiency negatively regulates LPC proliferation by impairing the formation of LPC-associated fibrosis and inflammatory niches.
Collapse
|
43
|
Environmental Ligands of the Aryl Hydrocarbon Receptor and Their Effects in Models of Adult Liver Progenitor Cells. Stem Cells Int 2016; 2016:4326194. [PMID: 27274734 PMCID: PMC4870370 DOI: 10.1155/2016/4326194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
The toxicity of environmental and dietary ligands of the aryl hydrocarbon receptor (AhR) in mature liver parenchymal cells is well appreciated, while considerably less attention has been paid to their impact on cell populations exhibiting phenotypic features of liver progenitor cells. Here, we discuss the results suggesting that the consequences of the AhR activation in the cellular models derived from bipotent liver progenitors could markedly differ from those in hepatocytes. In contact-inhibited liver progenitor cells, the AhR agonists induce a range of effects potentially linked with tumor promotion. They can stimulate cell cycle progression/proliferation and deregulate cell-to-cell communication, which is associated with downregulation of proteins forming gap junctions, adherens junctions, and desmosomes (such as connexin 43, E-cadherin, β-catenin, and plakoglobin), as well as with reduced cell adhesion and inhibition of intercellular communication. At the same time, toxic AhR ligands may affect the activity of the signaling pathways contributing to regulation of liver progenitor cell activation and/or differentiation, such as downregulation of Wnt/β-catenin and TGF-β signaling, or upregulation of transcriptional targets of YAP/TAZ, the effectors of Hippo signaling pathway. These data illustrate the need to better understand the potential role of liver progenitors in the AhR-mediated liver carcinogenesis and tumor promotion.
Collapse
|
44
|
Woo K, Stewart SG, Kong GS, Finch-Edmondson ML, Dwyer BJ, Yeung SY, Abraham LJ, Kampmann SS, Diepeveen LA, Passman AM, Elsegood CL, Tirnitz-Parker JEE, Callus BA, Olynyk JK, Yeoh GCT. Identification of a thalidomide derivative that selectively targets tumorigenic liver progenitor cells and comparing its effects with lenalidomide and sorafenib. Eur J Med Chem 2016; 120:275-83. [PMID: 27208658 DOI: 10.1016/j.ejmech.2016.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/18/2016] [Accepted: 03/04/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS The availability of non-tumorigenic and tumorigenic liver progenitor cell (LPC) lines affords a method to screen putative anti-liver cancer agents to identify those that are selectively effective. To prove this principle we tested thalidomide and a range of its derivatives and compared them to lenalidomide and sorafenib, to assess their growth-inhibitory effects. METHODS Cell growth, the mitotic and apoptotic index of cell cultures were measured using the Cellavista instrument (SynenTec) using commercially available reagents. RESULTS Neither lenalidomide nor thalidomide (100 μM) affected tumorigenic LPCs but killed their non-tumorigenic counterparts. Sorafenib arrested growth in both cell types. All but two derivatives of thalidomide were ineffective; of the two effective derivatives, one (thalidomide C1) specifically affected the tumorigenic cell line (10 μM). Mitotic and apoptotic analyses revealed that thalidomide C1 induced apoptotic cell death and not mitotic arrest. CONCLUSIONS This study shows that screens incorporating non-tumorigenic and tumorigenic liver cell lines are a sound approach to identify agents that are effective and selective. A high throughput instrument such as the Cellavista affords robust and reproducible objective measurements with a large number of replicates that are reliable. These experiments show that neither lenalidomide nor thalidomide are potentially useful for anti-liver cancer therapy as they kill non-tumorigenic liver cells and not their tumorigenic counterparts. Sorafenib in contrast, is highly effective, but not selective. One tested thalidomide derivative has potential as an anti-tumor drug since it induced growth arrest; and importantly, it selectively induced apoptotic cell death only in tumorigenic liver progenitor cells.
Collapse
Affiliation(s)
- Ken Woo
- The Centre for Medical Research, The Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Scott G Stewart
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Geraldine S Kong
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Megan L Finch-Edmondson
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Benjamin J Dwyer
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia; The Centre for Medical Research, The Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Sing Y Yeung
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Lawrence J Abraham
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Sven S Kampmann
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Luke A Diepeveen
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia; The Centre for Medical Research, The Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Adam M Passman
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Caryn L Elsegood
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia; School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Janina E E Tirnitz-Parker
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia; School of Medicine and Pharmacology, University of Western Australia, Fremantle, WA 6959, Australia
| | - Bernard A Callus
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia; School of Health Sciences, The University of Notre Dame Australia, WA 6959, Australia
| | - John K Olynyk
- Department of Gastroenterology & Hepatology, Fiona Stanley Hospital, Bull Creek, WA, Australia; School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia; School of Veterinary Sciences, Murdoch University, Murdoch, WA, Australia
| | - George C T Yeoh
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia; The Centre for Medical Research, The Perkins Institute of Medical Research, Nedlands, WA 6009, Australia.
| |
Collapse
|
45
|
Köhn-Gaone J, Gogoi-Tiwari J, Ramm GA, Olynyk JK, Tirnitz-Parker JEE. The role of liver progenitor cells during liver regeneration, fibrogenesis, and carcinogenesis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G143-54. [PMID: 26608186 DOI: 10.1152/ajpgi.00215.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/19/2015] [Indexed: 01/31/2023]
Abstract
The growing worldwide challenge of cirrhosis and hepatocellular carcinoma due to increasing prevalence of excessive alcohol consumption, viral hepatitis, obesity, and the metabolic syndrome has sparked interest in stem cell-like liver progenitor cells (LPCs) as potential candidates for cell therapy and tissue engineering, as an alternative approach to whole organ transplantation. However, LPCs always proliferate in chronic liver diseases with a predisposition to cancer; they have been suggested to play major roles in driving fibrosis, disease progression, and may even represent tumor-initiating cells. Hence, a greater understanding of the factors that govern their activation, communication with other hepatic cell types, and bipotential differentiation as opposed to their potential transformation is needed before their therapeutic potential can be harnessed.
Collapse
Affiliation(s)
- Julia Köhn-Gaone
- Curtin Health Innovation Research Institute, Curtin University, Perth Western Australia, Australia
| | - Jully Gogoi-Tiwari
- Curtin Health Innovation Research Institute, Curtin University, Perth Western Australia, Australia
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - John K Olynyk
- Curtin Health Innovation Research Institute, Curtin University, Perth Western Australia, Australia; Fiona Stanley and Fremantle Hospitals, Western Australia, Australia; School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia; and
| | - Janina E E Tirnitz-Parker
- Curtin Health Innovation Research Institute, Curtin University, Perth Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Fremantle Western Australia, Australia
| |
Collapse
|
46
|
Ham B, Fernandez MC, D’Costa Z, Brodt P. The diverse roles of the TNF axis in cancer progression and metastasis. TRENDS IN CANCER RESEARCH 2016; 11:1-27. [PMID: 27928197 PMCID: PMC5138060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metastasis is a multi-step process that ultimately depends on the ability of disseminating cancer cells to establish favorable communications with their microenvironment. The tumor microenvironment consists of multiple and continuously changing cellular and molecular components. One of the factors regulating the tumor microenvironment is TNF-α, a pleiotropic cytokine that plays key roles in apoptosis, angiogenesis, inflammation and immunity. TNF-α can have both pro- and anti-tumoral effects and these are transmitted via two major receptors, the 55 kDa TNFR1 and the 75 kDa TNFR2 that have distinct, as well as overlapping functions. TNFR1 is ubiquitously expressed while the expression of TNFR2 is more restricted, mainly to immune cells. While TNFR1 can transmit pro-apoptotic or pro-survival signals through a complex network of downstream mediators, the role of TNFR2 is less well understood. One of its main functions is to act as a survival factor and moderate the pro-apoptotic effects of TNFR1, particularly in immune cells. In this review, we summarize the evidence for the involvement of the TNF system in the progression of the metastatic process from its contribution to the early steps of tumor cell invasion to its role in the colonization of distant sites, particularly the liver. We show how the TNF receptors each contribute to these processes by regulating and shaping the tumor microenvironment. Current evidence and concepts on the potential use of TNF targeting agents for cancer prevention and therapy are discussed.
Collapse
Affiliation(s)
- Boram Ham
- Department of Medicine, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Maria Celia Fernandez
- Department of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Zarina D’Costa
- Department of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Pnina Brodt
- Department of Medicine, McGill University and the McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
- Department of Oncology, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
47
|
Fukuda T, Fukuchi T, Yagi S, Shiojiri N. Immunohistochemical analyses of cell cycle progression and gene expression of biliary epithelial cells during liver regeneration after partial hepatectomy of the mouse. Exp Anim 2015; 65:135-46. [PMID: 26633692 PMCID: PMC4873482 DOI: 10.1538/expanim.15-0082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The liver has a remarkable regeneration capacity, and, after surgical removal of its
mass, the remaining tissue undergoes rapid regeneration through compensatory growth of its
constituent cells. Although hepatocytes synchronously proliferate under the control of
various signaling molecules from neighboring cells, there have been few detailed analyses
on how biliary cells regenerate for their cell population after liver resection. The
present study was undertaken to clarify how biliary cells regenerate after partial
hepatectomy of mice through extensive analyses of their cell cycle progression and gene
expression using immunohistochemical and RT-PCR techniques. When expression of PCNA, Ki67
antigen, topoisomerase IIα and phosphorylated histone H3, which are cell cycle markers,
was immunohistochemically examined during liver regeneration, hepatocytes had a peak of
the S phase and M phase at 48–72 h after resection. By contrast, biliary epithelial cells
had much lower proliferative activity than that of hepatocytes, and their peak of the S
phase was delayed. Mitotic figures were rarely detectable in biliary cells. RT-PCR
analyses of gene expression of biliary markers such as Spp1
(osteopontin), Epcam and Hnf1b demonstrated that they
were upregulated during liver regeneration. Periportal hepatocytes expressed some of
biliary markers, including Spp1 mRNA and protein. Some periportal
hepatocytes had downregulated expression of HNF4α and HNF1α. Gene expression of Notch
signaling molecules responsible for cell fate decision of hepatoblasts to biliary cells
during development was upregulated during liver regeneration. Notch signaling may be
involved in biliary regeneration.
Collapse
Affiliation(s)
- Tatsuya Fukuda
- Department of Biology, Faculty of Science, Shizuoka University, Oya 836, Suruga-ku, Shizuoka city, Shizuoka 422-8529, Japan
| | | | | | | |
Collapse
|
48
|
Abstract
Metabolic liver injury is one of the fastest growing health problems worldwide. Alcoholic and non-alcoholic fatty livers have been shown to be associated with progression to end-stage liver diseases, as well as to liver cancers, in humans. More importantly, there are no validated therapies for these disorders, therefore intensive research is required in this area. This review of standard operation procedures focuses on the experimental models of fatty liver disease in the mouse. Firstly, use of these experimental models might improve understanding of underlying mechanisms, and secondly this might help to test potential therapeutic options. This article includes, besides a short historic background, an insight into the pathobiochemical mechanisms and detailed experimental procedures as well as the practical implementation of these models.
Collapse
Affiliation(s)
- P Ramadori
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - R Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University, Aachen, Germany
| | - J Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - K Streetz
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
49
|
Passman AM, Strauss RP, McSpadden SB, Finch-Edmondson ML, Woo KH, Diepeveen LA, London R, Callus BA, Yeoh GC. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice. Dis Model Mech 2015; 8:1635-41. [PMID: 26496771 PMCID: PMC4728320 DOI: 10.1242/dmm.022020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/19/2015] [Indexed: 12/25/2022] Open
Abstract
The choline-deficient, ethionine-supplemented (CDE) dietary model induces chronic liver damage, and stimulates liver progenitor cell (LPC)-mediated repair. Long-term CDE administration leads to hepatocellular carcinoma in rodents and lineage-tracing studies show that LPCs differentiate into functional hepatocytes in this model. The CDE diet was first modified for mice by our laboratory by separately administering choline-deficient chow and ethionine in the drinking water (CD+E diet). Although this CD+E diet is widely used, concerns with variability in weight loss, morbidity, mortality and LPC response have been raised by researchers who have adopted this model. We propose that these inconsistencies are due to differential consumption of chow and ethionine in the drinking water, and that incorporating ethionine in the choline-deficient chow, and altering the strength, will achieve better outcomes. Therefore, C57Bl/6 mice, 5 and 6 weeks of age, were fed an all-inclusive CDE diet of various strengths (67% to 100%) for 3 weeks. The LPC response was quantitated and cell lines were derived. We found that animal survival, LPC response and liver damage are correlated with CDE diet strength. The 67% and 75% CDE diet administered to mice older than 5 weeks and greater than 18 g provides a consistent and acceptable level of animal welfare and induces a substantial LPC response, permitting their isolation and establishment of cell lines. This study shows that an all-inclusive CDE diet for mice reproducibly induces an LPC response conducive to in vivo studies and isolation, whilst minimizing morbidity and mortality. Summary: This modified choline-deficient, ethionine-supplemented model induces liver injury in mice and reproducibly minimizes morbidity and mortality, whilst maintaining a liver-progenitor-cell response sufficient for cell-line establishment.
Collapse
Affiliation(s)
- Adam M Passman
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Robyn P Strauss
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Sarah B McSpadden
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Megan L Finch-Edmondson
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Ken H Woo
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Luke A Diepeveen
- Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Roslyn London
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Bernard A Callus
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia School of Health Sciences, The University of Notre Dame Australia, Fremantle, Western Australia 6959, Australia
| | - George C Yeoh
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| |
Collapse
|
50
|
Irvine KM, Clouston AD, Gadd VL, Miller GC, Wong WY, Melino M, Maradana MR, MacDonald K, Lang RA, Sweet MJ, Blumenthal A, Powell EE. Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury. FIBROGENESIS & TISSUE REPAIR 2015; 8:19. [PMID: 26473015 PMCID: PMC4606475 DOI: 10.1186/s13069-015-0036-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022]
Abstract
Background Macrophages play critical roles in liver regeneration, fibrosis development and resolution. They are among the first responders to liver injury and are implicated in orchestrating the fibrogenic response via multiple mechanisms. Macrophages are also intimately associated with the activated hepatic progenitor cell (HPC) niche or ductular reaction that develops in parallel with fibrosis. Among the many macrophage-derived mediators implicated in liver disease progression, a key role for macrophage-derived Wnt proteins in driving pro-regenerative HPC activation towards a hepatocellular fate has been suggested. Wnt proteins, in general, however, have been associated with both pro- and anti-fibrogenic activities in the liver and other organs. We investigated the role of macrophage-derived Wnt proteins in fibrogenesis and HPC activation in murine models of chronic liver disease by conditionally deleting Wntless expression, which encodes a chaperone essential for Wnt protein secretion, in LysM-Cre-expressing myeloid cells (LysM-Wls mice). Results Fibrosis and HPC activation were exacerbated in LysM-Wls mice compared to littermate controls, in the absence of an apparent increase in myofibroblast activation or interstitial collagen mRNA expression, in both the TAA and CDE models of chronic liver disease. Increased Epcam mRNA levels paralleled the increased HPC activation and more mature ductular reactions, in LysM-Wls mice. Increased Epcam expression in LysM-Wls HPC was also observed, consistent with a more cholangiocytic phenotype. No differences in the mRNA expression levels of key pro-inflammatory and pro-fibrotic cytokines or the macrophage-derived HPC mitogen, Tweak, were observed. LysM-Wls mice exhibited increased expression of Timp1, encoding the key Mmp inhibitor Timp1 that blocks interstitial collagen degradation, and, in the TAA model, reduced expression of the anti-fibrotic matrix metalloproteinases, Mmp12 and Mmp13, suggesting a role for macrophage-derived Wnt proteins in restraining fibrogenesis during ongoing liver injury. Conclusion In summary, these data suggest that macrophage-derived Wnt proteins possess anti-fibrogenic potential in chronic liver disease, which may be able to be manipulated for therapeutic benefit. Electronic supplementary material The online version of this article (doi:10.1186/s13069-015-0036-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharine M Irvine
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Andrew D Clouston
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Victoria L Gadd
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Gregory C Miller
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Weng-Yew Wong
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Michelle Melino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Muralidhara Rao Maradana
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Kelli MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Richard A Lang
- Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA
| | - Matthew J Sweet
- Institute for Molecular Bioscience and the Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Elizabeth E Powell
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| |
Collapse
|