1
|
Agnello L, Masucci A, Tamburello M, Vassallo R, Massa D, Giglio RV, Midiri M, Gambino CM, Ciaccio M. The Role of Killer Ig-like Receptors in Diseases from A to Z. Int J Mol Sci 2025; 26:3242. [PMID: 40244151 PMCID: PMC11989319 DOI: 10.3390/ijms26073242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Killer Ig-like Receptors (KIRs) regulate immune responses, maintaining the balance between activation and inhibition of the immune system. KIRs are expressed on natural killer cells and some CD8 T cells and interact with HLA class I molecules, influencing various physiological and pathological processes. KIRs' polymorphism creates a variability in immune responses among individuals. KIRs are involved in autoimmune disorders, cancer, infections, neurological diseases, and other diseases. Specific combinations of KIRs and HLA are linked to several diseases' susceptibility, progression, and outcomes. In particular, the balance between inhibitory and activating KIRs can determine how the immune system responds to pathogens and tumors. An imbalance can lead to an excessive response, contributing to autoimmune diseases, or an inadequate response, allowing immune evasion by pathogens or cancer cells. The increasing number of studies on KIRs highlights their essential role as diagnostic and prognostic biomarkers and potential therapeutic targets. This review provides a comprehensive overview of the role of KIRs in all clinical conditions and diseases, listed alphabetically, where they are analyzed.
Collapse
Affiliation(s)
- Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Anna Masucci
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Martina Tamburello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Roberta Vassallo
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Davide Massa
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Rosaria Vincenza Giglio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Mauro Midiri
- Institute of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy;
| | - Caterina Maria Gambino
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
2
|
Ahmad A, Tariq F, Zaheer M. Rheumatoid Vasculitis in Modern Era: A Case Report and Comprehensive Literature Review. Cureus 2024; 16:e62783. [PMID: 39036255 PMCID: PMC11260207 DOI: 10.7759/cureus.62783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Rheumatoid vasculitis (RV) is a rare extraarticular manifestation of severe seropositive rheumatoid arthritis (RA), affecting small and medium vessels and associated with significant morbidity and mortality. The incidence of RV has significantly decreased in the last three decades due to early diagnosis and better management of RA with biologics. Still, the mortality rate remains high and there are insufficient controlled studies guiding RV treatment. Here, we discussed a case of a 75-year-old male who presented with a non-healing ulcer on lateral malleolus without significant joint pain, the workup showed very high titer rheumatoid factor with erosive joint disease raising high clinical suspicion of RV. Skin biopsy was negative for histologic evidence of vasculitis. He had complete healing of the ulcer with prednisone and methotrexate (MTX). This case highlights the importance of promptly recognizing this rare entity and that a negative biopsy does not rule out RV, and appropriate treatment helps decrease morbidity and mortality.
Collapse
Affiliation(s)
- Anam Ahmad
- Internal Medicine, St. Luke's Hospital, Chesterfield, USA
| | - Farina Tariq
- Internal Medicine, Quaid-E-Azam Medical College, Chesterfield, USA
| | - Muhammad Zaheer
- Internal Medicine, St. Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
3
|
Mertz P, Wollenschlaeger C, Chasset F, Dima A, Arnaud L. Rheumatoid vasculitis in 2023: Changes and challenges since the biologics era. Autoimmun Rev 2023; 22:103391. [PMID: 37468085 DOI: 10.1016/j.autrev.2023.103391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Significant changes in the epidemiology and natural history of rheumatoid vasculitis (RV) have occurred with the introduction of biological therapies such as TNF inhibitors (TNFi) and rituximab. PURPOSE This scoping review aims to address the key current challenges and propose updated criteria for RV. This will aid future descriptive observational studies and prospective therapeutic trials. METHODOLOGY The MEDLINE database was searched for eligible articles from inception through December 2022. Articles were selected based on language and publication date after 1998, corresponding to the approval of the first TNFi in rheumatic diseases. RESULTS Sixty articles were included in the review. The mean incidence of RV has decreased since the approval of biologic therapies in RA, from 9.1 (95% CI: 6.8-12.0) per million between 1988 and 2000 to 3.9 (95% CI: 2.3-6.2) between 2001 and 2010, probably due to significant improvement in RA severity and a decrease in smoking habits. Factors associated with an increased risk of RV include smoking at RA diagnosis, longer disease duration, severe RA, immunopositivity, and male gender (regardless of age). Homozygosity for the HLA-DRB104 shared epitope is linked to RV, while the presence of HLA-C3 is a significant predictor of vasculitis in patients without HLA-DRB104. Cutaneous (65-88%), neurologic (35-63%), and cardiac (33%) manifestations are common in RV, often associated with constitutional symptoms (70%). Histologic findings range from small vessel vasculitis to medium-sized necrotizing arteritis, but definite evidence of vasculitis is not required in the 1984 Scott and Bacon diagnostic criteria. Existing data on RV treatment are retrospective, and no formal published guidelines are currently available. CONCLUSION The understanding of RV pathogenesis has improved since its initial diagnostic criteria, with a wider range of clinical manifestations identified. However, a validated and updated criteria that incorporates these advances is currently lacking, impeding the development of descriptive observational studies and prospective therapeutic trials. PRIMARY FUNDING SOURCE This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Collapse
Affiliation(s)
- Philippe Mertz
- Service de rhumatologie, INSERM UMR-S1109, Hôpital de Hautepierre, 1 Avenue Molière BP 83049, 67098 Strasbourg Cedex, France; Centre National de Référence des Maladies Auto-immunes Systémiques Rares Est Sud-Ouest (RESO)-LUPUS, European Reference Networks (ERN) ReCONNET and RITA, France.
| | - Clara Wollenschlaeger
- Dermatology Clinic, Hôpitaux Universitaires et Université de Strasbourg, 1 Place de l'Hôpital, 67091 Strasbourg Cedex, France
| | - François Chasset
- Sorbonne Université, Faculté de Médecine, Service de dermatologie et Allergologie, AP-HP, hôpital Tenon, et INSERM U1135, CIMI, Paris
| | - Alina Dima
- Department of Rheumatology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Laurent Arnaud
- Service de rhumatologie, INSERM UMR-S1109, Hôpital de Hautepierre, 1 Avenue Molière BP 83049, 67098 Strasbourg Cedex, France; Centre National de Référence des Maladies Auto-immunes Systémiques Rares Est Sud-Ouest (RESO)-LUPUS, European Reference Networks (ERN) ReCONNET and RITA, France
| |
Collapse
|
4
|
Mitrović J, Hrkač S, Tečer J, Golob M, Ljilja Posavec A, Kolar Mitrović H, Grgurević L. Pathogenesis of Extraarticular Manifestations in Rheumatoid Arthritis-A Comprehensive Review. Biomedicines 2023; 11:biomedicines11051262. [PMID: 37238933 DOI: 10.3390/biomedicines11051262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is among the most prevalent and debilitating autoimmune inflammatory chronic diseases. Although it is primarily characterized by destructive peripheral arthritis, it is a systemic disease, and RA-related extraarticular manifestations (EAMs) can affect almost every organ, exhibit a multitude of clinical presentations, and can even be asymptomatic. Importantly, EAMs largely contribute to the quality of life and mortality of RA patients, particularly substantially increased risk of cardiovascular disease (CVD) which is the leading cause of death in RA patients. In spite of known risk factors related to EAM development, a more in-depth understanding of its pathophysiology is lacking. Improved knowledge of EAMs and their comparison to the pathogenesis of arthritis in RA could lead to a better understanding of RA inflammation overall and its initial phases. Taking into account that RA is a disorder that has many faces and that each person experiences it and responds to treatments differently, gaining a better understanding of the connections between the joint and extra-joint manifestations could help to create new treatments and improve the overall approach to the patient.
Collapse
Affiliation(s)
- Joško Mitrović
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Internal Medicine, Dubrava University Hospital, School of Medicine and Faculty of Pharmacy and Biochemistry, University of Zagreb, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | - Stela Hrkač
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Internal Medicine, Dubrava University Hospital, School of Medicine and Faculty of Pharmacy and Biochemistry, University of Zagreb, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | - Josip Tečer
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Internal Medicine, Dubrava University Hospital, School of Medicine and Faculty of Pharmacy and Biochemistry, University of Zagreb, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | - Majda Golob
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Internal Medicine, Dubrava University Hospital, School of Medicine and Faculty of Pharmacy and Biochemistry, University of Zagreb, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | - Anja Ljilja Posavec
- Polyclinic for the Respiratory Tract Diseases, Prilaz Baruna Filipovića 11, 10000 Zagreb, Croatia
| | - Helena Kolar Mitrović
- Department of Rheumatology and Rehabilitation, Zagreb University Hospital Center, University of Zagreb School of Medicine, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Lovorka Grgurević
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Anatomy, "Drago Perovic", School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Alexandrova M, Manchorova D, Dimova T. Immunity at maternal-fetal interface: KIR/HLA (Allo)recognition. Immunol Rev 2022; 308:55-76. [PMID: 35610960 DOI: 10.1111/imr.13087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Both KIR and HLA are the most variable gene families in the human genome. The recognition of the semi-allogeneic embryo-derived trophoblasts by maternal decidual NK (dNK) cells is essential for the establishment of the functional placenta. This recognition is based on the KIR-HLA interactions and trophoblast expresses a specific HLA profile that constitutes classical polymorphic HLA-C and non-classical oligomorphic HLA-E, HLA-F, and HLA-G molecules. This review highlights some features of the KIR/HLA-C (allo)recognition by decidual NK (dNK) cells as a main immune cell population specifically enriched at maternal-fetal interface during human early pregnancy. How KIR/HLA-C axis operates in pregnancy disorders and in the context of transplacental infections is discussed as well. We summarized old and new data on dNK-cell functional plasticity, their selective expression of KIR and fetal maternal/paternal HLA-C haplotypes present. Results showed that KIR-HLA-C combinations and the corresponding axis operate differently in each pregnancy, determined by the variability of both maternal KIR haplotypes and fetus' maternal/paternal HLA-C allotype combinations. Moreover, the maturation of NK cells strongly depends on if or not HLA allotypes for certain KIR are present. We suggest that the unique KIR/HLA combinations reached in each pregnancy (normal and pathological) should be studied according to well-defined guidelines and unified methodologies to have comparable results ease to interpret and use in clinics.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
6
|
Nishal S, Jhawat V, Phaugat P, Dutt R. Rheumatoid Arthritis and JAK-STAT Inhibitors: Prospects of Topical Delivery. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220329185842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Rheumatoid arthritis (RA) is the most common musculoskeletal disease in the world. The clinical prospects have increased tremendously since the advent of biological agents as therapy options. NSAIDs such as indomethacin, celecoxib, and etoricoxib are used often in the treatment of RA but off-target effects decreased their use. DMARDs such as methotrexate and etanercept were also effective in the treatment of RA, but tolerance to methotrexate developed in many cases. Janus kinase inhibitors (JAKi) have also gained popularity as a treatment option for rheumatoid arthritis. Tofacitinib is the foremost JAK inhibitor that is used to treat RA as an individual agent or in combination with other DMARDs. The most frequently used route of administration for JAKi is oral. Since oral formulations of JAK inhibitors have a number of health hazards, such as systemic toxicity and patient noncompliance, topical formulations of JAK inhibitors have emerged as a preferable alternative for administering JAK inhibitors. Tofacitinib delivered topically, seems to have the potential to eliminate or reduce the occurrences of negative effects when compared to tofacitinib taken orally. Given the scarcity of knowledge on the techniques for topical distribution of JAKi, more effort will be required to develop a stable topical formulation of JAKi to address the limitations of oral route. The current review looks at JAK inhibitors and the ways that have been used to generate topical formulations of them.
Collapse
Affiliation(s)
- Suchitra Nishal
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| | - Vikas Jhawat
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| | - Parmita Phaugat
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| | - Rohit Dutt
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| |
Collapse
|
7
|
EMMUNGİL H, İLGEN U, DİRESKENELİ RH. Autoimmunity in psoriatic arthritis: pathophysiological and clinical aspects. Turk J Med Sci 2021; 51:1601-1614. [PMID: 33581710 PMCID: PMC8569784 DOI: 10.3906/sag-2011-235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/13/2021] [Indexed: 11/03/2022] Open
Abstract
Psoriatic arthritis (PsA) is an underdiagnosed entity with a broad impact on the quality of life. Although the pathogenesis is largely unknown, autoimmune footprints of the inflammation in PsA have increasingly been recognized. Most of the genetic variation predisposing to PsA is mapped to the class I major histocompatibility complex (MHC) region and shared by a variety of autoimmune diseases. Polymorphisms in the genes IL12B, IL23R, IL13, TNIP1, TRAF3IP2, TYK2, and many others explain the non- HLA genetic risk with little known functional consequences. Entheseal and synovial cellular infiltrate with oligoclonal CD8+ T cells and occasional germinal centers, loss of regulatory T cell function, and specific autoantibodies such as anti-PsA peptide, anti-LL-37, and anti-ADAMTSL5 are the immunopathological findings suggestive of autoimmunity. These were supported by clinical observations of autoimmune multimorbidity and treatment response to calcineurin/mTOR and co-stimulation inhibition.
Collapse
Affiliation(s)
- Hakan EMMUNGİL
- Division of Rheumatology, Department of Rheumatology, Trakya University Medical Faculty, EdirneTurkey
| | - Ufuk İLGEN
- Division of Rheumatology, Department of Rheumatology, Trakya University Medical Faculty, EdirneTurkey
| | - Rafi Haner DİRESKENELİ
- Division of Rheumatology, Department of Rheumatology, Marmara University Medical Faculty, İstanbulTurkey
| |
Collapse
|
8
|
Favoino E, Urso L, Serafino A, Misceo F, Catacchio G, Prete M, Perosa F. HLA Allele Prevalence in Disease-Modifying Antirheumatic Drugs-Responsive Enthesitis and/or Arthritis Not Fulfilling ASAS Criteria: Comparison with Psoriatic and Undifferentiated Spondyloarthritis. J Clin Med 2021; 10:jcm10143006. [PMID: 34300172 PMCID: PMC8305973 DOI: 10.3390/jcm10143006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/30/2022] Open
Abstract
Spondyloarthritis (SpA) is a group of inflammatory rheumatic diseases characterized by common clinical features, such as inflammatory enthesitis, arthritis and/or back pain. SpA is strongly associated with human leukocyte antigen (HLA) class I allotype B27. Ankylosing spondylitis has historically been the SpA subgroup with one of the strongest, best-proven associations with HLA-B27. The remaining SpA subgroups, namely psoriatic arthritis (PsA), inflammatory bowel diseases-associated arthritis/spondylitis, reactive arthritis, and undifferentiated SpA (uSpA), have also been associated with HLA allotypes other than HLA-B27. In this retrospective study, we analyzed the association between the HLA class I and II haplotypes and the susceptibility to enthesitis and/or arthritis (E/A). Special attention was paid to E/A responding to disease-modifying antirheumatic drugs (DMARDs) not fulfilling ASAS classification criteria (ASAS−), as compared to ASAS+ forms including PsA and uSpA. The whole E/A group showed significant independent associations with HLA-A28(68), B27, Cw3, Cw12, and DQ1; taken singly, PsA was associated with HLA-B27 and DQ1, uSpA with HLA-B16(38,39) and B27, and E/A ASAS− with HLA-A28(68), Cw8, and Cw12. This study identified novel risk HLA allotypes for different SpA subgroups in an Italian population. HLA typing could aid the diagnosis and treatment of E/A subgroups, including DMARDS-responsive forms not fulfilling ASAS classification criteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Federico Perosa
- Correspondence: ; Tel.: +39-80-547-88-91; Fax: +39-80-547-88-20
| |
Collapse
|
9
|
Carras S, Chartoire D, Mareschal S, Heiblig M, Marçais A, Robinot R, Urb M, Pommier RM, Julia E, Chebel A, Verney A, Bertheau C, Bardel E, Fezelot C, Courtois L, Lours C, Bouska A, Sharma S, Lefebvre C, Rouault JP, Sibon D, Ferrari A, Iqbal J, de Leval L, Gaulard P, Traverse-Glehen A, Sujobert P, Blery M, Salles G, Walzer T, Bachy E, Genestier L. Chronic T cell receptor stimulation unmasks NK receptor signaling in peripheral T cell lymphomas via epigenetic reprogramming. J Clin Invest 2021; 131:e139675. [PMID: 34043588 DOI: 10.1172/jci139675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral T cell lymphomas (PTCLs) represent a significant unmet medical need with dismal clinical outcomes. The T cell receptor (TCR) is emerging as a key driver of T lymphocyte transformation. However, the role of chronic TCR activation in lymphomagenesis and in lymphoma cell survival is still poorly understood. Using a mouse model, we report that chronic TCR stimulation drove T cell lymphomagenesis, whereas TCR signaling did not contribute to PTCL survival. The combination of kinome, transcriptome, and epigenome analyses of mouse PTCLs revealed a NK cell-like reprogramming of PTCL cells with expression of NK receptors (NKRs) and downstream signaling molecules such as Tyrobp and SYK. Activating NKRs were functional in PTCLs and dependent on SYK activity. In vivo blockade of NKR signaling prolonged mouse survival, demonstrating the addiction of PTCLs to NKRs and downstream SYK/mTOR activity for their survival. We studied a large collection of human primary samples and identified several PTCLs recapitulating the phenotype described in this model by their expression of SYK and the NKR, suggesting a similar mechanism of lymphomagenesis and establishing a rationale for clinical studies targeting such molecules.
Collapse
Affiliation(s)
- Sylvain Carras
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Dimitri Chartoire
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Sylvain Mareschal
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Maël Heiblig
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Hematology, Hospices Civils de Lyon, Lyon, France
| | - Antoine Marçais
- INSERM U1111, CNRS UMR 5308, Centre International de Recherche en Infectiologie, Lyon, France
| | - Rémy Robinot
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Mirjam Urb
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Roxane M Pommier
- Synergie Lyon Cancer, Plateforme de Bioinformatique "Gilles Thomas" Centre Léon Bérard, Lyon, France
| | - Edith Julia
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Amel Chebel
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Aurélie Verney
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | | | - Emilie Bardel
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Caroline Fezelot
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Lucien Courtois
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Camille Lours
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christine Lefebvre
- Department of Genetics of Hematological Malignancies, Grenoble University Hospital, Grenoble, France.,INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Institute for Advanced Biosciences, Grenoble, France
| | - Jean-Pierre Rouault
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - David Sibon
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Anthony Ferrari
- Synergie Lyon Cancer, Plateforme de Bioinformatique "Gilles Thomas" Centre Léon Bérard, Lyon, France
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Laurence de Leval
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Philippe Gaulard
- INSERM U955, Université Paris-Est, Créteil, France.,Department of Pathology, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Henri-Mondor, Créteil, France
| | - Alexandra Traverse-Glehen
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Pathology, Hospices Civils de Lyon, Lyon, France
| | - Pierre Sujobert
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Laboratory of Hematology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | | | - Gilles Salles
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Hematology, Hospices Civils de Lyon, Lyon, France
| | - Thierry Walzer
- INSERM U1111, CNRS UMR 5308, Centre International de Recherche en Infectiologie, Lyon, France
| | - Emmanuel Bachy
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Hematology, Hospices Civils de Lyon, Lyon, France
| | - Laurent Genestier
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| |
Collapse
|
10
|
Rheumatoid Arthritis Susceptibility Is Associated with the KIR2DS4-Full of Killer-Cell Immunoglobulin-Like Receptor Genes in the Lur Population of Iran. Rep Biochem Mol Biol 2021; 10:84-94. [PMID: 34277872 DOI: 10.52547/rbmb.10.1.84] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022]
Abstract
Background The pathophysiology underlying the progression and development of autoimmune conditions, such as Rheumatoid Arthritis (RA), is a result of dysregulations of the immune system. Research has explored the genetic alterations present in RA; however, limited studies have examined the role of Killer cell Immunoglobulin-like Receptors (KIR) and Human Leukocyte Antigen (HLA) molecules in RA. Therefore, the aim of this study was to examine KIR genes, their HLA ligands, and KIR-HLA compounds in patients with RA. Methods In this case-control study, a total of 50 patients with RA and 100 healthy individuals were enrolled. DNA samples were evaluated using PCR with sequence specific Primers (PCR-SSP). Odds ratio (OR) with a 95% confidence interval (CI) were reported. Results Among the KIR genes examined, KIR2DLA (p= 0.0255, OR= 0.389, 95% CI= 0.210-0.722) and KIR2DS4-full (p< 0.0001, OR= 6.163, 95% CI= 3.174-11.968) were observed to have a statistically significant correlation with disease susceptibility to RA. As an inhibitory gene, KIR2DLA was observed to have a protective effect against RA while KIR2DS4-full as an activating gene, was found to increase risk for RA. No significant associations were found between any of the other KIR genotypes, HLA ligands, or KIR-HLA compounds examined in this study to RA susceptibility. Conclusion In this study of RA in the Lur population of Iran, KIR2DS4-full was observed to increase susceptibility to RA, while KIR2DL5A was found to act as a protecting factor based on both the cross Table and regression analyses. Further research should focus on repeating this study in additional populations.
Collapse
|
11
|
Yang Y, Day J, Souza-Fonseca Guimaraes F, Wicks IP, Louis C. Natural killer cells in inflammatory autoimmune diseases. Clin Transl Immunology 2021; 10:e1250. [PMID: 33552511 PMCID: PMC7850912 DOI: 10.1002/cti2.1250] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are a specialised population of innate lymphoid cells (ILCs) that help control local immune responses. Through natural cytotoxicity, production of cytokines and chemokines, and migratory capacity, NK cells play a vital immunoregulatory role in the initiation and chronicity of inflammatory and autoimmune responses. Our understanding of their functional differences and contributions in disease settings is evolving owing to new genetic and functional murine proof-of-concept studies. Here, we summarise current understanding of NK cells in several classic autoimmune disorders, particularly in rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE) and type 1 diabetes mellitus (T1DM), but also less understood diseases such as idiopathic inflammatory myopathies (IIMs). A better understanding of how NK cells contribute to these autoimmune disorders may pave the way for NK cell-targeted therapeutics.
Collapse
Affiliation(s)
- Yuyan Yang
- Tsinghua University School of Medicine Beijing China.,Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Jessica Day
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | | | - Ian P Wicks
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | - Cynthia Louis
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia
| |
Collapse
|
12
|
Heinbokel T, Quante M, Iske J, Nian Y, Maenosono R, Minami K, Liu Y, Azuma H, Elkhal A, Tullius SG. CTLA4-Ig prolongs graft survival specifically in young but not old mice. Am J Transplant 2021; 21:488-502. [PMID: 32717114 PMCID: PMC7855762 DOI: 10.1111/ajt.16218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 01/25/2023]
Abstract
Elderly organ transplant recipients have remained underrepresented in clinical trials, despite representing a rapidly growing population. Here, we assessed age-specific effects of CTLA4-Ig (cytotoxic T-lymphocyte antigen 4-Ig), a fusion protein blocking costimulatory signaling between antigen-presenting cells and T cells through CD28. Cardiac allografts in young mice (2-3 months) treated with CTLA4-Ig survived indefinitely, whereas 80% of old recipients (18 months) had lost their graft after 100 days. CTLA4-Ig was also significantly less effective in older recipients of skin transplants. CTLA4-Ig reduced CD4+ central memory and effector memory T cells and diminished systemic interferon-gamma levels only in young recipients. These differences corresponded to a reduced expression of CD28 on antigen-experienced CD4+ T cells in old mice. In support, adoptive transfer of old CD4+ T cells that were transfected with a lentiviral vector inducing constant expression of CD28 accelerated the rejection of allogeneic skin grafts in young RAG2-/- recipient mice. Regulatory T cells (Tregs), in contrast, demonstrated an increased expression of CD28 with aging and CTLA4-Ig treatment in old recipients resulted in reduced frequencies, compromised proliferation, and diminished suppressive capacity of Tregs. These findings may prove to have unique clinical consequences for immunosuppression in the growing population of elderly transplant recipients.
Collapse
Affiliation(s)
- Timm Heinbokel
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA,Department of Nephrology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Quante
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA,Department of General, Visceral and Transplant Surgery, Tuebingen University Hospital, Tuebingen, Germany
| | - Jasper Iske
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA,Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Yeqi Nian
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Ryoichi Maenosono
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA,Department of Urology, Osaka Medical College, Osaka, Japan
| | - Koichiro Minami
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA,Department of Urology, Osaka Medical College, Osaka, Japan
| | - Yang Liu
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Haruhito Azuma
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Abdallah Elkhal
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Stefan G. Tullius
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
13
|
Auer ED, Tong HV, Amorim LM, Malheiros D, Hoan NX, Issler HC, Petzl-Erler ML, Beltrame MH, Boldt ABW, Toan NL, Song LH, Velavan TP, Augusto DG. Natural killer cell receptor variants and chronic hepatitis B virus infection in the Vietnamese population. Int J Infect Dis 2020; 96:541-547. [PMID: 32422377 DOI: 10.1016/j.ijid.2020.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Genes of host immunity play an important role in disease pathogenesis and are determinants of clinical courses of infections, including hepatitis B virus (HBV). Killer-cell immunoglobulin-like receptor (KIR), expressed on the surface of natural killer cells (NK), regulate NK cell cytotoxicity by interacting with human leukocyte antigen (HLA) class I molecules and are candidates for influencing the course of HBV. This study evaluated whether variations in KIR gene content and HLA-C ligands are associated with HBV and with the development of liver cirrhosis and hepatocellular carcinoma. METHODS A Vietnamese study cohort (HBV n = 511; controls n = 140) was genotyped using multiplex sequence-specific polymerase chain reaction (PCR-SSP) followed by melting curve analysis. RESULTS The presence of the functional allelic group of KIR2DS4 was associated with an increased risk of chronic HBV (OR = 1.86, pcorr = 0.02), while KIR2DL2+HLA-C1 (OR = 0.62, pcorr = 0.04) and KIR2DL3+HLA-C1 (OR = 0.48, pcorr = 0.04) were associated with a decreased risk. The pair KIR2DL3+HLA-C1 was associated with liver cirrhosis (OR = 0.40, pcorr = 0.01). The presence of five or more activating KIR variants was associated with hepatocellular carcinoma (OR = 0.53, pcorr = 0.04). CONCLUSIONS KIR gene content variation and combinations KIR-HLA influence the outcome of HBV infection.
Collapse
Affiliation(s)
- Eduardo Delabio Auer
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Hoang Van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Viet Nam; Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam
| | - Leonardo Maldaner Amorim
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Danielle Malheiros
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam; Institute of Clinical Infectious Diseases, Hanoi, Viet Nam
| | - Hellen Caroline Issler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Maria Luiza Petzl-Erler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Márcia Holsbach Beltrame
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Viet Nam; Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam
| | - Le Huu Song
- Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam; Institute of Clinical Infectious Diseases, Hanoi, Viet Nam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang, Viet Nam.
| | - Danillo G Augusto
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
14
|
Significance of KIR like natural killer cell receptors in autoimmune disorders. Clin Immunol 2020; 216:108449. [PMID: 32376502 DOI: 10.1016/j.clim.2020.108449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs), act as the regulators for the cytolytic activity of natural killer and certain T cells by interacting with the HLA class I ligands. KIRs have been shown to contribute to the pathogenesis of several autoimmune diseases. However, their specific roles are still not very clear. Autoimmune diseases are multifactorial in nature, highlighting the influence of both genetic and environmental factors. The innate immune response plays an important role in autoimmunity as it alters the self-glycans that mimic molecular patterns found on different intracellular pathogens. Natural killer (NK) cells have an important position in the innate immune response. NK cell receptors are encoded by the leukocyte receptor complex located on the chromosome 19q13.4 and lectin-like receptors on chromosome 12p13. This review focuses on the role of KIRs and their relationship with different autoimmune diseases.
Collapse
|
15
|
Chou YC, Chen CH, Chen MJ, Chang CW, Chen PH, Yu MH, Chen YJ, Tsai EM, Yang PS, Lin SY, Tzeng CR. Killer cell immunoglobulin-like receptors (KIR) and human leukocyte antigen-C (HLA-C) allorecognition patterns in women with endometriosis. Sci Rep 2020; 10:4897. [PMID: 32184413 PMCID: PMC7078270 DOI: 10.1038/s41598-020-61702-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Endometriosis shares similarities with several autoimmune diseases. The human leukocyte antigen (HLA)-C genotype is associated with several human autoimmune diseases. HLA-C is a ligand of killer cell immunoglobulin receptors (KIRs) and is an essential regulator of natural killer cell activity, which is associated with endometriosis progression. Polymorphisms in HLA-C and KIR affect the activity of NK cells and susceptibility to several diseases. Therefore, we attempted to investigate an association between HLA-C genotype and KIR polymorphism and the occurrence of endometriosis. We tested the association of certain KIR and HLA-C combinations and the development of endometriosis by characterizing both KIR and HLA-C genes in 147 women with endometriosis and 117 controls. The HLA-C genotypes and KIR polymorphisms were analyzed via DNA-based method for higher-resolution genotyping. We found that the occurrence of HLA-C*03:03*01 was increased in endometriosis than in control groups. Analysis of various KIR haplotypes revealed differences between the endometriosis and control cohorts. The number of KIR centromeric A/A haplotypes was increased in the endometriosis group than controls. Moreover, the endometriosis cohort was characterized by reduced number of KIR2DS2-positive individuals in the Han Chinese population. Our current findings suggest that the KIR and HLA-C genotypes are associated with the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Ya-Ching Chou
- Center for Reproductive Medicine & Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| | - Chi-Huang Chen
- Center for Reproductive Medicine & Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jer Chen
- Department of Obstetrics and Gynecology and Women's Health, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Wen Chang
- Center for Reproductive Medicine & Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Pi-Hua Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mu-Hsien Yu
- Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Chen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Eing-Mei Tsai
- General Research Centers of R&D office, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Peng-Sheng Yang
- Center for Reproductive Medicine & Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shyr-Yeu Lin
- Center for Reproductive Medicine & Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chii-Ruey Tzeng
- Center for Reproductive Medicine & Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan. .,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Blunt MD, Khakoo SI. Activating killer cell immunoglobulin-like receptors: Detection, function and therapeutic use. Int J Immunogenet 2020; 47:1-12. [PMID: 31755661 DOI: 10.1111/iji.12461] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) have a central role in the control of natural killer (NK) cell function. The functions of the activating KIRs, as compared to those of the inhibitory KIR, have been more difficult to define due to difficulties in antibody-mediated identification and their apparent low affinities for HLA class I. Immunogenetic studies have shown associations of activating KIRs with the outcome of autoimmune diseases, pregnancy-associated disorders, infectious diseases and cancers. Activating KIR are thus thought to have important roles in the control of natural killer cell functions and their role in disease. In this review, we discuss current knowledge on activating KIR, their ligands and, their roles in the pathogenesis and potential therapy of human diseases.
Collapse
Affiliation(s)
- Matthew D Blunt
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Salim I Khakoo
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|
17
|
Siegel RJ, Bridges SL, Ahmed S. HLA-C: An Accomplice in Rheumatic Diseases. ACR Open Rheumatol 2019; 1:571-579. [PMID: 31777841 PMCID: PMC6858028 DOI: 10.1002/acr2.11065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 01/14/2023] Open
Abstract
Human leukocyte antigen c (HLA-C) is a polymorphic membrane protein encoded by the HLA-C gene in the class I major histocompatibility complex. HLA-C plays an essential role in protection against cancer and viruses but has also been implicated in allograft rejection, preeclampsia, and autoimmune disease. This review summarizes reports and proposed mechanisms for the accessory role of HLA-C in rheumatic diseases. Historically, contributions of HLA-C to rheumatic diseases were eclipsed by the stronger association with HLA-DRB1 alleles containing the "shared epitope" with rheumatoid arthritis. Larger genetic association studies and more powerful analytical approaches have revealed independent associations of HLA-C with rheumatic disease-associated phenotypes, including development of anticitrullinated peptide antibodies. HLA-C functions by presenting antigens to T cells and by binding activatory and inhibitory receptors on natural killer (NK) cells, but the exact mechanisms by which the HLA-C locus contributes to autoimmunity are largely undefined. Studies have suggested that HLA-C and NK cell receptor polymorphisms may predict responsiveness to pharmacotherapy. Understanding the mechanisms of the role of HLA-C in rheumatic disease could uncover therapeutic targets or guide precision pharmacologic treatments.
Collapse
Affiliation(s)
- Ruby J. Siegel
- Department of Pharmaceutical SciencesWashington State University College of Pharmacy and Pharmaceutical SciencesSpokaneWashington
| | - S. Louis Bridges
- Division of Clinical Immunology and RheumatologyUniversity of Alabama at BirminghamBirminghamAlabama
| | - Salahuddin Ahmed
- Department of Pharmaceutical SciencesWashington State University College of Pharmacy and Pharmaceutical SciencesSpokaneWashington
- Division of RheumatologyUniversity of Washington School of MedicineSeattleWashington
| |
Collapse
|
18
|
Li Y, Liu S, Hong C, Ma Q, Tan F, Liu C, Kuśnierczyk P, Li C, Shi L, Yao Y. The association of HLA/KIR genes with non-small cell lung cancer (adenocarcinoma) in a Han Chinese population. J Cancer 2019; 10:4731-4738. [PMID: 31598144 PMCID: PMC6775512 DOI: 10.7150/jca.33566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/26/2019] [Indexed: 01/29/2023] Open
Abstract
The host immune system plays a crucial role in the surveillance, recognition and elimination of tumor cells. Recent studies found that Human lymphocyte antigen class I (HLA I) genes, Killer cell immunoglobulin-like receptor (KIR) genes and HLA/KIR combinations play a role in the defense against tumor cells. To evaluated the associations between HLA I genes, KIR genes and HLA/KIR combinations and non-small cell lung cancer (NSCLC) in a Chinese Han population, a total of 229 patients with NSCLC (adenocarcinoma) and 217 healthy individuals were studied. Our results showed that the HLA-C*08:01 allele occurred at a significantly higher frequency in the NSCLCs compared with the controls (P=0.034). The HLA haplotype frequencies bearing HLA-A, -B, and -C loci between the NSCLC and control groups were not different (P>0.05). And there were no differences in the KIR gene, genotype and haplotype frequencies between the NSCLC and control groups (P>0.05). Also, there were no differences between the HLA/KIR combinations in the KIR3D genes and HLA-A3/A11, HLA-Bw4 ligands and KIR2D genes and HLA-C1/C2 ligands between the NSCLC and control groups (P>0.05). Our results indicate that the HLA-C*08:01 allele could be a risk factor for NSCLC (adenocarcinoma) in the Chinese Han population (OR=2.395; 95% CI: 1.359-4.221).
Collapse
Affiliation(s)
- Yingfu Li
- Department of Geriatrics, The No.1 Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Chao Hong
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Qianli Ma
- Department of Thoracic Surgery, The No.3 Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Fang Tan
- Department of Geriatrics, The No.1 Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Chengxiu Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
19
|
Yang C, Wang C, Shi Y, Li L. Human leukocyte antigen (HLA)-Cw0303, HLA-Cw04, and HLA-Cw07 polymorphisms are associated with susceptibility of rheumatoid arthritis in Chinese Han patients from Southern China. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:610-616. [PMID: 31231487 PMCID: PMC6570748 DOI: 10.22038/ijbms.2019.33557.8007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES This study aimed to investigate the association between human leukocyte antigen Cw (HLA-Cw) polymorphisms and rheumatoid arthritis (RA) in Chinese Han patients in the Jiangsu area (Southern China). MATERIALS AND METHODS Polymerase chain reaction-sequence specific primers were used to detect HLA-Cw01-08 of 201 RA patients and 211 healthy individuals from Zhongda Hospital (China). The allele frequency distribution of HLA-Cw and genotypic differences between the two groups were analyzed. RESULTS The frequency of HLA-Cw0303 in patients with RA was significantly higher than that in controls, while the frequency of HLA-Cw04 was lower than that in controls (P<0.05). The gene frequency of HLA-Cw07 in anti-cyclic citrullinated peptide (anti-CCP)-negative patients was higher than that in controls (P=0.044). The frequency of HLA-Cw04 was decreased in the short duration subgroup and increased in the long duration subgroup (P<0.05). Compared to controls, the frequency of HLA-Cw0303 in patients with RA and morning stiffness was increased (P=0.004), while the frequency of HLA-Cw04 was decreased ( 0.005). CONCLUSION These results suggest that HLA-Cw0303 is a susceptibility gene for RA in Chinese Han patients in the Jiangsu area of southern China. The HLA-Cw04 gene may be a protective factor against RA, while HLA-Cw07 might play a protective role in the production of anti-CCP in the long-term course in patients with RA.
Collapse
Affiliation(s)
- Chuankun Yang
- Department of Immunology Laboratory, Zhongda Hospital, School of medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Chunling Wang
- Department of Immunology Laboratory, Zhongda Hospital, School of medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yan Shi
- Department of Immunology Laboratory, Zhongda Hospital, School of medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Li Li
- Department of Immunology Laboratory, Zhongda Hospital, School of medicine, Southeast University, Nanjing, Jiangsu, 210009, China,Corresponding author: Li Li. Department of Immunology Laboratory, Zhongda Hospital, School of medicine, Southeast University, Nanjing, Jiangsu, 210009, China. Tel: +86-13675168508; Fax: +86-025-83272145;
| |
Collapse
|
20
|
Tuttolomondo A, Di Raimondo D, Pecoraro R, Casuccio A, Di Bona D, Aiello A, Accardi G, Arnao V, Clemente G, Corte VD, Maida C, Simonetta I, Caruso C, Squatrito R, Pinto A. HLA and killer cell immunoglobulin-like receptor (KIRs) genotyping in patients with acute ischemic stroke. J Neuroinflammation 2019; 16:88. [PMID: 30995924 PMCID: PMC6471781 DOI: 10.1186/s12974-019-1469-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/27/2019] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION In humans, a major component of natural killer (NK) and T cell target recognition depends on the surveillance of human leukocyte antigen (HLA) class I molecules by killer immunoglobulin-like receptors (KIRs). AIMS To implement the knowledge about the immunological genetic background of acute ischemic stroke susceptibility in relation to the frequency of the KIR genes and HLA alleles. METHODS Subjects with acute ischemic stroke and subjects without stroke were genotyped for the presence of KIR genes and of the three major KIR ligand groups, HLA-C1, HLA-C2, and HLA-Bw4, both HLA-B and HLA-A loci. RESULTS Between November 2013 and February 2016, consecutive patients with acute ischemic stroke were recruited. As healthy controls, we enrolled subjects without acute ischemic stroke. Subjects with acute ischemic stroke in comparison with controls showed a higher frequency of 2DL3, 2DL5B, 2DS2, and 2DS4 KIR genes and a lower frequency of HLA-B-Bw4I alleles. Subjects without acute ischemic stroke showed a higher frequency of interaction between KIR 2DS2 and HLAC2. We also observed a higher frequency of 2DL3 and 2 DL4 KIR genes in subjects with atherosclerotic (LAAS) subtype. Multiple logistic regression analysis showed a protective effect towards stroke of HLA-B-Bw4I and interaction between KIR 2DL2 and HLAC1 and 2DS2-HLAC2 and a detrimental effect of 2DL2-HLA-C1_A interactions. CONCLUSION Our findings of a higher frequency of activating KIR genes seem to be consistent with findings previously reported patients with coronary syndrome. This higher frequency of "proinflammatory" genes in subjects with ischemic stroke could also explain the immunoinflammatory activation of the acute phase of stroke.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| | - Domenico Di Raimondo
- Internal Medicine and Stroke Care Ward, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| | - Rosaria Pecoraro
- Pronto Soccorso Unit, Giuseppe Giglio Hospital, Cefalù, Italy
- PhD Programme in Clinical Medicine and Behavioural Sciences, University of Palermo, Palermo, PA 90133 Italy
| | - Alessandra Casuccio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| | - Danilo Di Bona
- School and Chair of Allergology, Dipartimento delle Emergenze e Trapianti d’Organo, University of Bari, Bari, Italy
| | - Anna Aiello
- Dipartimento di Biopatologia e Biotecnologie Mediche, Universita’ degli Studi di Palermo, Palermo, Italy
| | - Giulia Accardi
- Dipartimento di Biopatologia e Biotecnologie Mediche, Universita’ degli Studi di Palermo, Palermo, Italy
| | - Valentina Arnao
- Dipartimento di BioMedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di Palermo, Palermo, Italy
| | - Giuseppe Clemente
- Internal Medicine and Stroke Care Ward, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| | - Vittoriano Della Corte
- PhD Programme in Molecular and Clinical Medicine, University of Palermo, Palermo, PA 90133 Italy
| | - Carlo Maida
- Internal Medicine and Stroke Care Ward, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| | - Irene Simonetta
- Internal Medicine and Stroke Care Ward, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| | - Calogero Caruso
- Dipartimento di Biopatologia e Biotecnologie Mediche, Universita’ degli Studi di Palermo, Palermo, Italy
| | | | - Antonio Pinto
- Internal Medicine and Stroke Care Ward, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
21
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
22
|
Chinniah R, Vijayan M, Sivanadham R, Ravi P, Panneerselvam D, Kannan A, Karuppiah B. Diversity and association of HLA/KIR receptors with type 2 diabetes in South India. Int J Immunogenet 2019; 46:166-178. [PMID: 30809938 DOI: 10.1111/iji.12417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/08/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
The present study was undertaken to delineate the association(s) of KIR-HLA combination in South Indian Type 2 diabetes mellitus (T2DM) patients. The T2DM patients (n = 343) and healthy controls (n = 309) were genotyped for KIR/HLA ligands by PCR-SSP method. The increased frequency of activatory KIR (aKIR) 2DS2 (OR = 1.91; p < 2.91 × 10-4 ) was observed in patients suggesting a susceptible association. The frequencies of iKIR 2DL2 (OR = 0.38; p < 1.55 × 10-5 ) and aKIRs 2DS1 (OR = 0.60; p < 0.001) and 3DS1 (OR = 0.52; p < 5.83 × 10-5 ) were decreased in patients suggesting protective associations. The C1/C2 combinatorial analysis has revealed an increased frequency of C1+ /C2- in T2DM patients (OR = 1.62; p < 0.014). The KIR "AB" genotype (OR = 2.41; p < 3.87 × 10-5 ) was observed to be higher in patients. However, the "BB" genotype (OR = 0.32; p < 4.71 × 10-7 ) was increased in controls. The KIR motifs, "Tel-B/B" (OR = 1.84; p < 0.007), were observed higher among patients. However, the frequency of "Tel-A/B" motif genotype was decreased in patients (OR = 0.56; p < 3.13 × 10-4 ). The iKIR/HLA combinations such as 2DL2/3 +C1 and 3DL2+A3/A11 were increased in patients (OR = 3.90; p < 7.5 × 10-5 ) suggesting susceptible associations. On the contrary, the aKIR+HLA combinations such as 2DS2+C1, 2DS1+C2 and 3DS1+Bw4 were less frequent in patients (OR = 0.32; p < 4.2 × 10-4 ) suggesting protective associations. Thus, the present study clearly establishes the positive and negative associations of different KIR-HLA receptor combinations with T2DM in South India.
Collapse
Affiliation(s)
- Rathika Chinniah
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Murali Vijayan
- Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Ramgopal Sivanadham
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Padmamalini Ravi
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | | | - Arun Kannan
- Endocrinology and Diabetology, Madurai Institute of Diabetes and Endocrine Practice and Research, Madurai, Tamil Nadu, India
| | - Balakrishnan Karuppiah
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
23
|
Aghaei H, Mostafaei S, Aslani S, Jamshidi A, Mahmoudi M. Association study between KIR polymorphisms and rheumatoid arthritis disease: an updated meta-analysis. BMC MEDICAL GENETICS 2019; 20:24. [PMID: 30696403 PMCID: PMC6352331 DOI: 10.1186/s12881-019-0754-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
Abstract
Background Currently published studies investigating association between the killer cell immunoglobulin-like receptor (KIR) gene polymorphisms and rheumatoid arthritis (RA) reported inconsistent and contradictory results. Hence, we aim to carry out this comprehensive meta-analysis of all eligible studies meeting the inclusion criteria to achieve precise and comprehensive relationships between genetic variations in KIR gene cluster and risk of RA. Methods Databases of Medline/PubMed and Scopus were searched to investigate case-control studies prior to May 2018. The associations between KIR gene polymorphisms and RA susceptibility were analyzed by computing the odds ratio (OR) and 95% confidence interval (95% CI) for each study. Results A total of 11 comparative case-control studies involving 1847 RA patients and 2409 healthy individuals were included in this meta-analysis. Four significant associations of 2DL3 (OR = 0.591, 95% CI = 0.351–0.994; P = 0.047), 2DL5 (OR = 0.716, 95% CI = 0.601–0.853; P < 0.001), 2DS5 (OR = 0.623, 95% CI = 0.393–0.988; P = 0.045), and 3DL3 (OR = 0.324, 95% CI = 0.129–0.814; P = 0.016) genes with decreased RA risk were discovered in this meta-analysis. Although, other KIR receptors including 2DL1, 2DL2, 2DL4, 3DL1, 3DL2, 3DS1, 2DS1-2DS4, and two pseudo gens of 2DP1 and 3DP1 displayed no significant association with predisposition to RA. Conclusions These findings provide reliable evidence that 2DL3, 2DL5, 3DL3, and 2DS5 might have a potential protective role for RA.
Collapse
Affiliation(s)
- Hamideh Aghaei
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Mostafaei
- Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran.
| |
Collapse
|
24
|
Sun HS, Liu DX, Bai YY, Hu NW. Disease-association of different killer cell immunoglobulin-like receptors (KIR) and HLA-C gene combinations in reactive arthritis. Mod Rheumatol 2018; 29:531-537. [PMID: 29848119 DOI: 10.1080/14397595.2018.1483292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hong Sheng Sun
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dong Xia Liu
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yan Yan Bai
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Nai Wen Hu
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Rheumatoid vasculitis (RV) is an unusual complication of long-standing rheumatoid arthritis, which is characterized by the development of necrotizing or leukocytoclastic vasculitis involving small or medium-sized vessels. In this review, we aim to provide an update on the epidemiology, pathogenesis, clinical presentation, and management of this challenging extra-articular manifestation. RECENT FINDINGS RV is heterogenous in its clinical presentation depending on the organ and size of blood vessels involved. The most common organs involved are the skin and peripheral nerve. Based on recent population studies, the incidence has significantly decreased with early recognition and the advent of immunosuppressive drugs and biologics; however, the mortality rates remain high. RV remains a serious extra-articular manifestation of RA that needs to be promptly recognized and treated. No consensus is available on treatment, given the ongoing debate of whether the biologics can trigger or treat RV.
Collapse
Affiliation(s)
- Shweta Kishore
- Division of Rheumatology, Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| | - Lisa Maher
- Division of Rheumatology, Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.,G. V. (Sonny) Montgomery VAMC, 1500 E. Woodrow Wilson Drive, Jackson, MS, 39216, USA
| | - Vikas Majithia
- Division of Rheumatology, Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.,G. V. (Sonny) Montgomery VAMC, 1500 E. Woodrow Wilson Drive, Jackson, MS, 39216, USA
| |
Collapse
|
26
|
Gambino CM, Di Bona D, Aiello A, Carru C, Duro G, Guggino G, Ferrante A, Zinellu A, Caruso C, Candore G, Accardi G. HLA-C1 ligands are associated with increased susceptibility to systemic lupus erythematosus. Hum Immunol 2018; 79:172-177. [PMID: 29395276 DOI: 10.1016/j.humimm.2018.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/09/2017] [Accepted: 01/16/2018] [Indexed: 12/31/2022]
Abstract
Recently, the role of killer cell immunoglobulin-like receptor (KIR) in autoimmune diseases has received increasing attention. The present study was undertaken to determine the association of KIR genes and the human leukocytes antigen (HLA) ligands with Systemic Lupus Erythematosus (SLE) and accompanying oxidative stress. Presence or absence of 17 KIR and 5 HLA loci was performed using the polymerase chain reaction-sequence specific primer (PCR-SSP) method by case-control study. A total of 45 SLE patients, and 60 healthy controls, all of Sicilian descent, were enrolled. Plasma values of the anti-oxidant molecule Taurine were determined in all subjects by capillary electrophoresis UV detection. The carrier frequency of the KIR2DS2 gene was significantly increased in SLE patients compared to healthy controls (73.3 versus 45.0%; OR = 3.36; 95% CI = 1.46-7.74; p = .005) suggesting a role of KIR2DS2 gene in the susceptibility to disease. We also observed a strong positive association between the presence of HLA-C1 ligands group and the disease (82.2% in SLE patients versus 41.7% in controls; OR = 6.47, 95% CI = 2.58-16.26; p < .0001). Stepwise logistic regression analysis supported the effect of the HLA-C1 ligands in SLE patients (OR = 7.06, 95% CI = 0.07-2.19; p = .002), while the KIR genes were no longer significant. Interestingly, we found that SLE patients HLA-C1 positive showed significantly decreased plasma levels of antioxidant activity marker Taurine (69.38 ± 28.49 μmol/L) compared to SLE patients HLA-C1 negative (108.37 ± 86.09 μmol/L) (p = .03). In conclusion, HLA-C1 ligands group was significantly associated with an increased risk of SLE as well as an increased oxidative stress status overall in SLE patients.
Collapse
Affiliation(s)
- Caterina Maria Gambino
- Department of Pathobiology and Medical Biotechnologies (Di.Bi.Med.), University of Palermo, Palermo, Italy
| | - Danilo Di Bona
- School and Chair of Allergology, Department of Emergencies and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Aiello
- Department of Pathobiology and Medical Biotechnologies (Di.Bi.Med.), University of Palermo, Palermo, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Duro
- Institute of Biomedicine and Molecular Immunology, National Research Council, Palermo, Italy
| | - Giuliana Guggino
- Department of Internal and Specialist Biomedicine, University of Palermo, Italy
| | - Angelo Ferrante
- Department of Internal and Specialist Biomedicine, University of Palermo, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Calogero Caruso
- Department of Pathobiology and Medical Biotechnologies (Di.Bi.Med.), University of Palermo, Palermo, Italy; Department of Transfusion Medicine, Azienda Universitaria-Ospedaliera Policlinico "Paolo Giaccone", Palermo, Italy.
| | - Giuseppina Candore
- Department of Pathobiology and Medical Biotechnologies (Di.Bi.Med.), University of Palermo, Palermo, Italy; Department of Transfusion Medicine, Azienda Universitaria-Ospedaliera Policlinico "Paolo Giaccone", Palermo, Italy
| | - Giulia Accardi
- Department of Pathobiology and Medical Biotechnologies (Di.Bi.Med.), University of Palermo, Palermo, Italy
| |
Collapse
|
27
|
Liu SL, Zheng AJ, Ding L. Association between KIR gene polymorphisms and type 1 diabetes mellitus (T1DM) susceptibility: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2017; 96:e9439. [PMID: 29384924 PMCID: PMC6392676 DOI: 10.1097/md.0000000000009439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is a T-cell mediated autoimmune disease with a complex genetic and immunological background. Evidence suggests that killer cell immunoglobulin-like receptor (KIR) genes are associated with T1DM, but the results are inconsistent. Here, we conducted a meta-analysis to comprehensively evaluate the effect of KIR genes on the risk of T1DM. METHODS The PubMed, Web of Science, the Chinese Biomedical Database, and Chinese National Knowledge Infrastructure databases were systematically searched to select studies on the association between KIR polymorphisms and T1DM. The quality of each study was scoring in term of the Newcastle-Ottawa Scale. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of this association. Subgroup analysis stratified by ethnicity was also conducted. Funnel plot and Egger test were conducted to assess the publication bias. RESULTS A total of 13 independent case-control studies comprising 2076 T1DM cases and 1967 controls were included in this meta-analysis. We found a negative association between the KIR2DL1 polymorphism and susceptibility to T1DM in the overall population (OR = 0.71, 95%CI = 0.51-0.98, P = .038), but not in ethnic-specific analysis. Additionally, a negative association between the KIR2DS1 polymorphism and susceptibility to T1DM was found in the Asians (OR = 0.76, 95%CI = 0.63-0.92, P = .004), but not in the Caucasians. However, the associations could not withstand Bonferroni correction. Conversely, no association between the other KIRs genes (KIR2DL2, KIR2DL3, KIR2DL4, KIR2DL5, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DL1, KIR3DL2, KIR3DL3, and KIR3DS1) and T1DM susceptibility was found in overall and subgroup ethnicity. No publication bias was detected in all comparisons. CONCLUSIONS In summary, this meta-analysis suggested that the KIR2DL1 and 2DS1 polymorphism might be a potential protective factor for T1DM in the specific ethnicity. Further subtle design studies with more sample size are still needed for a definitive conclusion.
Collapse
|
28
|
Wang AL, Jiang B, Qian XY, Zhang Q, Peng H, Zhang YH. Association between killer cell immunoglobulin-like receptor 2DS5
gene with essential hypertension in the Chinese Han patients. Int J Immunogenet 2017; 44:343-349. [DOI: 10.1111/iji.12342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/12/2017] [Accepted: 08/31/2017] [Indexed: 12/24/2022]
Affiliation(s)
- A. L. Wang
- Department of Epidemiology; School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases; Medical College of Soochow University; Suzhou Jiangsu China
| | - B. Jiang
- Beijing Institute of Translational Medicine; Chinese Academy of Sciences and Shijitan Hospital; CMU Beijing China
| | - X. Y. Qian
- Department of Epidemiology; School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases; Medical College of Soochow University; Suzhou Jiangsu China
| | - Q. Zhang
- Center for Disease Prevention and Control of Jinchang District; Suzhou Jiangsu China
| | - H. Peng
- Department of Epidemiology; School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases; Medical College of Soochow University; Suzhou Jiangsu China
| | - Y. H. Zhang
- Department of Epidemiology; School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases; Medical College of Soochow University; Suzhou Jiangsu China
| |
Collapse
|
29
|
Naiyer MM, Cassidy SA, Magri A, Cowton V, Chen K, Mansour S, Kranidioti H, Mbirbindi B, Rettman P, Harris S, Fanning LJ, Mulder A, Claas FHJ, Davidson AD, Patel AH, Purbhoo MA, Khakoo SI. KIR2DS2 recognizes conserved peptides derived from viral helicases in the context of HLA-C. Sci Immunol 2017; 2:2/15/eaal5296. [DOI: 10.1126/sciimmunol.aal5296] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/30/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
|
30
|
Mohammad-Ebrahim H, Kamali-Sarvestani E, Mahmoudi M, Beigy M, Karami J, Ahmadzadeh N, Shahram F. Association of killer cell immunoglobulin-like receptor (KIR) genes and their HLA ligands with susceptibility to Behçet's disease. Scand J Rheumatol 2017; 47:155-163. [PMID: 28862099 DOI: 10.1080/03009742.2017.1340510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Behçet's disease (BD) is a systemic inflammatory disorder with remissions and exacerbations. It is thought that defects in the natural killer (NK) cell repertoire may be involved in BD through killer cell immunoglobulin-like receptors (KIRs). This study aimed to evaluate KIR and HLA genes, their interactions in BD patients, and their associations with clinical manifestations. METHOD The presence or absence of KIR and HLA alleles and genotypes was analysed by polymerase chain reaction sequence-specific primer on genomic DNA of 397 BD patients and 300 healthy controls. RESULTS None of the KIR genes showed significant effects on BD susceptibility. HLA-C1Asn80 showed a protective effect against BD, whereas HLA-C2Lys80, HLA-B-Bw4Ile80, HLA-B5, and HLA-B51 were associated with a susceptibility risk for BD. In the combination of KIR and HLA genes, the frequencies of HLA genotypes no. 2, 3, 5, and 8, and inhibitory KIR no. 4 were significantly higher in patients than in controls. The frequencies of KIR genotype no. 3 and HLA genotypes no. 1, 4, 6, 7, and 9 were significantly lower in patients than in controls. There were many associations between KIR and HLA genes with clinical features of BD. CONCLUSION Differences in the frequency of HLA genes, KIR-HLA interactions, and genotypes between BD and healthy controls and their associations with clinical manifestations indicate that NK cells are involved in BD pathogenesis. The observed differences indicated an NK cell activity imbalance in BD patients, and suggest a role of the KIR-HLA repertoire in the development of BD.
Collapse
Affiliation(s)
- H Mohammad-Ebrahim
- a Department of Immunology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran.,b Autoimmune Disease Research Centre , Shiraz University of Medical Sciences , Shiraz , Iran.,c Rheumatology Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - E Kamali-Sarvestani
- a Department of Immunology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran.,b Autoimmune Disease Research Centre , Shiraz University of Medical Sciences , Shiraz , Iran
| | - M Mahmoudi
- c Rheumatology Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - M Beigy
- c Rheumatology Research Center , Tehran University of Medical Sciences , Tehran , Iran.,d Students' Scientific Research Center (SSRC) , Tehran University of Medical Sciences , Tehran , Iran
| | - J Karami
- e Department of Immunology , School of Medicine, Iran University of Medical Sciences , Tehran , Iran
| | - N Ahmadzadeh
- c Rheumatology Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - F Shahram
- c Rheumatology Research Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
31
|
Hilton HG, Parham P. Missing or altered self: human NK cell receptors that recognize HLA-C. Immunogenetics 2017; 69:567-579. [PMID: 28695291 DOI: 10.1007/s00251-017-1001-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are fast-acting and versatile lymphocytes that are critical effectors of innate immunity, adaptive immunity, and placental development. Controlling NK cell function are the interactions between killer-cell immunoglobulin-like receptors (KIRs) and their HLA-A, HLA-B and HLA-C ligands. Due to the extensive polymorphism of both KIR and HLA class I, these interactions are highly diversified and specific combinations correlate with protection or susceptibility to a range of infectious, autoimmune, and reproductive disorders. Evolutionary, genetic, and functional studies are consistent with the interactions between KIR and HLA-C being the dominant control mechanism of human NK cells. In addition to their recognition of the C1 and C2 epitopes, increasing evidence points to KIR having a previously unrecognized selectivity for the peptide presented by HLA-C. This selectivity appears to be a conserved feature of activating KIR and may partly explain the slow progress made in identifying their HLA class I ligands. The peptide selectivity of KIR allows NK cells to respond, not only to changes in the surface expression of HLA-C, but also to the more subtle changes in the HLA-C peptidome, such as occur during viral infection and malignant transformation. Here, we review recent advances in understanding of human-specific KIR evolution and how the inhibitory and activating HLA-C receptors allow NK cells to respond to healthy cells, diseased cells, and the semi-allogeneic cells of the fetus.
Collapse
Affiliation(s)
- Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Fairchild D-159, 299 Campus Drive West, Stanford, CA, 94305, USA
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Fairchild D-159, 299 Campus Drive West, Stanford, CA, 94305, USA.
| |
Collapse
|
32
|
Kyaw T, Peter K, Li Y, Tipping P, Toh BH, Bobik A. Cytotoxic lymphocytes and atherosclerosis: significance, mechanisms and therapeutic challenges. Br J Pharmacol 2017; 174:3956-3972. [PMID: 28471481 DOI: 10.1111/bph.13845] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/02/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic lymphocytes encompass natural killer lymphocytes (cells) and cytotoxic T cells that include CD8+ T cells, natural killer (NK) T cells, γ, δ (γδ)-T cells and human CD4 + CD28- T cells. These cells play critical roles in inflammatory diseases and in controlling cancers and infections. Cytotoxic lymphocytes can be activated via a number of mechanisms that may involve dendritic cells, macrophages, cytokines or surface proteins on stressed cells. Upon activation, they secrete pro-inflammatory cytokines as well as anti-inflammatory cytokines, chemokines and cytotoxins to promote inflammation and the development of atherosclerotic lesions including vulnerable lesions, which are strongly implicated in myocardial infarctions and strokes. Here, we review the mechanisms that activate and regulate cytotoxic lymphocyte activity, including activating and inhibitory receptors, cytokines, chemokine receptors-chemokine systems utilized to home to inflamed lesions and cytotoxins and cytokines through which they affect other cells within lesions. We also examine their roles in human and mouse models of atherosclerosis and the mechanisms by which they exert their pathogenic effects. Finally, we discuss strategies for therapeutically targeting these cells to prevent the development of atherosclerotic lesions and vulnerable plaques and the challenge of developing highly targeted therapies that only minimally affect the body's immune system, avoiding the complications, such as increased susceptibility to infections, which are currently associated with many immunotherapies for autoimmune diseases. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia
| | - Yi Li
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Peter Tipping
- Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Ban-Hock Toh
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
33
|
Velarde-de la Cruz EE, Sánchez-Hernández PE, Muñoz-Valle JF, Palafox-Sánchez CA, Ramírez-de Los Santos S, Graciano-Machuca O, García-Iglesias T, Montoya-Buelna M, Ramírez-Dueñas MG. KIR2DL2 and KIR2DS2 as genetic markers to the methotrexate response in rheumatoid arthritis patients. Immunopharmacol Immunotoxicol 2017; 38:303-9. [PMID: 27251940 DOI: 10.1080/08923973.2016.1194429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Disease Modifying Anti-Rheumatic Drugs (DMARDs) are aimed to interfere with rheumatoid arthritis (RA) progression and reduce the joint damage; however, not all patients respond alike. Killer-cell immunoglobulin-like receptors (KIR) and their ligands, human leucocyte antigen class I (HLA-I), have been associated with RA pathology; therefore, KIR and HLA genes may influence the treatment response. MATERIALS AND METHODS We evaluated the association of KIR genotype and their ligands HLA-C genes with the response to DMARDs in RA patients. We included 69 patients diagnosed with RA and 82 healthy individuals as the reference group. KIR and HLA-C genotyping was performed using SSP-PCR. RA patients were assessed at baseline and under treatment at 6 and 12 months; subsequently classified as responders and non-responders in each time period. We evaluated the association between DMARD response and genes using statistical analysis by using Fisher exact test with Bonferroni correction; results were regarded as statistically significant at p < 0.05. RESULTS Significant difference was observed in gene frequencies of patients and the reference group, KIR2DL2 was associated with RA (p = 0.031, OR = 2.119). We also observed an association between KIR2DS2 and the response to methotrexate (MTX), moreover, the combination KIR2DL2+/KIR2DS2+ was more frequent in responders to MTX (p = 0.043). DISCUSSION AND CONCLUSIONS In our results, responders and non-responders to DMARDs showed KIR2DS2 and KIR2DL2 different gene frequencies, therefore, these genes could be used as response predictors to DMARDs treatment. Thus, these genes were also associated with disease severity, as well as the treatment response possibly by the immunoregulatory function of NK cells.
Collapse
Affiliation(s)
- Erandi Enif Velarde-de la Cruz
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Pedro Ernesto Sánchez-Hernández
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - José Francisco Muñoz-Valle
- b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,c Instituto de Investigación en Ciencias Biomédicas, Departamento de Biología Molecular y Genómica , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Claudia Azucena Palafox-Sánchez
- b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,c Instituto de Investigación en Ciencias Biomédicas, Departamento de Biología Molecular y Genómica , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Saúl Ramírez-de Los Santos
- d Departamento de Clínicas , Centro Universitario de los Altos, Universidad de Guadalajara , Tepatitlán , Jalisco , México
| | - Omar Graciano-Machuca
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Trinidad García-Iglesias
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Margarita Montoya-Buelna
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - María Guadalupe Ramírez-Dueñas
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| |
Collapse
|
34
|
Lee GH, Lee WW. Unusual CD4 +CD28 - T Cells and Their Pathogenic Role in Chronic Inflammatory Disorders. Immune Netw 2016; 16:322-329. [PMID: 28035207 PMCID: PMC5195841 DOI: 10.4110/in.2016.16.6.322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022] Open
Abstract
CD28 is a primary co-stimulatory receptor that is essential for successful T cell activation, proliferation, and survival. While ubiquitously expressed on naive T cells, the level of CD28 expression on memory T cells is largely dependent on the T-cell differentiation stage in humans. Expansion of circulating T cells lacking CD28 was originally considered a hallmark of age-associated immunological changes in humans, with a progressive loss of CD28 following replicative senescence with advancing age. However, an increasing body of evidence has revealed that there is a significant age-inappropriate expansion of CD4+CD28− T cells in patients with a variety of chronic inflammatory diseases, suggesting that these cells play a role in their pathogenesis. In fact, expanded CD4+CD28− T cells can produce large amounts of proinflammatory cytokines such as IFN-γ and TNF-α and also have cytotoxic potential, which may cause tissue damage and development of pathogenesis in many inflammatory disorders. Here we review the characteristics of CD4+CD28− T cells as well as the recent advances highlighting the contribution of these cells to several disease conditions.
Collapse
Affiliation(s)
- Ga Hye Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea.; Department of Microbiology and Immunology, Seoul National University College of Medicine; Ischemic/Hypoxic Disease Institute and Institute of Infectious Diseases, Seoul National University College of Medicine; Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
35
|
Mariaselvam CM, Tamouza R, Krishnamoorthy R, Charron D, Misra DP, Jain VK, Negi VS. Association of NKG2D gene variants with susceptibility and severity of rheumatoid arthritis. Clin Exp Immunol 2016; 187:369-375. [PMID: 27783394 DOI: 10.1111/cei.12891] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/29/2022] Open
Abstract
NKG2D (KLRK1) is a C-type lectin receptor present on natural killer (NK) cells, γδ, CD8+ and CD4+ T cells. Upon ligand binding, NKG2D mediates activatory and co-stimulatory signals to NK cells and activated CD4+ T cells, respectively. Polymorphisms in NKG2D predispose to infectious diseases, cancer, transplantation and autoimmune disorders. We studied the influence of this NK receptor polymorphism on predisposition to and modification of the disease phenotype in patients with rheumatoid arthritis (RA). Eight different single nucleotide polymorphisms (SNP) in the NKG2 gene were genotyped in 236 patients with RA and 187 controls using Taqman 5' nuclease assays. NKG2D genotype/allele frequency did not differ between patients and controls. Subgroup analysis showed that the frequency of A allele of NKG2D9 and T allele of NKG2D10 was significantly higher in patients with deformities (a marker of severe disease) [11 versus 5%, Pc = 0·03, odds ratio (OR) = 2·44, 95% confidence interval (CI) = 1·09-5·98 and 10 versus 4%, Pc = 0·04, OR = 2·45, 95% CI = 1·05-6·39, respectively], while the frequency of alleles G of NKG2D9 and A of NKG2D10 was greater in patients without deformities (Pc = 0·03, OR = 0·41, 95% CI = 0·17-0·91 and Pc = 0·04, OR = 0·41, 95% CI = 0·16-0·96). Similar trends of association were observed with deforming phenotype of RA in female patients and deforming young onset RA subgroups. Haplotype analysis revealed that the frequency of haplotype G-C-A-G-A-T-C-C was higher in patients than in controls (12 versus 8%, P = 0·04, OR = 1·61, 95% CI = 1·01-2·55), suggesting that it may predispose to RA. Our study suggests that the NKG2D gene polymorphisms may modify the risk of development and severity of RA.
Collapse
Affiliation(s)
- C M Mariaselvam
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.,INSERM, UMRS, U1160, Saint Louis Hospital, Paris, France
| | - R Tamouza
- INSERM, UMRS, U1160, Saint Louis Hospital, Paris, France
| | | | - D Charron
- INSERM, UMRS, U1160, Saint Louis Hospital, Paris, France
| | - D P Misra
- INSERM, UMRS, U1160, Saint Louis Hospital, Paris, France
| | - V K Jain
- INSERM, UMRS, U1160, Saint Louis Hospital, Paris, France
| | - V S Negi
- INSERM, UMRS, U1160, Saint Louis Hospital, Paris, France
| |
Collapse
|
36
|
Steuerman Y, Gat-Viks I. Exploiting Gene-Expression Deconvolution to Probe the Genetics of the Immune System. PLoS Comput Biol 2016; 12:e1004856. [PMID: 27035464 PMCID: PMC4818015 DOI: 10.1371/journal.pcbi.1004856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
Sequence variation can affect the physiological state of the immune system. Major experimental efforts targeted at understanding the genetic control of the abundance of immune cell subpopulations. However, these studies are typically focused on a limited number of immune cell types, mainly due to the use of relatively low throughput cell-sorting technologies. Here we present an algorithm that can reveal the genetic basis of inter-individual variation in the abundance of immune cell types using only gene expression and genotyping measurements as input. Our algorithm predicts the abundance of immune cell subpopulations based on the RNA levels of informative marker genes within a complex tissue, and then provides the genetic control on these predicted immune traits as output. A key feature of the approach is the integration of predictions from various sets of marker genes and refinement of these sets to avoid spurious signals. Our evaluation of both synthetic and real biological data shows the significant benefits of the new approach. Our method, VoCAL, is implemented in the freely available R package ComICS. Quantitative trait locus (QTL) studies have identified a plethora of genetic variants that lead to inter-individual variation in the abundance of immune cell subpopulations, both in normal and disease states. Cell sorting is an effective method of monitoring immune cell type quantities; however, owing to the large number of possible immune cell subsets, it can be difficult to apply this method to each cell type over multiple individuals. Recent QTL studies dealt with this difficulty by focusing on an a priori selection of one or a few cell subsets. Here we introduce VoCAL, a deconvolution-based method that utilizes transcriptome data to infer the quantities of immune cell types, and then uses these quantitative traits to uncover the underlying DNA loci. Our results in synthetic data and lung cohorts show that the VoCAL method outperforms other alternatives in revealing the genetic basis of immune physiology.
Collapse
Affiliation(s)
- Yael Steuerman
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Irit Gat-Viks
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
37
|
The early onset of type 1 autoimmune hepatitis has a strong genetic influence: role of HLA and KIR genes. Genes Immun 2016; 17:187-92. [PMID: 26890333 DOI: 10.1038/gene.2016.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/09/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
We have previously reported a strong association between HLA-DRB1*1301 and type 1 pediatric autoimmune hepatitis (PAH) and between HLA-DR*0405 and adult autoimmune hepatitis (AAH). Because human killer cell immunoglobulin-like receptors are known to be associated with susceptibility to autoimmune diseases, we investigated the frequencies of HLA-A, B, C, DRB1 and KIR genes in 144 type 1 PAH and 86 AAH patients, which were compared with 273 healthy controls. We demonstrated in PAH the increased frequency of the functional form of KIR2DS4-Full Length (KIR2DS4-FL), which in combination with HLA-DRB1*1301 revealed a strong synergistic effect (odds ratio=36.5). PAH-KIR2DS4-FL+ subjects have shown an increased frequency of their putative HLA-C*02, 04 and 06 ligands. KIR analysis of PAH also revealed a decreased frequency of KIR2DL2 gene and its ligand. In contrast, AAH cases have shown a weaker increased frequency of KIR2DS4-FL, a lack of synergistic effect with HLA class II antigens and a moderate association with HLA-DRB1*0405. Of note, we demonstrated that liver T cells have a unique pattern of KIR expression. These results show a KIR gene involved in autoimmune hepatitis and suggest a stronger genetic influence for the early onset type I autoimmune hepatitis.
Collapse
|
38
|
Sanjeevi S, Sun C, Kanungo A, Sanjeevi CB. Killer immunoglobulin receptor genes and their HLA-C ligand are associated with Type 1 diabetes in an Eastern Indian population. Diabet Med 2016; 33:91-6. [PMID: 26031759 DOI: 10.1111/dme.12815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/25/2022]
Abstract
AIM Killer immunoglobulin-like receptors (KIRs) and their interaction with HLA class I ligands have been shown to be associated with Type 1 diabetes mellitus. The aim of our study was to investigate the influence of KIR genes and their HLA-C ligands for susceptibility to Type 1 diabetes in patients from Eastern India. METHODS A total of 135 patients with Type 1 diabetes and 98 healthy subjects from Eastern India were typed for KIR genes and HLA-C ligands using PCR-based genotyping. The frequencies of these genes were compared between patients and controls. RESULTS Comparison of KIR genes between Type 1 diabetes patients and healthy subjects revealed significantly different frequencies of KIRs 2DL2 and 2DS4. The presence of HLA-C1 was negatively associated with disease. The presence of both HLA-C1 and -C2 showed a negative association with Type 1 diabetes, whereas the absence of C1 and presence of C2 was positively associated with disease. Stratification analysis of HLA-C ligands and KIRs showed significant associations between Type 1 diabetes and 2DL2+/C1-, 2DL2-/C1+, 2DL3+/C1+, 2DL3+/C1- and 2DS2+/C1-. CONCLUSIONS Our results suggest that the interaction of KIRs with HLA-C ligands are significant and certain combinations contribute to susceptibility to and protection against Type 1 diabetes.
Collapse
MESH Headings
- Alleles
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Disease Susceptibility
- Gene Expression Regulation
- Gene Frequency
- Genetic Association Studies
- Genetic Predisposition to Disease
- HLA-C Antigens/blood
- HLA-C Antigens/genetics
- HLA-C Antigens/metabolism
- Humans
- India
- Ligands
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Polymorphism, Genetic
- Receptors, KIR/agonists
- Receptors, KIR/blood
- Receptors, KIR/genetics
- Receptors, KIR/metabolism
- Receptors, KIR2DL2/agonists
- Receptors, KIR2DL2/blood
- Receptors, KIR2DL2/genetics
- Receptors, KIR2DL2/metabolism
- Receptors, KIR2DL3/agonists
- Receptors, KIR2DL3/blood
- Receptors, KIR2DL3/genetics
- Receptors, KIR2DL3/metabolism
Collapse
Affiliation(s)
- S Sanjeevi
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - C Sun
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - A Kanungo
- Kanungo Institute of Diabetes Specialities Hospital, Bhubaneshwar, India
| | - C B Sanjeevi
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
|
40
|
Nazari M, Mahmoudi M, Rahmani F, Akhlaghi M, Beigy M, Azarian M, Shamsian E, Akhtari M, Mansouri R. Association of Killer Cell Immunoglobulin- Like Receptor Genes in Iranian Patients with Rheumatoid Arthritis. PLoS One 2015; 10:e0143757. [PMID: 26658904 PMCID: PMC4687638 DOI: 10.1371/journal.pone.0143757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/09/2015] [Indexed: 12/29/2022] Open
Abstract
Objectives Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by persistent synovitis, ultimately leading to cartilage and bone degeneration. Natural Killer cells and CD28 null T-cells are suspected as role players in RA pathogenesis. These cells are similar in feature and function, as they both exert their cytotoxic effect via Killer Cell Immunoglobulin- Like Receptors (KIR) on their surface. KIR genes have either an inhibitory or activating effect depending on their intracytoplasmic structure. Herein we genotyped 16 KIR genes, 3 pseudo genes and 6 HLA class І genes as their corresponding ligands in RA patients and control subjects. Methods In this case-control study, KIR and HLA genes were genotyped in 400 RA patients and 372 matched healthy controls using sequence-specific primers (SSP-PCR). Differences in the frequency of genes and haplotypes were determined by χ² test. Results KIR2DL2, 2DL5a, 2DL5b and activating KIR: KIR2DS5 and 3DS1 were all protective against RA. KIR2DL5 removal from a full Inhibitory KIR haplotype converted the mild protection (OR = 0.56) to a powerful predisposition to RA (OR = 16.47). Inhibitory haplotype No. 7 comprising KIR2DL5 in the absence of KIR2DL1 and KIR2DL3 confers a 14-fold protective effect against RA. Conclusion Individuals carrying the inhibitory KIR haplotype No. 6 have a high potential risk for developing RA.
Collapse
Affiliation(s)
- Masoumeh Nazari
- Immunology Department, Shahid Sadoughi University of Medical Sciences (International Campus), Yazd, Iran
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail: (MM); (RM)
| | - Farzaneh Rahmani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Akhlaghi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maani Beigy
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Azarian
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Shamsian
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akhtari
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mansouri
- Immunology Department, Shahid Sadoughi University of Medical Sciences (International Campus), Yazd, Iran
- Immunology Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- * E-mail: (MM); (RM)
| |
Collapse
|
41
|
Erken E, Goruroglu Ozturk O, Kudas O, Arslan Tas D, Demirtas A, Kibar F, Dinkci S, Erken E. Killer Cell Immunoglobulin-Like Receptor (KIR) Genotype Distribution in Familial Mediterranean Fever (FMF) Patients. Med Sci Monit 2015; 21:3547-54. [PMID: 26574972 PMCID: PMC4655612 DOI: 10.12659/msm.895211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Familial Mediterranean fever (FMF) is an autosomal recessive autoinflammatory disease predominantly affecting Mediterranean populations. The gene associated with FMF is the MEFV gene, which encodes for a protein called pyrin. Mutations of pyrin lead to uncontrolled attacks of inflammation, and subclinical inflammation continues during attack-free intervals. Killer cell immunoglobulin-like receptor (KIR) genes encode HLA class I receptors expressed by NK cells. The aim this study was to look for immunogenetic determinants in the pathogenesis of FMF and find out if KIR are related to susceptibility to disease or complications like renal amyloidosis. MATERIAL AND METHODS One hundred and five patients with FMF and 100 healthy individuals were involved in the study. Isolated DNA from peripheral blood was amplified by sequence specific PCR probes and analyzed by Luminex for KIR genotypes. Fisher Exact test was used to evaluate the variation of KIR gene distribution. RESULTS All patients and healthy controls expressed the framework genes. An activator KIR gene, KIR2DS2, was significantly more frequent in FMF patients (p=0.036). Renal amyloidosis and presence of arthritis were not associated with KIR genes and genotype. KIR3DL1 gene was more common in patients with high serum CRP (p=0.016). CONCLUSIONS According to our findings, we suggest that presence of KIR2DS2, which is an activator gene for NK cell functions, might be related to the autoinflammation in FMF. The potential effect of KIR genes on amyloidosis and other clinical features requires studies with larger sample sizes.
Collapse
Affiliation(s)
- Ertugrul Erken
- Department of Nephrology, Gaziosmanpasa University, Faculty of Medicine, Tokat, Turkey
| | - Ozlem Goruroglu Ozturk
- Central Laboratory, Cukurova University, Faculty of Medicine, Balcali Hospital, Adana, Turkey
| | - Ozlem Kudas
- Department of Rheumatology/Immunology, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - Didem Arslan Tas
- Department of Rheumatology/Immunology, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - Ahmet Demirtas
- Department of Internal Medicine, Gaziosmanpasa University, Faculty of Medicine, Tokat, Turkey
| | - Filiz Kibar
- Central Laboratory, Cukurova University, Faculty of Medicine, Balcali Hospital, Adana, Turkey
| | - Suzan Dinkci
- Department of Rheumatology/Immunology, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - Eren Erken
- Department of Rheumatology/Immunology, Cukurova University, Faculty of Medicine, Adana, Turkey
| |
Collapse
|
42
|
Bossi G, Mannarino S, Pietrogrande MC, Salice P, Dellepiane RM, Cremaschi AL, Corana G, Tozzo A, Capittini C, De Silvestri A, Tinelli C, Pasi A, Martinetti M. Genetic epistasis between killer immunoglobulin-like receptors and human leukocyte antigens in Kawasaki disease susceptibility. Genes Immun 2015; 16:481-7. [DOI: 10.1038/gene.2015.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/15/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023]
|
43
|
Zhang Y, Li Q, Wu F, Zhou R, Qi Y, Su N, Chen L, Xu S, Jiang T, Zhang C, Cheng G, Chen X, Kong D, Wang Y, Zhang T, Zi J, Wei W, Gao Y, Zhen B, Xiong Z, Wu S, Yang P, Wang Q, Wen B, He F, Xu P, Liu S. Tissue-Based Proteogenomics Reveals that Human Testis Endows Plentiful Missing Proteins. J Proteome Res 2015; 14:3583-94. [DOI: 10.1021/acs.jproteome.5b00435] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yao Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qidan Li
- CAS
Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- BGI-Shenzhen, Shenzhen 518083, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Feilin Wu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Life Science
College, Southwest Forestry University, Kunming 650224, P. R, China
| | - Ruo Zhou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yingzi Qi
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Na Su
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Lingsheng Chen
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- State
Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | | | - Tao Jiang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chengpu Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | | | - Xinguo Chen
- Institute of Organ Transportation, General Hospital of Chinese People’s Armed Police Forces, Beijing 100039, China
| | - Degang Kong
- General
Surgery Dept., Capital Medical University Affiliated Beijing YouAn Hospital, Beijing 100069, China
| | | | - Tao Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Jin Zi
- BGI-Shenzhen, Shenzhen 518083, China
| | - Wei Wei
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yuan Gao
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Bei Zhen
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Zhi Xiong
- Life Science
College, Southwest Forestry University, Kunming 650224, P. R, China
| | - Songfeng Wu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Pengyuan Yang
- Institutes
of Biomedical Sciences, Department of Chemistry and Zhongshan Hospital, Fudan University, 130 DongAn Road, Shanghai 200032, China
| | - Quanhui Wang
- CAS
Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- BGI-Shenzhen, Shenzhen 518083, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fuchu He
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Ping Xu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Siqi Liu
- CAS
Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- BGI-Shenzhen, Shenzhen 518083, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Witas HW, Donoghue HD, Kubiak D, Lewandowska M, Gładykowska-Rzeczycka JJ. Molecular studies on ancient M. tuberculosis and M. leprae: methods of pathogen and host DNA analysis. Eur J Clin Microbiol Infect Dis 2015. [PMID: 26210385 PMCID: PMC4545183 DOI: 10.1007/s10096-015-2427-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Humans have evolved alongside infectious diseases for millennia. Despite the efforts to reduce their incidence, infectious diseases still pose a tremendous threat to the world population. Fast development of molecular techniques and increasing risk of new epidemics have resulted in several studies that look to the past in order to investigate the origin and evolution of infectious diseases. Tuberculosis and leprosy have become frequent targets of such studies, owing to the persistence of their molecular biomarkers in ancient material and the characteristic skeletal lesions each disease may cause. This review examines the molecular methods used to screen for the presence of M. tuberculosis and M. leprae ancient DNA (aDNA) and their differentiation in ancient human remains. Examples of recent studies, mainly from Europe, that employ the newest techniques of molecular analysis are also described. Moreover, we present a specific approach based on assessing the likely immunological profile of historic populations, in order to further elucidate the influence of M. tuberculosis and M. leprae on historical human populations.
Collapse
Affiliation(s)
- H W Witas
- Department of Molecular Biology, Medical University of Łódź, Łódź, Poland,
| | | | | | | | | |
Collapse
|
45
|
Mozer-Lisewska I, Zwolińska K, Kowala-Piaskowska AE, Bura M, Rozpłochowski B, Pauli A, Żeromski J, Piasecki E, Kuśnierczyk P. Genetic (KIR, HLA-C) and Some Clinical Parameters Influencing the Level of Liver Enzymes and Early Virologic Response in Patients with Chronic Hepatitis C. Arch Immunol Ther Exp (Warsz) 2015. [PMID: 26206121 PMCID: PMC4713718 DOI: 10.1007/s00005-015-0350-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Natural killer cells play an important role as effectors of innate immunity and regulators of adaptive immunity. They are important elements of the innate response to viral infections, which they detect using human leukocyte antigen (HLA) class I-binding receptors. Most polymorphic of these are killer cell immunoglobulin-like receptors (KIRs) which exist as two basic isotypes, activating or inhibitory receptors and are encoded by genes distributed differently in unrelated individuals. We searched for links between selected clinical data (including HCV viremia, liver enzymes level and liver histology parameters) and the presence of genes encoding these receptors and their ligands in hepatitis C virus-infected individuals subjected to pegylated interferon-α and ribavirin therapy. Genomic DNA samples from two hundred and ninety-two chronically infected patients were typed by polymerase chain reaction for the presence or absence of genes for KIRs and their ligands, class I HLA molecules, and clinical data of the patients were collected. Our results suggest an importance of clinical parameters and the contribution of KIR and HLA genes to the course of hepatitis C virus infection and the response to therapy. The study revealed that levels of liver enzymes before therapy were about 30 % higher in patients who possessed a variant KIR2DS4 gene with 22-base pair deletion. Decrease of ALT activity after treatment was higher in HLA-C C2-positive than negative individuals. Beside it, patients demonstrated early virologic response to the therapy if the time lag before treatment was short, particularly in women.
Collapse
Affiliation(s)
- Iwona Mozer-Lisewska
- Chair and Department of Infectious Diseases, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Katarzyna Zwolińska
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland.
| | | | - Maciej Bura
- Chair and Department of Infectious Diseases, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Błażej Rozpłochowski
- Chair and Department of Infectious Diseases, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Anna Pauli
- Chair and Department of Infectious Diseases, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Jan Żeromski
- Chair of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Egbert Piasecki
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland.
| |
Collapse
|
46
|
Li X, Xia Q, Fan D, Cai G, Yang X, Wang L, Xin L, Ding N, Hu Y, Liu L, Xu S, Xu J, Wang K, Pan F. Association between KIR gene polymorphisms and rheumatoid arthritis susceptibility: A meta-analysis. Hum Immunol 2015; 76:565-70. [PMID: 26187163 DOI: 10.1016/j.humimm.2015.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVES The results of studies on association between KIR (killer cell immunoglobulin-like receptors) polymorphisms and susceptibility to RA (rheumatoid arthritis) are inconsistent. To comprehensively evaluate the effect of KIR polymorphisms on the risk of RA, a meta-analysis was carried out. METHODS The Web of Science, PubMed, the Chinese Biomedical Database (CBM) and Chinese National Knowledge Infrastructure (CNKI) databases were systematically searched to select studies on the association between KIR polymorphisms and RA. The odds ratio (OR) with 95% confidence interval (95%CI) was obtained. RESULTS Nine qualified case-control studies were included in this meta-analysis. The results showed there were two positive associations of 2DL1, 2DS1 (OR2DL1=2.20, 95%CI=1.20-4.01, Praw=0.01, PFDR=0.03; OR2DS1=1.84, 95%CI=1.19-2.85, Praw=0.006, PFDR=0.018) and one negative association of 2DL3 (OR2DL3=0.42, 95%CI=0.22-0.79, Praw=0.006, PFDR=0.018) with susceptibility to RA in East Asians, but not in Caucasians. CONCLUSION The current meta-analysis provides evidence that 2DL3 might be a potential protective factor and 2DL1, 2DS1 might be risk factors for RA in East Asians but not in Caucasians.
Collapse
Affiliation(s)
- Xiaona Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Qing Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Dazhi Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiao Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Li Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lihong Xin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Ning Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yanting Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jianhua Xu
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Kang Wang
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
47
|
Hou Y, Zhang C, Xu D, Sun H. Association of killer cell immunoglobulin-like receptor and human leucocyte antigen-Cw gene combinations with systemic lupus erythematosus. Clin Exp Immunol 2015; 180:250-4. [PMID: 25581336 DOI: 10.1111/cei.12582] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 01/04/2023] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are a diverse family of activating and inhibitory receptors expressed on natural killer (NK) cells and T cells, the genes of which show extreme polymorphism. Some KIRs bind to human leucocyte antigen (HLA) class I subgroups, and genetic interactions between KIR genes and their ligand HLA have been shown to be associated with several autoimmune diseases. The present study aimed to investigate whether the combinations of KIR genes and HLA-Cw ligands associate with the susceptibility of systemic lupus erythematosus (SLE). Polymerase chain reaction using sequence-specific primers was used to determine the genotypes of KIR genes and HLA-Cw alleles. We found that the frequencies of HLA-Cw07 were statistically significantly higher in the patient group than those in the control group (P = 0·009). KIR2DS1(+) HLA(-) Cw(Lys) was more common in subjects with SLE compared to control subjects (P = 0·015). In addition, the frequency of KIR2DS1 was increased in SLE when KIR2DL1/HLA-Cw are absent, and the difference was significant (P = 0·001). KIR genotype and HLA ligand interaction may potentially influence the threshold for NK (and/or T) cell activation mediated through activating receptors, thereby contributing to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Y Hou
- Department of Rheumatology, Shandong Provincial Qianfoshan Hospital, Shandong University, Ji-nan, China
| | | | | | | |
Collapse
|
48
|
Zal B, Chitalia N, Ng YS, Trieu V, Javed S, Warrington R, Kaski JC, Banerjee D, Baboonian C. Killer cell immunoglobulin receptor profile on CD4(+) CD28(-) T cells and their pathogenic role in non-dialysis-dependent and dialysis-dependent chronic kidney disease patients. Immunology 2015; 145:105-13. [PMID: 25484131 DOI: 10.1111/imm.12429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 11/29/2014] [Accepted: 12/02/2014] [Indexed: 11/27/2022] Open
Abstract
There is a progressive increase in cardiovascular disease with declining renal function, unexplained by traditional risk factors. A CD4(+) T-cell subpopulation (CD4(+) CD28(-) ), activated by human heat-shock protein 60 (hHSP 60), expands in patients with acute coronary syndrome and is associated with vascular damage. These cells exhibit cytotoxicity via expression of activating killer cell-immunoglobulin-like receptor KIR2DS2, mainly in the absence of inhibitory KIR2DL3. We investigated expansion of these cells and the pathogenic role of the KIR in non-dialysis-dependent chronic kidney disease (NDD-CKD) and end-stage haemodialysis-dependent renal disease (HD-ESRD) patients. CD4(+) CD28(-) cells were present in 27% of the NDD-CKD and HD-ESRD patients (8-11% and 10-11% of CD4(+) compartment, respectively). CD4(+) CD28(-) cells were phenotyped for KIR and DAP12 expression. Cytotoxicity was assessed by perforin and pro-inflammatory function by interferon-γ expression on CD4(+) CD28(-) clones (NDD-CKD n = 97, HD-ESRD n = 262). Thirty-four per cent of the CD4(+) CD28(-) cells from NDD-CKD expressed KIR2DS2 compared with 56% in HD-ESRD patients (P = 0·03). However, 20% of clones expressed KIR2DL3 in NDD-CKD compared with 7% in HD-ESRD patients (P = 0·004). DAP12 expression in CD28(-) 2DS2(+) clones was more prevalent in HD-ESRD than NDD-CKD (92% versus 60%; P < 0·001). Only 2DS2(+) 2DL3(-) DAP12(+) clones were cytotoxic in response to hHSP 60. CD4(+) CD28(-) cells exhibited increased KIR2DS2, reduced KIR2DL3 and increased DAP12 expression in HD-ESRD compared with NDD-CKD patients. These findings suggest a gradual loss of expression, functionality and protective role of inhibitory KIR2DL3 as well as increased cytotoxic potential of CD4(+) C28(-) cells with progressive renal impairment. Clonal expansion of these T cells may contribute to heightened cardiovascular events in HD-ESRD.
Collapse
Affiliation(s)
- Behnam Zal
- Division of Clinical Sciences, St George's University of London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Montano-Loza AJ, Czaja AJ. Cell mediators of autoimmune hepatitis and their therapeutic implications. Dig Dis Sci 2015; 60:1528-42. [PMID: 25487192 DOI: 10.1007/s10620-014-3473-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
Autoimmune hepatitis is associated with interactive cell populations of the innate and adaptive immune systems, and these populations are amenable to therapeutic manipulation. The goals of this review are to describe the key cell populations implicated in autoimmune hepatitis and to identify investigational opportunities to develop cell-directed therapies for this disease. Studies cited in PubMed from 1972 to 2014 for autoimmune hepatitis, innate and adaptive immune systems, and therapeutic interventions were examined. Dendritic cells can promote immune tolerance to self-antigens, present neo-antigens that enhance the immune response, and expand the regulatory T cell population. Natural killer cells can secrete pro-inflammatory and anti-inflammatory cytokines and modulate the activity of dendritic cells and antigen-specific T lymphocytes. T helper 2 lymphocytes can inhibit the cytotoxic activities of T helper 1 lymphocytes and limit the expansion of T helper 17 lymphocytes. T helper 17 lymphocytes can promote inflammatory activity, and they can also up-regulate genes that protect against oxidative stress and hepatocyte apoptosis. Natural killer T cells can expand the regulatory T cell population; gamma delta lymphocytes can secrete interleukin-10, stimulate hepatic regeneration, and induce the apoptosis of hepatic stellate cells; and antigen-specific regulatory T cells can dampen immune cell proliferation and function. Pharmacological agents, neutralizing antibodies, and especially the adoptive transfer of antigen-specific regulatory T cells that have been freshly generated ex vivo are evolving as management strategies. The cells within the innate and adaptive immune systems are key contributors to the occurrence of autoimmune hepatitis, and they are attractive therapeutic targets.
Collapse
Affiliation(s)
- Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| | | |
Collapse
|
50
|
Nishimura WE, Sachetto Z, Costallat LTL, Yazbek MA, Londe ACS, Guariento EG, Marques SBD, Bertolo MB. The role of KIR2DL3/HLA-C*0802 in Brazilian patients with rheumatoid vasculitis. Clinics (Sao Paulo) 2015; 70:408-12. [PMID: 26106958 PMCID: PMC4462576 DOI: 10.6061/clinics/2015(06)04] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Rheumatoid arthritis is a polygenically controlled systemic autoimmune disease. Rheumatoid vasculitis is an important extra-articular phenotype of rheumatoid arthritis that can result in deep cutaneous ulcers. The objective of this study was to establish a correlation between the frequency of major histocompatibility complex class I/II alleles and killer immunoglobulin-like receptor genotypes in patients with cutaneous rheumatoid vasculitis. METHODS Using the Scott & Bacon 1984 criteria to diagnose rheumatoid vasculitis and after excluding any other causes such as diabetes, atherosclerosis, adverse drug reactions, infection, and smoking, patients who met the criteria were selected. All of the selected rheumatoid vasculitis patients presented deep cutaneous ulcers. Identification of the major histocompatibility complex class I/II and killer immunoglobulin-like receptor genotypes was performed by polymerase chain reaction assays of samples collected from the 23 rheumatoid vasculitis patients as well as from 80 controls (40 non-rheumatoid vasculitis RA control patients and 40 healthy volunteers). RESULTS An association between the presence of the HLA-DRB1*1402 and HLA-DRB1*0101 alleles and cutaneous lesions in rheumatoid vasculitis patients and a correlation between the inhibitor KIR2DL3 and the HLA-C*0802 ligand in rheumatoid vasculitis patients were found. CONCLUSION An association was found between the presence of the HLA-DRB1*1402 and HLA-DRB1*0101 alleles and the development of cutaneous lesions in rheumatoid vasculitis patients. Additionally, the HLA-C*0802 ligand protects these individuals from developing cutaneous lesions.
Collapse
Affiliation(s)
- Wester Eidi Nishimura
- University of Campinas (UNICAMP), Department of Rheumatology, Campinas/, SP, Brazil
- Wester Eidi NishimuraCorresponding author: E-mail:
| | - Zoraida Sachetto
- University of Campinas (UNICAMP), Department of Rheumatology, Campinas/, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|