1
|
Vélez-López O, Carrasquillo-Carrión K, Cantres-Rosario YM, Machín-Martínez E, Álvarez-Ríos ME, Roche-Lima A, Tosado-Rodríguez EL, Meléndez LM. Analysis of Sigma-1 Receptor Antagonist BD1047 Effect on Upregulating Proteins in HIV-1-Infected Macrophages Exposed to Cocaine Using Quantitative Proteomics. Biomedicines 2024; 12:1934. [PMID: 39335448 PMCID: PMC11428496 DOI: 10.3390/biomedicines12091934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 infects monocyte-derived macrophages (MDM) that migrate into the brain and secrete virus and neurotoxic molecules, including cathepsin B (CATB), causing cognitive dysfunction. Cocaine potentiates CATB secretion and neurotoxicity in HIV-infected MDM. Pretreatment with BD1047, a sigma-1 receptor antagonist, before cocaine exposure reduces HIV-1, CATB secretion, and neuronal apoptosis. We aimed to elucidate the intracellular pathways modulated by BD1047 in HIV-infected MDM exposed to cocaine. We hypothesized that the Sig1R antagonist BD1047, prior to cocaine, significantly deregulates proteins and pathways involved in HIV-1 replication and CATB secretion that lead to neurotoxicity. MDM culture lysates from HIV-1-infected women treated with BD1047 before cocaine were compared with untreated controls using TMT quantitative proteomics, bioinformatics, Lima statistics, and pathway analyses. Results demonstrate that pretreatment with BD1047 before cocaine dysregulated eighty (80) proteins when compared with the infected cocaine group. We found fifteen (15) proteins related to HIV-1 infection, CATB, and mitochondrial function. Upregulated proteins were related to oxidative phosphorylation (SLC25A-31), mitochondria (ATP5PD), ion transport (VDAC2-3), endoplasmic reticulum transport (PHB, TMED10, CANX), and cytoskeleton remodeling (TUB1A-C, ANXA1). BD1047 treatment protects HIV-1-infected MDM exposed to cocaine by upregulating proteins that reduce mitochondrial damage, ER transport, and exocytosis associated with CATB-induced neurotoxicity.
Collapse
Affiliation(s)
- Omar Vélez-López
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Yadira M. Cantres-Rosario
- Translational Proteomics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA;
| | - Eraysy Machín-Martínez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00921, USA; (E.M.-M.); (M.E.Á.-R.)
| | - Manuel E. Álvarez-Ríos
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00921, USA; (E.M.-M.); (M.E.Á.-R.)
| | - Abiel Roche-Lima
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Eduardo L. Tosado-Rodríguez
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
- Translational Proteomics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA;
| |
Collapse
|
2
|
Harshithkumar R, Shah P, Jadaun P, Mukherjee A. ROS Chronicles in HIV Infection: Genesis of Oxidative Stress, Associated Pathologies, and Therapeutic Strategies. Curr Issues Mol Biol 2024; 46:8852-8873. [PMID: 39194740 DOI: 10.3390/cimb46080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Reactive oxygen species (ROS) are widely regarded as signaling molecules and play essential roles in various cellular processes, but when present in excess, they can lead to oxidative stress (OS). Growing evidence suggests that the OS plays a critical role in the pathogenesis of HIV infection and is associated with several comorbidities in HIV-infected individuals. ROS, generated both naturally during mitochondrial oxidative metabolism and as a response to various cellular processes, can trigger host antiviral responses but can also promote viral replication. While the multifaceted roles of ROS in HIV pathophysiology clearly need more investigation, this review paper unravels the mechanisms of OS generation in the context of HIV infections, offering insights into HIV viral protein-mediated and antiretroviral therapy-generated OS. Though the viral protein Tat is significantly attributed to the endogenous cellular increase in ROS post HIV infection, this paper sums up the contribution of other viral proteins in HIV-mediated elicitation of ROS. Given the investigations recognizing the significant role of ROS in the onset and progression of diverse pathologies, the paper also explores the critical function of ROS in the mediation of an of array of pathologies associated with HIV infection and retroviral therapy. HIV patients are observed with disruption to the antioxidant defense system, the antioxidant therapy is gaining focus as a potential therapeutic intervention and is well discussed. While ROS play a significant role in the HIV scenario, further exploratory studies are imperative to identifying alternative therapeutic strategies that could mitigate the toxicities and pathologies associated with ART-induced OS.
Collapse
Affiliation(s)
- R Harshithkumar
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| | - Prachibahen Shah
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| | - Pratiksha Jadaun
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| |
Collapse
|
3
|
Hinton AO, N'jai AU, Vue Z, Wanjalla C. Connection Between HIV and Mitochondria in Cardiovascular Disease and Implications for Treatments. Circ Res 2024; 134:1581-1606. [PMID: 38781302 PMCID: PMC11122810 DOI: 10.1161/circresaha.124.324296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
HIV infection and antiretroviral therapy alter mitochondrial function, which can progressively lead to mitochondrial damage and accelerated aging. The interaction between persistent HIV reservoirs and mitochondria may provide insight into the relatively high rates of cardiovascular disease and mortality in persons living with HIV. In this review, we explore the intricate relationship between HIV and mitochondrial function, highlighting the potential for novel therapeutic strategies in the context of cardiovascular diseases. We reflect on mitochondrial dynamics, mitochondrial DNA, and mitochondrial antiviral signaling protein in the context of HIV. Furthermore, we summarize how toxicities related to early antiretroviral therapy and current highly active antiretroviral therapy can contribute to mitochondrial dysregulation, chronic inflammation, and poor clinical outcomes. There is a need to understand the mechanisms and develop new targeted therapies. We further consider current and potential future therapies for HIV and their interplay with mitochondria. We reflect on the next-generation antiretroviral therapies and HIV cure due to the direct and indirect effects of HIV persistence, associated comorbidities, coinfections, and the advancement of interdisciplinary research fields. This includes exploring novel and creative approaches to target mitochondria for therapeutic intervention.
Collapse
Affiliation(s)
- Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Alhaji U N'jai
- Biological Sciences, Fourah Bay College and College of Medicine and Allied Health Sciences (COMAHS), University of Sierra Leone, Freetown, Sierra Leone and Koinadugu College, Kabala (A.U.N.)
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Celestine Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.W.)
| |
Collapse
|
4
|
Fernandes JP, Branton WG, Cohen EA, Koopman G, Kondova I, Gelman BB, Power C. Caspase cleavage of gasdermin E causes neuronal pyroptosis in HIV-associated neurocognitive disorder. Brain 2024; 147:717-734. [PMID: 37931057 PMCID: PMC10834258 DOI: 10.1093/brain/awad375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Despite effective antiretroviral therapies, 20-30% of persons with treated HIV infection develop a neurodegenerative syndrome termed HIV-associated neurocognitive disorder (HAND). HAND is driven by HIV expression coupled with inflammation in the brain but the mechanisms underlying neuronal damage and death are uncertain. The inflammasome-pyroptosis axis coordinates an inflammatory type of regulated lytic cell death that is underpinned by the caspase-activated pore-forming gasdermin proteins. The mechanisms driving neuronal pyroptosis were investigated herein in models of HAND, using multi-platform molecular and morphological approaches that included brain tissues from persons with HAND and simian immunodeficiency virus (SIV)-infected non-human primates as well as cultured human neurons. Neurons in the frontal cortices from persons with HAND showed increased cleaved gasdermin E (GSDME), which was associated with β-III tubulin degradation and increased HIV levels. Exposure of cultured human neurons to the HIV-encoded viral protein R (Vpr) elicited time-dependent cleavage of GSDME and Ninjurin-1 (NINJ1) induction with associated cell lysis that was inhibited by siRNA suppression of both proteins. Upstream of GSDME cleavage, Vpr exposure resulted in activation of caspases-1 and 3. Pretreatment of Vpr-exposed neurons with the caspase-1 inhibitor, VX-765, reduced cleavage of both caspase-3 and GSDME, resulting in diminished cell death. To validate these findings, we examined frontal cortical tissues from SIV-infected macaques, disclosing increased expression of GSDME and NINJ1 in cortical neurons, which was co-localized with caspase-3 detection in animals with neurological disease. Thus, HIV infection of the brain triggers the convergent activation of caspases-1 and -3, which results in GSDME-mediated neuronal pyroptosis in persons with HAND. These findings demonstrate a novel mechanism by which a viral infection causes pyroptotic death in neurons while also offering new diagnostic and therapeutic strategies for HAND and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Jason P Fernandes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Eric A Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques Montreal (IRCM), Montreal, QC H2W 1R7, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk 2280 GH, The Netherlands
| | - Ivanela Kondova
- Department of Animal Science, Biomedical Primate Research Centre (BPRC), Rijswijk 2280 GH, The Netherlands
| | - Benjamin B Gelman
- Departments of Pathology and Neurobiology, University of Texas Medical Branch, Galveston, TX 77555-0569, USA
| | - Christopher Power
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2R7, Canada
| |
Collapse
|
5
|
Panda SP, Singh V. The Dysregulated MAD in Mad: A Neuro-theranostic Approach Through the Induction of Autophagic Biomarkers LC3B-II and ATG. Mol Neurobiol 2023; 60:5214-5236. [PMID: 37273153 DOI: 10.1007/s12035-023-03402-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The word mad has historically been associated with the psyche, emotions, and abnormal behavior. Dementia is a common symptom among psychiatric disorders or mad (schizophrenia, depression, bipolar disorder) patients. Autophagy/mitophagy is a protective mechanism used by cells to get rid of dysfunctional cellular organelles or mitochondria. Autophagosome/mitophagosome abundance in autophagy depends on microtubule-associated protein light chain 3B (LC3B-II) and autophagy-triggering gene (ATG) which functions as an autophagic biomarker for phagophore production and quick mRNA disintegration. Defects in either LC3B-II or the ATG lead to dysregulated mitophagy-and-autophagy-linked dementia (MAD). The impaired MAD is closely associated with schizophrenia, depression, and bipolar disorder. The pathomechanism of psychosis is not entirely known, which is the severe limitation of today's antipsychotic drugs. However, the reviewed circuit identifies new insights that may be especially helpful in targeting biomarkers of dementia. Neuro-theranostics can also be achieved by manufacturing either bioengineered bacterial and mammalian cells or nanocarriers (liposomes, polymers, and nanogels) loaded with both imaging and therapeutic materials. The nanocarriers must cross the BBB and should release both diagnostic agents and therapeutic agents in a controlled manner to prove their effectiveness against psychiatric disorders. In this review, we highlighted the potential of microRNAs (miRs) as neuro-theranostics in the treatment of dementia by targeting autophagic biomarkers LC3B-II and ATG. Focus was also placed on the potential for neuro-theranostic nanocells/nanocarriers to traverse the BBB and induce action against psychiatric disorders. The neuro-theranostic approach can provide targeted treatment for mental disorders by creating theranostic nanocarriers.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India.
| | - Vikrant Singh
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India
| |
Collapse
|
6
|
Majumder S, Giri K. An insight into the binding mechanism of Viprinin and its morpholine and piperidine derivatives with HIV-1 Vpr: molecular dynamics simulation, principal component analysis and binding free energy calculation study. J Biomol Struct Dyn 2022; 40:10918-10930. [PMID: 34296659 DOI: 10.1080/07391102.2021.1954553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
HIV-1 Vpr is an accessory protein responsible for a plethora of functions inside the host cell to promote viral pathogenesis. One of the major functions of Vpr is the G2 cell cycle arrest. Among several small molecule inhibitors, Viprinin, a coumarin derivative, has been shown to specifically inhibit the G2 cell cycle arrest activity of Vpr thus making it an excellent choice for a lead molecule to design antiretroviral drug. But the exact mechanism of binding of the Viprinin and its two potent derivatives with Vpr is still not understood. In this study with combined molecular docking, molecular dynamics simulation, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) method, Principal component analysis and Umbrella sampling simulation, we have explored the binding mechanism of Viprinin and its two derivatives with Vpr. MM-PBSA and Umbrella sampling calculations suggest that Viprinin and ViprininD1 have higher binding energy than ViprininD2. Molecular dynamics simulation shows that the ligands are not very stable inside the initial binding pocket and various hydrophobic interactions are responsible to hold the ligands with Vpr. Vpr backbone Principle Component Analysis (PCA) shows various unique essential motions of Vpr bound with Viprinin and its two derivatives. This study may give detailed insight of the mode of binding of the specified compounds at atomic scale and provide valuable information about the possibility of using these compounds as a potent Vpr inhibitor. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, Kolkata
| |
Collapse
|
7
|
Zhao L, Deng X, Li Y, Hu J, Xie L, Shi F, Tang M, Bode AM, Zhang X, Liao W, Cao Y. Conformational change of adenine nucleotide translocase-1 mediates cisplatin resistance induced by EBV-LMP1. EMBO Mol Med 2021; 13:e14072. [PMID: 34755470 PMCID: PMC8649884 DOI: 10.15252/emmm.202114072] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 12/02/2022] Open
Abstract
Adenine nucleotide translocase-1 (ANT1) is an ADP/ATP transporter protein located in the inner mitochondrial membrane. ANT1 is involved not only in the processes of ADP/ATP exchange but also in the composition of the mitochondrial membrane permeability transition pore (mPTP); and the function of ANT1 is closely related to its own conformational changes. Notably, various viral proteins can interact directly with ANT1 to influence mitochondrial membrane potential by regulating the opening of mPTP, thereby affecting tumor cell fate. The Epstein-Barr virus (EBV) encodes the key tumorigenic protein, latent membrane protein 1 (LMP1), which plays a pivotal role in promoting therapeutic resistance in related tumors. In our study, we identified a novel mechanism for EBV-LMP1-induced alteration of ANT1 conformation in cisplatin resistance in nasopharyngeal carcinoma. Here, we found that EBV-LMP1 localizes to the inner mitochondrial membrane and inhibits the opening of mPTP by binding to ANT1, thereby favoring tumor cell survival and drug resistance. The ANT1 conformational inhibitor carboxyatractyloside (CATR) in combination with cisplatin improved the chemosensitivity of EBV-LMP1-positive cells. This finding confirms that ANT1 is a novel therapeutic target for overcoming cisplatin resistance in the future.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Xiangying Deng
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Min Tang
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Ann M Bode
- The Hormel InstituteUniversity of MinnesotaAustinMNUSA
| | - Xin Zhang
- Department of Otolaryngology Head and Neck SurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Weihua Liao
- Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
- Molecular Imaging Research Center of CentralSouth UniversityChangshaChina
- Research Center for Technologies of Nucleic Acid‐Based Diagnostics and Therapeutics Hunan ProvinceChangshaChina
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and CancerChangshaChina
| |
Collapse
|
8
|
Panda S, Behera S, Alam MF, Syed GH. Endoplasmic reticulum & mitochondrial calcium homeostasis: The interplay with viruses. Mitochondrion 2021; 58:227-242. [PMID: 33775873 DOI: 10.1016/j.mito.2021.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Calcium ions (Ca2+) act as secondary messengers in a plethora of cellular processes and play crucial role in cellular organelle function and homeostasis. The average resting concentration of Ca2+ is nearly 100 nM and in certain cells it can reach up to 1 µM. The high range of Ca2+ concentration across the plasma membrane and intracellular Ca2+ stores demands a well-coordinated maintenance of free Ca2+ via influx, efflux, buffering and storage. Endoplasmic Reticulum (ER) and Mitochondria depend on Ca2+ for their function and also serve as major players in intracellular Ca2+ homeostasis. The ER-mitochondria interplay helps in orchestrating cellular calcium homeostasis to avoid any detrimental effect resulting from Ca2+ overload or depletion. Since Ca2+ plays a central role in many biological processes it is an essential component of the virus-host interactions. The large gradient across membranes enable the viruses to easily modulate this buffered environment to meet their needs. Viruses exploit Ca2+ signaling to establish productive infection and evade the host immune defense. In this review we will detail the interplay between the viruses and cellular & ER-mitochondrial calcium signaling and the significance of these events on viral life cycle and disease pathogenesis.
Collapse
Affiliation(s)
- Swagatika Panda
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Suchismita Behera
- Institute of Life Sciences, Bhubaneswar, Clinical Proteomics Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Mohd Faraz Alam
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Gulam Hussain Syed
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India.
| |
Collapse
|
9
|
Gioti K, Kottaridi C, Voyiatzaki C, Chaniotis D, Rampias T, Beloukas A. Animal Coronaviruses Induced Apoptosis. Life (Basel) 2021; 11:185. [PMID: 33652685 PMCID: PMC7996831 DOI: 10.3390/life11030185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is a form of programmed death that has also been observed in cells infected by several viruses. It is considered one of the most critical innate immune mechanisms that limits pathogen proliferation and propagation before the initiation of the adaptive immune response. Recent studies investigating the cellular responses to SARS-CoV and SARS-CoV-2 infection have revealed that coronaviruses can alter cellular homeostasis and promote cell death, providing evidence that the modulation of apoptotic pathways is important for viral replication and propagation. Despite the genetic diversity among different coronavirus clades and the infection of different cell types and several hosts, research studies in animal coronaviruses indicate that apoptosis in host cells is induced by common molecular mechanisms and apoptotic pathways. We summarize and critically review current knowledge on the molecular aspects of cell-death regulation during animal coronaviruses infection and the viral-host interactions to this process. Future research is expected to lead to a better understanding of the regulation of cell death during coronavirus infection. Moreover, investigating the role of viral proteins in this process will help us to identify novel antiviral targets related to apoptotic signaling pathways.
Collapse
Affiliation(s)
- Katerina Gioti
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
| | - Christine Kottaridi
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysa Voyiatzaki
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, Basic Research Center, 11527 Athens, Greece
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
- Institute of Infection & Global Health, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
10
|
Zhao L, Tang M, Bode AM, Liao W, Cao Y. ANTs and cancer: Emerging pathogenesis, mechanisms, and perspectives. Biochim Biophys Acta Rev Cancer 2020; 1875:188485. [PMID: 33309965 DOI: 10.1016/j.bbcan.2020.188485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Adenine nucleotide translocases (ANTs) are a class of transporters located in the inner mitochondrial membrane that not only couple processes of cellular productivity and energy expenditure, but are also involved in the composition of the mitochondrial membrane permeability transition pore (mPTP). The function of ANTs has been found to be most closely related to their own conformational changes. Notably, as multifunctional proteins, ANTs play a key role in oncogenesis, which provides building blocks for tumor anabolism, control oxidative phosphorylation and glycolysis homeostasis, and govern cell death. Thus, ANTs constitute promising targets for the development of novel anticancer agents. Here, we review the recent findings regarding ANTs and their important mechanisms in cancer, with a focus on the therapeutic potential of targeting ANTs for cancer therapy.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, China; Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha 410078, China; National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China.
| |
Collapse
|
11
|
Multifactorial role of HIV-Vpr in cell apoptosis revealed by a naturally truncated 54aa variant. Chin Med J (Engl) 2020; 134:845-847. [PMID: 33323824 PMCID: PMC8104139 DOI: 10.1097/cm9.0000000000001297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Hoenke S, Serbian I, Deigner HP, Csuk R. Mitocanic Di- and Triterpenoid Rhodamine B Conjugates. Molecules 2020; 25:molecules25225443. [PMID: 33233650 PMCID: PMC7699795 DOI: 10.3390/molecules25225443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The combination of the “correct” triterpenoid, the “correct” spacer and rhodamine B (RhoB) seems to be decisive for the ability of the conjugate to accumulate in mitochondria. So far, several triterpenoid rhodamine B conjugates have been prepared and screened for their cytotoxic activity. To obtain cytotoxic compounds with EC50 values in a low nano-molar range combined with good tumor/non-tumor selectivity, the Rho B unit has to be attached via an amine spacer to the terpenoid skeleton. To avoid spirolactamization, secondary amines have to be used. First results indicate that a homopiperazinyl spacer is superior to a piperazinyl spacer. Hybrids derived from maslinic acid or tormentic acid are superior to those from oleanolic, ursolic, glycyrrhetinic or euscaphic acid. Thus, a tormentic acid-derived RhoB conjugate 32, holding a homopiperazinyl spacer can be regarded, at present, as the most promising candidate for further biological studies.
Collapse
Affiliation(s)
- Sophie Hoenke
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Immo Serbian
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Hans-Peter Deigner
- Medical and Life Science Faculty, Institute of Precision Medicine, Furtwangen University, Jakob–Kienzle–Street 17, D-78054 Villigen–Schwenningen, Germany;
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
- Correspondence: ; Tel.: +49-345-5525660
| |
Collapse
|
13
|
Ganta KK, Chaubey B. Mitochondrial dysfunctions in HIV infection and antiviral drug treatment. Expert Opin Drug Metab Toxicol 2019; 15:1043-1052. [PMID: 31715109 DOI: 10.1080/17425255.2019.1692814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/11/2019] [Indexed: 01/23/2023]
Abstract
Introduction: With the introduction of highly active anti-retroviral therapy (HAART), treatment of HIV infection has improved radically, shifting the concept of HIV disease from a highly mortal epidemic to a chronic illness which needs systematic management. However, HAART does not target the integrated proviral DNA. Hence, prolonged use of antiviral drugs is needed for sustaining life. As a consequence, severe side effects emerge. Several parameters involve in causing these adverse effects. Mitochondrial dysfunctions were pointed as common factor among them. It is, therefore, necessary to critically examine mitochondrial dysfunction in order to understand the side effects.Areas covered: There are many events involved in causing drug-induced side-effects; in this review, we only highlight mitochondrial dysfunctions as one of the events. We present up-to-date findings on mitochondrial dysfunction caused by HIV infection and antiviral drug treatment. Both in vivo and in vitro studies on mitochondrial dysfunction like change in morphology, membrane depolarization, mitophagy, mitochondrial DNA depletion, and intrinsic apoptosis have been discussed.Expert opinion: Mitochondrial dysfunction is associated with severe complications that often lead to discontinuation or change in treatment regimen. Prior knowledge of side effects of antiviral drugs would help in better management and future research should focus to avoid mitochondrial targeting of antiviral drugs while maintaining their antiviral properties.
Collapse
Affiliation(s)
- Krishna Kumar Ganta
- Functional Genomics Lab, Centre for Advanced Study, Department of Botany, University of Calcutta, Kolkata, India
| | - Binay Chaubey
- Functional Genomics Lab, Centre for Advanced Study, Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
14
|
Vpr and Its Cellular Interaction Partners: R We There Yet? Cells 2019; 8:cells8111310. [PMID: 31652959 PMCID: PMC6912716 DOI: 10.3390/cells8111310] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Vpr is a lentiviral accessory protein that is expressed late during the infection cycle and is packaged in significant quantities into virus particles through a specific interaction with the P6 domain of the viral Gag precursor. Characterization of the physiologically relevant function(s) of Vpr has been hampered by the fact that in many cell lines, deletion of Vpr does not significantly affect viral fitness. However, Vpr is critical for virus replication in primary macrophages and for viral pathogenesis in vivo. It is generally accepted that Vpr does not have a specific enzymatic activity but functions as a molecular adapter to modulate viral or cellular processes for the benefit of the virus. Indeed, many Vpr interacting factors have been described by now, and the goal of this review is to summarize our current knowledge of cellular proteins targeted by Vpr.
Collapse
|
15
|
Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Genetic variation and function of the HIV-1 Tat protein. Med Microbiol Immunol 2019; 208:131-169. [PMID: 30834965 DOI: 10.1007/s00430-019-00583-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes a transactivator of transcription (Tat) protein, which has several functions that promote viral replication, pathogenesis, and disease. Amino acid variation within Tat has been observed to alter the functional properties of Tat and, depending on the HIV-1 subtype, may produce Tat phenotypes differing from viruses' representative of each subtype and commonly used in in vivo and in vitro experimentation. The molecular properties of Tat allow for distinctive functional activities to be determined such as the subcellular localization and other intracellular and extracellular functional aspects of this important viral protein influenced by variation within the Tat sequence. Once Tat has been transported into the nucleus and becomes engaged in transactivation of the long terminal repeat (LTR), various Tat variants may differ in their capacity to activate viral transcription. Post-translational modification patterns based on these amino acid variations may alter interactions between Tat and host factors, which may positively or negatively affect this process. In addition, the ability of HIV-1 to utilize or not utilize the transactivation response (TAR) element within the LTR, based on genetic variation and cellular phenotype, adds a layer of complexity to the processes that govern Tat-mediated proviral DNA-driven transcription and replication. In contrast, cytoplasmic or extracellular localization of Tat may cause pathogenic effects in the form of altered cell activation, apoptosis, or neurotoxicity. Tat variants have been shown to differentially induce these processes, which may have implications for long-term HIV-1-infected patient care in the antiretroviral therapy era. Future studies concerning genetic variation of Tat with respect to function should focus on variants derived from HIV-1-infected individuals to efficiently guide Tat-targeted therapies and elucidate mechanisms of pathogenesis within the global patient population.
Collapse
Affiliation(s)
- Cassandra Spector
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Masyeni S, Sintya E, Megawati D, Sukmawati NMH, Budiyasa DG, Aryastuti SA, Khairunisa SQ, Arijana I, Nasronudin N. Evaluation of antiretroviral effect on mitochondrial DNA depletion among HIV-infected patients in Bali. HIV AIDS (Auckl) 2018; 10:145-150. [PMID: 30104903 PMCID: PMC6072679 DOI: 10.2147/hiv.s166245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nucleoside reverse transcriptase inhibitors (NRTIs) are the cornerstone of highly active antiretroviral therapy combination regimens for HIV infection. Unfortunately, NRTIs have been noticeably associated with many adverse effects related to mitochondrial toxicity leading to mitochondrial deoxyribonucleic acid (mtDNA) depletion. However, similar mitochondrial dysfunction has recently been found even in antiretroviral therapy-naïve patients, suggesting HIV itself could contribute to this abnormality. In this study, we determine whether mtDNA depletion was present in either antiretroviral therapy-naïve or NRTI-treated patients at Sanjiwani Hospital, Bali, Indonesia. PATIENTS AND METHODS A cross-sectional study was conducted from the peripheral blood mononuclear cells of HIV patients. Specifically, the relative content of mtDNA (mtRNR1 gene) to nuclear DNA (ASPOLG gene) was determined by real-time polymerase chain reaction. Data were analyzed with SPSS 16.0 software and GraphPad Prism 7.02. RESULTS A total of 84 samples (67 on NRTIs and 17 HIV-naïve) were suitable for analysis. We identified 21.4% of the samples (18/84) with mtDNA:nDNA ratio <1. Although it was not significant (P=0.121), the median mtDNA:nDNA ratio of HIV-naïve group was slightly higher (median 1.8; interquartile range [IQR]: 1.1-2.1) than NRTI-treated patients (median 1.5; IQR: 1.3-2.85). Tenofovir-based NRTI was more frequently used (73.13%) than zidovudine-based NRTI (26.86%). The period for which NRTI was used probably contributed to the ratio of mtDNA:nDNA. The median ratio of mtDNA:nDNA zidovudine-treated patients was slightly lower (median 1.2; IQR: 1.08-1.98) when compared to tenofovir-based NRTI (median 1.6; IQR: 1.05-2.10), with the median period of former treatment being significantly longer (P<0.001). Although these data overall indicate that NRTI treatment had no effect on mtDNA:nDNA ratios, patients who undergo more than 12 months of NRTIs treatment show a decrease in the ratio; however, further study is required. CONCLUSION Almost one-fourth of the samples showed a lower mtDNA:nDNA ratio. The decreasing of the ratio mtDNA:nDNA was most likely present after 12 months of NRTI treatment.
Collapse
Affiliation(s)
- Sri Masyeni
- Faculty of Medicine and Health Sciences, University of Warmadewa, Denpasar, Bali, Indonesia,
| | - Erly Sintya
- Faculty of Medicine and Health Sciences, University of Warmadewa, Denpasar, Bali, Indonesia,
| | - Dewi Megawati
- Faculty of Medicine and Health Sciences, University of Warmadewa, Denpasar, Bali, Indonesia,
| | | | - Dewa Ga Budiyasa
- Internal Medicine Department, Sanjiwani Hospital, Gianyar, Bali, Indonesia
| | - Sri Agung Aryastuti
- Faculty of Medicine and Health Sciences, University of Warmadewa, Denpasar, Bali, Indonesia,
| | - Siti Qamariyah Khairunisa
- Indonesia-Japan Collaborative Research Center for Emerging and Reemerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Igkn Arijana
- Histology Department of Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - N Nasronudin
- Indonesia-Japan Collaborative Research Center for Emerging and Reemerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
17
|
Pernas B, Rego-Pérez I, Tabernilla A, Balboa V, Relaño S, Grandal M, Crespo M, Mena Á, Castro-Iglesias Á, Blanco FJ, Poveda E. Plasma mitochondrial DNA levels are inversely associated with HIV-RNA levels and directly with CD4 counts: potential role as a biomarker of HIV replication. J Antimicrob Chemother 2018; 72:3159-3162. [PMID: 28961892 DOI: 10.1093/jac/dkx272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/07/2017] [Indexed: 02/05/2023] Open
Abstract
Objectives To evaluate plasma mitochondrial DNA (mtDNA) levels among HIV-infected patients and its potential role as a biomarker of residual viral replication. Methods HIV-infected patients on follow-up at a reference hospital in north-west Spain were selected. DNA was isolated from plasma samples and mtDNA levels were assessed using a quantitative real-time PCR assay. HIV-RNA levels and CD4+ cell counts were evaluated in the same blood samples used for plasma mtDNA quantification. Epidemiological and clinical variables were included for the analysis. Results A total of 235 HIV-infected patients were included. Mean plasma mtDNA levels were 217 ± 656 copies/μL for naive (31.9%) and 364 ± 939 copies/μL for HIV-infected patients receiving ART and with suppressed viraemia (P = 0.043). Among the latter, mean plasma mtDNA levels were 149 ± 440 copies/μL for those with low-level viraemia (LLV; HIV-RNA 20-200 copies/mL), 265 ± 723 copies/μL for those with detected-not-quantified (DNQ) viraemia (HIV-RNA <20 copies/mL) and 644 ± 1310 copies/μL for those with not-detected (ND) viraemia. Of note, a linear trend (P = 0.006) was observed among virologically suppressed (LLV, DNQ and ND) patients. ND patients had higher mtDNA levels compared with LLV patients (P = 0.057). Moreover, mtDNA levels were inversely associated with HIV-RNA levels (Spearman's rho -0.191, P = 0.003) and directly associated with CD4+ counts (Spearman's rho 0.131, P = 0.046). Conclusions Increased plasma mtDNA levels are associated with lower HIV-RNA levels and higher CD4+ cell counts. Among ART-suppressed patients, mtDNA levels were significantly higher in those with complete virological suppression (ND) than in those with LLV. These data suggest that plasma mtDNA levels might serve as a biomarker of residual HIV replication.
Collapse
Affiliation(s)
- Berta Pernas
- Grupo de Virología Clínica, Instituto de Investigación Biomédica de A Coruña (INIBIC)-Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade de A Coruña (UDC), A Coruña, Spain
| | - Ignacio Rego-Pérez
- Grupo de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC)-Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade de A Coruña (UDC), A Coruña, Spain
| | - Andrés Tabernilla
- Grupo de Virología Clínica, Instituto de Investigación Biomédica de A Coruña (INIBIC)-Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade de A Coruña (UDC), A Coruña, Spain
| | - Vanesa Balboa
- Unidad de Epidemiología Clínica y Bioestadística, Instituto de Investigación Biomédica de A Coruña (INIBIC)-Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Sara Relaño
- Plataforma de Genómica, Instituto de Investigación Biomédica de A Coruña (INIBIC)-Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Marta Grandal
- Grupo de Virología Clínica, Instituto de Investigación Biomédica de A Coruña (INIBIC)-Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade de A Coruña (UDC), A Coruña, Spain
| | - Manuel Crespo
- Internal Medicine Department, IIS Galicia Sur, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Álvaro Mena
- Grupo de Virología Clínica, Instituto de Investigación Biomédica de A Coruña (INIBIC)-Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade de A Coruña (UDC), A Coruña, Spain
| | - Ángeles Castro-Iglesias
- Grupo de Virología Clínica, Instituto de Investigación Biomédica de A Coruña (INIBIC)-Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade de A Coruña (UDC), A Coruña, Spain
| | - Francisco J Blanco
- Grupo de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC)-Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade de A Coruña (UDC), A Coruña, Spain
| | - Eva Poveda
- Grupo de Virología Clínica, Instituto de Investigación Biomédica de A Coruña (INIBIC)-Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade de A Coruña (UDC), A Coruña, Spain
| |
Collapse
|
18
|
Abstract
Functional and genomic heterogeneity of individual cells are central players in a broad spectrum of normal and disease states. Our knowledge about the role of cellular heterogeneity in tissue and organism function remains limited due to analytical challenges one encounters when performing single cell studies in the context of cell-cell interactions. Information based on bulk samples represents ensemble averages over populations of cells, while data generated from isolated single cells do not account for intercellular interactions. We describe a new technology and demonstrate two important advantages over existing technologies: first, it enables multiparameter energy metabolism profiling of small cell populations (<100 cells)—a sample size that is at least an order of magnitude smaller than other, commercially available technologies; second, it can perform simultaneous real-time measurements of oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and mitochondrial membrane potential (MMP)—a capability not offered by any other commercially available technology. Our results revealed substantial diversity in response kinetics of the three analytes in dysplastic human epithelial esophageal cells and suggest the existence of varying cellular energy metabolism profiles and their kinetics among small populations of cells. The technology represents a powerful analytical tool for multiparameter studies of cellular function.
Collapse
|
19
|
Vermeire J, Roesch F, Sauter D, Rua R, Hotter D, Van Nuffel A, Vanderstraeten H, Naessens E, Iannucci V, Landi A, Witkowski W, Baeyens A, Kirchhoff F, Verhasselt B. HIV Triggers a cGAS-Dependent, Vpu- and Vpr-Regulated Type I Interferon Response in CD4 + T Cells. Cell Rep 2017; 17:413-424. [PMID: 27705790 DOI: 10.1016/j.celrep.2016.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/18/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023] Open
Abstract
Several pattern-recognition receptors sense HIV-1 replication products and induce type I interferon (IFN-I) production under specific experimental conditions. However, it is thought that viral sensing and IFN induction are virtually absent in the main target cells of HIV-1 in vivo. Here, we show that activated CD4+ T cells sense HIV-1 infection through the cytosolic DNA sensor cGAS and mount a bioactive IFN-I response. Efficient induction of IFN-I by HIV-1 infection requires proviral integration and is regulated by newly expressed viral accessory proteins: Vpr potentiates, while Vpu suppresses cGAS-dependent IFN-I induction. Furthermore, Vpr also amplifies innate sensing of HIV-1 infection in Vpx-treated dendritic cells. Our results identify cGAS as mediator of an IFN-I response to HIV-1 infection in CD4+ T cells and demonstrate that this response is modulated by the viral accessory proteins Vpr and Vpu. Thus, viral innate immune evasion is incomplete in the main target cells of HIV-1.
Collapse
Affiliation(s)
- Jolien Vermeire
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Ferdinand Roesch
- Département de Virologie, Unité Virus et Immunité, Institut Pasteur, 75015 Paris, France
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Réjane Rua
- Département de Virologie, Unité Virus et Immunité, Institut Pasteur, 75015 Paris, France
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Anouk Van Nuffel
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Hanne Vanderstraeten
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Evelien Naessens
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Veronica Iannucci
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Alessia Landi
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Wojciech Witkowski
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Ann Baeyens
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
20
|
Abstract
HIV infection and antiretroviral therapy (ART) treatment exert diverse effects on adipocytes and stromal-vascular fraction cells, leading to changes in adipose tissue quantity, distribution, and energy storage. A HIV-associated lipodystrophic condition was recognized early in the epidemic, characterized by clinically apparent changes in subcutaneous, visceral, and dorsocervical adipose depots. Underlying these changes is altered adipose tissue morphology and expression of genes central to adipocyte maturation, regulation, metabolism, and cytokine signaling. HIV viral proteins persist in circulation and locally within adipose tissue despite suppression of plasma viremia on ART, and exposure to these proteins impairs preadipocyte maturation and reduces adipocyte expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and other genes involved in cell regulation. Several early nucleoside reverse transcriptase inhibitor and protease inhibitor antiretroviral drugs demonstrated substantial adipocyte toxicity, including reduced mitochondrial DNA content and respiratory chain enzymes, reduced PPAR-γ and other regulatory gene expression, and increased proinflammatory cytokine production. Newer-generation agents, such as integrase inhibitors, appear to have fewer adverse effects. HIV infection also alters the balance of CD4+ and CD8+ T cells in adipose tissue, with effects on macrophage activation and local inflammation, while the presence of latently infected CD4+ T cells in adipose tissue may constitute a protected viral reservoir. This review provides a synthesis of the literature on how HIV virus, ART treatment, and host characteristics interact to affect adipose tissue distribution, immunology, and contribution to metabolic health, and adipocyte maturation, cellular regulation, and energy storage. © 2017 American Physiological Society. Compr Physiol 7:1339-1357, 2017.
Collapse
Affiliation(s)
- John R Koethe
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
21
|
Ryans K, Omosun Y, McKeithen DN, Simoneaux T, Mills CC, Bowen N, Eko FO, Black CM, Igietseme JU, He Q. The immunoregulatory role of alpha enolase in dendritic cell function during Chlamydia infection. BMC Immunol 2017; 18:27. [PMID: 28525970 PMCID: PMC5437423 DOI: 10.1186/s12865-017-0212-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/10/2017] [Indexed: 11/30/2022] Open
Abstract
Background We have previously reported that interleukin-10 (IL-10) deficient dendritic cells (DCs) are potent antigen presenting cells that induced elevated protective immunity against Chlamydia. To further investigate the molecular and biochemical mechanism underlying the superior immunostimulatory property of IL-10 deficient DCs we performed proteomic analysis on protein profiles from Chlamydia-pulsed wild-type (WT) and IL-10−/− DCs to identify differentially expressed proteins with immunomodulatory properties. Results The results showed that alpha enolase (ENO1), a metabolic enzyme involved in the last step of glycolysis was significantly upregulated in Chlamydia-pulsed IL-10−/− DCs compared to WT DCs. We further studied the immunoregulatory role of ENO1 in DC function by generating ENO1 knockdown DCs, using lentiviral siRNA technology. We analyzed the effect of the ENO1 knockdown on DC functions after pulsing with Chlamydia. Pyruvate assay, transmission electron microscopy, flow cytometry, confocal microscopy, cytokine, T-cell activation and adoptive transfer assays were also used to study DC function. The results showed that ENO1 knockdown DCs had impaired maturation and activation, with significant decrease in intracellular pyruvate concentration as compared with the Chlamydia-pulsed WT DCs. Adoptive transfer of Chlamydia-pulsed ENO1 knockdown DCs were poorly immunogenic in vitro and in vivo, especially the ability to induce protective immunity against genital chlamydia infection. The marked remodeling of the mitochondrial morphology of Chlamydia-pulsed ENO1 knockdown DCs compared to the Chlamydia-pulsed WT DCs was associated with the dysregulation of translocase of the outer membrane (TOM) 20 and adenine nucleotide translocator (ANT) 1/2/3/4 that regulate mitochondrial permeability. The results suggest that an enhanced glycolysis is required for efficient antigen processing and presentation by DCs to induce a robust immune response. Conclusions The upregulation of ENO1 contributes to the superior immunostimulatory function of IL-10 deficient DCs. Our studies indicated that ENO1 deficiency causes the reduced production of pyruvate, which then contributes to a dysfunction in mitochondrial homeostasis that may affect DC survival, maturation and antigen presenting properties. Modulation of ENO1 thus provides a potentially effective strategy to boost DC function and promote immunity against infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Khamia Ryans
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive S.W., Atlanta, GA, 30310, USA.,Department of Biology, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive S.W., Atlanta, GA, 30310, USA.
| | - Danielle N McKeithen
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive S.W., Atlanta, GA, 30310, USA.,Department of Biology, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Tankya Simoneaux
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive S.W., Atlanta, GA, 30310, USA
| | - Camilla C Mills
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive S.W., Atlanta, GA, 30310, USA
| | - Nathan Bowen
- Department of Biology, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Francis O Eko
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive S.W., Atlanta, GA, 30310, USA
| | - Carolyn M Black
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Joseph U Igietseme
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive S.W., Atlanta, GA, 30310, USA.,Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Qing He
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive S.W., Atlanta, GA, 30310, USA.
| |
Collapse
|
22
|
González ME. The HIV-1 Vpr Protein: A Multifaceted Target for Therapeutic Intervention. Int J Mol Sci 2017; 18:ijms18010126. [PMID: 28075409 PMCID: PMC5297760 DOI: 10.3390/ijms18010126] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein is an attractive target for antiretroviral drug development. The conservation both of the structure along virus evolution and the amino acid sequence in viral isolates from patients underlines the importance of Vpr for the establishment and progression of HIV-1 disease. While its contribution to virus replication in dividing and non-dividing cells and to the pathogenesis of HIV-1 in many different cell types, both extracellular and intracellular forms, have been extensively studied, its precise mechanism of action nevertheless remains enigmatic. The present review discusses how the apparently multifaceted interplay between Vpr and host cells may be due to the impairment of basic metabolic pathways. Vpr protein modifies host cell energy metabolism, oxidative status, and proteasome function, all of which are likely conditioned by the concentration and multimerization of the protein. The characterization of Vpr domains along with new laboratory tools for the assessment of their function has become increasingly relevant in recent years. With these advances, it is conceivable that drug discovery efforts involving Vpr-targeted antiretrovirals will experience substantial growth in the coming years.
Collapse
Affiliation(s)
- María Eugenia González
- Unidad de Expresión Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
23
|
Sampath R, Cummins NW, Badley AD. Casp8p41: The Protean Mediator of Death in CD4 T-cells that Replicate HIV. J Cell Death 2016; 9:9-17. [PMID: 27721655 PMCID: PMC5040423 DOI: 10.4137/jcd.s39872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 01/15/2023] Open
Abstract
HIV cure is now the focus of intense research after Timothy Ray Brown (the Berlin patient) set the precedent of being the first and only person cured. A major barrier to achieving this goal on a meaningful scale is an elimination of the latent reservoir, which is thought to comprise CD4-positive cells that harbor integrated, replication-competent HIV provirus. These cells do not express viral proteins, are indistinguishable from uninfected CD4 cells, and are thought to be responsible for HIV viral rebound—that occurs within weeks of combination anti retroviral therapy (cART) interruption. Modalities to engineer transcriptional stimulation (reactivation) of this dormant integrated HIV provirus, leading to expression of cytotoxic viral proteins, are thought to be a specific way to eradicate the latently infected CD4 pool and are becoming increasingly relevant in the era of HIV cure. HIV protease is one such protein produced after HIV reactivation that cleaves procaspase-8 to generate a novel protein Casp8p41. Casp8p41 then binds to the BH3 domain of BAK, leading to BAK oligomerization, mitochondrial depolarization, and apoptosis. In central memory T cells (TCMs) from HIV-infected patients, an elevated Bcl-2/procaspase-8 ratio was observed, and Casp8p41 binding to Bcl-2 was associated with a lack of reactivation-induced cell death. This was reversed by priming cells with a specific Bcl-2 antagonist prior to reactivation, resulting in increased cell death and decreased HIV DNA in a Casp8p41-dependent pathway. This review describes the biology, clinical relevance, and implications of Casp8p41 for a potential cure.
Collapse
Affiliation(s)
- Rahul Sampath
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Abstract
Cell death is a common outcome of virus infection. In some cases, cell death curbs virus replication. In others, cell death enhances virus dissemination and contributes to tissue injury, exacerbating viral disease. Three forms of cell death are observed following virus infection-apoptosis, necroptosis, and pyroptosis. In this review, I describe the core machinery needed for each of these forms of cell death. Using representative viruses, I highlight how distinct stages of virus replication initiate signaling pathways that elicit these forms of cell death. I also discuss viral strategies to overcome the deleterious effects of cell death on virus propagation and the consequences of cell death for host physiology.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| |
Collapse
|
25
|
Zhang X, Zhou T, Frabutt DA, Zheng YH. HIV-1 Vpr increases Env expression by preventing Env from endoplasmic reticulum-associated protein degradation (ERAD). Virology 2016; 496:194-202. [PMID: 27343732 DOI: 10.1016/j.virol.2016.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 11/29/2022]
Abstract
Vpr enhances HIV-1 replication in macrophages and dendritic cells, as well as the human CD4(+) CEM.NKR T cell line. Recently, Vpr was reported to increase HIV-1 Env expression in macrophages. Here, we report that Vpr also increases HIV-1 Env expression in dendritic cells and CEM.NKR cells. The Vpr activity depends on its N-terminal region, which was disrupted by a single A30L mutation. Env was rapidly degraded in the absence of Vpr, which was blocked by the ERAD pathway inhibitor kifunesine or the lysosome inhibitor Bafilomycin. As2O3 or PK11195, which reportedly enhances HIV-1 Env folding, also blocked the Env degradation in CEM.NKR cells. Thus, these results not only identify Env as a primary target for Vpr to boost HIV-1 replication, but also suggest that Vpr likely promotes Env folding in the ER, which is otherwise misfolded and targeted by the ERAD pathway to lysosomes for degradation.
Collapse
Affiliation(s)
- Xianfeng Zhang
- Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin 150001, China; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Tao Zhou
- Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin 150001, China; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Dylan A Frabutt
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Yong-Hui Zheng
- Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin 150001, China; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
26
|
Soares R, Rocha G, Meliço-Silvestre A, Gonçalves T. HIV1-viral protein R (Vpr) mutations: associated phenotypes and relevance for clinical pathologies. Rev Med Virol 2016; 26:314-29. [DOI: 10.1002/rmv.1889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Rui Soares
- FMUC-Faculdade de Medicina; Universidade de Coimbra; Coimbra Portugal
- CNC-Centro de Neurociências e Biologia Celular; Universidade de Coimbra; Coimbra Portugal
- IPO-Instituto Português de Oncologia Francisco Gentil; Coimbra Portugal
| | - Graça Rocha
- FMUC-Faculdade de Medicina; Universidade de Coimbra; Coimbra Portugal
- Departamento de Doenças Infeciosas Hospital Pediátrico de Coimbra; CHUC-Centro Hospitalar e Universitário de Coimbra; Coimbra Portugal
| | - António Meliço-Silvestre
- FMUC-Faculdade de Medicina; Universidade de Coimbra; Coimbra Portugal
- Departamento de Doenças Infeciosas; CHUC - Centro Hospitalar e Universitário de Coimbra; Coimbra Portugal
| | - Teresa Gonçalves
- FMUC-Faculdade de Medicina; Universidade de Coimbra; Coimbra Portugal
- CNC-Centro de Neurociências e Biologia Celular; Universidade de Coimbra; Coimbra Portugal
| |
Collapse
|
27
|
Pujhari S, Zakhartchouk AN. Porcine reproductive and respiratory syndrome virus envelope (E) protein interacts with mitochondrial proteins and induces apoptosis. Arch Virol 2016; 161:1821-30. [DOI: 10.1007/s00705-016-2845-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/26/2016] [Indexed: 12/15/2022]
|
28
|
Defining the roles for Vpr in HIV-1-associated neuropathogenesis. J Neurovirol 2016; 22:403-15. [PMID: 27056720 DOI: 10.1007/s13365-016-0436-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
It is increasingly evident that the human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has a unique role in neuropathogenesis. Its ability to induce G2/M arrest coupled with its capacity to increase viral gene transcription gives it a unique role in sustaining viral replication and aiding in the establishment and maintenance of a systemic infection. The requirement of Vpr for HIV-1 infection and replication in cells of monocytic origin (a key lineage of cells involved in HIV-1 neuroinvasion) suggests an important role in establishing and sustaining infection in the central nervous system (CNS). Contributions of Vpr to neuropathogenesis can be expanded further through (i) naturally occurring HIV-1 sequence variation that results in functionally divergent Vpr variants; (ii) the dual activities of Vpr as a intracellular protein delivered and expressed during HIV-1 infection and as an extracellular protein that can act on neighboring, uninfected cells; (iii) cell type-dependent consequences of Vpr expression and exposure, including cell cycle arrest, metabolic dysregulation, and cytotoxicity; and (iv) the effects of Vpr on exosome-based intercellular communication in the CNS. Revealing that the effects of this pleiotropic viral protein is an essential part of a greater understanding of HIV-1-associated pathogenesis and potential approaches to treating and preventing disease caused by HIV-1 infection.
Collapse
|
29
|
Novoderezhkina EA, Zhivotovsky BD, Gogvadze VG. Induction of unspecific permeabilization of mitochondrial membrane and its role in cell death. Mol Biol 2016. [DOI: 10.1134/s0026893316010167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Saxena M, Busca A, Holcik M, Kumar A. Bacterial DNA Protects Monocytic Cells against HIV-Vpr-Induced Mitochondrial Membrane Depolarization. THE JOURNAL OF IMMUNOLOGY 2016; 196:3754-67. [PMID: 26969755 DOI: 10.4049/jimmunol.1402379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/19/2016] [Indexed: 12/26/2022]
Abstract
Monocytes and macrophages are important HIV reservoirs, as they exhibit marked resistance to apoptosis upon infection. However, the mechanism underlying resistance to apoptosis in these cells is poorly understood. Using HIV-viral protein R-52-96 aa peptide (Vpr), we show that primary monocytes and THP-1 cells treated with Vpr are highly susceptible to mitochondrial depolarization, but develop resistance following stimulation with bacterial DNA or CpG oligodeoxynucleotide. We have shown that Vpr-induced mitochondrial depolarization is mediated by TNFR-associated factor-1 (TRAF-1) and TRAF-2 degradation and subsequent activation of caspase-8, Bid, and Bax. To provide the mechanism governing such resistance to mitochondrial depolarization, our results show that prior stimulation with CpG oligodeoxynucleotide or Escherichia coli DNA prevented: 1) TRAF-1/2 downregulation; 2) activation of caspase-8, Bid, and Bax; and 3) subsequent mitochondrial depolarization and release of apoptosis-inducing factor and cytochrome c Furthermore, this protection was mediated by upregulation of antiapoptotic protein (c-IAP-2) through calmodulin-dependent kinase-II activation. Thus, c-IAP-2 may prevent Vpr-mediated mitochondrial depolarization through stabilizing TRAF-1/2 expression and sequential inhibition of caspase-8, Bid, and Bax.
Collapse
Affiliation(s)
- Mansi Saxena
- Department of Biochemistry, Microbiology and Immunology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | - Aurelia Busca
- Department of Biochemistry, Microbiology and Immunology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | - Martin Holcik
- Research Institute, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada; and
| | - Ashok Kumar
- Department of Biochemistry, Microbiology and Immunology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada; Research Institute, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada; and Department of Pathology and Laboratory Medicine, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| |
Collapse
|
31
|
Monroy N, Herrero L, Carrasco L, González ME. Influence of glutathione availability on cell damage induced by human immunodeficiency virus type 1 viral protein R. Virus Res 2015; 213:116-123. [PMID: 26597719 DOI: 10.1016/j.virusres.2015.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/23/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) encodes for accessory viral protein R (Vpr), which arrests the cell cycle of host cells at G2 and causes mitochondrial dysfunction and alterations in glycolysis. High-level expression of Vpr protein correlates with increased viral production and disease progression. Vpr causes structural and functional injury in many types of eukaryotic cells, whether or not they are permissive for viral replication; among them is the budding yeast Saccharomyces cerevisiae. We hypothesized that the dramatic Vpr-induced injuries in yeast could be prevented by strengthening their redox response capacity. We show that exogenous addition of glutathione (GSH) or its prodrug, N-acetylcysteine (NAC), protected budding yeasts from Vpr-induced cytopathic effects. Moreover, addition of adenosine triphosphate (ATP) to growing cultures of Vpr-producing yeast returned cellular growth to control levels, whereas the addition dehydroascorbic acid (DHA) had only a minor protective effect. The diminished protein levels of Cox2p and Cox4p in wild typeVpr-producing yeasts together with the acute sensitivity of petite yeasts to Vpr activity may have been caused by low intracellular ATP levels. As a consequence of this energy deficit, eukaryotic cells would be unable to synthetize adequate supplies of GSH or to signal the mitochondrial retrograde response. Our findings strongly suggest that the cytopathogenic effect of Vpr protein in eukaryotic cells can be prevented by increasing intracellular antioxidant stores or, alternatively, supplying external ATP. Furthermore, these results support a potentially promising future for S. cerevisiae expression as a modality to search for Vpr-targeted inhibitors.
Collapse
Affiliation(s)
- Noemí Monroy
- Unidad de Expresión Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - Laura Herrero
- Unidad de Expresión Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - María Eugenia González
- Unidad de Expresión Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain.
| |
Collapse
|
32
|
Barnwal B, Karlberg H, Mirazimi A, Tan YJ. The Non-structural Protein of Crimean-Congo Hemorrhagic Fever Virus Disrupts the Mitochondrial Membrane Potential and Induces Apoptosis. J Biol Chem 2015; 291:582-92. [PMID: 26574543 DOI: 10.1074/jbc.m115.667436] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/06/2022] Open
Abstract
Viruses have developed distinct strategies to overcome the host defense system. Regulation of apoptosis in response to viral infection is important for virus survival and dissemination. Like other viruses, Crimean-Congo hemorrhagic fever virus (CCHFV) is known to regulate apoptosis. This study, for the first time, suggests that the non-structural protein NSs of CCHFV, a member of the genus Nairovirus, induces apoptosis. In this report, we demonstrated the expression of CCHFV NSs, which contains 150 amino acid residues, in CCHFV-infected cells. CCHFV NSs undergoes active degradation during infection. We further demonstrated that ectopic expression of CCHFV NSs induces apoptosis, as reflected by caspase-3/7 activity and cleaved poly(ADP-ribose) polymerase, in different cell lines that support CCHFV replication. Using specific inhibitors, we showed that CCHFV NSs induces apoptosis via both intrinsic and extrinsic pathways. The minimal active region of the CCHFV NSs protein was determined to be 93-140 amino acid residues. Using alanine scanning, we demonstrated that Leu-127 and Leu-135 are the key residues for NSs-induced apoptosis. Interestingly, CCHFV NSs co-localizes in mitochondria and also disrupts the mitochondrial membrane potential. We also demonstrated that Leu-127 and Leu-135 are important residues for disruption of the mitochondrial membrane potential by NSs. Therefore, these results indicate that the C terminus of CCHFV NSs triggers mitochondrial membrane permeabilization, leading to activation of caspases, which, ultimately, leads to apoptosis. Given that multiple factors contribute to apoptosis during CCHFV infection, further studies are needed to define the involvement of CCHFV NSs in regulating apoptosis in infected cells.
Collapse
Affiliation(s)
- Bhaskar Barnwal
- From the Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, the Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore
| | | | - Ali Mirazimi
- the Public Health Agency of Sweden, 17182 Solna, Sweden, the Karolinska Institute, 17177 Stockholm, Sweden, and the National Veterinary Institute, 75651 Uppsala, Sweden
| | - Yee-Joo Tan
- From the Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, the Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore,
| |
Collapse
|
33
|
Interactions of HIV-1 proteins as targets for developing anti-HIV-1 peptides. Future Med Chem 2015; 7:1055-77. [DOI: 10.4155/fmc.15.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein–protein interactions (PPI) are essential in every step of the HIV replication cycle. Mapping the interactions between viral and host proteins is a fundamental target for the design and development of new therapeutics. In this review, we focus on rational development of anti-HIV-1 peptides based on mapping viral–host and viral–viral protein interactions all across the HIV-1 replication cycle. We also discuss the mechanism of action, specificity and stability of these peptides, which are designed to inhibit PPI. Some of these peptides are excellent tools to study the mechanisms of PPI in HIV-1 replication cycle and for the development of anti-HIV-1 drug leads that modulate PPI.
Collapse
|
34
|
Roussel J, Thireau J, Brenner C, Saint N, Scheuermann V, Lacampagne A, Le Guennec JY, Fauconnier J. Palmitoyl-carnitine increases RyR2 oxidation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes: Role of adenine nucleotide translocase. Biochim Biophys Acta Mol Basis Dis 2015; 1852:749-58. [DOI: 10.1016/j.bbadis.2015.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 12/30/2022]
|
35
|
Liu X, Guo H, Wang H, Markham R, Wei W, Yu XF. HIV-1 Vpr suppresses the cytomegalovirus promoter in a CRL4(DCAF1) E3 ligase independent manner. Biochem Biophys Res Commun 2015; 459:214-219. [PMID: 25704090 DOI: 10.1016/j.bbrc.2015.02.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/11/2015] [Indexed: 11/21/2022]
Abstract
Although the Vpr protein of human immunodeficiency virus type 1 (HIV-1) has been shown to act as a transcriptional activator of the HIV-1 LTR and certain host genes, the current study demonstrates that it can also function as a potent inhibitor of the cytomegalovirus (CMV) promoter. Previous studies have shown that the cell cycle arrest and apoptotic functions of Vpr required recruitment of the CRL4(DCAF1) E3 ligase, but this complex is shown not to be required for inhibition of the CMV promoter. We identified conserved sites (A30/V31) from diverse Vpr from HIV/SIV that were critical for blocking the CMV promoter activity. Interestingly, the Vpr mutant A30S/V31S protein also impaired the ability of Vpr to down-regulate transcription of the host UNG2 gene. Our findings shed light on the dual functions of Vpr on the transcription of HIV-1, other viruses and host genes which may contribute to viral replication and disease progression in vivo.
Collapse
Affiliation(s)
- Xianjun Liu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province 130061, China
| | - Haoran Guo
- School of Life Sciences, Tianjin University, Tianjin 30072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Hong Wang
- School of Life Sciences, Tianjin University, Tianjin 30072, China
| | - Richard Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Wei Wei
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province 130061, China; School of Life Sciences, Tianjin University, Tianjin 30072, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Xiao-Fang Yu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province 130061, China; School of Life Sciences, Tianjin University, Tianjin 30072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
36
|
Abstract
Virus encoded ion channels, termed viroporins, are expressed by a diverse set of viruses and have been found to target nearly every host cell membrane and compartment, including endocytic/exocytic vesicles, ER, mitochondria, Golgi, and the plasma membrane. Viroporins are generally very small (<100 amino acids) integral membrane proteins that share common structure motifs (conserved cluster of basic residues adjacent to an amphipathic alpha-helix) but only limited sequence homology between viruses. Ion channel activity of viroporins is either required for replication or greatly enhances replication and pathogenesis. Channel characteristics have been investigated using standard electrophysiological techniques, including planar lipid bilayer, liposome patch clamp or whole-cell voltage clamp. In general, viroporins are voltage-independent non-specific monovalent cation channels, with the exception of the influenza A virus M2 channel that forms a highly specific proton channel due to a conserved HXXXW motif. Viroporin channel currents range between highly variable (‘burst-like’) fluctuations to well resolved unitary (‘square-top’) transitions, and emerging data indicates the quality of channel activity is influenced by many factors, including viroporin synthesis/solubilization, the lipid environment and the ionic composition of the buffers, as well as intrinsic differences between the viroporins themselves. Compounds that block viroporin channel activity are effective antiviral drugs both in vitro and in vivo. Surprisingly distinct viroporins are inhibited by the same compounds (e.g., amantadines and amiloride derivatives), despite wide sequence divergence, raising the possibility of broadly acting antiviral drugs that target viroporins. Electrophysiology of viroporins will continue to play a critical role in elucidating the functional roles viroporins play in pathogenesis and to develop new drugs to combat viroporin-encoding pathogens.
Collapse
Affiliation(s)
- Anne H. Delcour
- Dept. of Biology and Biochemistry, University of Houston, Houston, Texas USA
| |
Collapse
|
37
|
Richert L, Didier P, de Rocquigny H, Mély Y. Monitoring HIV-1 Protein Oligomerization by FLIM FRET Microscopy. SPRINGER SERIES IN CHEMICAL PHYSICS 2015. [DOI: 10.1007/978-3-319-14929-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Mbita Z, Hull R, Dlamini Z. Human immunodeficiency virus-1 (HIV-1)-mediated apoptosis: new therapeutic targets. Viruses 2014; 6:3181-227. [PMID: 25196285 PMCID: PMC4147692 DOI: 10.3390/v6083181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/12/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022] Open
Abstract
HIV has posed a significant challenge due to the ability of the virus to both impair and evade the host’s immune system. One of the most important mechanisms it has employed to do so is the modulation of the host’s native apoptotic pathways and mechanisms. Viral proteins alter normal apoptotic signaling resulting in increased viral load and the formation of viral reservoirs which ultimately increase infectivity. Both the host’s pro- and anti-apoptotic responses are regulated by the interactions of viral proteins with cell surface receptors or apoptotic pathway components. This dynamic has led to the development of therapies aimed at altering the ability of the virus to modulate apoptotic pathways. These therapies are aimed at preventing or inhibiting viral infection, or treating viral associated pathologies. These drugs target both the viral proteins and the apoptotic pathways of the host. This review will examine the cell types targeted by HIV, the surface receptors exploited by the virus and the mechanisms whereby HIV encoded proteins influence the apoptotic pathways. The viral manipulation of the hosts’ cell type to evade the immune system, establish viral reservoirs and enhance viral proliferation will be reviewed. The pathologies associated with the ability of HIV to alter apoptotic signaling and the drugs and therapies currently under development that target the ability of apoptotic signaling within HIV infection will also be discussed.
Collapse
Affiliation(s)
- Zukile Mbita
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Rodney Hull
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Zodwa Dlamini
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| |
Collapse
|
39
|
Hakata Y, Miyazawa M, Landau NR. Interactions with DCAF1 and DDB1 in the CRL4 E3 ubiquitin ligase are required for Vpr-mediated G2 arrest. Virol J 2014; 11:108. [PMID: 24912982 PMCID: PMC4058697 DOI: 10.1186/1743-422x-11-108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/31/2014] [Indexed: 11/30/2022] Open
Abstract
Background HIV-1 Vpr-mediated G2 cell cycle arrest is dependent on the interaction of Vpr with an E3 ubiquitin ligase that contains damage-specific DNA binding protein 1 (DDB1), Cullin 4A (Cul4A), DDB1 and Cul4-associated factor 1 (DCAF1), and Rbx1. Vpr is thought to associate directly with DCAF1 in the E3 ubiquitin ligase complex although the exact interaction pattern of the proteins in the complex is not completely defined. The Vpr of SIVagm induces G2 arrest of cognate African Green Monkey (AGM) cells but not human cells. The molecular mechanism by which SIVagm Vpr exhibits its species-specific function remained unknown. Methods Physical interaction of proteins in the E3 ubiquitin ligase complex was assessed by co-immunoprecipitation followed by western blotting. In addition, co-localization of the proteins in cells was investigated by confocal microscopy. The cell cycle was analyzed by propidium iodide staining and flow cytometry. DNA damage response elicited by Vpr was evaluated by detecting phosphorylation of H2AX, a marker for DNA damage response. Results We show that RNAi knock-down of DCAF1 prevented the co-immunoprecipitation of DDB1 with HIV-1 Vpr while DDB1 knock-down did not influence the binding of Vpr to DCAF1. HIV-1 Vpr mutants with a L64P or a R90K mutation maintained the ability to associate with DCAF1 but did not appear to be in a complex with DDB1. SIVagm Vpr associated with AGM DCAF1 and DDB1 while, in human cells, it binds to human DCAF1 but hardly binds to human DDB1, resulting in the reduced activation of H2AX. Conclusions The identification of Vpr mutants which associate with DCAF1 but only poorly with DDB1 suggests that DCAF1 is necessary but the simple binding of Vpr to DCAF1 is not sufficient for the Vpr association with DDB1-containing E3 ligase complex. Vpr may interact both with DCAF1 and DDB1 in the E3 ligase complex. Alternatively, the interaction of Vpr and DCAF1 may induce a conformational change in DCAF1 or Vpr that promotes the interaction with DDB1. The ability of SIVagm Vpr to associate with DDB1, but not DCAF1, can explain the species-specificity of SIVagm Vpr-mediated G2 arrest.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Department of Microbiology, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
40
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
41
|
Rumlová M, Křížová I, Keprová A, Hadravová R, Doležal M, Strohalmová K, Pichová I, Hájek M, Ruml T. HIV-1 protease-induced apoptosis. Retrovirology 2014; 11:37. [PMID: 24886575 PMCID: PMC4229777 DOI: 10.1186/1742-4690-11-37] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 04/30/2014] [Indexed: 01/12/2023] Open
Abstract
Background Apoptosis is one of the presumptive causes of CD4+ T cell depletion during HIV infection and progression to AIDS. However, the precise role of HIV-1 in this process remains unexplained. HIV-1 protease (PR) has been suggested as a possible factor, but a direct link between HIV-1 PR enzymatic activity and apoptosis has not been established. Results Here, we show that expression of active HIV-1 PR induces death in HeLa and HEK-293 cells via the mitochondrial apoptotic pathway. This conclusion is based on in vivo observations of the direct localization of HIV-1 PR in mitochondria, a key player in triggering apoptosis. Moreover, we observed an HIV-1 PR concentration-dependent decrease in mitochondrial membrane potential and the role of HIV-1 PR in activation of caspase 9, PARP cleavage and DNA fragmentation. In addition, in vitro data demonstrated that HIV-1 PR mediates cleavage of mitochondrial proteins Tom22, VDAC and ANT, leading to release of AIF and Hsp60 proteins. By using yeast two-hybrid screening, we also identified a new HIV-1 PR interaction partner, breast carcinoma-associated protein 3 (BCA3). We found that BCA3 accelerates p53 transcriptional activity on the bax promoter, thus elevating the cellular level of pro-apoptotic Bax protein. Conclusion In summary, our results describe the involvement of HIV-1 PR in apoptosis, which is caused either by a direct effect of HIV-1 PR on mitochondrial membrane integrity or by its interaction with cellular protein BCA3.
Collapse
Affiliation(s)
- Michaela Rumlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v,v,i,, IOCB & Gilead Research Center, Flemingovo nám, 2, 166 10 Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Guenzel CA, Hérate C, Benichou S. HIV-1 Vpr-a still "enigmatic multitasker". Front Microbiol 2014; 5:127. [PMID: 24744753 PMCID: PMC3978352 DOI: 10.3389/fmicb.2014.00127] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/12/2014] [Indexed: 11/13/2022] Open
Abstract
Like other HIV-1 auxiliary proteins, Vpr is conserved within all the human (HIV-1, HIV-2) and simian (SIV) immunodeficiency viruses. However, Vpr and homologous HIV-2, and SIV Vpx are the only viral auxiliary proteins specifically incorporated into virus particles through direct interaction with the Gag precursor, indicating that this presence in the core of the mature virions is mainly required for optimal establishment of the early steps of the virus life cycle in the newly infected cell. In spite of its small size, a plethora of effects and functions have been attributed to Vpr, including induction of cell cycle arrest and apoptosis, modulation of the fidelity of reverse transcription, nuclear import of viral DNA in macrophages and other non-dividing cells, and transcriptional modulation of viral and host cell genes. Even if some more recent studies identified a few cellular targets that HIV-1 Vpr may utilize in order to perform its different tasks, the real role and functions of Vpr during the course of natural infection are still enigmatic. In this review, we will summarize the main reported functions of HIV-1 Vpr and their significance in the context of the viral life cycle.
Collapse
Affiliation(s)
- Carolin A Guenzel
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| | - Cécile Hérate
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| | - Serge Benichou
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| |
Collapse
|
43
|
Nonthermal plasma induces head and neck cancer cell death: the potential involvement of mitogen-activated protein kinase-dependent mitochondrial reactive oxygen species. Cell Death Dis 2014; 5:e1056. [PMID: 24525732 PMCID: PMC3944250 DOI: 10.1038/cddis.2014.33] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/06/2014] [Accepted: 01/16/2014] [Indexed: 01/22/2023]
Abstract
Nonthermal plasma (NTP) is generated by ionization of neutral gas molecules, which results in a mixture of energy particles including electrons and ions. Recent progress in the understanding of NTP has led to its application in the treatment of various diseases, including cancer. However, the molecular mechanisms of NTP-induced cell death are unclear. The purpose of this study was to evaluate the molecular mechanism of NTP in the induction of apoptosis of head and neck cancer (HNC) cells. The effects of NTP on apoptosis were investigated using MTT, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling, Annexin V assays, and western blot analysis. The cells were examined for production of reactive oxygen species (ROS) using DCFCA or MitoSOX staining, intracellular signaling, and an animal model. NTP reduced HNC cell viability in a dose-dependent manner and induced apoptosis. NTP resulted in alteration of mitochondrial membrane potential and accumulation of intracellular ROS generated from the mitochondria in HNC cells. Blockade of ROS production by N-acetyl-L-cysteine inhibited NTP-induced apoptosis. NTP led to the phosphorylation of c-JUN N-terminal kinase (JNK) and p38, but not extracellular-regulated kinase. Treatment with JNK and p38 inhibitors alleviated NTP-induced apoptosis via ROS generation. Taken together, these results show that NTP induced apoptosis of HNC cells by a mechanism involving MAPK-dependent mitochondrial ROS. NTP inhibited the growth of pre-established FaDu tumors in a nude mouse xenograft model and resulted in accumulation of intracellular ROS. In conclusion, NTP induced apoptosis in HNC cells through a novel mechanism involving MAPK-mediated mitochondrial ROS. These findings show the therapeutic potential of NTP in HNC.
Collapse
|
44
|
Hanauske-Abel HM, Saxena D, Palumbo PE, Hanauske AR, Luchessi AD, Cambiaghi TD, Hoque M, Spino M, Gandolfi DD, Heller DS, Singh S, Park MH, Cracchiolo BM, Tricta F, Connelly J, Popowicz AM, Cone RA, Holland B, Pe’ery T, Mathews MB. Drug-induced reactivation of apoptosis abrogates HIV-1 infection. PLoS One 2013; 8:e74414. [PMID: 24086341 PMCID: PMC3781084 DOI: 10.1371/journal.pone.0074414] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal antivirals that eliminate viral infection by destroying infected cells. A drug-based drug discovery program, based on these compounds, is warranted to determine the potential of such agents in clinical trials of HIV-infected patients.
Collapse
Affiliation(s)
- Hartmut M. Hanauske-Abel
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Deepti Saxena
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Paul E. Palumbo
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Axel-Rainer Hanauske
- Oncology Center and Medical Clinic III, Asklepios Clinic St. George, Hamburg, Germany
| | - Augusto D. Luchessi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tavane D. Cambiaghi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Mainul Hoque
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael Spino
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- ApoPharma Inc., Toronto, Ontario, Canada
| | | | - Debra S. Heller
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Sukhwinder Singh
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute for Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Bernadette M. Cracchiolo
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | | | | | - Anthony M. Popowicz
- Department of Information Technology, Rockefeller University, New York, New York, United States of America
| | - Richard A. Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Bart Holland
- Department of Preventive Medicine & Community Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tsafi Pe’ery
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael B. Mathews
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
45
|
Rusnati M, Chiodelli P, Bugatti A, Urbinati C. Bridging the past and the future of virology: surface plasmon resonance as a powerful tool to investigate virus/host interactions. Crit Rev Microbiol 2013; 41:238-60. [PMID: 24059853 DOI: 10.3109/1040841x.2013.826177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite decades of antiviral drug research and development, viruses still remain a top global healthcare problem. Compared to eukaryotic cells, viruses are composed by a limited numbers of proteins that, nevertheless, set up multiple interactions with cellular components, allowing the virus to take control of the infected cell. Each virus/host interaction can be considered as a therapeutical target for new antiviral drugs but, unfortunately, the systematic study of a so huge number of interactions is time-consuming and expensive, calling for models overcoming these drawbacks. Surface plasmon resonance (SPR) is a label-free optical technique to study biomolecular interactions in real time by detecting reflected light from a prism-gold film interface. Launched 20 years ago, SPR has become a nearly irreplaceable technology for the study of biomolecular interactions. Accordingly, SPR is increasingly used in the field of virology, spanning from the study of biological interactions to the identification of putative antiviral drugs. From the literature available, SPR emerges as an ideal link between conventional biological experimentation and system biology studies functional to the identification of highly connected viral or host proteins that act as nodal points in virus life cycle and thus considerable as therapeutical targets for the development of innovative antiviral strategies.
Collapse
Affiliation(s)
- Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia , Brescia , Italy
| | | | | | | |
Collapse
|
46
|
Ferrucci A, Nonnemacher MR, Wigdahl B. Extracellular HIV-1 viral protein R affects astrocytic glyceraldehyde 3-phosphate dehydrogenase activity and neuronal survival. J Neurovirol 2013; 19:239-53. [PMID: 23728617 DOI: 10.1007/s13365-013-0170-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 01/01/2023]
Abstract
Extracellular human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is a pleiotropic protein accomplishing several functions within the viral life cycle. While Vpr has been described extensively as an intracellular protein, very little is known about its role as an extracellular protein. In fact, HIV-1 Vpr has been detected in the blood, serum, and cerebrospinal fluid of HIV-1-infected patients, with concentrations increasingly higher in late-stage disease. To determine the role exogenous Vpr plays in HIV-associated central nervous system dysfunction, primary human fetal astrocytes were exposed to recombinant Vpr and a time- and dose-dependent decrease was demonstrated in two fundamental intracellular metabolites (adenosine-5'-triphosphate (ATP) and glutathione (GSH)). Additionally, exposure to exogenous Vpr led to increased caspase activity and secretion of proinflammatory cytokines IL-6 and IL-8 and chemoattractants, monocyte chemotactic protein-1, and migration inhibition factor. Extracellular Vpr also dampened the glycolytic pathway through impairment of glyceraldehyde 3-phosphate dehydrogenase activity, causing a decline in the levels of ATP. The reduction in intracellular ATP increased reactive oxygen species buildup, decreasing GSH concentrations, which affected several genes in the oxidative stress pathway. In addition, exposure of the SK-N-SH neuroblastoma cell line to conditioned medium from exogenous Vpr-treated astrocytes decreased synthesis of GSH, leading to their apoptosis. These observations point to a role that Vpr plays in altering astrocytic metabolism and indirectly affecting neuronal survival. We propose a model that may explain some of the neurological damage and therefore neurocognitive impairment observed during the course of HIV-1 disease.
Collapse
Affiliation(s)
- Adriano Ferrucci
- School of Biomedical Engineering, Science and Health Systems, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | |
Collapse
|
47
|
HOWELL MARK, GREEN RYAN, KILLEEN ALEXIS, WEDDERBURN LAMAR, PICASCIO VINCENT, RABIONET ALEJANDRO, PENG ZHENLING, LARINA MAYA, XUE BIN, KURGAN LUKASZ, UVERSKY VLADIMIRN. NOT THAT RIGID MIDGETS AND NOT SO FLEXIBLE GIANTS: ON THE ABUNDANCE AND ROLES OF INTRINSIC DISORDER IN SHORT AND LONG PROTEINS. J BIOL SYST 2013. [DOI: 10.1142/s0218339012400086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intrinsically disordered proteins or proteins with disordered regions are very common in nature. These proteins have numerous biological functions which are complementary to the biological activities of traditional ordered proteins. A noticeable difference in the amino acid sequences encoding long and short disordered regions was found and this difference was used in the development of length-dependent predictors of intrinsic disorder. In this study, we analyze the scaling of intrinsic disorder in eukaryotic proteins and investigate the presence of length-dependent functions attributed to proteins containing long disordered regions.
Collapse
Affiliation(s)
- MARK HOWELL
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - RYAN GREEN
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - ALEXIS KILLEEN
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - LAMAR WEDDERBURN
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - VINCENT PICASCIO
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - ALEJANDRO RABIONET
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - ZHENLING PENG
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - MAYA LARINA
- Department of Mathematics and Informatics, College of Medical Biochemistry, Volgograd State Medical University, 400131 Volgograd, Russia
| | - BIN XUE
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - LUKASZ KURGAN
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - VLADIMIR N. UVERSKY
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
48
|
Abstract
Mitochondria are implicated in many important cellular functions covering the whole life cycle from mitochondrial biogenesis to cell death. Mitochondrial homeostasis is tightly regulated, and mitochondrial dysfunction is frequently associated with severe human pathologies (eg, cardiovascular diseases, cancer, and neurodegeneration). The permeability transition pore (PTP) is an unselective voltage-dependent mitochondrial channel. Despite the extensive use of electrophysiology, biochemistry, pharmacology, and genetic invalidation in mice, the molecular identity of PTP is still unknown. Nevertheless, PTP is central to mitochondrial vital functions and can play a lethal role in many pathophysiological conditions. This review recapitulates the current knowledge of the various modes of conductance of the PTP channel and discusses their implication in the physiological roles of PTP and their regulation. Based on its involvement in normal physiology and human pathology, a better understanding of this channel and its roles remains a major goal for basic scientists and clinicians.
Collapse
Affiliation(s)
- Catherine Brenner
- INSERM UMR-S 769, LabEx LERMIT, Université de Paris-Sud, 5, Rue JB Clément, 92296 Châtenay-Malabry, France.
| | | |
Collapse
|
49
|
Bhowmick R, Halder UC, Chattopadhyay S, Chanda S, Nandi S, Bagchi P, Nayak MK, Chakrabarti O, Kobayashi N, Chawla-Sarkar M. Rotaviral enterotoxin nonstructural protein 4 targets mitochondria for activation of apoptosis during infection. J Biol Chem 2012; 287:35004-35020. [PMID: 22888003 DOI: 10.1074/jbc.m112.369595] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Viruses have evolved to encode multifunctional proteins to control the intricate cellular signaling pathways by using very few viral proteins. Rotavirus is known to express six nonstructural and six structural proteins. Among them, NSP4 is the enterotoxin, known to disrupt cellular Ca(2+) homeostasis by translocating to endoplasmic reticulum. In this study, we have observed translocation of NSP4 to mitochondria resulting in dissipation of mitochondrial membrane potential during virus infection and NSP4 overexpression. Furthermore, transfection of the N- and C-terminal truncated NSP4 mutants followed by analyzing NSP4 localization by immunofluorescence microscopy identified the 61-83-amino acid region as the shortest mitochondrial targeting signal. NSP4 exerts its proapoptotic effect by interacting with mitochondrial proteins adenine nucleotide translocator and voltage-dependent anion channel, resulting in dissipation of mitochondrial potential, release of cytochrome c from mitochondria, and caspase activation. During early infection, apoptosis activation by NSP4 was inhibited by the activation of cellular survival pathways (PI3K/AKT), because PI3K inhibitor results in early induction of apoptosis. However, in the presence of both PI3K inhibitor and NSP4 siRNA, apoptosis was delayed suggesting that the early apoptotic signal is initiated by NSP4 expression. This proapoptotic function of NSP4 is balanced by another virus-encoded protein, NSP1, which is implicated in PI3K/AKT activation because overexpression of both NSP4 and NSP1 in cells resulted in reduced apoptosis compared with only NSP4-expressing cells. Overall, this study reports on the mechanism by which enterotoxin NSP4 exerts cytotoxicity and the mechanism by which virus counteracts it at the early stage for efficient infection.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Umesh Chandra Halder
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Shiladitya Chattopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Shampa Chanda
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Satabdi Nandi
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Parikshit Bagchi
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Mukti Kant Nayak
- Department of Zoology, University of Calcutta, Ballygunge, Kolkata 700019, India
| | - Oishee Chakrabarti
- Structural Genomics Section, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | | | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road Scheme-XM, Beliaghata, Kolkata 700010, India.
| |
Collapse
|
50
|
Ferrucci A, Nonnemacher MR, Cohen EA, Wigdahl B. Extracellular human immunodeficiency virus type 1 viral protein R causes reductions in astrocytic ATP and glutathione levels compromising the antioxidant reservoir. Virus Res 2012; 167:358-69. [PMID: 22691542 DOI: 10.1016/j.virusres.2012.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/29/2012] [Accepted: 06/02/2012] [Indexed: 01/05/2023]
Abstract
Patients infected with human immunodeficiency virus type 1 (HIV-1) often display neurological complications in late stage disease and increased viral loads directly correlated with higher concentrations of extracellular HIV-1 viral protein r (Vpr) in the blood serum and cerebrospinal fluid. Additionally, HIV-1-infected patients with a low CD4+ T-lymphocyte count displayed lower concentrations of reduced glutathione (GSH), the main intracellular antioxidant molecule, and lower level of survival. To establish a correlation between increased concentrations of extracellular Vpr and an oxidative stress-induced phenotype, the U-87 MG astroglioma cell line has been used to determine the downstream effects induced by Vpr. Conditioned media obtained from the human endothelial kidney (HEK) 293 T cell line transfected either in the absence or presence of HIV-1 Vpr contained free Vpr. Exposure of U-87 MG to this conditioned media decreased intracellular levels of both adenosine triphosphate (ATP) and GSH. These observations were recapitulated using purified recombinant HIV-1 Vpr both in U-87 MG and primary human fetal astrocytes in a dose- and time-dependent manner. Vpr-induced oxidative stress could be partly restored by co-treatment with the antioxidant molecule N-acetyl-cysteine (NAC). In addition, free Vpr augmented production of reactive oxygen species due to an increase in the level of oxidized glutathione (GSSG). This event was almost entirely suppressed by treatment with an anti-Vpr antibody or co-treatment with NAC. These studies confirm a role of extracellular Vpr in impairing astrocytic levels of intracellular ATP and GSH. Studies are underway to better understand the intricate correlation between reductions in ATP and GSH metabolites and how they affect neuronal survival in end-stage disease.
Collapse
Affiliation(s)
- Adriano Ferrucci
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|