1
|
Chen LR, Zhou SS, Yang JX, Liu XQ. Effect of hypoxia on the mucus system and intragastric microecology in the gastrointestinal tract. Microb Pathog 2025; 205:107615. [PMID: 40355054 DOI: 10.1016/j.micpath.2025.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Digestive diseases have a high incidence worldwide, with various geographic, age, and gender factors influencing the occurrence and development of the diseases. The main etiologic factors involve genetics, environment, lifestyle, and dietary habits. In a low-oxygen environment, however, the body's tissue cells activate hypoxia-inducible factor (HIF), which produces different inflammatory mediators. Hypoxia impacts health at the molecular level by modulating cellular stress responses, metabolic pathways, and immune functions. It also alters gene expression and cellular behavior, thereby affecting gastrointestinal function. Under normal physiological conditions, the gastrointestinal mucus system serves as a crucial protective barrier, defending against mechanical injury, pathogenic invasion, and exposure to harmful chemicals. The integrity and functionality of this barrier are dependent on the synthesis and regulation of mucins and mucus, which are influenced by multiple factors. Additionally, the composition and diversity of the gastric microbiota are shaped by factors such as Helicobacter pylori infection, diet, and lifestyle. A balanced gastric microbiota supports gastrointestinal health and fortifies the mucus barrier. However, hypoxia can disrupt this equilibrium, leading to inflammation, alterations in the mucus layer, and destabilization of the gastric microbiota. Understanding the interplay between hypoxia, the mucus system, and the gastric microbiota is essential for identifying novel therapeutic strategies. Future research should elucidate the mechanisms through which hypoxia influences these systems and develop interventions to mitigate its adverse effects on gastrointestinal health. We examined the impact of hypoxia on the gastrointestinal mucus system and gastric microbiota, highlighting its implications for human health and potential therapeutic approaches.
Collapse
Affiliation(s)
- Li Rong Chen
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| | - Si Si Zhou
- Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China; Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining, 810001, PR China; Qinghai Provincial Clinical Medical Research Center for Digestive Diseases, Xining, 810001, PR China.
| | - Ji Xiang Yang
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| | - Xiao Qian Liu
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| |
Collapse
|
2
|
Feitosa DSLL, Saraiva LGM, de Sousa MKA, da Silva LMG, Borges IC, Ribeiro TA, Lederhos QR, de Castro Silva RR, Paula SM, de Freitas Clementino MA, Havt A, Souza MHLP, Dos Santos AA, Souza MAN. Impairment of Esophageal Barrier Integrity: New Insights into Esophageal Symptoms in Post-COVID-19. Dig Dis Sci 2025:10.1007/s10620-025-09062-3. [PMID: 40316885 DOI: 10.1007/s10620-025-09062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/10/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND The COVID-19 pandemic, caused by SARS-CoV-2, has unveiled a range of symptoms beyond the respiratory system, including significant gastrointestinal manifestations. AIMS This study explores the prevalence and intensity of gastroesophageal symptoms in post-COVID-19 patients and the integrity of the esophageal epithelial barrier. METHODS We conducted a prospective longitudinal cohort study with 55 patients hospitalized due to COVID-19 at a University Hospital. Patients were evaluated during hospitalization and between 3 and 6 months post-discharge, using validated questionnaires for gastrointestinal and gastroesophageal reflux symptoms. Additionally, 25 of these patients underwent upper digestive endoscopy, with esophageal mucosal biopsies analyzed for transepithelial electrical resistance (TER), permeability, and expression of inflammatory cytokines and cell junction proteins. Data expressed as mean EPM, inference by two-way ANOVA. RESULTS Results were considered statistically significant at p < 0.05. There were significant increases in heartburn and acid reflux symptoms in post-COVID-19 patients, as measured by the GSRS questionnaire. Biopsies from post-COVID patients revealed increased esophageal permeability when compared to non-COVID patients in acidic media (pH 2: non-COVID-19: 717.8 ± 168.2 vs. post-COVID-19: 1377.6 ± 316.4), suggesting compromised mucosal barrier. Furthermore, IL-8 levels and expression of Claudin-2 were elevated in these patients. CONCLUSIONS The data suggested that COVID-19 infection may cause lasting damage to the esophageal epithelial barrier, increasing its permeability and provoking an exacerbated inflammatory response. These changes may explain the prevalence of post-infection gastroesophageal symptoms. Our findings underscored the importance of continuous monitoring and the development of therapeutic strategies to mitigate gastroesophageal effects in patients recovering from COVID-19.
Collapse
Affiliation(s)
| | | | | | - Lara Mara Gomes da Silva
- Department of Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Isabela Caldas Borges
- Department of Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Thiago Andrade Ribeiro
- Department of Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Quésia Reis Lederhos
- Department of Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Suliana Mesquita Paula
- Department of Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Alexandre Havt
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Miguel Angelo Nobre Souza
- Department of Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
- Institute of Biomedicine for Brazilian Semi-Arid (IBISAB), Coronel Nunes de Melo Street, 1315, Rodolfo Teófilo, Fortaleza, CE, 60.430-270, Brazil.
| |
Collapse
|
3
|
Agarwal P, Sampson A, Hueneman K, Choi K, Jakobsen NA, Uible E, Ishikawa C, Yeung J, Bolanos L, Zhao X, Setchell KD, Haslam DB, Galloway-Pena J, Byrd JC, Vyas P, Starczynowski DT. Microbial metabolite drives ageing-related clonal haematopoiesis via ALPK1. Nature 2025:10.1038/s41586-025-08938-8. [PMID: 40269158 DOI: 10.1038/s41586-025-08938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) involves the gradual expansion of mutant pre-leukaemic haematopoietic cells, which increases with age and confers a risk for multiple diseases, including leukaemia and immune-related conditions1. Although the absolute risk of leukaemic transformation in individuals with CHIP is very low, the strongest predictor of progression is the accumulation of mutant haematopoietic cells2. Despite the known associations between CHIP and increased all-cause mortality, our understanding of environmental and regulatory factors that underlie this process during ageing remains rudimentary. Here we show that intestinal alterations, which can occur with age, lead to systemic dissemination of a microbial metabolite that promotes pre-leukaemic cell expansion. Specifically, ADP-D-glycero-β-D-manno-heptose (ADP-heptose), a biosynthetic bi-product specific to Gram-negative bacteria3-5, is uniquely found in the circulation of older individuals and favours the expansion of pre-leukaemic cells. ADP-heptose is also associated with increased inflammation and cardiovascular risk in CHIP. Mechanistically, ADP-heptose binds to its receptor, ALPK1, triggering transcriptional reprogramming and NF-κB activation that endows pre-leukaemic cells with a competitive advantage due to excessive clonal proliferation. Collectively, we identify that the accumulation of ADP-heptose represents a direct link between ageing and expansion of rare pre-leukaemic cells, suggesting that the ADP-heptose-ALPK1 axis is a promising therapeutic target to prevent progression of CHIP to overt leukaemia and immune-related conditions.
Collapse
Affiliation(s)
- Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Avery Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Emma Uible
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Yeung
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lyndsey Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xueheng Zhao
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D Setchell
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David B Haslam
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessica Galloway-Pena
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Paresh Vyas
- MRC Molecular Haematology Unit, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, USA.
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Zhang Y, Yan M, Yue Y, Cheng Y. Hypoxia-Inducible Factor-1α Modulates the Toll-Like Receptor 4/Nuclear Factor Kappa B Signaling Pathway in Experimental Necrotizing Enterocolitis. Mediators Inflamm 2024; 2024:4811500. [PMID: 39719983 PMCID: PMC11668547 DOI: 10.1155/mi/4811500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/11/2024] [Indexed: 12/26/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease observed in premature infants, characterized by intestinal ischemia and inflammation. Hypoxia-inducible factor-1 alpha (HIF-1α), a master regulator of the cellular response to hypoxia and ischemia, plays a critical role in NEC pathogenesis. However, the precise mechanisms by which HIF-1α influences the intestines in NEC remain poorly understood. Herein, we aimed to explore the role of HIF-1α in NEC using a transgenic mouse model. We induced NEC in neonatal mice from postnatal day 5 to 9, and various parameters, including intestinal injury, oxidative stress, inflammatory responses, intestinal epithelial cell (IEC) proliferation, and apoptosis, were assessed. The results confirmed that the absence of intestinal epithelial HIF-1α increased the susceptibility of mice to NEC-induced intestinal injury, as evidenced by increased oxidative stress, inflammatory responses, apoptosis, and inhibition of proliferation. Additionally, we observed an upregulation of the Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway specifically in the intestines of mice lacking HIF-1α in IECs (HIF-1αΔIEC) with NEC. These findings provide crucial insights into the role of HIF-1α in regulating intestinal oxidative stress and inflammation to maintain intestinal homeostasis, highlighting its association with the TLR4-NF-κB signaling pathway. Furthermore, these insights might lead to the identification of novel therapeutic targets for the treatment of NEC.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Mei Yan
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Yingbin Yue
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Yongfeng Cheng
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| |
Collapse
|
5
|
Zhang HY, Shu YQ, Li Y, Hu YL, Wu ZH, Li ZP, Deng Y, Zheng ZJ, Zhang XJ, Gong LF, Luo Y, Wang XY, Li HP, Liao XP, Li G, Ren H, Qiu W, Sun J. Metabolic disruption exacerbates intestinal damage during sleep deprivation by abolishing HIF1α-mediated repair. Cell Rep 2024; 43:114915. [PMID: 39527478 DOI: 10.1016/j.celrep.2024.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Sleep deprivation (SD) has been reported to induce intestinal damage by several mechanisms, yet its role in modulating epithelial repair remains unclear. In this study, we find that chronic SD leads to colonic damage through continuous hypoxia. However, HIF1α, which generally responds to hypoxia to modulate barrier integrity, was paradoxically dysregulated in the colon. Further investigation revealed that a metabolic disruption during SD causes accumulation of α-ketoglutarate in the colon. The excessive α-ketoglutarate degrades HIF1α protein through PHD2 (prolyl hydroxylase 2) to abolish the intestinal repair functions of HIF1α. Collectively, these findings provide insights into how SD can exacerbate intestinal damage by fine-tuning metabolism to abolish HIF1α-mediated repair.
Collapse
Affiliation(s)
- Hai-Yi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Qing Shu
- The Third Affiliated Hospital of Sun Yat-sen University, Department of Neurology, Guangzhou, China
| | - Yan Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Lin Hu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhi-Hong Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhi-Peng Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yao Deng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zi-Jian Zheng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liu-Fei Gong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yang Luo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Yu Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | | | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gong Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wei Qiu
- The Third Affiliated Hospital of Sun Yat-sen University, Department of Neurology, Guangzhou, China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
6
|
Hasegawa Y, Okamura T, Ono Y, Ichikawa T, Saijo Y, Nakanishi N, Sasano R, Hamaguchi M, Takano H, Fukui M. Oral exposure to high concentrations of polystyrene microplastics alters the intestinal environment and metabolic outcomes in mice. Front Immunol 2024; 15:1407936. [PMID: 39600697 PMCID: PMC11588728 DOI: 10.3389/fimmu.2024.1407936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Oral exposure to microplastics (MPs) is a global health concern. In our previous study, MPs induced glucose intolerance and non-alcoholic fatty liver disease (NAFLD) under a high-fat diet-induced leaky gut syndrome (LGS). This study aims to evaluate the effects of high concentrations of MP on lipid metabolism under normal dietary conditions and to assess the changes in the intestinal tract resulting from MP exposure. Methods C57BL6/J mice were fed a normal diet (ND) without polystyrene MPs (PS-MPs) or with PS-MPs (1000 µg/L or 5000 µg/L) for six weeks. Subsequently, intestinal permeability, gut microbiota, and metabolite levels in the serum, feces, and liver were determined. Results Mice fed the ND showed no increase in intestinal permeability in either group. However, high MPs concentrations led to increased serum lipid levels and exacerbated fatty liver function. Oral exposure to MPs did not affect the number of innate lymphoid cells or short-chain fatty acids in the intestine. However, it increased the number of natural killer cells, altered the gut microbiota, induced inflammation, and modulated the expression of genes related to nutrient transport in the intestine. The severity of intestinal disturbance tended to worsen with dose. Discussion Despite the absence of LGS, high concentrations of MPs induced dyslipidemia and NAFLD. Oral exposure to MPs triggered intestinal inflammation via natural killer cells, altered the gut microbiota, and modulated nutrient metabolism. Our study highlights the need for environmental measures to reduce oral MPs exposure in the future.
Collapse
Affiliation(s)
- Yuka Hasegawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuriko Ono
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Ichikawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuto Saijo
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
- Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Schwärzler J, Mayr L, Grabherr F, Tilg H, Adolph TE. Epithelial metabolism as a rheostat for intestinal inflammation and malignancy. Trends Cell Biol 2024; 34:913-927. [PMID: 38341347 DOI: 10.1016/j.tcb.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
The gut epithelium protects the host from a potentially hostile environment while allowing nutrient uptake that is vital for the organism. To maintain this delicate task, the gut epithelium has evolved multilayered cellular functions ranging from mucus production to hormone release and orchestration of mucosal immunity. Here, we review the execution of intestinal epithelial metabolism in health and illustrate how perturbation of epithelial metabolism affects experimental gut inflammation and tumorigenesis. We also discuss the impact of environmental factors and host-microbe interactions on epithelial metabolism in the context of inflammatory bowel disease and colorectal cancer. Insights into epithelial metabolism hold promise to unravel mechanisms of organismal health that may be therapeutically exploited in humans in the future.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
8
|
Kou Y, Li J, Zhu Y, Liu J, Ren R, Jiang Y, Wang Y, Qiu C, Zhou J, Yang Z, Jiang T, Huang J, Ren X, Li S, Qiu C, Wei X, Yu L. Human Amniotic Epithelial Stem Cells Promote Colonic Recovery in Experimental Colitis via Exosomal MiR-23a-TNFR1-NF-κB Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401429. [PMID: 39378064 PMCID: PMC11600273 DOI: 10.1002/advs.202401429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/20/2024] [Indexed: 11/28/2024]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, manifests as chronic intestinal inflammation with debilitating symptoms, posing a significant burden on global healthcare. Moreover, current therapies primarily targeting inflammation can lead to immunosuppression-related complications. Human amniotic epithelial stem cells (hAESCs), which exhibit low immunogenicity and ethical acceptability, have gained attention as potential therapeutics. In this study, it is demonstrated that their encapsulation in a hydrogel and administration via anal injection enhanced the colonic mucosal barrier repair in a murine colitis model induced by dextran sodium sulfate during the recovery phase. The underlying mechanism involved the release of exosomes from hAESCs enriched with microRNA-23a-3p, which post-transcriptionally reduced tumor necrosis factor receptor 1 expression, suppressing the nuclear factor-κB pathway in colonic epithelial cells, thus played a key role in inflammation. The novel approach shows potential for IBD treatment by restoring intestinal epithelial homeostasis without the immunosuppressive therapy-associated risks. Furthermore, the approach provides an alternative strategy to target the key molecular pathways involved in inflammation and promotes intestinal barrier function using hAESCs and their secreted exosomes. Overall, this study provides key insights to effectively treat IBD, addresses the unmet needs of patients, and reduces related healthcare burden.
Collapse
Affiliation(s)
- Yaohui Kou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Jinying Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Yingyi Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Jia Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Ruizhe Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Yunyun Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Chen Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Jiayi Zhou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Zhuoheng Yang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Tuoying Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Jianan Huang
- Eye Center the Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang UniversityHangzhouZhejiang310009China
| | - Xiangyi Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Shiguang Li
- Department of ObstetricsWomen's HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310006China
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Xiyang Wei
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineLiangzhu LaboratoryZhejiang UniversityHangzhouZhejiang310012China
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| |
Collapse
|
9
|
Feng C, Yan J, Luo T, Zhang H, Zhang H, Yuan Y, Chen Y, Chen H. Vitamin B12 ameliorates gut epithelial injury via modulating the HIF-1 pathway and gut microbiota. Cell Mol Life Sci 2024; 81:397. [PMID: 39261351 PMCID: PMC11391010 DOI: 10.1007/s00018-024-05435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Inflammatory bowel diseases (IBDs) are immune chronic diseases characterized by recurrent episodes, resulting in continuous intestinal barrier damage and intestinal microbiota dysbiosis. Safe strategies aimed at stabilizing and reducing IBDs recurrence have been vigorously pursued. Here, we constructed a recurrent intestinal injury Drosophila model and found that vitamin B12 (VB12), an essential co-factor for organism physiological functions, could effectively protect the intestine and reduce dextran sulfate sodium-induced intestinal barrier disruption. VB12 also alleviated microbial dysbiosis in the Drosophila model and inhibited the growth of gram-negative bacteria. We demonstrated that VB12 could mitigate intestinal damage by activating the hypoxia-inducible factor-1 signaling pathway in injured conditions, which was achieved by regulating the intestinal oxidation. In addition, we also validated the protective effect of VB12 in a murine acute colitis model. In summary, we offer new insights and implications for the potential supportive role of VB12 in the management of recurrent IBDs flare-ups.
Collapse
Affiliation(s)
- Chenxi Feng
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinhua Yan
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Luo
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Zhang
- Department of Gastroenterology and Hepatology and Laboratory of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hu Zhang
- Department of Gastroenterology and Hepatology and Laboratory of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Yuan
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Chen
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Haiyang Chen
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Diab R, Dimachkie L, Zein O, Dakroub A, Eid AH. Intermittent Fasting Regulates Metabolic Homeostasis and Improves Cardiovascular Health. Cell Biochem Biophys 2024; 82:1583-1597. [PMID: 38847940 PMCID: PMC11445340 DOI: 10.1007/s12013-024-01314-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 10/02/2024]
Abstract
Obesity is a leading cause of morbidity and mortality globally. While the prevalence of obesity has been increasing, the incidence of its related complications including dyslipidemia and cardiovascular disease (CVD) has also been rising. Recent research has focused on modalities aimed at reducing obesity. Several modalities have been suggested including behavioral and dietary changes, medications, and bariatric surgery. These modalities differ in their effectiveness and invasiveness, with dietary changes gaining more interest due to their minimal risks compared to other modalities. Specifically, intermittent fasting (IF) has been gaining interest in the past decade. IF is characterized by cycles of alternating fasting and eating windows, with several different forms practiced. IF has been shown to reduce weight and alleviate obesity-related complications. Our review of clinical and experimental studies explores the effects of IF on the lipid profile, white adipose tissue (WAT) dynamics, and the gut microbiome. Notably, IF corrects dyslipidemia, reduces WAT accumulation, and decreases inflammation, which reduces CVD and obesity. This comprehensive analysis details the protective metabolic role of IF, advocating for its integration into public health practices.
Collapse
Affiliation(s)
- Rawan Diab
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Dakroub
- St. Francis Hospital and Heart Center, Roslyn, NY, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, QU Health, Doha, Qatar.
| |
Collapse
|
11
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 PMCID: PMC12036329 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
12
|
Di Mattia M, Sallese M, Neri M, Lopetuso LR. Hypoxic Functional Regulation Pathways in the GI Tract: Focus on the HIF-1α and Microbiota's Crosstalk. Inflamm Bowel Dis 2024; 30:1406-1418. [PMID: 38484200 DOI: 10.1093/ibd/izae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 08/02/2024]
Abstract
Hypoxia is an essential gastrointestinal (GI) tract phenomenon that influences both physiologic and pathologic states. Hypoxia-inducible factors (HIFs), the primary drivers of cell adaptation to low-oxygen environments, have been identified as critical regulators of gut homeostasis: directly, through the induction of different proteins linked to intestinal barrier stabilization (ie, adherent proteins, tight junctions, mucins, integrins, intestinal trefoil factor, and adenosine); and indirectly, through the regulation of several immune cell types and the modulation of autophagy and inflammatory processes. Furthermore, hypoxia and HIF-related sensing pathways influence the delicate relationship existing between bacteria and mammalian host cells. In turn, gut commensals establish and maintain the physiologic hypoxia of the GI tract and HIF-α expression. Based on this premise, the goals of this review are to (1) highlight hypoxic molecular pathways in the GI tract, both in physiologic and pathophysiologic settings, such as inflammatory bowel disease; and (2) discuss a potential strategy for ameliorating gut-related disorders, by targeting HIF signaling, which can alleviate inflammatory processes, restore autophagy correct mechanisms, and benefit the host-microbiota equilibrium.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Matteo Neri
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
13
|
Fofanova TY, Karandikar UC, Auchtung JM, Wilson RL, Valentin AJ, Britton RA, Grande-Allen KJ, Estes MK, Hoffman K, Ramani S, Stewart CJ, Petrosino JF. A novel system to culture human intestinal organoids under physiological oxygen content to study microbial-host interaction. PLoS One 2024; 19:e0300666. [PMID: 39052651 PMCID: PMC11271918 DOI: 10.1371/journal.pone.0300666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/01/2024] [Indexed: 07/27/2024] Open
Abstract
Mechanistic investigation of host-microbe interactions in the human gut are hindered by difficulty of co-culturing microbes with intestinal epithelial cells. On one hand the gut bacteria are a mix of facultative, aerotolerant or obligate anaerobes, while the intestinal epithelium requires oxygen for growth and function. Thus, a coculture system that can recreate these contrasting oxygen requirements is critical step towards our understanding microbial-host interactions in the human gut. Here, we demonstrate Intestinal Organoid Physoxic Coculture (IOPC) system, a simple and cost-effective method for coculturing anaerobic intestinal bacteria with human intestinal organoids (HIOs). Using commensal anaerobes with varying degrees of oxygen tolerance, such as nano-aerobe Bacteroides thetaiotaomicron and strict anaerobe Blautia sp., we demonstrate that IOPC can successfully support 24-48 hours HIO-microbe coculture. The IOPC recapitulates the contrasting oxygen conditions across the intestinal epithelium seen in vivo. The IOPC cultured HIOs showed increased barrier integrity, and induced expression of immunomodulatory genes. A transcriptomic analysis suggests that HIOs from different donors show differences in the magnitude of their response to coculture with anaerobic bacteria. Thus, the IOPC system provides a robust coculture setup for investigating host-microbe interactions in complex, patient-derived intestinal tissues, that can facilitate the study of mechanisms underlying the role of the microbiome in health and disease.
Collapse
Affiliation(s)
- Tatiana Y. Fofanova
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Umesh C. Karandikar
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Jennifer M. Auchtung
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Reid L. Wilson
- Department of Bioengineering, Rice University, Houston, TX, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States of America
| | - Antonio J. Valentin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Robert A. Britton
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - K. Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Kristi Hoffman
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sashirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Christopher J. Stewart
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Joseph F. Petrosino
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
14
|
Hai S, Li X, Xie E, Wu W, Gao Q, Yu B, Hu J, Xu F, Zheng X, Zhang BH, Wu D, Yan W, Ning Q, Wang X. Intestinal IL-33 promotes microbiota-derived trimethylamine N -oxide synthesis and drives metabolic dysfunction-associated steatotic liver disease progression by exerting dual regulation on HIF-1α. Hepatology 2024:01515467-990000000-00950. [PMID: 38985971 DOI: 10.1097/hep.0000000000000985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND AND AIMS Gut microbiota plays a prominent role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). IL-33 is highly expressed at mucosal barrier sites and regulates intestinal homeostasis. Herein, we aimed to investigate the role and mechanism of intestinal IL-33 in MASLD. APPROACH AND RESULTS In both humans and mice with MASLD, hepatic expression of IL-33 and its receptor suppression of tumorigenicity 2 (ST2) showed no significant change compared to controls, while serum soluble ST2 levels in humans, as well as intestinal IL-33 and ST2 expression in mice were significantly increased in MASLD. Deletion of global or intestinal IL-33 in mice alleviated metabolic disorders, inflammation, and fibrosis associated with MASLD by reducing intestinal barrier permeability and rectifying gut microbiota dysbiosis. Transplantation of gut microbiota from IL-33 deficiency mice prevented MASLD progression in wild-type mice. Moreover, IL-33 deficiency resulted in a decrease in the abundance of trimethylamine N -oxide-producing bacteria. Inhibition of trimethylamine N -oxide synthesis by 3,3-dimethyl-1-butanol mitigated hepatic oxidative stress in mice with MASLD. Nuclear IL-33 bound to hypoxia-inducible factor-1α and suppressed its activation, directly damaging the integrity of the intestinal barrier. Extracellular IL-33 destroyed the balance of intestinal Th1/Th17 and facilitated Th1 differentiation through the ST2- Hif1a - Tbx21 axis. Knockout of ST2 resulted in a diminished MASLD phenotype resembling that observed in IL-33 deficiency mice. CONCLUSIONS Intestinal IL-33 enhanced gut microbiota-derived trimethylamine N -oxide synthesis and aggravated MASLD progression through dual regulation on hypoxia-inducible factor-1α. Targeting IL-33 and its associated microbiota may provide a potential therapeutic strategy for managing MASLD.
Collapse
Affiliation(s)
- Suping Hai
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xitang Li
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Erliang Xie
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhui Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Gao
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Binghui Yu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Junjian Hu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Feiyang Xu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xizhe Zheng
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Bin-Hao Zhang
- Department of Surgery, Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Savage HP, Bays DJ, Tiffany CR, Gonzalez MAF, Bejarano EJ, Carvalho TP, Luo Z, Masson HLP, Nguyen H, Santos RL, Reagan KL, Thompson GR, Bäumler AJ. Epithelial hypoxia maintains colonization resistance against Candida albicans. Cell Host Microbe 2024; 32:1103-1113.e6. [PMID: 38838675 PMCID: PMC11239274 DOI: 10.1016/j.chom.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Antibiotic treatment promotes the outgrowth of intestinal Candida albicans, but the mechanisms driving this fungal bloom remain incompletely understood. We identify oxygen as a resource required for post-antibiotic C. albicans expansion. C. albicans depleted simple sugars in the ceca of gnotobiotic mice but required oxygen to grow on these resources in vitro, pointing to anaerobiosis as a potential factor limiting growth in the gut. Clostridia species limit oxygen availability in the large intestine by producing butyrate, which activates peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling to maintain epithelial hypoxia. Streptomycin treatment depleted Clostridia-derived butyrate to increase epithelial oxygenation, but the PPAR-γ agonist 5-aminosalicylic acid (5-ASA) functionally replaced Clostridia species to restore epithelial hypoxia and colonization resistance against C. albicans. Additionally, probiotic Escherichia coli required oxygen respiration to prevent a post-antibiotic bloom of C. albicans, further supporting the role of oxygen in colonization resistance. We conclude that limited access to oxygen maintains colonization resistance against C. albicans.
Collapse
Affiliation(s)
- Hannah P Savage
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Derek J Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Mariela A F Gonzalez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Eli J Bejarano
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Thaynara P Carvalho
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; Departamento de Clinica e Cirurgia Veterinárias, Escola de Veterinária da Universidade Federal de Minas Gerais, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 Belo Horizonte, MG, Brazil
| | - Zheng Luo
- Department of Pathology Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Hugo L P Masson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Renato L Santos
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; Departamento de Clinica e Cirurgia Veterinárias, Escola de Veterinária da Universidade Federal de Minas Gerais, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 Belo Horizonte, MG, Brazil
| | - Krystle L Reagan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95615, USA
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
16
|
Akiyama S, Sakamoto T, Kobayashi M, Matsubara D, Tsuchiya K. Clinical usefulness of hypoxia imaging colonoscopy for the objective measurement of ulcerative colitis disease activity. Gastrointest Endosc 2024; 99:1006-1016.e4. [PMID: 38184118 DOI: 10.1016/j.gie.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND AND AIMS Colonic mucosal hypoxia is associated with mucosal inflammation in ulcerative colitis (UC). We aimed to assess the clinical usefulness of hypoxia imaging colonoscopy for the evaluation of clinical, endoscopic, and histologic disease activities of UC. METHODS This retrospective cohort study comprised 100 consecutive patients with UC who underwent hypoxia imaging colonoscopy between September 2022 and September 2023 at the University of Tsukuba Hospital. Colonic tissue oxygen saturation (StO2) was measured at the biopsy sites, and StO2 values between different disease activities were compared. Receiver-operating characteristic (ROC) analysis was used to calculate the area under the ROC curve (AUROC). RESULTS A significant correlation was identified between rectal StO2 and the Simple Clinical Colitis Activity Index, with moderate accuracy to predict bowel urgency at a 40.5% cutoff (AUROC, .74; 95% confidence interval [CI], .62-.87). Our analysis of 490 images showed median StO2 values for Mayo endoscopic subscores 0, 1, 2, and 3 as 52% (interquartile range [IQR], 48%-56%), 47% (IQR, 43%-52%), 42% (IQR, 38.8%-47%), and 39.5% (IQR, 37.3%-41.8%), respectively. Differences for all pairs were significant. Median StO2 was 49% (IQR, 44%-54%) for Geboes scores 0 to 2, significantly higher than histologically active disease (Geboes score ≥3). At a colonic StO2 cutoff of 45.5%, AUROCs for endoscopically and histologically active diseases were .79 (95% CI, .74-.84) and .72 (95% CI, .66-.77). CONCLUSIONS StO2 obtained by hypoxia imaging colonoscopy is useful for assessing clinical, endoscopic, and histologic activities of UC, suggesting that StO2 may be a novel and objective endoscopic measurement.
Collapse
Affiliation(s)
- Shintaro Akiyama
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Taku Sakamoto
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mariko Kobayashi
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daisuke Matsubara
- Department of Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
17
|
Burtscher J, Pasha Q, Chanana N, Millet GP, Burtscher M, Strasser B. Immune consequences of exercise in hypoxia: A narrative review. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:297-310. [PMID: 37734549 PMCID: PMC11116970 DOI: 10.1016/j.jshs.2023.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Immune outcomes are key mediators of many health benefits of exercise and are determined by exercise type, dose (frequency/duration, intensity), and individual characteristics. Similarly, reduced availability of ambient oxygen (hypoxia) modulates immune functions depending on the hypoxic dose and the individual capacity to respond to hypoxia. How combined exercise and hypoxia (e.g., high-altitude training) sculpts immune responses is not well understood, although such combinations are becoming increasingly popular. Therefore, in this paper, we summarize the impact on immune responses of exercise and of hypoxia, both independently and together, with a focus on specialized cells in the innate and adaptive immune system. We review the regulation of the immune system by tissue oxygen levels and the overlapping and distinct immune responses related to exercise and hypoxia, then we discuss how they may be modulated by nutritional strategies. Mitochondrial, antioxidant, and anti-inflammatory mechanisms underlie many of the adaptations that can lead to improved cellular metabolism, resilience, and overall immune functions by regulating the survival, differentiation, activation, and migration of immune cells. This review shows that exercise and hypoxia can impair or complement/synergize with each other while regulating immune system functions. Appropriate acclimatization, training, and nutritional strategies can be used to avoid risks and tap into the synergistic potentials of the poorly studied immune consequences of exercising in a hypoxic state.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| | - Qadar Pasha
- Institute of Hypoxia Research, New Delhi 110067, India
| | - Neha Chanana
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck 6020, Austria.
| | - Barbara Strasser
- Faculty of Medicine, Sigmund Freud Private University, Vienna 1020, Austria; Ludwig Boltzmann Institute for Rehabilitation Research, Vienna 1100, Austria
| |
Collapse
|
18
|
Hausmann M, Seuwen K, de Vallière C, Busch M, Ruiz PA, Rogler G. Role of pH-sensing receptors in colitis. Pflugers Arch 2024; 476:611-622. [PMID: 38514581 PMCID: PMC11006753 DOI: 10.1007/s00424-024-02943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Low pH in the gut is associated with severe inflammation, fibrosis, and colorectal cancer (CRC) and is a hallmark of active inflammatory bowel disease (IBD). Subsequently, pH-sensing mechanisms are of interest for the understanding of IBD pathophysiology. Tissue hypoxia and acidosis-two contributing factors to disease pathophysiology-are linked to IBD, and understanding their interplay is highly relevant for the development of new therapeutic options. One member of the proton-sensing G protein-coupled receptor (GPCR) family, GPR65 (T-cell death-associated gene 8, TDAG8), was identified as a susceptibility gene for IBD in a large genome-wide association study. In response to acidic extracellular pH, GPR65 induces an anti-inflammatory response, whereas the two other proton-sensing receptors, GPR4 and GPR68 (ovarian cancer G protein-coupled receptor 1, OGR1), mediate pro-inflammatory responses. Here, we review the current knowledge on the role of these proton-sensing receptors in IBD and IBD-associated fibrosis and cancer, as well as colitis-associated cancer (CAC). We also describe emerging small molecule modulators of these receptors as therapeutic opportunities for the treatment of IBD.
Collapse
Affiliation(s)
- Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland.
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Moana Busch
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| |
Collapse
|
19
|
Lee C, Lee S, Yoo W. Metabolic Interaction Between Host and the Gut Microbiota During High-Fat Diet-Induced Colorectal Cancer. J Microbiol 2024; 62:153-165. [PMID: 38625645 DOI: 10.1007/s12275-024-00123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 04/17/2024]
Abstract
Colorectal cancer (CRC) is the second-highest cause of cancer-associated mortality among both men and women worldwide. One of the risk factors for CRC is obesity, which is correlated with a high-fat diet prevalent in Western dietary habits. The association between an obesogenic high-fat diet and CRC has been established for several decades; however, the mechanisms by which a high-fat diet increases the risk of CRC remain unclear. Recent studies indicate that gut microbiota strongly influence the pathogenesis of both high-fat diet-induced obesity and CRC. The gut microbiota is composed of hundreds of bacterial species, some of which are implicated in CRC. In particular, the expansion of facultative anaerobic Enterobacteriaceae, which is considered a microbial signature of intestinal microbiota functional imbalance (dysbiosis), is associated with both high-fat diet-induced obesity and CRC. Here, we review the interaction between the gut microbiome and its metabolic byproducts in the context of colorectal cancer (CRC) during high-fat diet-induced obesity. In addition, we will cover how a high-fat diet can drive the expansion of genotoxin-producing Escherichia coli by altering intestinal epithelial cell metabolism during gut inflammation conditions.
Collapse
Affiliation(s)
- Chaeeun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seungrin Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Woongjae Yoo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
20
|
DeSana AJ, Estus S, Barrett TA, Saatman KE. Acute gastrointestinal permeability after traumatic brain injury in mice precedes a bloom in Akkermansia muciniphila supported by intestinal hypoxia. Sci Rep 2024; 14:2990. [PMID: 38316862 PMCID: PMC10844296 DOI: 10.1038/s41598-024-53430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
Traumatic brain injury (TBI) increases gastrointestinal morbidity and associated mortality. Clinical and preclinical studies implicate gut dysbiosis as a consequence of TBI and an amplifier of brain damage. However, little is known about the association of gut dysbiosis with structural and functional changes of the gastrointestinal tract after an isolated TBI. To assess gastrointestinal dysfunction, mice received a controlled cortical impact or sham brain injury and intestinal permeability was assessed at 4 h, 8 h, 1 d, and 3 d after injury by oral administration of 4 kDa FITC Dextran prior to euthanasia. Quantification of serum fluorescence revealed an acute, short-lived increase in permeability 4 h after TBI. Despite transient intestinal dysfunction, no overt morphological changes were evident in the ileum or colon across timepoints from 4 h to 4 wks post-injury. To elucidate the timeline of microbiome changes after TBI, 16 s gene sequencing was performed on DNA extracted from fecal samples collected prior to and over the first month after TBI. Differential abundance analysis revealed that the phylum Verrucomicrobiota was increased at 1, 2, and 3 d after TBI. The Verrucomicrobiota species was identified by qPCR as Akkermansia muciniphila, an obligate anaerobe that resides in the intestinal mucus bilayer and produces short chain fatty acids (e.g. butyrate) utilized by intestinal epithelial cells. We postulated that TBI promotes intestinal changes favorable for the bloom of A. muciniphila. Consistent with this premise, the relative area of mucus-producing goblet cells in the medial colon was significantly increased at 1 d after injury, while colon hypoxia was significantly increased at 3 d. Our findings reveal acute gastrointestinal functional changes coupled with an increase of beneficial bacteria suggesting a potential compensatory response to systemic stress after TBI.
Collapse
Affiliation(s)
- Anthony J DeSana
- Department of Physiology, University of Kentucky, Biomedical and Biological Sciences Research Building (BBSRB), B473, 741 South Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Biomedical and Biological Sciences Research Building (BBSRB), B473, 741 South Limestone St., Lexington, KY, 40536, USA
| | - Steven Estus
- Department of Physiology, University of Kentucky, Biomedical and Biological Sciences Research Building (BBSRB), B473, 741 South Limestone St., Lexington, KY, 40536, USA
- Sanders Brown Center on Aging, University of Kentucky, Lee T. Todd, Jr. Building, Rm: 537, 789 South Limestone St., Lexington, KY, 40536, USA
| | - Terrence A Barrett
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine - Digestive Health, University of Kentucky, Lexington, KY, 40536, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Medical Science Building, MN649, 780 Rose St., Lexington, KY, 40536, USA
| | - Kathryn E Saatman
- Department of Physiology, University of Kentucky, Biomedical and Biological Sciences Research Building (BBSRB), B473, 741 South Limestone St., Lexington, KY, 40536, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Biomedical and Biological Sciences Research Building (BBSRB), B473, 741 South Limestone St., Lexington, KY, 40536, USA.
| |
Collapse
|
21
|
Li D, Lian L, Huang L, Gamdzyk M, Huang Y, Doycheva D, Li G, Yu S, Guo Y, Kang R, Tang H, Tang J, Kong L, Zhang JH. Delayed recanalization reduced neuronal apoptosis and neurological deficits by enhancing liver-derived trefoil factor 3-mediated neuroprotection via LINGO2/EGFR/Src signaling pathway after middle cerebral artery occlusion in rats. Exp Neurol 2024; 371:114607. [PMID: 37935323 PMCID: PMC11585322 DOI: 10.1016/j.expneurol.2023.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Delayed recanalization at days or weeks beyond the therapeutic window was shown to improve functional outcomes in acute ischemic stroke (AIS) patients. However, the underlying mechanisms remain unclear. Previous preclinical study reported that trefoil factor 3 (TFF3) was secreted by liver after cerebral ischemia and acted a distant neuroprotective factor. Here, we investigated the liver-derived TFF3-mediated neuroprotective mechanism enhanced by delayed recanalization after AIS. A total of 327 male Sprague-Dawley rats and the model of middle cerebral artery occlusion (MCAO) with permanent occlusion (pMCAO) or with delayed recanalization at 3 d post-occlusion (rMCAO) were used. Partial hepatectomy was performed within 5 min after MCAO. Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2) siRNA was administered intracerebroventricularly at 48 h after MCAO. Recombinant rat TFF3 (rr-TFF3, 30 μg/Kg) or recombinant rat epidermal growth factor (rr-EGF, 100 μg/Kg) was administered intranasally at 1 h after recanalization, and EGFR inhibitor Gefitinib (75 mg/Kg) was administered intranasally at 30 min before recanalization. The evaluation of outcomes included neurobehavior, ELISA, western blot and immunofluorescence staining. TFF3 in hepatocytes and serum were upregulated in a similar time-dependent manner after MCAO. Compared to pMCAO, delayed recanalization increased brain TFF3 levels and attenuated brain damage with the reduction in neuronal apoptosis, infarct volume and neurological deficits. Partial hepatectomy reduced TFF3 levels in serum and ipsilateral brain hemisphere, and abolished the benefits of delayed recanalization on neuronal apoptosis and neurobehavioral deficits in rMCAO rats. Intranasal rrTFF3 treatment reversed the changes associated with partial hepatectomy. Delayed recanalization after MCAO increased the co-immunoprecipitation of TFF3 and LINGO2, as well as expressions of p-EGFR, p-Src and Bcl-2 in the brain. LINGO2 siRNA knockdown or EGFR inhibitor reversed the effects of delayed recanalization on apoptosis and brain expressions of LINGO2, p-EGFR, p-Src and Bcl-2 in rMCAO rats. EGFR activator abolished the deleterious effects of LINGO2 siRNA. In conclusion, our investigation demonstrated for the first time that delayed recanalization may enhance the entry of liver-derived TFF3 into ischemic brain upon restoring blood flow after MCAO, which attenuated neuronal apoptosis and neurological deficits at least in part via activating LINGO2/EGFR/Src pathway.
Collapse
Affiliation(s)
- Dujuan Li
- Department of Pathology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University, People's Hospital of Henan University), Zhengzhou 450003, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lifei Lian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92354, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yi Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Desislava Doycheva
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Gaigai Li
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shufeng Yu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yong Guo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Ruiqing Kang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hong Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University, People's Hospital of Henan University), Zhengzhou 450003, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
22
|
Singhal R, Kotla NK, Solanki S, Huang W, Bell HN, El-Derany MO, Castillo C, Shah YM. Disruption of hypoxia-inducible factor-2α in neutrophils decreases colitis-associated colon cancer. Am J Physiol Gastrointest Liver Physiol 2024; 326:G53-G66. [PMID: 37933447 PMCID: PMC11208019 DOI: 10.1152/ajpgi.00182.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Neutrophils are abundant immune cells in the colon tumor microenvironment. Studies have shown that neutrophils are recruited into hypoxic foci in colon cancer. However, the impact of hypoxia signaling on neutrophil function and its involvement in colon tumorigenesis remain unclear. To address this, we generated mice with a deletion of hypoxia-inducible factor (HIF)-1α or HIF-2α in neutrophils driven by the MRP8Cre (HIF-1αΔNeu) or (HIF-2αΔNeu) and littermate controls. In an azoxymethane (AOM)/dextran sulfate sodium (DSS) model of colon cancer, the disruption of neutrophils-HIF-1α did not result in any significant changes in body weight, colon length, tumor size, proliferation, or burden. However, the disruption of HIF-2α in neutrophils led to a slight increase in body weight, a significant decrease in the number of tumors, and a reduction in tumor size and volume compared with their littermate controls. Histological analysis of colon tissue from mice with HIF-2α-deficient neutrophils revealed notable reductions in proliferation as compared with control mice. In addition, we observed reduced levels of proinflammatory cytokines, such as TNF-α and IL-1β, in neutrophil-specific HIF-2α-deficient mice in both the tumor tissue as well as the neutrophils. Importantly, it is worth noting that the reduced tumorigenesis associated with HIF-2α deficiency in neutrophils was not evident in already established syngeneic tumors or a DSS-induced inflammation model, indicating a potential role of HIF-2α specifically in colon tumorigenesis. In conclusion, we found that the loss of neutrophil-specific HIF-2α slows colon tumor growth and progression by reducing the levels of inflammatory mediators.NEW & NOTEWORTHY Despite the importance of hypoxia and neutrophils in colorectal cancer (CRC), the contribution of neutrophil-specific HIFs to colon tumorigenesis is not known. We describe that neutrophil HIF-1α has no impact on colon cancer, whereas neutrophil HIF-2α loss reduces CRC growth by decreasing proinflammatory and immunosuppressive cytokines. Furthermore, neutrophil HIF-2α does not reduce preestablished tumor growth or inflammation-induced colitis. The present study offers novel potential of neutrophil HIF-2α as a therapeutic target in CRC.
Collapse
Affiliation(s)
- Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Nikhil Kumar Kotla
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Wesley Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Cellular and Molecular Biology and Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, United States
| | - Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Marwa O El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cristina Castillo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
23
|
Fagundes RR, Bravo-Ruiseco G, Hu S, Kierans SJ, Weersma RK, Taylor CT, Dijkstra G, Harmsen HJM, Faber KN. Faecalibacterium prausnitzii promotes intestinal epithelial IL-18 production through activation of the HIF1α pathway. Front Microbiol 2023; 14:1298304. [PMID: 38163085 PMCID: PMC10755969 DOI: 10.3389/fmicb.2023.1298304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Intestinal epithelial cells produce interleukin-18 (IL-18), a key factor in promoting epithelial barrier integrity. Here, we analyzed the potential role of gut bacteria and the hypoxia-inducible factor 1α (HIF1α) pathway in regulating mucosal IL18 expression in inflammatory bowel disease (IBD). Methods Mucosal samples from patients with IBD (n = 760) were analyzed for bacterial composition, IL18 levels and HIF1α pathway activation. Wild-type Caco-2 and CRISPR/Cas9-engineered Caco-2-HIF1A-null cells were cocultured with Faecalibacterium prausnitzii in a "Human oxygen-Bacteria anaerobic" in vitro system and analyzed by RNA sequencing. Results Mucosal IL18 mRNA levels correlated positively with the abundance of mucosal-associated butyrate-producing bacteria, in particular F. prausnitzii, and with HIF1α pathway activation in patients with IBD. HIF1α-mediated expression of IL18, either by a pharmacological agonist (dimethyloxallyl glycine) or F. prausnitzii, was abrogated in Caco-2-HIF1A-null cells. Conclusion Butyrate-producing gut bacteria like F. prausnitzii regulate mucosal IL18 expression in a HIF1α-dependent manner that may aid in mucosal healing in IBD.
Collapse
Affiliation(s)
- Raphael R. Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gabriela Bravo-Ruiseco
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sarah J. Kierans
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Dublin, Ireland
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Cormac T. Taylor
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Dublin, Ireland
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
24
|
Winter SE, Bäumler AJ. Gut dysbiosis: Ecological causes and causative effects on human disease. Proc Natl Acad Sci U S A 2023; 120:e2316579120. [PMID: 38048456 PMCID: PMC10722970 DOI: 10.1073/pnas.2316579120] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
The gut microbiota plays a role in many human diseases, but high-throughput sequence analysis does not provide a straightforward path for defining healthy microbial communities. Therefore, understanding mechanisms that drive compositional changes during disease (gut dysbiosis) continues to be a central goal in microbiome research. Insights from the microbial pathogenesis field show that an ecological cause for gut dysbiosis is an increased availability of host-derived respiratory electron acceptors, which are dominant drivers of microbial community composition. Similar changes in the host environment also drive gut dysbiosis in several chronic human illnesses, and a better understanding of the underlying mechanisms informs approaches to causatively link compositional changes in the gut microbiota to an exacerbation of symptoms. The emerging picture suggests that homeostasis is maintained by host functions that control the availability of resources governing microbial growth. Defining dysbiosis as a weakening of these host functions directs attention to the underlying cause and identifies potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Sebastian E. Winter
- Department of Medicine, Division of Infectious Diseases, University of California, Davis, CA95616
- Department of Medical Microbiology and Immunology, University of California, Davis, CA95616
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, University of California, Davis, CA95616
| |
Collapse
|
25
|
Gülersoy E, Ok M, Üney K, Durgut MK, Parlak TM, Ekici YE. Intestinal injury and vasculitis biomarkers in cats with feline enteric coronavirus and effusive feline infectious peritonitis. Vet Med Sci 2023; 9:2420-2429. [PMID: 37872840 PMCID: PMC10650239 DOI: 10.1002/vms3.1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE To investigate intestinal injury, repair and vasculitis biomarkers that may illuminate the progression and/or pathogenesis of feline infectious peritonitis (FIP) or feline enteric coronavirus (FECV) infection. MATERIALS AND METHODS A total of 40 cats with effusive FIP (30 with abdominal effusion, AE group; 10 with thoracic effusion, TE group) and 10 asymptomatic but FECV positive cats (FECV group), all were confirmed by reverse transcription polymerase chain reaction either in faeces or effusion samples. Physical examinations and effusion tests were performed. Trefoil factor-3 (TFF-3), intestinal alkaline phosphatase (IAP), intestinal fatty acid binding protein (I-FABP), myeloperoxidase-anti-neutrophilic cytoplasmic antibody (MPO-ANCA) and proteinase 3-ANCA (PR3-ANCA) concentrations were measured both in serum and effusion samples. RESULTS Rectal temperature and respiratory rate were highest in the TE group (p < 0.000). Effusion white blood cell count was higher in the AE group than TE group (p < 0.042). Serum TFF-3, IAP and I-FABP concentrations were higher in cats with effusive FIP than the cats with FECV (p < 0.05). Compared with the AE group, TE group had lower effusion MPO-ANCA (p < 0.036), higher IAP (p < 0.050) and higher TFF-3 (p < 0.016) concentrations. CLINICAL SIGNIFICANCE Markers of intestinal and epithelial surface injury were higher in cats with effusive FIP than those with FECV. Compared to cats with abdominal effusions, markers of apoptosis inhibition and immunostimulation to the injured epithelium were more potent in cats with thoracic effusion, suggesting the possibility of a poorer prognosis or more advanced disease in these patients.
Collapse
Affiliation(s)
- Erdem Gülersoy
- Department of Internal MedicineVeterinary FacultyHarran UniversityŞanlıurfaTurkey
| | - Mahmut Ok
- Department of Internal MedicineVeterinary FacultySelçuk UniversityKonyaTurkey
| | - Kamil Üney
- Department of Pharmacology and ToxicologyVeterinary FacultySelçuk UniversityKonyaTurkey
| | - Murat Kaan Durgut
- Department of Internal MedicineVeterinary FacultySelçuk UniversityKonyaTurkey
| | - Tuğba Melike Parlak
- Department of Pharmacology and ToxicologyVeterinary FacultySelçuk UniversityKonyaTurkey
| | - Yusuf Emre Ekici
- Department of Internal MedicineVeterinary FacultySelçuk UniversityKonyaTurkey
| |
Collapse
|
26
|
Malkov MI, Flood D, Taylor CT. SUMOylation indirectly suppresses activity of the HIF-1α pathway in intestinal epithelial cells. J Biol Chem 2023; 299:105280. [PMID: 37742924 PMCID: PMC10616383 DOI: 10.1016/j.jbc.2023.105280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023] Open
Abstract
The hypoxia-inducible factor (HIF) is a master regulator of the cellular transcriptional response to hypoxia. While the oxygen-sensitive regulation of HIF-1α subunit stability via the ubiquitin-proteasome pathway has been well described, less is known about how other oxygen-independent post-translational modifications impact the HIF pathway. SUMOylation, the attachment of SUMO (small ubiquitin-like modifier) proteins to a target protein, regulates the HIF pathway, although the impact of SUMO on HIF activity remains controversial. Here, we examined the effects of SUMOylation on the expression pattern of HIF-1α in response to pan-hydroxylase inhibitor dimethyloxalylglycine (DMOG) in intestinal epithelial cells. We evaluated the effects of SUMO-1, SUMO-2, and SUMO-3 overexpression and inhibition of SUMOylation using a novel selective inhibitor of the SUMO pathway, TAK-981, on the sensitivity of HIF-1α in Caco-2 intestinal epithelial cells. Our findings demonstrate that treatment with TAK-981 decreases global SUMO-1 and SUMO-2/3 modification and enhances HIF-1α protein levels, whereas SUMO-1 and SUMO-2/3 overexpression results in decreased HIF-1α protein levels in response to DMOG. Reporter assay analysis demonstrates reduced HIF-1α transcriptional activity in cells overexpressing SUMO-1 and SUMO-2/3, whereas pretreatment with TAK-981 increased HIF-1α transcriptional activity in response to DMOG. In addition, HIF-1α nuclear accumulation was decreased in cells overexpressing SUMO-1. Importantly, we showed that HIF-1α is not directly SUMOylated, but that SUMOylation affects HIF-1α stability and activity indirectly. Taken together, our results indicate that SUMOylation indirectly suppresses HIF-1α protein stability, transcriptional activity, and nuclear accumulation in intestinal epithelial cells.
Collapse
Affiliation(s)
- Mykyta I Malkov
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Ireland
| | - Darragh Flood
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Ireland
| | - Cormac T Taylor
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Ireland.
| |
Collapse
|
27
|
Grzymajło K, Dutkiewicz A, Czajkowska J, Carolak E, Aleksandrowicz A, Waszczuk W. Salmonella adhesion is decreased by hypoxia due to adhesion and motility structure crosstalk. Vet Res 2023; 54:99. [PMID: 37875985 PMCID: PMC10598919 DOI: 10.1186/s13567-023-01233-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/28/2023] [Indexed: 10/26/2023] Open
Abstract
Initial stages of Salmonella Typhimurium infection involve a series of coordinated events aimed at reaching, attaching to, and invading host cells. Virulence factors such as flagella, fimbriae, and secretion systems play crucial roles in these events and are regulated in response to the host environment. The first point of contact between the pathogen and host is the intestinal epithelial layer, which normally serves as a barrier against invading pathogens, but can also be an entry site for pathogens. The integrity of this barrier can be modulated by the hypoxic environment of the intestines, created by the presence of trillions of microbes. Variable oxygen concentrations can strongly affect many functions of the gut, including secretion of cytokines and growth factors from the host site and affect the ability of Salmonella to persist, invade, and replicate. In this study, we investigated the first stages of Salmonella Typhimurium infection under hypoxic conditions in vitro and found that low oxygen levels significantly decreased bacterial adhesion. Using adhesion and motility assays, biofilm formation tests, as well as gene expression and cytokine secretion analysis, we identified a hypoxia-specific cross-talk between the expression of type 1 fimbriae and flagella, suggesting that altered flagellin expression levels affect the motility of bacteria and further impact their adhesion level, biofilm formation ability, and innate immune response. Overall, understanding how Salmonella interacts with its variable host environment provides insights into the virulence mechanisms of the bacterium and information regarding strategies for preventing or treating infections. Further research is required to fully understand the complex interplay between Salmonella and its host environment.
Collapse
Affiliation(s)
- Krzysztof Grzymajło
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Agata Dutkiewicz
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Joanna Czajkowska
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Carolak
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Adrianna Aleksandrowicz
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Wiktoria Waszczuk
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
28
|
Ruangsri S, Doolgindachbaporn G, Chokwatwikul W, Wattanawareekul K, Puasiri S, Sawanyawisuth K. Salivary trefoil factor family peptide 3 (TFF3) and flow rate in persons with and without obstructive sleep apnea: A preliminary study. Clin Exp Dent Res 2023; 9:935-941. [PMID: 37183529 PMCID: PMC10582241 DOI: 10.1002/cre2.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVES Obstructive sleep apnea (OSA) is one of the most common chronic diseases. Trefoil factor family 3 (TFF3) peptides are secreted by major and minor salivary glands and may be involved in the pathogenesis of OSA. This study aimed to evaluate salivary TFF3 and flow rate between those with and without OSA. MATERIAL AND METHODS This was a prospective experimental study that enrolled patients with OSA and non-OSA. Total unstimulated saliva was collected, the salivary flow rate was measured, and the TFF3 level was analyzed by using a modified sandwich enzyme-linked immunosorbent assay. Baseline characteristics, TFF3 level, and salivary flow rate were compared between both groups. Factors associated with the TFF3 level and flow rate were computed by using multivariate linear regression analysis. RESULTS Twenty-eight participants were recruited in the study: 20 patients with OSA (71.42%) and 8 non-OSA as control. The TFF3 and salivary flow rates between both groups of non-OSA versus OSA were comparable (TFF3 non-OSA 61.06 vs. OSA 96.00 ng/mg; p = .276 and flow rate non-OSA 0.40 vs. OSA 0.35 mL/min; p = .320). Factors associated with the TFF3 level were neck circumference with a negative coefficient of -16.419 (p = .042). For the salivary flow rate, only age was a significant factor with the coefficient of -0.013 (p = .044). CONCLUSIONS TFF3 and salivary flow rate were comparable between patients with OSA and non-OSA. The factor associated with TFF3 level was neck circumference, while age was negatively associated with the salivary flow rate in patients with OSA.
Collapse
Affiliation(s)
- Supanigar Ruangsri
- Department of Oral Biomedical Science, Faculty of DentistryKhon Kaen UniversityKhon KaenThailand
- Neuroscience Research and Development Group (NRDG)Khon Kaen UniversityKhon KaenThailand
| | | | - Worrapon Chokwatwikul
- Department of Oral Biomedical Science, Faculty of DentistryKhon Kaen UniversityKhon KaenThailand
| | | | - Subin Puasiri
- Department of Preventive Dentistry, Faculty of DentistryKhon Kaen UniversityKhon KaenThailand
| | | |
Collapse
|
29
|
Wang Y, Lai H, Zhang T, Wu J, Tang H, Liang X, Ren D, Huang J, Li W. Mitochondria of intestinal epithelial cells in depression: Are they at a crossroads of gut-brain communication? Neurosci Biobehav Rev 2023; 153:105403. [PMID: 37742989 DOI: 10.1016/j.neubiorev.2023.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
The role of gut dysbiosis in depression is well established. However, recent studies have shown that gut microbiota is regulated by intestinal epithelial cell (IEC) mitochondria, which has yet to receive much attention. This review summarizes the recent developments about the critical role of IEC mitochondria in actively maintaining gut microbiota, intestinal metabolism, and immune homeostasis. We propose that IEC mitochondrial dysfunction alters gut microbiota composition, participates in cell fate, mediates oxidative stress, activates the peripheral immune system, causes peripheral inflammation, and transmits peripheral signals through the vagus and enteric nervous systems. These pathological alterations lead to brain inflammation, disruption of the blood-brain barrier, activation of the hypothalamic-pituitary-adrenal axis, activation of microglia and astrocytes, induction of neuronal loss, and ultimately depression. Furthermore, we highlight the prospect of treating depression through the mitochondria of IECs. These new findings suggest that the mitochondria of IECs may be a newly found important factor in the pathogenesis of depression and represent a potential new strategy for treating depression.
Collapse
Affiliation(s)
- Yi Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Han Lai
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Tian Zhang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Jing Wu
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Huiling Tang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Xuanwei Liang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Dandan Ren
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Jinzhu Huang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| |
Collapse
|
30
|
Foresto-Neto O, da Silva ARPA, Cipelli M, Santana-Novelli FPR, Camara NOS. The impact of hypoxia-inducible factors in the pathogenesis of kidney diseases: a link through cell metabolism. Kidney Res Clin Pract 2023; 42:561-578. [PMID: 37448286 PMCID: PMC10565456 DOI: 10.23876/j.krcp.23.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 07/15/2023] Open
Abstract
Kidneys are sensitive to disturbances in oxygen homeostasis. Hypoxia and activation of the hypoxia-inducible factor (HIF) pathway alter the expression of genes involved in the metabolism of renal and immune cells, interfering with their functioning. Whether the transcriptional activity of HIF protects the kidneys or participates in the pathogenesis of renal diseases is unclear. Several studies have indicated that HIF signaling promotes fibrosis in experimental models of kidney disease. Other reports showed a protective effect of HIF activation on kidney inflammation and injury. In addition to the direct effect of HIF on the kidneys, experimental evidence indicates that HIF-mediated metabolic shift activates inflammatory cells, supporting the HIF cascade as a link between lung or gut damage and worsening of renal disease. Although hypoxia and HIF activation are present in several scenarios of renal diseases, further investigations are needed to clarify whether interfering with the HIF pathway is beneficial in different pathological contexts.
Collapse
Affiliation(s)
- Orestes Foresto-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Marcella Cipelli
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Higashi T, Stephenson RE, Schwayer C, Huljev K, Higashi AY, Heisenberg CP, Chiba H, Miller AL. ZnUMBA - a live imaging method to detect local barrier breaches. J Cell Sci 2023; 136:jcs260668. [PMID: 37461809 PMCID: PMC10445723 DOI: 10.1242/jcs.260668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
Epithelial barrier function is commonly analyzed using transepithelial electrical resistance, which measures ion flux across a monolayer, or by adding traceable macromolecules and monitoring their passage across the monolayer. Although these methods measure changes in global barrier function, they lack the sensitivity needed to detect local or transient barrier breaches, and they do not reveal the location of barrier leaks. Therefore, we previously developed a method that we named the zinc-based ultrasensitive microscopic barrier assay (ZnUMBA), which overcomes these limitations, allowing for detection of local tight junction leaks with high spatiotemporal resolution. Here, we present expanded applications for ZnUMBA. ZnUMBA can be used in Xenopus embryos to measure the dynamics of barrier restoration and actin accumulation following laser injury. ZnUMBA can also be effectively utilized in developing zebrafish embryos as well as cultured monolayers of Madin-Darby canine kidney (MDCK) II epithelial cells. ZnUMBA is a powerful and flexible method that, with minimal optimization, can be applied to multiple systems to measure dynamic changes in barrier function with spatiotemporal precision.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Rachel E. Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cornelia Schwayer
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Karla Huljev
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Atsuko Y. Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan
| | | | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Ann L. Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Yan J, Xi Z, Guo J, Xu L, Sun X, Sha W, Liu M, Zhao S, Dai E, Xu Y, Xu H, Qu H. LuQi Formula relieves ventricular remodeling through improvement of HIF-1α-mediated intestinal barrier integrity. Chin Med 2023; 18:90. [PMID: 37507786 PMCID: PMC10386699 DOI: 10.1186/s13020-023-00803-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Ventricular remodeling is the adaptive process in which the heart undergoes changes due to stress, leading to heart failure (HF). The progressive decline in cardiac function is considered to contribute to intestinal barrier impairment. LuQi Formula (LQF) is a traditional Chinese medicine preparation widely used in the treatment of ventricular remodeling and HF. However, the role of LQF in the impairment of intestinal barrier function induced by ventricular remodeling remains unclear. MATERIALS AND METHODS Ventricular remodeling was induced in rats by permanently ligating the left anterior descending branch coronary artery, and cardiac function indexes were assessed using echocardiography. Heart and colon tissue morphology were observed by hematoxylin-eosin, Masson's trichrome and Alcian Blue Periodic acid Schiff staining. Myocardial cell apoptosis was detected using TUNEL and immunohistochemistry. Circulatory levels of brain natriuretic peptide (BNP), intestinal permeability markers endotoxin, D-lactate and zonulin, as well as inflammatory cytokines tumor necrosis factor alpha and interleukin-1 beta were measured by Enzyme-linked immunosorbent assay. Expression levels of tight junction (TJ) proteins and hypoxia-inducible factor-1 alpha (HIF-1α) in colon tissue were detected by immunofluorescence, immunohistochemistry and western blotting. Cardiac function indexes and intestinal permeability markers of patients with HF were analyzed before and after 2-4 months of LQF treatment. RESULTS LQF protected cardiac function and alleviated myocardial fibrosis and apoptosis in rats with ventricular remodeling. LQF protected the intestinal barrier integrity in ventricular remodeling rats, including maintaining colonic tissue morphology, preserving the number of goblet cells and normal expression of TJ proteins. Furthermore, LQF upregulated the expression of HIF-1α protein in colon tissue. Intervention with a HIF-1α inhibitor weakened the protective effect of LQF on intestinal barrier integrity. Moreover, a reduction of HIF-1α aggravated ventricular remodeling, which could be alleviated by LQF. Correspondingly, the circulating levels of intestinal permeability markers and BNP in HF patients were significantly decreased, and cardiac function markedly improved following LQF treatment. CONCLUSIONS We demonstrated that LQF effectively protected cardiac function by preserving intestinal barrier integrity caused by ventricular remodeling, at least partially through upregulating HIF-1α expression.
Collapse
Affiliation(s)
- Jirong Yan
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Jiaying Guo
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China
| | - Lin Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Xueyang Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Wanjing Sha
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China
| | - Milin Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China
| | - Shenyu Zhao
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China
| | - Enrui Dai
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Hongxi Xu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China.
| | - Huiyan Qu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
33
|
Zhang Y, Lei H, Wang P, Zhou Q, Yu J, Leng X, Ma R, Wang D, Dong K, Xing J, Dong Y. Restoration of dysregulated intestinal barrier and inflammatory regulation through synergistically ameliorating hypoxia and scavenging reactive oxygen species using ceria nanozymes in ulcerative colitis. Biomater Res 2023; 27:75. [PMID: 37507801 PMCID: PMC10375752 DOI: 10.1186/s40824-023-00412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) overproduction and excessive hypoxia play pivotal roles in the initiation and progression of ulcerative colitis (UC). Synergistic ROS scavenging and generating O2 could be a promising strategy for UC treatment. METHODS Ceria nanozymes (PEG-CNPs) are fabricated using a modified reverse micelle method. We investigate hypoxia attenuating and ROS scavenging of PEG-CNPs in intestinal epithelial cells and RAW 264.7 macrophages and their effects on pro-inflammatory macrophages activation. Subsequently, we investigate the biodistribution, pharmacokinetic properties and long-term toxicity of PEG-CNPs in mice. PEG-CNPs are administered intravenously to mice with 2,4,6-trinitrobenzenesulfonic acid-induced colitis to test their colonic tissue targeting and assess their anti-inflammatory activity and mucosal healing properties in UC. RESULTS PEG-CNPs exhibit multi-enzymatic activity that can scavenge ROS and generate O2, promote intestinal epithelial cell healing and inhibit pro-inflammatory macrophage activation, and have good biocompatibility. After intravenous administration of PEG-CNPs to colitis mice, they can enrich at the site of colonic inflammation, and reduce hypoxia-induced factor-1α expression in intestinal epithelial cells by scavenging ROS to generate O2, thus further promoting disrupted intestinal mucosal barrier restoration. Meanwhile, PEG-CNPs can effectively scavenge ROS in impaired colon tissues and relieve colonic macrophage hypoxia to suppress the pro-inflammatory macrophages activation, thereby preventing UC occurrence and development. CONCLUSION This study has provided a paradigm to utilize metallic nanozymes, and suggests that further materials engineering investigations could yield a facile method based on the pathological characteristics of UC for clinically managing UC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hengyu Lei
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Pengchong Wang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qinyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jie Yu
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xue Leng
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ruirui Ma
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Danyang Wang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kai Dong
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Jianfeng Xing
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
34
|
Abstract
Inflammatory bowel disease (IBD) is an idiopathic disease of disordered chronic inflammation in the intestines that affects many people across the world. While the disease is still being better characterized, greater progress has been made in understanding the many components that intersect in the disease. Among these components are the many pieces that compose the intestinal epithelial barrier, the various cytokines and immune cells, and the population of microbes that reside in the intestinal lumen. Since their discovery, the hypoxia-inducible factors (HIFs) have been found to play an expansive role in physiology as well as diseases such as inflammation due to their role in oxygen sensing-related gene transcription, and metabolic control. Making use of existing and developing paradigms in the immuno-gastroenterology of IBD, we summarized that hypoxic signaling plays as another component in the status and progression of IBD, which may include possible functions at the origins of inflammatory dysregulation. © 2023 American Physiological Society. Compr Physiol 13:4767-4783, 2023.
Collapse
Affiliation(s)
- Michael Morales
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
35
|
Zhang Z, Shi C, Wang Z. Therapeutic Effects and Molecular Mechanism of Chlorogenic Acid on Polycystic Ovarian Syndrome: Role of HIF-1alpha. Nutrients 2023; 15:2833. [PMID: 37447160 PMCID: PMC10343257 DOI: 10.3390/nu15132833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Chlorogenic acid (CGA) is a powerful antioxidant polyphenol molecule found in many diets and liquid beverages, playing a preventive and therapeutic role in various diseases caused by oxidative stress and inflammation. Recent research has found that CGA can not only improve clinical symptoms in PCOS patients but also improve follicular development, hormone status, and oxidative stress in PCOS rats, indicating the therapeutic effect of CGA on PCOS. Notably, our previous series of studies has demonstrated the expression changes and regulatory mechanisms of HIF-1alpha signaling in PCOS ovaries. Considering the regulatory effect of CGA on the HIF-1alpha pathway, the present article systematically elucidates the therapeutic role and molecular mechanisms of HIF-1alpha signaling during the treatment of PCOS by CGA, including follicular development, steroid synthesis, inflammatory response, oxidative stress, and insulin resistance, in order to further understand the mechanisms of CGA effects in different types of diseases and to provide a theoretical basis for further promoting CGA-rich diets and beverages simultaneously.
Collapse
Affiliation(s)
| | | | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (C.S.)
| |
Collapse
|
36
|
Rebane-Klemm E, Reinsalu L, Puurand M, Shevchuk I, Bogovskaja J, Suurmaa K, Valvere V, Moreno-Sanchez R, Kaambre T. Colorectal polyps increase the glycolytic activity. Front Oncol 2023; 13:1171887. [PMID: 37342183 PMCID: PMC10277630 DOI: 10.3389/fonc.2023.1171887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
In colorectal cancer (CRC) energy metabolism research, the precancerous stage of polyp has remained rather unexplored. By now, it has been shown that CRC has not fully obtained the glycolytic phenotype proposed by O. Warburg and rather depends on mitochondrial respiration. However, the pattern of metabolic adaptations during tumorigenesis is still unknown. Understanding the interplay between genetic and metabolic changes that initiate tumor development could provide biomarkers for diagnosing cancer early and targets for new cancer therapeutics. We used human CRC and polyp tissue material and performed high-resolution respirometry and qRT-PCR to detect changes on molecular and functional level with the goal of generally describing metabolic reprogramming during CRC development. Colon polyps were found to have a more glycolytic bioenergetic phenotype than tumors and normal tissues. This was supported by a greater GLUT1, HK, LDHA, and MCT expression. Despite the increased glycolytic activity, cells in polyps were still able to maintain a highly functional OXPHOS system. The mechanisms of OXPHOS regulation and the preferred substrates are currently unclear and would require further investigation. During polyp formation, intracellular energy transfer pathways become rearranged mainly by increasing the expression of mitochondrial adenylate kinase (AK) and creatine kinase (CK) isoforms. Decreased glycolysis and maintenance of OXPHOS activity, together with the downregulation of the CK system and the most common AK isoforms (AK1 and AK2), seem to play a relevant role in CRC development.
Collapse
Affiliation(s)
- Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Leenu Reinsalu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Jelena Bogovskaja
- Clinic of Diagnostics, North Estonia Medical Centre, Tallinn, Estonia
| | - Kulliki Suurmaa
- Department of Gastroenterology, West Tallinn Central Hospital, Tallinn, Estonia
| | - Vahur Valvere
- Oncology and Hematology Clinic, North Estonia Medical Centre, Tallinn, Estonia
| | - Rafael Moreno-Sanchez
- Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, Mexico
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
37
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli R, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Microplastics and Systemic Metabolomic Alterations After Gastrointestinal Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.542598. [PMID: 37398080 PMCID: PMC10312509 DOI: 10.1101/2023.06.02.542598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. To investigate the impact of ingested MPs on target metabolomic pathways, mice were subjected to either polystyrene microspheres or a mixed plastics (5 µm) exposure consisting of polystyrene, polyethylene and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid). Exposures were performed twice a week for four weeks at a dose of either 0, 2, or 4 mg/week via oral gastric gavage. Our findings demonstrate that, in mice, ingested MPs can pass through the gut barrier, be translocated through the systemic circulation, and accumulate in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolomic changes that occur in the colon, liver and brain which show differential responses that are dependent on dose and type of MPs exposure. Lastly, our study provides proof of concept for identifying metabolomic alterations associated with MPs exposure and adds insight into the potential health risks that mixed MPs contamination may pose to humans.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Rama Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
38
|
Zhou C, Gao P, Wang J. Comprehensive Analysis of Microbiome, Metabolome, and Transcriptome Revealed the Mechanisms of Intestinal Injury in Rainbow Trout under Heat Stress. Int J Mol Sci 2023; 24:ijms24108569. [PMID: 37239914 DOI: 10.3390/ijms24108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Global warming is one of the most common environmental challenges faced by cold-water fish farming. Intestinal barrier function, gut microbiota, and gut microbial metabolites are significantly altered under heat stress, posing serious obstacles to the healthy artificial culture of rainbow trout. However, the molecular mechanisms underlying intestinal injury in rainbow trout under heat stress remain unclear. In the present study, the optimal growth temperature for rainbow trout (16 °C) was used for the control group, and the maximum temperature tolerated by rainbow trout (24 °C) was used for the heat stress group, which was subjected to heat stress for 21 days. The mechanism of intestinal injury in rainbow trout under heat stress was explored by combining animal histology, 16S rRNA gene amplicon sequencing, ultra-high performance liquid chromatography-mass spectrometry, and transcriptome sequencing. The results showed that the antioxidant capacity of rainbow trout was enhanced under heat stress, the levels of stress-related hormones were significantly increased, and the relative expression of genes related to heat stress proteins was significantly increased, indicating that the heat stress model of rainbow trout was successfully established. Secondly, the intestinal tract of rainbow trout showed inflammatory pathological characteristics under heat stress, with increased permeability, activation of the inflammatory factor signaling pathway, and increased relative expression of inflammatory factor genes, suggesting that the intestinal barrier function was impaired. Thirdly, heat stress caused an imbalance of intestinal commensal microbiota and changes in intestinal metabolites in rainbow trout, which participated in the stress response mainly by affecting lipid metabolism and amino acid metabolism. Finally, heat stress promoted intestinal injury in rainbow trout by activating the peroxisome proliferator-activated receptor-α signaling pathway. These results not only expand the understanding of fish stress physiology and regulation mechanisms, but also provide a scientific basis for healthy artificial culture and the reduction of rainbow trout production costs.
Collapse
Affiliation(s)
- Changqing Zhou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Pan Gao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jianlin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
39
|
Bashir H, Singh S, Singh RP, Agrewala JN, Kumar R. Age-mediated gut microbiota dysbiosis promotes the loss of dendritic cells tolerance. Aging Cell 2023:e13838. [PMID: 37161603 DOI: 10.1111/acel.13838] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 05/11/2023] Open
Abstract
The old age-related loss of immune tolerance inflicts a person with a wide range of autoimmune and inflammatory diseases. Dendritic cells (DCs) are the sentinels of the immune system that maintain immune tolerance through cytokines and regulatory T-cells generation. Aging disturbs the microbial composition of the gut, causing immune system dysregulation. However, the vis-à-vis role of gut dysbiosis on DCs tolerance remains highly elusive. Consequently, we studied the influence of aging on gut dysbiosis and its impact on the loss of DC tolerance. We show that DCs generated from either the aged (DCOld ) or gut-dysbiotic young (DCDysbiotic ) but not young (DCYoung ) mice exhibited loss of tolerance, as evidenced by their failure to optimally induce the generation of Tregs and control the overactivation of CD4+ T cells. The mechanism deciphered for the loss of DCOld and DCDysbiotic tolerance was chiefly through the overactivation of NF-κB, impaired frequency of Tregs, upregulation in the level of pro-inflammatory molecules (IL-6, IL-1β, TNF-α, IL-12, IFN-γ), and decline in the anti-inflammatory moieties (IL-10, TGF-β, IL-4, IDO, arginase, NO, IRF-4, IRF-8, PDL1, BTLA4, ALDH2). Importantly, a significant decline in the frequency of the Lactobacillus genus was noticed in the gut. Replenishing the gut of old mice with the Lactobacillus plantarum reinvigorated the tolerogenic function of DCs through the rewiring of inflammatory and metabolic pathways. Thus, for the first time, we demonstrate the impact of age-related gut dysbiosis on the loss of DC tolerance. This finding may open avenues for therapeutic intervention for treating age-associated disorders with the Lactobacillus plantarum.
Collapse
Affiliation(s)
- Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Raghwendra Pratap Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Rupnagar, 140001, Punjab, India
| | - Rashmi Kumar
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
40
|
Abstract
The epithelial tissues that line our body, such as the skin and gut, have remarkable regenerative prowess and continually renew throughout our lifetimes. Owing to their barrier function, these tissues have also evolved sophisticated repair mechanisms to swiftly heal and limit the penetration of harmful agents following injury. Researchers now appreciate that epithelial regeneration and repair are not autonomous processes but rely on a dynamic cross talk with immunity. A wealth of clinical and experimental data point to the functional coupling of reparative and inflammatory responses as two sides of the same coin. Here we bring to the fore the immunological signals that underlie homeostatic epithelial regeneration and restitution following damage. We review our current understanding of how immune cells contribute to distinct phases of repair. When unchecked, immune-mediated repair programs are co-opted to fuel epithelial pathologies such as cancer, psoriasis, and inflammatory bowel diseases. Thus, understanding the reparative functions of immunity may advance therapeutic innovation in regenerative medicine and epithelial inflammatory diseases.
Collapse
Affiliation(s)
- Laure Guenin-Mace
- Department of Pathology, NYU Langone Health, New York, NY, USA;
- Immunobiology and Therapy Unit, INSERM U1224, Institut Pasteur, Paris, France
| | - Piotr Konieczny
- Department of Pathology, NYU Langone Health, New York, NY, USA;
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, NY, USA;
- Department of Medicine, Ronald O. Perelman Department of Dermatology, and Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
41
|
Hwang M, Assassi S, Zheng J, Castillo J, Chavez R, Vanarsa K, Mohan C, Reveille J. Quantitative proteomic screening uncovers candidate diagnostic and monitoring serum biomarkers of ankylosing spondylitis. Arthritis Res Ther 2023; 25:57. [PMID: 37041650 PMCID: PMC10088143 DOI: 10.1186/s13075-023-03044-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND We sought to discover serum biomarkers of ankylosing spondylitis (AS) for diagnosis and monitoring disease activity. METHODS We studied biologic-treatment-naïve AS and healthy control (HC) patients' sera. Eighty samples matched by age, gender, and race (1:1:1 ratio) for AS patients with active disease, inactive disease, and HC were analyzed with SOMAscan™, an aptamer-based discovery platform. T-tests tests were performed for high/low-disease activity AS patients versus HCs (diagnosis) and high versus low disease activity (Monitoring) in a 2:1 and 1:1 ratio, respectively, to identify differentially expressed proteins (DEPs). We used the Cytoscape Molecular Complex Detection (MCODE) plugin to find clusters in protein-protein interaction networks and Ingenuity Pathway Analysis (IPA) for upstream regulators. Lasso regression analysis was performed for diagnosis. RESULTS Of the 1317 proteins detected in our diagnosis and monitoring analyses, 367 and 167 (317 and 59, FDR-corrected q < .05) DEPs, respectively, were detected. MCODE identified complement, IL-10 signaling, and immune/interleukin signaling as the top 3 diagnosis PPI clusters. Complement, extracellular matrix organization/proteoglycans, and MAPK/RAS signaling were the top 3 monitoring PPI clusters. IPA showed interleukin 23/17 (interleukin 22, interleukin 23A), TNF (TNF receptor-associated factor 3), cGAS-STING (cyclic GMP-AMP synthase, Stimulator of Interferon Gene 1), and Jak/Stat (Signal transducer and activator of transcription 1), signaling in predicted upstream regulators. Lasso regression identified a Diagnostic 13-protein model predictive of AS. This model had a sensitivity of 0.75, specificity of 0.90, a kappa of 0.59, and overall accuracy of 0.80 (95% CI: 0.61-0.92). The AS vs HC ROC curve was 0.79 (95% CI: 0.61-0.96). CONCLUSION We identified multiple candidate AS diagnostic and disease activity monitoring serum biomarkers using a comprehensive proteomic screen. Enrichment analysis identified key pathways in AS diagnosis and monitoring. Lasso regression identified a multi-protein panel with modest predictive ability.
Collapse
Affiliation(s)
- Mark Hwang
- McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin MSB.5270, TX, 77030, Houston, USA.
| | - Shervin Assassi
- McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin MSB.5270, TX, 77030, Houston, USA
| | - Jim Zheng
- School of Biomedical Informatics, UTHealth Houston, Houston, TX, USA
| | | | - Reyna Chavez
- McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin MSB.5270, TX, 77030, Houston, USA
| | - Kamala Vanarsa
- Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Chandra Mohan
- Biomedical Engineering, University of Houston, Houston, TX, USA
| | - John Reveille
- McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin MSB.5270, TX, 77030, Houston, USA
| |
Collapse
|
42
|
Luo M, Li T, Sang H. The role of hypoxia-inducible factor 1α in hepatic lipid metabolism. J Mol Med (Berl) 2023; 101:487-500. [PMID: 36973503 DOI: 10.1007/s00109-023-02308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Chronic liver disease is a major public health problem with a high and increasing prevalence worldwide. In the progression of chronic liver disease, steatosis drives the progression of the disease to cirrhosis or even liver cancer. Hypoxia-inducible factor 1α (HIF-1α) is central to the regulation of hepatic lipid metabolism. HIF-1α upregulates the expression of genes related to lipid uptake and synthesis in the liver and downregulates the expression of lipid oxidation genes. Thus, it promotes intrahepatic lipid deposition. In addition, HIF-1α is expressed in white adipose tissue, where lipolysis releases free fatty acids (FFAs) into the blood. These circulating FFAs are taken up by the liver and accumulate in the liver. The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. Contrary to the role of hepatic HIF-1α, intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier. Thus, it plays a protective role against hepatic steatosis. This article aims to provide an overview of the current understanding of the role of HIF-1α in hepatic steatosis and to encourage the development of therapeutic agents associated with HIF-1α pathways. KEY MESSAGES: • Hepatic HIF-1α expression promotes lipid uptake and synthesis and reduces lipid oxidation leading to hepatic steatosis. • The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. • Intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier.
Collapse
Affiliation(s)
- Mingxiao Luo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tingting Li
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Haiquan Sang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
43
|
Jiang S, Xu H, Zhao C, Zhong F, Li D. Oyster polysaccharides relieve DSS-induced colitis via anti-inflammatory and maintaining the physiological hypoxia. Int J Biol Macromol 2023; 238:124150. [PMID: 36965559 DOI: 10.1016/j.ijbiomac.2023.124150] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/06/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Oyster polysaccharides (OPS) possess potent anti-inflammatory properties and mediate gut microbiome. The research aimed to investigate the beneficial effect of OPS on attenuating colitis. OPS administration decreased the disease activity index and suppressed the increase in colon length. Hematoxylin and eosin staining results displayed that OPS restored the DSS-induced histopathological damage. After oral administration of OPS, myeloperoxidase activity and pro-inflammatory cytokines (TNF-α) in colitis mice were inhibited, while IL-10 was elevated. Western blotting results revealed that OPS improved the expression of tight junction proteins (ZO-1, Claudin-4, and Occludin). Additionally, OPS stabilized the expression of hypoxia-inducible factor-1α (HIF-1α) and prevented the levels of bacterial endotoxin (lipopolysaccharides). OPS activated barrier-protective genes (intestinal trefoil factor) via mediating HIF-1α. These results indicated that OPS alleviated DSS-induced colitis by inhibiting inflammation and regulating HIF-1α. OPS would be a potential candidate to alleviate DSS-induced colitis.
Collapse
Affiliation(s)
- Suisui Jiang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong 266000, China; School of Public Health, Qingdao University, Qingdao, Shandong 266000, China
| | - Huina Xu
- School of Public Health, Qingdao University, Qingdao, Shandong 266000, China
| | - Chunhui Zhao
- School of Public Health, Qingdao University, Qingdao, Shandong 266000, China
| | - Feng Zhong
- School of Public Health, Qingdao University, Qingdao, Shandong 266000, China
| | - Duo Li
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong 266000, China; School of Public Health, Qingdao University, Qingdao, Shandong 266000, China.
| |
Collapse
|
44
|
Gorbenko AV, Skirdenko YP, Andreev KA, Fedorin MM, Nikolaev NA, Livzan MA. Microbiota and Cardiovascular Diseases: Mechanisms of Influence and Correction Possibilities. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2023; 19:58-64. [DOI: 10.20996/1819-6446-2023-01-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
The term "microbiota" refers to the microbial community occupying a specific habitat with defined physical and chemical properties and forming specific ecological niches. The adult intestinal microbiota is diverse. It mainly consists of bacteria of Bacteroidetes and Firmicutes types. The link between the gut microbiota and cardiovascular disease (CVD) is being actively discussed. Rapid progress in this field is explained by the development of new generation sequencing methods and the use of sterile gut mice in experiments. More and more data are being published about the influence of microbiota on the development and course of hypertension, coronary heart disease (IHD), myocardial hypertrophy, chronic heart failure (CHF) and atrial fibrillation (AF). Diet therapy, antibacterial drugs, pro- and prebiotics are successfully used as tools to correct the structure of the gut microbiota of the macroorganism. Correction of gut microbiota in an experiment on rats with coronary occlusion demonstrates a significant reduction in necrotic area. A study involving patients suffering from CHF reveals a significant reduction in the level of uric acid, highly sensitive C-reactive protein, and creatinine. In addition to structural and laboratory changes in patients with CVD when modifying the microbiota of the gut, also revealed the effect on the course of arterial hypertension. Correction of gut microbiota has a beneficial effect on the course of AF. We assume that further active study of issues of influence and interaction of gut microbiota and macroorganism may in the foreseeable future make significant adjustments in approaches to treatment of such patients.
Collapse
|
45
|
Cartwright IM, Colgan SP. The hypoxic tissue microenvironment as a driver of mucosal inflammatory resolution. Front Immunol 2023; 14:1124774. [PMID: 36742292 PMCID: PMC9890178 DOI: 10.3389/fimmu.2023.1124774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
On the backdrop of all acute inflammatory processes lies the activation of the resolution response. Recent years have witnessed an emerging interest in defining molecular factors that influence the resolution of inflammation. A keystone feature of the mucosal inflammatory microenvironment is hypoxia. The gastrointestinal tract, particularly the colon, exists in a state of physiological hypoxia and during active inflammation, this hypoxic state is enhanced as a result of infiltrating leukocyte oxygen consumption and the activation of oxygen consuming enzymes. Most evidence suggests that mucosal hypoxia promotes the active resolution of inflammation through a variety of mechanisms, including extracellular acidification, purine biosynthesis/salvage, the generation of specialized pro-resolving lipid mediators (ie. resolvins) and altered chemokine/cytokine expression. It is now appreciated that infiltrating innate immune cells (neutrophils, eosinophils, macrophages) have an important role in molding the tissue microenvironment to program an active resolution response. Structural or functional dysregulation of this inflammatory microenvironment can result in the loss of tissue homeostasis and ultimately progression toward chronicity. In this review, we will discuss how inflammatory hypoxia drives mucosal inflammatory resolution and its impact on other microenvironmental factors that influence resolution.
Collapse
Affiliation(s)
- Ian M. Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Sean P. Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
46
|
Bourgonje AR, Kloska D, Grochot-Przęczek A, Feelisch M, Cuadrado A, van Goor H. Personalized redox medicine in inflammatory bowel diseases: an emerging role for HIF-1α and NRF2 as therapeutic targets. Redox Biol 2023; 60:102603. [PMID: 36634466 PMCID: PMC9841059 DOI: 10.1016/j.redox.2023.102603] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), are intimately associated with inflammation and overproduction of reactive oxygen species (ROS). Temporal and inter-individual variabilities in disease activity and response to therapy pose significant challenges to diagnosis and patient care. Discovery and validation of truly integrative biomarkers would benefit from embracing redox metabolomics approaches with prioritization of central regulatory hubs. We here make a case for applying a personalized redox medicine approach that aims to selectively inhibit pathological overproduction and/or altered expression of specific enzymatic sources of ROS without compromising physiological function. To this end, improved 'clinical-omics integration' may help to better understand which particular redox signaling pathways are disrupted in what patient. Pharmacological interventions capable of activating endogenous antioxidant defense systems may represent viable therapeutic options to restore local/systemic redox status, with HIF-1α and NRF2 holding particular promise in this context. Achieving the implementation of clinically meaningful mechanism-based biomarkers requires development of easy-to-use, robust and cost-effective tools for secure diagnosis and monitoring of treatment efficacy. Ultimately, matching redox-directed pharmacological interventions to individual patient phenotypes using predictive biomarkers may offer new opportunities to break the therapeutic ceiling in IBD.
Collapse
Affiliation(s)
- Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands,Corresponding author.
| | - Damian Kloska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC. Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
47
|
Lun J, Zhang H, Guo J, Yu M, Fang J. Hypoxia inducible factor prolyl hydroxylases in inflammatory bowel disease. Front Pharmacol 2023; 14:1045997. [PMID: 37201028 PMCID: PMC10187758 DOI: 10.3389/fphar.2023.1045997] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that is characterized by intestinal inflammation. Epithelial damage and loss of intestinal barrier function are believed to be the hallmark pathologies of the disease. In IBD, the resident and infiltrating immune cells consume much oxygen, rendering the inflamed intestinal mucosa hypoxic. In hypoxia, the hypoxia-inducible factor (HIF) is induced to cope with the lack of oxygen and protect intestinal barrier. Protein stability of HIF is tightly controlled by prolyl hydroxylases (PHDs). Stabilization of HIF through inhibition of PHDs is appearing as a new strategy of IBD treatment. Studies have shown that PHD-targeting is beneficial to the treatment of IBD. In this Review, we summarize the current understanding of the role of HIF and PHDs in IBD and discuss the therapeutic potential of targeting PHD-HIF pathway for IBD treatment.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Guo
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Yu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang,
| |
Collapse
|
48
|
Walaas GA, Gopalakrishnan S, Bakke I, Skovdahl HK, Flatberg A, Østvik AE, Sandvik AK, Bruland T. Physiological hypoxia improves growth and functional differentiation of human intestinal epithelial organoids. Front Immunol 2023; 14:1095812. [PMID: 36793710 PMCID: PMC9922616 DOI: 10.3389/fimmu.2023.1095812] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Background The epithelium in the colonic mucosa is implicated in the pathophysiology of various diseases, including inflammatory bowel diseases and colorectal cancer. Intestinal epithelial organoids from the colon (colonoids) can be used for disease modeling and personalized drug screening. Colonoids are usually cultured at 18-21% oxygen without accounting for the physiological hypoxia in the colonic epithelium (3% to <1% oxygen). We hypothesize that recapitulating the in vivo physiological oxygen environment (i.e., physioxia) will enhance the translational value of colonoids as pre-clinical models. Here we evaluate whether human colonoids can be established and cultured in physioxia and compare growth, differentiation, and immunological responses at 2% and 20% oxygen. Methods Growth from single cells to differentiated colonoids was monitored by brightfield images and evaluated with a linear mixed model. Cell composition was identified by immunofluorescence staining of cell markers and single-cell RNA-sequencing (scRNA-seq). Enrichment analysis was used to identify transcriptomic differences within cell populations. Pro-inflammatory stimuli induced chemokines and Neutrophil gelatinase-associated lipocalin (NGAL) release were analyzed by Multiplex profiling and ELISA. Direct response to a lower oxygen level was analyzed by enrichment analysis of bulk RNA sequencing data. Results Colonoids established in a 2% oxygen environment acquired a significantly larger cell mass compared to a 20% oxygen environment. No differences in expression of cell markers for cells with proliferation potential (KI67 positive), goblet cells (MUC2 positive), absorptive cells (MUC2 negative, CK20 positive) and enteroendocrine cells (CGA positive) were found between colonoids cultured in 2% and 20% oxygen. However, the scRNA-seq analysis identified differences in the transcriptome within stem-, progenitor- and differentiated cell clusters. Both colonoids grown at 2% and 20% oxygen secreted CXCL2, CXCL5, CXCL10, CXCL12, CX3CL1 and CCL25, and NGAL upon TNF + poly(I:C) treatment, but there appeared to be a tendency towards lower pro-inflammatory response in 2% oxygen. Reducing the oxygen environment from 20% to 2% in differentiated colonoids altered the expression of genes related to differentiation, metabolism, mucus lining, and immune networks. Conclusions Our results suggest that colonoids studies can and should be performed in physioxia when the resemblance to in vivo conditions is important.
Collapse
Affiliation(s)
- Gunnar Andreas Walaas
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Shreya Gopalakrishnan
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Bakke
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Helene Kolstad Skovdahl
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnar Flatberg
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Central Administration, St. Olav's University Hospital, Trondheim, Norway
| | - Ann Elisabet Østvik
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
49
|
Dou X, Zhang B, Qiao L, Song X, Pi S, Chang J, Zhang X, Zeng X, Zhu L, Xu C. Biogenic Selenium Nanoparticles Synthesized by Lactobacillus casei ATCC 393 Alleviate Acute Hypobaric Hypoxia-Induced Intestinal Barrier Dysfunction in C57BL/6 Mice. Biol Trace Elem Res 2022:10.1007/s12011-022-03513-y. [PMID: 36469280 DOI: 10.1007/s12011-022-03513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022]
Abstract
Exposure to hypobaric hypoxia at high altitude will cause different tissue and organ damage over a long period of time. Studies have shown that hypobaric hypoxia can cause severe primary intestinal barrier dysfunction, and then cause multiple organ dysfunction. Our previous research showed that selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei ATCC 393 (L. casei ATCC 393) can effectively alleviate intestinal barrier dysfunction caused by oxidative stress and inflammation in mice. This study was conducted to investigate the protective effect of biological SeNPs synthesized by L. casei ATCC 393 on intestinal barrier function in acute hypobaric hypoxic stress mice. The results showed that compared with the hypobaric hypoxic, the SeNPs synthesized by L. casei ATCC 393 by oral administration could effectively alleviate the shortening of intestinal villi, which decreased the level of diamine oxidase (DAO) and myeloperoxidase (MPO), and the expression level of tight junction protein in ileum was increased. In addition, SeNPs significantly increased the activities of superoxide dismutase (SOD), cyclooxygenase (COX-1) and glutathione peroxidase (GPx), and decreased the level of malondialdehyde (MDA), and inhibit the increase of hypoxia related factor. SeNPs effectively regulate the intestinal microecology disorder caused by hypobaric hypoxia stress, and maintain the intestinal microecology balance. In addition, oral administration of SeNPs had better protective effect on intestinal barrier function of mice under hypobaric hypoxia stress. These results suggested that SeNPs synthesized by L. casei ATCC 393 can effectively alleviate the damage of intestinal barrier function under acute hypobaric hypoxic stress, which may be closely related to the antioxidant activity of SeNPs.
Collapse
Affiliation(s)
- Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Baohua Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Shanyao Pi
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Xinyi Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Lixu Zhu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
50
|
Abstract
The diet and gut microbiota have been extensively interrogated as a fuel for gut inflammation in inflammatory bowel diseases (IBDs) in the last few years. Here, we review how specific nutrients, typically enriched in a Western diet, instigate or deteriorate experimental gut inflammation in a genetically susceptible host and we discuss microbiota-dependent and independent mechanisms. We depict the study landscape of nutritional trials in paediatric and adult IBD and delineate common grounds for dietary advice. Conclusively, the diet reflects a critical rheostat of microbial dysbiosis and gut inflammation in IBD. Dietary restriction by exclusive enteral nutrition, with or without a specific exclusion diet, is effectively treating paediatric Crohn's disease, while adult IBD trials are less conclusive. Insights into molecular mechanisms of nutritional therapy will change the perception of IBD and will allow us to enter the era of precision nutrition. To achieve this, we discuss the need for carefully designed nutritional trials with scientific rigour comparable to medical trials, which also requires action from stake holders. Establishing evidence-based dietary therapy for IBD does not only hold promise to avoid long-term immunosuppression, but to provide a widely accessible therapy at low cost. Identification of dietary culprits disturbing gut health also bears the potential to prevent IBD and allows informed decision making in food politics.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Medicine I, Gastroenterology, Hepatology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|