1
|
Cebula A, Kuczma M, Szurek E, Pietrzak M, Savage N, Elhefnawy WR, Rempala G, Kraj P, Ignatowicz L. Dormant pathogenic CD4 + T cells are prevalent in the peripheral repertoire of healthy mice. Nat Commun 2019; 10:4882. [PMID: 31653839 PMCID: PMC6814812 DOI: 10.1038/s41467-019-12820-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/25/2019] [Indexed: 01/09/2023] Open
Abstract
Thymic central tolerance eliminates most immature T cells with autoreactive T cell receptors (TCR) that recognize self MHC/peptide complexes. Regardless, an unknown number of autoreactive CD4+Foxp3- T cells escape negative selection and in the periphery require continuous suppression by CD4+Foxp3+ regulatory cells (Tregs). Here, we compare immune repertoires of Treg-deficient and Treg-sufficient mice to find Tregs continuously constraining one-third of mature CD4+Foxp3- cells from converting to pathogenic effectors in healthy mice. These dormant pathogenic clones frequently express TCRs activatable by ubiquitous autoantigens presented by class II MHCs on conventional dendritic cells, including self-peptides that select them in the thymus. Our data thus suggest that identification of most potentially autoreactive CD4+ T cells in the peripheral repertoire is critical to harness or redirect these cells for therapeutic advantage.
Collapse
Affiliation(s)
- Anna Cebula
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Edyta Szurek
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Maciej Pietrzak
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA
| | - Natasha Savage
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - Wessam R Elhefnawy
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Grzegorz Rempala
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA
| | - Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Browning LM, Pietrzak M, Kuczma M, Simms CP, Kurczewska A, Refugia JM, Lowery DJ, Rempala G, Gutkin D, Ignatowicz L, Muranski P, Kraj P. TGF-β-mediated enhancement of T H17 cell generation is inhibited by bone morphogenetic protein receptor 1α signaling. Sci Signal 2018; 11:eaar2125. [PMID: 30154100 PMCID: PMC8713300 DOI: 10.1126/scisignal.aar2125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The cytokines of the transforming growth factor-β (TGF-β) family promote the growth and differentiation of multiple tissues, but the role of only the founding member, TGF-β, in regulating the immune responses has been extensively studied. TGF-β is critical to prevent the spontaneous activation of self-reactive T cells and sustain immune homeostasis. In contrast, in the presence of proinflammatory cytokines, TGF-β promotes the differentiation of effector T helper 17 (TH17) cells. Abrogating TGF-β receptor signaling prevents the development of interleukin-17 (IL-17)-secreting cells and protects mice from TH17 cell-mediated autoimmunity. We found that the receptor of another member of TGF-β family, bone morphogenetic protein receptor 1α (BMPR1α), regulates T helper cell activation. We found that the differentiation of TH17 cells from naive CD4+ T cells was inhibited in the presence of BMPs. Abrogation of BMPR1α signaling during CD4+ T cell activation induced a developmental program that led to the generation of inflammatory effector cells expressing large amounts of IL-17, IFN-γ, and TNF family cytokines and transcription factors defining the TH17 cell lineage. We found that TGF-β and BMPs cooperated to establish effector cell functions and the cytokine profile of activated CD4+ T cells. Together, our data provide insight into the immunoregulatory function of BMPs.
Collapse
Affiliation(s)
- Lauren M Browning
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Colin P Simms
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Agnieszka Kurczewska
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Justin M Refugia
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Dustin J Lowery
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Grzegorz Rempala
- College of Public Health, Ohio State University, Columbus, OH 43210, USA
| | - Dmitriy Gutkin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15240, USA
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Pawel Muranski
- Columbia University Medical Center, New York, NY 10032, USA
| | - Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
3
|
Marrack P, Krovi SH, Silberman D, White J, Kushnir E, Nakayama M, Crooks J, Danhorn T, Leach S, Anselment R, Scott-Browne J, Gapin L, Kappler J. The somatically generated portion of T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor. eLife 2017; 6:30918. [PMID: 29148973 PMCID: PMC5701794 DOI: 10.7554/elife.30918] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Mature T cells bearing αβ T cell receptors react with foreign antigens bound to alleles of major histocompatibility complex proteins (MHC) that they were exposed to during their development in the thymus, a phenomenon known as positive selection. The structural basis for positive selection has long been debated. Here, using mice expressing one of two different T cell receptor β chains and various MHC alleles, we show that positive selection-induced MHC bias of T cell receptors is affected both by the germline encoded elements of the T cell receptor α and β chain and, surprisingly, dramatically affected by the non germ line encoded portions of CDR3 of the T cell receptor α chain. Thus, in addition to determining specificity for antigen, the non germline encoded elements of T cell receptors may help the proteins cope with the extremely polymorphic nature of major histocompatibility complex products within the species.
Collapse
Affiliation(s)
- Philippa Marrack
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Sai Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Daniel Silberman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Eleanor Kushnir
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, United States
| | - James Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Sonia Leach
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Randy Anselment
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | | | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - John Kappler
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
4
|
Takada K, Kondo K, Takahama Y. Generation of Peptides That Promote Positive Selection in the Thymus. THE JOURNAL OF IMMUNOLOGY 2017; 198:2215-2222. [PMID: 28264997 DOI: 10.4049/jimmunol.1601862] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022]
Abstract
To establish an immunocompetent TCR repertoire that is useful yet harmless to the body, a de novo thymocyte repertoire generated through the rearrangement of genes that encode TCR is shaped in the thymus through positive and negative selection. The affinity between TCRs and self-peptides associated with MHC molecules determines the fate of developing thymocytes. Low-affinity TCR engagement with self-peptide-MHC complexes mediates positive selection, a process that primarily occurs in the thymic cortex. Massive efforts exerted by many laboratories have led to the characterization of peptides that can induce positive selection. Moreover, it is now evident that protein degradation machineries unique to cortical thymic epithelial cells play a crucial role in the production of MHC-associated self-peptides for inducing positive selection. This review summarizes current knowledge on positive selection-inducing self-peptides and Ag processing machineries in cortical thymic epithelial cells. Recent studies on the role of positive selection in the functional tuning of T cells are also discussed.
Collapse
Affiliation(s)
- Kensuke Takada
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Kenta Kondo
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
5
|
Abstract
The thymus is an essential organ for the generation of the adaptive immune system. By now, the cellular selection events taking place in ongoing life before sexual maturity have been worked out even at the molecular level, and thus thymic lymphocyte development represents one of the best-studied systems in mammalian development. Because thymic lymphocyte development involves ample proliferation and generation of new cells, it is not astonishing that the thymus also represents an organ where malignancy can develop. In this Masters of Immunology primer, the development of lymphocytes and the role of intracellular Notch 1 and cyclins in lymphocytic malignancy are reviewed, offering new therapeutic possibilities.
Collapse
Affiliation(s)
- Harald von Boehmer
- Author's Affiliations: Harvard Medical School; Dana-Farber Cancer Institute, Boston, Massachusetts; University of Florida, Gainesville, Florida; and University of Munich, Munich, Germany
| |
Collapse
|
6
|
Kuczma M, Wang CY, Ignatowicz L, Gourdie R, Kraj P. Altered connexin 43 expression underlies age-dependent decrease of regulatory T cell suppressor function in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2015; 194:5261-71. [PMID: 25911751 DOI: 10.4049/jimmunol.1400887] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes is one of the most extensively studied autoimmune diseases, but the cellular and molecular mechanisms leading to T cell-mediated destruction of insulin-producing β cells are still not well understood. In this study, we show that regulatory T cells (T(regs)) in NOD mice undergo age-dependent loss of suppressor functions exacerbated by the decreased ability of activated effector T cells to upregulate Foxp3 and generate T(regs) in the peripheral organs. This age-dependent loss is associated with reduced intercellular communication mediated by gap junctions, which is caused by impaired upregulation and decreased expression of connexin 43. Regulatory functions can be corrected, even in T cells isolated from aged, diabetic mice, by a synergistic activity of retinoic acid, TGF-β, and IL-2, which enhance connexin 43 and Foxp3 expression in T(regs) and restore the ability of conventional CD4(+) T cells to upregulate Foxp3 and generate peripherally derived T(regs). Moreover, we demonstrate that suppression mediated by T(regs) from diabetic mice is enhanced by a novel reagent, which facilitates gap junction aggregation. In summary, our report identifies gap junction-mediated intercellular communication as an important component of the T(reg) suppression mechanism compromised in NOD mice and suggests how T(reg) mediated immune regulation can be improved.
Collapse
Affiliation(s)
- Michal Kuczma
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, GA 30912
| | - Cong-Yi Wang
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, GA 30912; The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; and
| | - Leszek Ignatowicz
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, GA 30912
| | - Robert Gourdie
- Virginia Tech Carilion Research Institute, Roanoke, VA 24015
| | - Piotr Kraj
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, GA 30912;
| |
Collapse
|
7
|
Takada K, Takahama Y. Positive-Selection-Inducing Self-Peptides Displayed by Cortical Thymic Epithelial Cells. Adv Immunol 2015; 125:87-110. [DOI: 10.1016/bs.ai.2014.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Crites TJ, Varma R. On the issue of peptide recognition in T cell development. SELF/NONSELF 2010; 1:55-61. [PMID: 21559177 PMCID: PMC3091603 DOI: 10.4161/self.1.1.10962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 11/19/2022]
Abstract
CD4-CD8 double positive (DP) thymocytes undergo a differentiation process in the thymus where they are selected based on their ability to recognize peptide antigens presented on self major histocompatibility complex (MHC) molecules. The first stage of this process is positive selection, a quality-control mechanism which ensures that the T cell receptors (TCR) presented on developing thymocytes can transmit signals via peptides presented on either MHC class I (MHC1) or MHC class II (MHC2) molecules. Work over the past decade has revealed that the peptides that drive positive selection of both CD4 and CD8 lineage cells deliver only weak TCR signals. In line with these observations, specialized protein degradation machineries have been discovered in the thymic cortex that presumably generate specialized low-affinity peptide repertoires for presentation on MHC1 and MHC2 molecules. TCR signals transduced through these weak-affinity ligands in the early stages of positive selection alter the kinetics of expression of CD4 and CD8 molecules and play a crucial role in commitment of thymocytes to either the CD4 or CD8 lineages. In this work, we review the experiments that explore the peptide repertoires that are presented to developing thymocytes during positive selection, the observed signaling patterns that lead to CD4 versus CD8 lineage commitment, and speculate about how specialized organization of the signaling machinery in DP thymocytes may allow for efficient transduction of weak signals during the course of positive selection.
Collapse
Affiliation(s)
- Travis J Crites
- Laboratory of Cellular and Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, MD USA
| | | |
Collapse
|
9
|
Nowak I, Pajtasz-Piasecka E, Chmielowski B, Ignatowicz L, Kuśnierczyk P. The specific T-cell response to antigenic peptides is influenced by bystander peptides. Cell Mol Biol Lett 2006; 11:70-9. [PMID: 16847750 PMCID: PMC6275589 DOI: 10.2478/s11658-006-0007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 12/15/2005] [Indexed: 11/20/2022] Open
Abstract
T lymphocytes recognize antigens in the form of peptides presented by major histocompatibility complex (MHC) molecules on the cell surface. Only a small proportion of MHC class I and class II molecules are loaded with foreign antigenic peptides; the vast majority are loaded with thousands of different self peptides. It was suggested that MHC molecules presenting self peptides may serve either to decrease (antagonistic effect) or increase (synergistic effect) the T cell response to a specific antigen. Here, we present our finding that transfected mouse fibroblasts presenting a single antigenic peptide covalently bound to a class II MHC molecule stimulated specific mouse T cell hybridoma cells to an interleukin-2 response less efficiently than fibroblasts presenting a similar amount of antigenic peptide in the presence of class II molecules loaded with heterogenous bystander peptides.
Collapse
Affiliation(s)
- Izabela Nowak
- Laboratory of Immunogenetics, Department of Clinical Immunology, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Elżbieta Pajtasz-Piasecka
- Laboratory of Experimental Antitumor Therapy, Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Bartosz Chmielowski
- Center of Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, Georgia USA
| | - Leszek Ignatowicz
- Center of Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, Georgia USA
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics, Department of Clinical Immunology, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
- Jan Długosz Paedagogical University, Cz77ęstochowa, Poland
| |
Collapse
|
10
|
Vukmanović S, Santori FR. Self-peptide/MHC and TCR antagonism: physiological role and therapeutic potential. Cell Immunol 2005; 233:75-84. [PMID: 15950208 DOI: 10.1016/j.cellimm.2005.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
TCR antagonists are peptides that bind MHC molecules and can specifically inhibit T cell activation induced by antigens. Studying TCR antagonism has taken an important place in immunology for both theoretical and practical reasons. Deciphering the mechanism(s) of action of TCR antagonists can yield important information about interactions of the TCR with ligands, T cell development, and TCR signaling. Moreover, microorganisms may employ TCR antagonism to elude the attention of the immune system. Finally, specificity of inhibition makes TCR antagonists an ideal tool to seek antigen-specific immunomodulation. Present state of knowledge on these topics is reviewed.
Collapse
Affiliation(s)
- Stanislav Vukmanović
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010-2970, USA.
| | | |
Collapse
|
11
|
Rubin RL, Hermanson TM. Plasticity in the positive selection of T cells: affinity of the selecting antigen and IL-7 affect T cell responsiveness. Int Immunol 2005; 17:959-71. [PMID: 15994177 DOI: 10.1093/intimm/dxh277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The current study examines how responsiveness of T cells is affected by the avidity of the peptide/MHC engaged during positive selection of their thymocyte precursors. We used a thymus reaggregate culture system in which CD4(+)CD8(+) thymocytes from AND TCR transgenic mice were induced to undergo positive selection by pigeon cytochrome c (PCC) peptide or its analogs presented by I-E(k) class II MHC on a thymic epithelial cell line. When low-affinity peptide analogs drove positive selection, up to 100 microM was needed to produce >50% CD4(+) T cells, and these cells were highly responsive to PCC. In contrast, <0.2 microM high-affinity peptides was required to achieve similar selection efficiency, but the resultant cells failed to respond to PCC. However, these cells were not dead based on dye exclusion and capacity to respond to phorbal ester and to agonist if IL-2 was also present, supporting the view that non-responsiveness of cells selected on high-affinity peptides is a form of central T cell tolerance distinct from deletion. Cells selected on intermediate-affinity peptides showed variable responsiveness which was suppressed 5- to 10-fold by addition during reaggregate culture of antibody to the IL-7R. Similarly, supplementary IL-7 in the reaggregate culture produced CD4(+) T cells that were promiscuously responsive. Overall, this study demonstrates that the responsiveness of T cells is not rigidly controlled and that the presence of IL-7 during T cell development has the potential to negate central T cell tolerance and produce autoreactive T cells.
Collapse
Affiliation(s)
- Robert L Rubin
- Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico Medical School, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
12
|
Kao H, Allen PM. An antagonist peptide mediates positive selection and CD4 lineage commitment of MHC class II-restricted T cells in the absence of CD4. ACTA ACUST UNITED AC 2005; 201:149-58. [PMID: 15630142 PMCID: PMC2212763 DOI: 10.1084/jem.20041574] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The CD4 coreceptor works together with the T cell receptor (TCR) to deliver signals to the developing thymocyte, yet its specific contribution to positive selection and CD4 lineage commitment remains unclear. To resolve this, we used N3.L2 TCR transgenic, RAG-, and CD4-deficient mice, which are severely impaired in positive selection, and asked whether altered peptide ligands can replace CD4 function in vivo. Remarkably, in the presence of antagonist ligands that normally deleted CD4+ T cells in wild-type mice, we induced positive selection of functional CD4 lineage T cells in mice deficient in CD4. We show that the kinetic threshold for positive and negative selection was lowered in the absence of CD4, with no evident skewing toward the CD8 lineage with weaker ligands. These results suggest that CD4 is dispensable as long as the affinity threshold for positive selection is sustained, and strongly argue that CD4 does not deliver a unique instructional signal for lineage commitment.
Collapse
Affiliation(s)
- Henry Kao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
13
|
Fridkis-Hareli M, Reinherz EL. New approaches to eliciting protective immunity through T cell repertoire manipulation: the concept of thymic vaccination. MEDICAL IMMUNOLOGY (LONDON, ENGLAND) 2004; 3:2. [PMID: 15588284 PMCID: PMC544398 DOI: 10.1186/1476-9433-3-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 12/08/2004] [Indexed: 12/24/2022]
Abstract
Conventional vaccines afford protection against infectious diseases by expanding existing pathogen-specific peripheral lymphocytes, both CD8 cytotoxic effector (CTL) and CD4 helper T cells. The latter induce B cell maturation and antibody production. As a consequence, lymphocytes within the memory pool are poised to rapidly proliferate at the time of a subsequent infection. The "thymic vaccination" concept offers a novel way to alter the primary T cell repertoire through exposure of thymocytes to altered peptide ligands (APL) with reduced T cell receptor (TCR) affinity relative to cognate antigens recognized by those same TCRs. Thymocyte maturation (i.e. positive selection) is enhanced by low affinity interaction between a TCR and an MHC-bound peptide in the thymus and subsequent emigration of mature cells into the peripheral T lymphocyte pool follows. In principal, such variants of antigens derived from infectious agents could be utilized for peptide-driven maturation of thymocytes bearing pathogen-specific TCRs. To test this idea, APLs of gp33-41, a Db-restricted peptide derived from the lymphocytic choriomeningitis virus (LCMV) glycoprotein, and of VSV8, a Kb-restricted peptide from the vesicular stomatitis virus (VSV) nucleoprotein, have been designed and their influence on thymic maturation of specific TCR-bearing transgenic thymocytes examined in vivo using irradiation chimeras. Injection of APL resulted in positive selection of CD8 T cells expressing the relevant viral specificity and in the export of those virus-specific CTL to lymph nodes without inducing T cell proliferation. Thus, exogenous APL administration offers the potential of expanding repertoires in vivo in a manner useful to the organism. To efficiently peripheralize antigen-specific T cells, concomitant enhancement of mechanisms promoting thymocyte migration appears to be required. This commentary describes the rationale for thymic vaccination and addresses the potential prophylactic and therapeutic applications of this approach for treatment of infectious diseases and cancer. Thymic vaccination-induced peptide-specific T cells might generate effective immune protection against disease-causing agents, including those for which no effective natural protection exists.
Collapse
Affiliation(s)
- Masha Fridkis-Hareli
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, USA
- Department of Medicine, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, USA
- Department of Medicine, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
14
|
Haribhai D, Edwards B, Williams ML, Williams CB. Functional reprogramming of the primary immune response by T cell receptor antagonism. ACTA ACUST UNITED AC 2004; 200:1371-82. [PMID: 15557350 PMCID: PMC2211957 DOI: 10.1084/jem.20041226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The T cell receptor must translate modest, quantitative differences in ligand binding kinetics into the qualitatively distinct signals used to determine cell fate. Here, we use mice that express an endogenous T cell receptor (TCR) antagonist and an adoptive transfer system to examine the influence of TCR signal quality on the development of effector function. We show that activation of antigen-specific T cells in the presence of an antagonist results in a functional reprogramming of the primary immune response, marked by altered T cell homing, a failure to develop effector function, and ultimately clonal elimination by apoptosis. Importantly, antagonism does not block cell division, implying that the signals promoting clonal expansion and effector differentiation are distinct.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, CD/analysis
- Antigens, Differentiation, T-Lymphocyte/analysis
- Caspase 3
- Caspases/metabolism
- Clonal Deletion
- Enzyme Activation
- Immune Tolerance
- Immunization
- Immunologic Memory
- Intracellular Signaling Peptides and Proteins
- Lectins, C-Type
- Lymphocyte Activation
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred AKR
- Mice, Transgenic
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/physiology
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Dipica Haribhai
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
15
|
Santori FR, Holmberg K, Ostrov D, Gascoigne NRJ, Vukmanović S. Distinct footprints of TCR engagement with highly homologous ligands. THE JOURNAL OF IMMUNOLOGY 2004; 172:7466-75. [PMID: 15187125 DOI: 10.4049/jimmunol.172.12.7466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell receptor engagement promotes proliferation, differentiation, survival, or death of T lymphocytes. The affinity/avidity of the TCR ligand and the maturational stage of the T cell are thought to be principal determinants of the outcome of TCR engagement. We demonstrate in this study that the same mouse TCR preferentially uses distinct residues of homologous peptides presented by the MHC molecules to promote specific cellular responses. The preference for distinct TCR contacts depends on neither the affinity/avidity of TCR engagement (except in the most extreme ranges), nor the maturity of engaged T cells. Thus, different portions of the TCR ligand appear capable of biasing T cells toward specific biological responses. These findings explain differences in functional versatility of TCR ligands, as well as anomalies in the relationship between affinity/avidity of the TCR for the peptide/MHC and cellular responses of T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation
- Epitope Mapping
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/physiology
- Ligands
- Mice
- Mice, Transgenic
- Models, Molecular
- Peptides/chemical synthesis
- Peptides/immunology
- Protein Binding
- Protein Footprinting
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Structure-Activity Relationship
- T-Lymphocyte Subsets
Collapse
Affiliation(s)
- Fabio R Santori
- Michael Heidelberger Division of Immunology, Department of Pathology and New York University Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
16
|
Laurie KL, La Gruta NL, Koch N, van Driel IR, Gleeson PA. Thymic expression of a gastritogenic epitope results in positive selection of self-reactive pathogenic T cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:5994-6002. [PMID: 15128782 DOI: 10.4049/jimmunol.172.10.5994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intrathymic expression of tissue-specific self-Ags can mediate tolerance of self-reactive T cells. However, in this study we define circumstances by which thymic expression of a tissue-specific autoepitope enhances positive selection of disease-causing, self-reactive T cells. An immunodominant gastritogenic epitope, namely the gastric H/K ATPase beta subunit(253-277) (H/Kbeta(253-277)), was attached to the C terminus of the invariant chain (Ii) and the hybrid Ii (Ii-H/Kbeta(253-277)) expressed in mice under control of the Ii promoter. The Ii-H/Kbeta(253-277) fusion protein was localized to MHC class II-expressing cells in the thymus and periphery of Ii-H/Kbeta(253-277) transgenic mice. In one transgenic line the level of presentation in the periphery (spleen) was insufficient to activate naive, low affinity H/Kbeta(253-277)-specific transgenic T cells (1E4-TCR), whereas thymic presentation of H/Kbeta(253-277) enhanced positive selection of 1E4-TCR cells in Ii-H/Kbeta(253-277)/1E4-TCR double-transgenic mice. Furthermore, Ii-H/Kbeta(253-277)/1E4-TCR double-transgenic mice had an increased incidence of autoimmune gastritis compared with 1E4-TCR single-transgenic mice, demonstrating that the 1E4 T cells that seeded the periphery of Ii-H/Kbeta(253-277) mice were pathogenic. Therefore, low levels of tissue-specific Ags in the thymus can result in positive selection of low avidity, self-reactive T cells. These findings also suggest that the precise level of tissue-specific Ags in the thymus may be an important consideration in protection against autoimmune disease and that perturbation of the levels of self-Ags may be detrimental.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Autoantigens/biosynthesis
- Autoantigens/genetics
- Autoantigens/metabolism
- Autoimmune Diseases/enzymology
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Crosses, Genetic
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/metabolism
- Gastritis/enzymology
- Gastritis/genetics
- Gastritis/immunology
- H(+)-K(+)-Exchanging ATPase/biosynthesis
- H(+)-K(+)-Exchanging ATPase/genetics
- H(+)-K(+)-Exchanging ATPase/metabolism
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Interphase/genetics
- Interphase/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Organ Specificity/genetics
- Organ Specificity/immunology
- Protein Subunits/biosynthesis
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Receptors, Antigen, T-Cell/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Spleen/cytology
- Spleen/enzymology
- Spleen/immunology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
Collapse
Affiliation(s)
- Karen L Laurie
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia. Division of Immunobiology, University of Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
17
|
Fridkis-Hareli M, Reche PA, Reinherz EL. Peptide variants of viral CTL epitopes mediate positive selection and emigration of Ag-specific thymocytes in vivo. THE JOURNAL OF IMMUNOLOGY 2004; 173:1140-50. [PMID: 15240703 DOI: 10.4049/jimmunol.173.2.1140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During development, thymocytes carrying TCRs mediating low-affinity interactions with MHC-bound self-peptides are positively selected for export into the mature peripheral T lymphocyte pool. Thus, exogenous administration of certain altered peptide ligands (APL) with reduced TCR affinity relative to cognate Ags may provide a tool to elicit maturation of desired TCR specificities. To test this "thymic vaccination" concept, we designed APL of the viral CTL epitopes gp33-41 and vesicular stomatitis virus nucleoprotein octapeptide N52-59 relevant for the lymphocytic choriomeningitis virus-specific P14- and vesicular stomatitis virus-specific N15-TCRs, respectively, and examined their effects on thymocytes in vivo using irradiation chimeras. Injection of APL into irradiated congenic (Ly-5.1) mice, reconstituted with T cell progenitors from the bone marrow of P14 RAG2(-/-) (Ly-5.2) or N15 RAG2(-/-) (Ly-5.2) transgenic mice, resulted in positive selection of T cells expressing the relevant specificity. Moreover, the variants led to export of virus-specific T cells to lymph nodes, but without inducing T cell proliferation. These findings show that the mature T cell repertoire can be altered by in vivo peptide administration through manipulation of thymic selection.
Collapse
Affiliation(s)
- Masha Fridkis-Hareli
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
18
|
Yamagata T, Mathis D, Benoist C. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. Nat Immunol 2004; 5:597-605. [PMID: 15133507 DOI: 10.1038/ni1070] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 03/15/2004] [Indexed: 12/22/2022]
Abstract
Thymocytes displaying self-reactive T cell receptors usually undergo negative selection in the thymus. Here we demonstrate that agonist peptides can promote positive selection of immature double-positive thymocytes into distinct lineages, varying with the agonist concentration and the animal's age. Microarray gene expression analyses showed broad transcriptional alterations in a set of transcripts associated with the innate immune system, as well as silencing of CD8 beta expression. The resulting CD8 alpha alpha T cells showed a rapid effector cytokine response. Hence, T cells displaying self-reactive receptors can have the gene expression profile and phenotypic characteristics of innate immune cells.
Collapse
Affiliation(s)
- Tetsuya Yamagata
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
19
|
Mintern JD, Maurice MM, Ploegh HL, Schott E. Thymic Selection and Peripheral Activation of CD8 T Cells by the Same Class I MHC/Peptide Complex. THE JOURNAL OF IMMUNOLOGY 2003; 172:699-708. [PMID: 14688383 DOI: 10.4049/jimmunol.172.1.699] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymic selection is controlled by the interaction between TCR and MHC/peptide. Strength and quality of the signal determine whether thymocytes are selected or deleted. The factors that contribute to this signal remain poorly defined. Here we show that fetal thymic organ cultures (FTOCs) derived from OT-I transgenic mice (the OT-I TCR is restricted by K(b)-SIINFEKL) on a K(b)D(b-/-) background support positive selection, but only when provided with soluble H-2K(b)-SIINFEKL complexes. Selection of CD8 T cells is independent of the valency of the ligand or its capability to coengage CD8 molecules. Both CD8alphaalpha and CD8alphabeta T cells are selected by H-2K(b)-SIINFEKL, but only CD8alphabeta cells are capable of releasing IFN-gamma in response to the same ligand. The alpha(4)beta(7) integrin is up-regulated on postselection thymocytes from FTOCs. After adoptive transfer, FTOC-derived OT-I CD8 T cells divide in response to the agonist peptide SIINFEKL. These results establish that CD8 T cells responsive to their nominal peptide-Ag can be generated in FTOC supplemented with soluble MHC class I molecules equipped with the same peptide.
Collapse
Affiliation(s)
- Justine D Mintern
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| | | | | | | |
Collapse
|
20
|
Abstract
A functional immune system requires the selection of T lymphocytes expressing receptors that are major histocompatibility complex restricted but tolerant to self-antigens. This selection occurs predominantly in the thymus, where lymphocyte precursors first assemble a surface receptor. In this review we summarize the current state of the field regarding the natural ligands and molecular factors required for positive and negative selection and discuss a model for how these disparate outcomes can be signaled via the same receptor. We also discuss emerging data on the selection of regulatory T cells. Such cells require a high-affinity interaction with self-antigens, yet differentiate into regulatory cells instead of being eliminated.
Collapse
Affiliation(s)
- Timothy K Starr
- Center for Immunology and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA.
| | | | | |
Collapse
|
21
|
Viret C, He X, Janeway CA. Altered positive selection due to corecognition of floppy peptide/MHC II conformers supports an integrative model of thymic selection. Proc Natl Acad Sci U S A 2003; 100:5354-9. [PMID: 12700352 PMCID: PMC154349 DOI: 10.1073/pnas.0831129100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thymocytes bearing the E alpha 52-68/I-A(b) complex-specific 1H3.1 alpha beta T cell antigen receptor are positively selected in Ab-Ep [Ab-Ep transgenic, invariant chain (Ii)(-/-), I-A beta(b-/-)] mice, where I-A(b) molecules present only E alpha 52-68. Although Ii reintroduction led to deletion, I-A beta(b) reintroduction disrupted positive selection. T cell antigen receptor transgenic Ab-Ep I-A beta(b+) mice had a large thymus with an increased absolute number of CD4(+)CD8(+) cells and no overt signs of deletion. Unlike Ab-Ep Ii(+) antigen-presenting cells, Ab-Ep I-A beta(b+) antigen-presenting cells did not activate 1H3.1 T cells. However, their capacity to present E alpha 52-68 was intact. Thus, positive selection of 1H3.1 thymocytes on the tight compact E alpha 52-68/I-A(b) complex is neutralized by the corecognition of loose compact self-peptide/I-A(b) conformers that do not interfere with the cognate activation of mature 1H3.1 T cells. The data support the notion that the integration of distinct signals generated by the simultaneous recognition of multiple self-peptide/MHC complexes directs intrathymic selection of T cells.
Collapse
Affiliation(s)
- Christophe Viret
- Howard Hughes Medical Institute and Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
22
|
Cifuentes G, Guzmán F, Alba MP, Salazar LM, Patarroyo ME. Analysis of a Plasmodium falciparum EBA-175 peptide with high binding capacity to erythrocytes and their analogues using 1H NMR. J Struct Biol 2003; 141:115-21. [PMID: 12615537 DOI: 10.1016/s1047-8477(02)00584-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A 175-erythrocyte-binding protein (EBA-175) conserved high-activity binding peptide (HABP), called 1783 (nonimmunogenic, nonprotective against Plasmodium falciparum malaria), was analyzed for antigenic and protective activity in Aotus monkeys, together with several of its analogues. 1H NMR studies of peptides 17912, 14016, and 22814 allowed their structure to be related to their biological function. These peptides showed helical regions having differences in their position and length. Nonimmunogenic, nonprotective peptides 1783 and 17912 showed an extensive helical region, while the 22814 immunogenic protective peptide's alpha-helix was found in the N-terminal region. This suggests that the more flexible C-terminal region will allow better interaction between these peptides and immune system molecules as well as relating these peptides' three-dimensional structure to their immunogenicity and protective activity, thus leading to a more rational development of the new malaria multicomponent vaccine.
Collapse
Affiliation(s)
- Gladys Cifuentes
- Fundación Instituto de Inmunología de Colombia (FIDIC), Universidad Nacional de Colombia, Carrera 50 No. 26-00, Santa fe de Bogota, Colombia
| | | | | | | | | |
Collapse
|
23
|
Chmielowski B, Pacholczyk R, Kraj P, Kisielow P, Ignatowicz L. Presentation of antagonist peptides to naive CD4+ T cells abrogates spatial reorganization of class II MHC peptide complexes on the surface of dendritic cells. Proc Natl Acad Sci U S A 2002; 99:15012-7. [PMID: 12411579 PMCID: PMC137536 DOI: 10.1073/pnas.222463499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By using dendritic cells (DCs) transduced with retroviruses encoding covalent A(b)beta/peptide fusion proteins tagged with fluorescent proteins, we followed the relocation of class II MHC molecules loaded with agonist or null peptides during the onset of activation of naive and effector CD4(+) T cells. Clusters of T cell receptor (TCR)/CD3 complex formed in parallel with clusters of agonist class II MHC/peptide complexes on the surface of DCs. However, activation of naive but not effector T cells was accompanied by expulsion of the null class II MHC/peptide complexes from the T cell-DC interface. These effects were perturbed in the presence of exogenously supplied antagonist peptide. These results suggest that interference with selective relocation of agonist and null MHC/peptide complexes in the immunological synapse contributes to the inhibitory effect of antagonist peptides on the response of naive CD4(+) T cells to agonist ligands.
Collapse
Affiliation(s)
- Bartosz Chmielowski
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta 30912, USA
| | | | | | | | | |
Collapse
|
24
|
Salazar LM, Alba MP, Torres MH, Pinto M, Cortes X, Torres L, Patarroyo ME. Protection against experimental malaria associated with AMA-1 peptide analogue structures. FEBS Lett 2002; 527:95-100. [PMID: 12220641 DOI: 10.1016/s0014-5793(02)03174-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
One Plasmodium falciparum malaria antigen is an integral membrane protein called apical membrane antigen-1. High activity binding peptides to human red blood cells have been identified in this protein. 4337 is a conserved, non-immunogenic peptide with high activity red blood cell binding and its critical residues have already been identified. Peptide analogues (with amino acids having the same mass but different charge) were generated to change their immunogenic and protective characteristics. Three analogues having positive or negative immunological results were studied by nuclear magnetic resonance. The studied peptides all had an alpha-helix fragment, but in different peptide regions and extensions, except for randomly structured 4337. We show that altering a few amino acids induced immunogenicity and protectivity against experimental malaria and changed their three-dimensional structure, suggesting a better fit with immune system molecules and that modified peptides having better immunological properties can be included in the design of new malaria multi-component subunit-based vaccine.
Collapse
Affiliation(s)
- Luz M Salazar
- Fundación Instituto de Inmunologi;a de Colombia (FIDIC), Universidad Nacional de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Santori FR, Kieper WC, Brown SM, Lu Y, Neubert TA, Johnson KL, Naylor S, Vukmanović S, Hogquist KA, Jameson SC. Rare, structurally homologous self-peptides promote thymocyte positive selection. Immunity 2002; 17:131-42. [PMID: 12196285 DOI: 10.1016/s1074-7613(02)00361-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although it is clear that positive selection of T cells involves recognition of specific self-peptide/MHC complexes, the nature of these self-ligands and their relationship to the cognate antigen are controversial. Here we used two complementary strategies to identify naturally occurring self-peptides able to induce positive selection of T cells bearing a specific T cell receptor, OT-I. Both the bioassay- and bioinformatics-based strategies identified the same self-peptides, derived from F-actin capping protein and beta-catenin. These peptides displayed charge conservation at two key TCR contact residues. The biological activity of 43 other self-peptides and of complex peptide libraries directly correlated to the extent of conservation at TCR contact residues. These results demonstrate that selecting self-peptides are rare and can be identified by homology-based search strategies.
Collapse
Affiliation(s)
- Fabio R Santori
- Michael Heidelberger Division of Immunology, Department of Pathology and Kaplan Cancer Center, New York University School of Medicine, 550 First Avenue, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Santori FR, Brown SM, Lu Y, Neubert TA, Vukmanovic S. Cutting edge: positive selection induced by a self-peptide with TCR antagonist activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6092-5. [PMID: 11714767 DOI: 10.4049/jimmunol.167.11.6092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antagonist-like engagement of the TCR has been proposed to induce T cell selection in the thymus. However, no natural TCR ligand with TCR antagonist activity is presently known. Using a combination of bioinformatics and functional testing we identified the first self-peptide that can both deliver antagonist-like signals and promote T cell selection in the thymus. The peptide is presented by appropriate MHC class I molecules in vivo. Thus, endogenous antagonist peptides exist and may be involved in TCR repertoire selection.
Collapse
Affiliation(s)
- F R Santori
- Michael Heidelberger Division of Immunology, Department of Pathology and Kaplan Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|