1
|
Marhaeny HD, Rohmah L, Pratama YA, Kasatu SM, Miatmoko A, Addimaysqi R, van den Bogaart G, Ho FY, Taher M, Khotib J. Shrimp allergen extract immunotherapy induces prolonged immune tolerance in a gastro-food allergy mouse model. PLoS One 2024; 19:e0315312. [PMID: 39729447 DOI: 10.1371/journal.pone.0315312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
Food allergies are a global health problem that continues to grow annually, with a prevalence of more than 10%. Shrimp allergy is the most common and life-threatening allergy. There is no cure for food allergies, but shrimp allergen extract (SAE) offers promise as a treatment through allergen-specific immunotherapy (AIT). However, whether SAE induces immunological tolerance in seafood allergies remains to be established. This study aimed to determine the effectiveness of SAE in inducing immunological tolerance in a gastro-food allergy mouse model. For the immunotherapy evaluation, mice (n = 24) were intraperitoneally (i.p.) sensitized with 1 mg alum and 100 μg SAE in PBS on days 0, 7, and 14 and randomly divided into four groups of six: a negative control (NC) and high- to low-dose immunotherapy (HI, MI, and LI). The untreated group (n = 6) only received 1 mg alum in PBS (i.p.). All groups were challenged with 400 μg SAE (i.g.) on days 21, 22, 23, 53, and 58. Following the challenge, SAE-sensitized mice from the immunotherapy group were treated (i.p.) with 10 μg SAE for LI, 50 μg SAE for MI, and 100 μg SAE for HI on days 32, 39, and 46. The untreated and NC groups only received PBS (i.p.). All mice were euthanized on day 59. As the results, we found that SAE immunotherapy reduced systemic allergy symptom scores, serum IL-4 levels, IL-4 and FcεR1α mRNA relative expression, and mast cell degranulation in ileum tissue in allergic mice while increasing Foxp3 and IL-10 mRNA relative expression. Notably, we observed an increased ratio of IL-10 to IL-4 mRNA expression, demonstrating the efficacy of SAE immunotherapy in promoting desensitization. Thus, SAE can be developed as an immunotherapeutic agent for food allergies by inducing prolonged allergy tolerance with a wide range of allergen targets.
Collapse
Affiliation(s)
- Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Lutfiatur Rohmah
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Rafi Addimaysqi
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science Engineering, University of Groningen, Groningen, The Netherlands
| | - Franz Y Ho
- GBB Proteomics, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science Engineering, University of Groningen, Groningen, The Netherlands
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
2
|
Yogeshwar SM, Muñiz-Castrillo S, Sabater L, Peris-Sempere V, Mallajosyula V, Luo G, Yan H, Yu E, Zhang J, Lin L, Fagundes Bueno F, Ji X, Picard G, Rogemond V, Pinto AL, Heidbreder A, Höftberger R, Graus F, Dalmau J, Santamaria J, Iranzo A, Schreiner B, Giannoccaro MP, Liguori R, Shimohata T, Kimura A, Ono Y, Binks S, Mariotto S, Dinoto A, Bonello M, Hartmann CJ, Tambasco N, Nigro P, Prüss H, McKeon A, Davis MM, Irani SR, Honnorat J, Gaig C, Finke C, Mignot E. HLA-DQB1*05 subtypes and not DRB1*10:01 mediates risk in anti-IgLON5 disease. Brain 2024; 147:2579-2592. [PMID: 38425314 PMCID: PMC11224611 DOI: 10.1093/brain/awae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/09/2023] [Accepted: 01/21/2024] [Indexed: 03/02/2024] Open
Abstract
Anti-IgLON5 disease is a rare and likely underdiagnosed subtype of autoimmune encephalitis. The disease displays a heterogeneous phenotype that includes sleep, movement and bulbar-associated dysfunction. The presence of IgLON5-antibodies in CSF/serum, together with a strong association with HLA-DRB1*10:01∼DQB1*05:01, supports an autoimmune basis. In this study, a multicentric human leukocyte antigen (HLA) study of 87 anti-IgLON5 patients revealed a stronger association with HLA-DQ than HLA-DR. Specifically, we identified a predisposing rank-wise association with HLA-DQA1*01:05∼DQB1*05:01, HLA-DQA1*01:01∼DQB1*05:01 and HLA-DQA1*01:04∼DQB1*05:03 in 85% of patients. HLA sequences and binding cores for these three DQ heterodimers were similar, unlike those of linked DRB1 alleles, supporting a causal link to HLA-DQ. This association was further reflected in an increasingly later age of onset across each genotype group, with a delay of up to 11 years, while HLA-DQ-dosage dependent effects were also suggested by reduced risk in the presence of non-predisposing DQ1 alleles. The functional relevance of the observed HLA-DQ molecules was studied with competition binding assays. These proof-of-concept experiments revealed preferential binding of IgLON5 in a post-translationally modified, but not native, state to all three risk-associated HLA-DQ receptors. Further, a deamidated peptide from the Ig2-domain of IgLON5 activated T cells in two patients, compared with one control carrying HLA-DQA1*01:05∼DQB1*05:01. Taken together, these data support a HLA-DQ-mediated T-cell response to IgLON5 as a potentially key step in the initiation of autoimmunity in this disease.
Collapse
Affiliation(s)
- Selina M Yogeshwar
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sergio Muñiz-Castrillo
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lidia Sabater
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Caixa Research Institute, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Vicente Peris-Sempere
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guo Luo
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Han Yan
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric Yu
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jing Zhang
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ling Lin
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Flavia Fagundes Bueno
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xuhuai Ji
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Géraldine Picard
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, 69372 Lyon, France
| | - Véronique Rogemond
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, 69372 Lyon, France
| | - Anne Laurie Pinto
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, 69372 Lyon, France
| | - Anna Heidbreder
- Kepler University Hospital, Department of Neurology, Johannes Kepler University, 4020 Linz, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Francesc Graus
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Josep Dalmau
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Spanish National Network for Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Joan Santamaria
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Alex Iranzo
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Bettina Schreiner
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40100 Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40100 Bologna, Italy
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, 501-1194 Gifu, Japan
| | - Akio Kimura
- Department of Neurology, Gifu University Graduate School of Medicine, 501-1194 Gifu, Japan
| | - Yoya Ono
- Department of Neurology, Gifu University Graduate School of Medicine, 501-1194 Gifu, Japan
| | - Sophie Binks
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Department of Neurology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sara Mariotto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Alessandro Dinoto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Michael Bonello
- Department of Neurology, The Walton Centre NHS Foundation Trust, L9 7LJ, Liverpool, UK
| | - Christian J Hartmann
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nicola Tambasco
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, 06156 Perugia, Italy
| | - Pasquale Nigro
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, 06156 Perugia, Italy
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
| | - Andrew McKeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarosh R Irani
- Department of Neurology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, 69372 Lyon, France
| | - Carles Gaig
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Carsten Finke
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117, Berlin, Germany
- Berlin Center for Advanced Neuroimaging, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Emmanuel Mignot
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Stern LJ, Clement C, Galluzzi L, Santambrogio L. Non-mutational neoantigens in disease. Nat Immunol 2024; 25:29-40. [PMID: 38168954 PMCID: PMC11075006 DOI: 10.1038/s41590-023-01664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024]
Abstract
The ability of mammals to mount adaptive immune responses culminating with the establishment of immunological memory is predicated on the ability of the mature T cell repertoire to recognize antigenic peptides presented by syngeneic MHC class I and II molecules. Although it is widely believed that mature T cells are highly skewed towards the recognition of antigenic peptides originating from genetically diverse (for example, foreign or mutated) protein-coding regions, preclinical and clinical data rather demonstrate that novel antigenic determinants efficiently recognized by mature T cells can emerge from a variety of non-mutational mechanisms. In this Review, we describe various mechanisms that underlie the formation of bona fide non-mutational neoantigens, such as epitope mimicry, upregulation of cryptic epitopes, usage of non-canonical initiation codons, alternative RNA splicing, and defective ribosomal RNA processing, as well as both enzymatic and non-enzymatic post-translational protein modifications. Moreover, we discuss the implications of the immune recognition of non-mutational neoantigens for human disease.
Collapse
Affiliation(s)
- Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbiology Program, UMass Chan Medical School, Worcester, MA, USA
| | - Cristina Clement
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Bing SJ, Warrington S, Mazor R. Low cross reactivity between wild type and deamidated AAV can lead to false negative results in immune monitoring T-cell assays. Front Immunol 2023; 14:1211529. [PMID: 37469509 PMCID: PMC10352612 DOI: 10.3389/fimmu.2023.1211529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
During gene therapy trials, immune responses against adeno-associated virus (AAV) vectors are monitored by antibody assays that detect the humoral and T-cell mediated cellular responses to AAV vectors. T cell assays commonly utilize the collection of patients' peripheral blood mononuclear cells (PBMCs) and stimulation with AAV-derived overlapping peptides. We recently described that spontaneous deamidation coincides with T cell epitopes in AAV capsids and that spontaneous deamidation may enhance or decrease immunogenicity in some individuals. This raised the concern for false negative results of antibody detection and PBMC immune monitoring assays because these assays use wild-type (WT) AAV or WT peptides for T cell re-stimulation and these peptides may not re-activate T cells that were stimulated with deamidated AAV capsid. To investigate this concern, we modeled the scenario by expanding T cells with deamidated peptides and evaluated the cross-reactivity of expanded T cells to WT peptides. In the majority of samples, cells that were expanded with deamidated peptides and restimulated with WT peptide had significantly lowered IL-2 and IFN-γ production. Spiking the four deamidated peptides to the WT peptide pool used for re-stimulation, restored the signal and corrected the performance of the assay. We also evaluated the impact of deamidation on anti AAV binding antibodies and did not observe a major impact on seroprevalence detection of AAV9. These data indicate that a high level of deamidation in AAV therapy may result in underestimation or even failure to detect immune responses against WT peptides during cellular immune monitoring.
Collapse
|
5
|
Differential T cell immune responses to deamidated adeno-associated virus vector. Mol Ther Methods Clin Dev 2022; 24:255-267. [PMID: 35211638 PMCID: PMC8829777 DOI: 10.1016/j.omtm.2022.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/16/2022] [Indexed: 01/09/2023]
Abstract
Despite the high safety profile demonstrated in clinical trials, the immunogenicity of adeno-associated virus (AAV)-mediated gene therapy remains a major hurdle. Specifically, T-cell-mediated immune responses to AAV vectors are related to loss of efficacy and potential liver toxicities. As post-translational modifications in T cell epitopes have the potential to affect immune reactions, the cellular immune responses to peptides derived from spontaneously deamidated AAV were investigated. Here, we report that highly deamidated sites in AAV9 contain CD4 T cell epitopes with a Th1 cytokine pattern in multiple human donors with diverse human leukocyte antigen (HLA) backgrounds. Furthermore, some peripheral blood mononuclear cell (PBMC) samples demonstrated differential T cell activation to deamidated or non-deamidated epitopes. Also, in vitro and in silico HLA binding assays showed differential binding to the deamidated or non-deamidated peptides in some HLA alleles. This study provides critical attributes to vector-immune-mediated responses, as AAV deamidation can impact the immunogenicity, safety, and efficacy of AAV-mediated gene therapy in some patients.
Collapse
|
6
|
Lorenzo R, Defelipe LA, Aliperti L, Niebling S, Custódio TF, Löw C, Schwarz JJ, Remans K, Craig PO, Otero LH, Klinke S, García-Alai M, Sánchez IE, Alonso LG. Deamidation drives molecular aging of the SARS-CoV-2 spike protein receptor-binding motif. J Biol Chem 2021; 297:101175. [PMID: 34499924 PMCID: PMC8421091 DOI: 10.1016/j.jbc.2021.101175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023] Open
Abstract
The spike protein is the main protein component of the SARS-CoV-2 virion surface. The spike receptor-binding motif mediates recognition of the human angiotensin-converting enzyme 2 receptor, a critical step in infection, and is the preferential target for spike-neutralizing antibodies. Posttranslational modifications of the spike receptor-binding motif have been shown to modulate viral infectivity and host immune response, but these modifications are still being explored. Here we studied asparagine deamidation of the spike protein, a spontaneous event that leads to the appearance of aspartic and isoaspartic residues, which affect both the protein backbone and its charge. We used computational prediction and biochemical experiments to identify five deamidation hotspots in the SARS-CoV-2 spike protein. Asparagine residues 481 and 501 in the receptor-binding motif deamidate with a half-life of 16.5 and 123 days at 37 °C, respectively. Deamidation is significantly slowed at 4 °C, indicating a strong dependence of spike protein molecular aging on environmental conditions. Deamidation of the spike receptor-binding motif decreases the equilibrium constant for binding to the human angiotensin-converting enzyme 2 receptor more than 3.5-fold, yet its high conservation pattern suggests some positive effect on viral fitness. We propose a model for deamidation of the full SARS-CoV-2 virion illustrating how deamidation of the spike receptor-binding motif could lead to the accumulation on the virion surface of a nonnegligible chemically diverse spike population in a timescale of days. Our findings provide a potential mechanism for molecular aging of the spike protein with significant consequences for understanding virus infectivity and vaccine development.
Collapse
Affiliation(s)
- Ramiro Lorenzo
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro (FCV-UNCPBA), Tandil, Argentina
| | - Lucas A Defelipe
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Lucio Aliperti
- Laboratorio de Fisiología de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Stephan Niebling
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany; Centre for Structural Systems Biology, Hamburg, Germany
| | - Tânia F Custódio
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany; Centre for Structural Systems Biology, Hamburg, Germany
| | - Christian Löw
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany; Centre for Structural Systems Biology, Hamburg, Germany
| | | | - Kim Remans
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Patricio O Craig
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lisandro H Otero
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - María García-Alai
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany; Centre for Structural Systems Biology, Hamburg, Germany
| | - Ignacio E Sánchez
- Laboratorio de Fisiología de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Leonardo G Alonso
- Instituto de Nanobiotecnologıa (NANOBIOTEC), UBA-CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Candia M, Kratzer B, Pickl WF. On Peptides and Altered Peptide Ligands: From Origin, Mode of Action and Design to Clinical Application (Immunotherapy). Int Arch Allergy Immunol 2016; 170:211-233. [PMID: 27642756 PMCID: PMC7058415 DOI: 10.1159/000448756] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
T lymphocytes equipped with clonotypic T cell antigen receptors (TCR) recognize immunogenic peptides only when presented in the context of their own major histocompatibility complex (MHC) molecules. Peptide loading to MHC molecules occurs in intracellular compartments (ER for class I and MIIC for class II molecules) and relies on the interaction of the respective peptides and peptide binding pockets on MHC molecules. Those peptide residues not engaged in MHC binding point towards the TCR screening for possible peptide MHC complex binding partners. Natural or intentional modification of both MHC binding registers and TCR interacting residues of peptides - leading to the formation of altered peptide ligands (APLs) - might alter the way peptides interact with TCRs and hence influence subsequent T cell activation events, and consequently T cell effector functions. This review article summarizes how APLs were detected and first described, current concepts of how APLs modify T cellular signaling, which biological mechanisms might force the generation of APLs in vivo, and how peptides and APLs might be used for the benefit of patients suffering from allergic or autoimmune diseases.
Collapse
Affiliation(s)
- Martín Candia
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Immunomodulation, Vienna, Austria
| |
Collapse
|
8
|
Si Ahmed Zennia S, Mati A, Saulnier F, Verdier Y, Chiappetta G, Mulliert G, Miclo L, Vinh J, Girardet JM. Identification by FT-ICR-MS of Camelus dromedarius α-lactalbumin variants as the result of nonenzymatic deamidation of Asn-16 and Asn-45. Food Chem 2015; 187:305-13. [DOI: 10.1016/j.foodchem.2015.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 01/29/2023]
|
9
|
Sweenie CH, Mackenzie KJ, Rone-Orugboh A, Liu M, Anderton SM. Distinct T cell recognition of naturally processed and cryptic epitopes within the immunodominant 35-55 region of myelin oligodendrocyte glycoprotein. J Neuroimmunol 2007; 183:7-16. [PMID: 17157925 DOI: 10.1016/j.jneuroim.2006.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 10/23/2006] [Accepted: 10/23/2006] [Indexed: 11/29/2022]
Abstract
We have assessed the complexity in T cell recognition of the immunodominant 35-55 region of myelin oligodendrocyte glycoprotein (MOG) in C57BL/6 mice. Immunization with the p35-55 peptide generated two types of T cell, recognizing either a cryptic, or a naturally-processed epitope. Clear differences in the recognition of residues within a core sequence of 40-48 were observed. The majority of the p35-55-reactive repertoire in vivo appeared responsive to the intact autoantigen, supporting the notion of a failure of central tolerance to this region of MOG. Our data also provide a basis for exploring the requirements for antigen processing of MOG.
Collapse
Affiliation(s)
- Claire H Sweenie
- University of Edinburgh, Institute of Immunology and Infection Research, School of Biological Sciences, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | | | | | | | | |
Collapse
|
10
|
Cournoyer JJ, Lin C, Bowman MJ, O'Connor PB. Quantitating the relative abundance of isoaspartyl residues in deamidated proteins by electron capture dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:48-56. [PMID: 16997569 DOI: 10.1016/j.jasms.2006.08.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/16/2006] [Accepted: 08/16/2006] [Indexed: 05/11/2023]
Abstract
Relative quantitation of aspartyl and isoaspartyl residue mixtures from asparagine deamidation is demonstrated using electron capture dissociation without prior HPLC separation. The method utilizes the linear relationship found between the relative abundance of the isoaspartyl diagnostic ion, z(n)-57, and % isoaspartyl content based on the ECD spectra of known isoaspartyl/aspartyl mixtures of synthetic peptides. The observed linearity appears to be sequence independent because the relationship exists despite sequence variations and changes in backbone fragment abundances when isoaspartyl and aspartyl residues are interchanged. Furthermore, a new method to calculate the relative abundances of isomer from protein deamidation without synthetic peptides is proposed and tested using a linear peptide released by protein digestion that contains the deamidation site. The proteolytic peptide can be rapidly aged to the expected 3:1 (isoaspartyl:aspartyl) mixture to generate a two-point calibration standard for ECD analysis. The procedure can then be used to determine the relative abundance of deamidation products from in vivo or in vitro protein aging experiments.
Collapse
Affiliation(s)
- Jason J Cournoyer
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
11
|
Cournoyer JJ, Lin C, O'Connor PB. Detecting Deamidation Products in Proteins by Electron Capture Dissociation. Anal Chem 2006; 78:1264-71. [PMID: 16478121 DOI: 10.1021/ac051691q] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A nonenzymatic posttranslational modification of proteins and peptides is the spontaneous deamidation of asparaginyl residues via a succinimide intermediate to form a varying mixture of aspartyl and isoaspartyl residues. The isoaspartyl residue is generally difficult to detect particularly using mass spectrometry because isoaspartic acid is isomeric with aspartic acid so that there is no mass difference. However, electron capture dissociation has demonstrated the ability to differentiate the two isoforms in synthetic peptides using unique diagnostic ions for each form; the cr. + 58 and z(l-r) - 57 fragment ions for the isoAsp form and the Asp side chain loss ((M + nH)(n-1)+. - 60) for the Asp form. Shown here are three examples of isoaspartyl detection in peptides from proteins; a deamidated tryptic peptide of cytochrome c, a tryptic peptide from unfolded and deamidated ribonuclease A, and a tryptic peptide from calmodulin deamidated in its native state. In all cases, the cr. + 58 and z(l-r) - 57 ions allowed the detection and localization of isoaspartyl residues to positions previously occupied by asparaginyl residues. The (M + nH)(n-1)+. - 60 ions were also detected, indicating the presence of aspartyl residues. Observation of these diagnostic ions in peptides from proteins shows that the method is applicable to defining the isomerization state of deamidated proteins.
Collapse
Affiliation(s)
- Jason J Cournoyer
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 715 Albany Street R806, Boston, MA 02118, USA
| | | | | |
Collapse
|
12
|
Abstract
The relative plasticity of peptide binding to class II major histocompatibility complex (MHC) molecules permits formation of multiple conformational isomers by the same peptide and MHC molecule; such conformers are specifically recognized by distinct subsets of T cells. Here, we review current knowledge and recent advances in our understanding of peptide-class II MHC conformational isomerism and the mechanisms that generate distinct MHC-peptide conformers. We focus on our studies of two T-cell subsets, type A and B, which recognize distinct conformers of the dominant epitope of hen egg white lysozyme presented by I-A(k). These conformers form via different pathways and in distinct intracellular vesicles: the type A conformer forms in late endosomes upon processing of native protein, while the more flexible type B conformer forms in early endosomes and at the cell surface. In this process, H2-DM acts as a conformational editor, eliminating the type B conformer in late endosomes. Type B T cells constitute a significant component of the naïve T-cell repertoire; furthermore, self-reactive type B T cells escape negative selection and are present in abundance in the periphery. Ongoing studies should elucidate the role of type B T cells in immunity to pathogens and in autoimmune pathology.
Collapse
Affiliation(s)
- Scott B Lovitch
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
13
|
Herzog J, Maekawa Y, Cirrito TP, Illian BS, Unanue ER. Activated antigen-presenting cells select and present chemically modified peptides recognized by unique CD4 T cells. Proc Natl Acad Sci U S A 2005; 102:7928-33. [PMID: 15901898 PMCID: PMC1130168 DOI: 10.1073/pnas.0502255102] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
CD4 T cells recognized posttranslationally modified peptides of the protein hen egg-white lysozyme (HEL), consisting of nitration of tyrosines and modifications of tryptophans in the T cell contact residues of the peptides. T cells were directed against modifications of a chemically dominant HEL peptide as well as a minor HEL peptide, bound to the class II histocompatibility molecule I-A(k). The modified peptides were generated in vivo after immunization with native HEL molecules or were generated ex vivo by peroxynitrite treatment of HEL. Moreover, antigen-presenting cells (APC), either macrophages or dendritic cells activated in culture or in vivo, generated the modified HEL epitopes that stimulated the T cells. In transgenic mice expressing HEL, the T cells to the modified epitopes escaped negative selection and were found, albeit fewer in number than in normal mice. Infection with Listeria monocytogenes of the transgenic HEL mice generated APC containing the modifications. T cells to modified epitopes induced by activation of APC may be a component of antimicrobial immunity and autoimmune reactions.
Collapse
Affiliation(s)
- Jeremy Herzog
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
The conversion of exogenous and endogenous proteins into immunogenic peptides recognized by T lymphocytes involves a series of proteolytic and other enzymatic events culminating in the formation of peptides bound to MHC class I or class II molecules. Although the biochemistry of these events has been studied in detail, only in the past few years has similar information begun to emerge describing the cellular context in which these events take place. This review thus concentrates on the properties of antigen-presenting cells, especially those aspects of their overall organization, regulation, and intracellular transport that both facilitate and modulate the processing of protein antigens. Emphasis is placed on dendritic cells and the specializations that help account for their marked efficiency at antigen processing and presentation both in vitro and, importantly, in vivo. How dendritic cells handle antigens is likely to be as important a determinant of immunogenicity and tolerance as is the nature of the antigens themselves.
Collapse
Affiliation(s)
- E Sergio Trombetta
- Department of Cell Biology and Section of Immunobiology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520-8002, USA.
| | | |
Collapse
|
15
|
Abstract
Alterations in amino acid sequence can generate neo-epitopes from self proteins, causing autoaggressive immune attack. There is a range of possible post-translational modifications (PTMs) of mammalian proteins that can allow immune recognition of neo-self epitopes. These effects can vary from overt increase in affinity of MHC or T-cell receptor binding, to more subtle effects on the activity of proteolytic enzymes involved in antigen processing. Furthermore, intriguing insights into how the complex interactions between inflammation, enzyme activity and protein modification can direct self recognition are beginning to be unearthed.
Collapse
Affiliation(s)
- Stephen M Anderton
- University of Edinburgh, Institute of Immunology and Infection Research, School of Biological Sciences, Kings Buildings, West Mains Road, Edinburgh, EH9 3JT, UK.
| |
Collapse
|
16
|
Moss CX, Matthews SP, Lamont DJ, Watts C. Asparagine deamidation perturbs antigen presentation on class II major histocompatibility complex molecules. J Biol Chem 2005; 280:18498-503. [PMID: 15749706 DOI: 10.1074/jbc.m501241200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational protein modifications can be recognized by B and T lymphocytes and can potentially make "self"-proteins appear foreign to the immune system. Such modifications may directly affect major histocompatibility complex-restricted T cell recognition of processed peptides or may perturb the processing events that generate such peptides. Using the tetanus toxin C fragment protein as a test case, we show that spontaneous deamidation of asparagine residues interferes with processing by the enzyme asparagine endopeptidase (AEP) and contributes to diminished antigen presentation. Deamidation inhibits AEP action either directly, when asparagine residues targeted by AEP are modified, or indirectly, when adjacent Asn residues are deamidated. Thus, deamidation of long-lived self-proteins may qualitatively or quantitatively affect the spectrum of self-peptides displayed to T cells and may thereby contribute to the onset or exacerbation of autoimmune disease.
Collapse
Affiliation(s)
- Catherine X Moss
- Division of Cell Biology and Immunology, University of Dundee, Scotland, United Kingdom
| | | | | | | |
Collapse
|
17
|
Tang B, Brand DD, Ma Z, Stuart JM, Myers LK, Kang AH. Pathogenesis of collagen-induced arthritis: modulation of disease by arthritogenic T-cell epitope location. Immunology 2004; 113:384-91. [PMID: 15500626 PMCID: PMC1782586 DOI: 10.1111/j.1365-2567.2004.01987.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Collagen-induced arthritis (CIA) is an animal model of human rheumatoid arthritis that can be induced in susceptible mice by immunization with type II collagen (CII) or with collagen fragments, including cyanogen bromide (CB) peptides. One susceptible mouse strain, B10.RIII (I-Ar), has previously been found to respond to two major T-cell determinants, namely CII 610-618 (GPAGTAGAR) within CB10 and CII 445-453 (GPAGPAGER) within CB8. Although CB10 contains the immunodominant determinant, it is not arthritogenic. Using recombinant techniques, the determinant within CB10 was mutated to rCB10(T614P,A617E), generating a recombinant CB10 that in effect contained the arthritogenic epitope. When used for immunization, rCB10(T614P,A617E) was arthritogenic. This suggested that the arthritogenic property was intrinsic to the epitope and unrelated to its position within the CII molecule. To test this hypothesis, additional mutants were generated. The wild-type T-cell epitope of CB10 was deleted from its natural position, and the 'arthritogenic' GPAGPAGER T-cell epitope was inserted into the C-terminal portion of the CB10 peptide. The resulting peptide induced arthritis in B10.RIII mice. Adding a second copy of the T-cell determinant to other sites within CB10, however, had varying results. A second T-cell epitope located at the C-terminus of rCB10 significantly increased the incidence and severity of arthritis, while determinants placed in other positions had little effect. These data indicate that the T-cell epitope has intrinsic arthritogenic properties, but there are positional and structural constraints that affect its arthritogenicity. Enhanced arthritis was associated with an increased T-cell proliferation to the peptides, an increase in the level of inflammatory cytokines, and higher levels of anti-CII immunoglobulin. These data suggest that the position and copy number of T-cell determinants also affect the overall immune T-cell responses.
Collapse
Affiliation(s)
- Bo Tang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Pu Z, Lovitch SB, Bikoff EK, Unanue ER. T Cells Distinguish MHC-Peptide Complexes Formed in Separate Vesicles and Edited by H2-DM. Immunity 2004; 20:467-76. [PMID: 15084275 DOI: 10.1016/s1074-7613(04)00073-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 02/04/2004] [Accepted: 03/01/2004] [Indexed: 11/24/2022]
Abstract
The peptide spanning residues 48-61 of hen egg white lysozyme (HEL) presented by I-A(k) gives rise to two T cell populations, referred to as type A and B, that distinguish the complex generated intracellularly upon processing of HEL from that formed with exogenous peptide. Here, we ascribe this difference to recognition of distinct conformers of the complex and show that formation of the two complexes results from antigen processing in different intracellular compartments and is dependent upon H2-DM. While the type A complex preferentially formed in a lysosome-like late vesicle, the type B complex failed to form in this compartment; this distinction was abolished in antigen-presenting cells lacking DM. Experiments in vitro indicated that H2-DM acts directly on the complex to eliminate the type B conformation. We conclude that different antigen-processing pathways generate distinct MHC-peptide conformers, priming T cells with distinct specificity that may play unique roles in immunity.
Collapse
Affiliation(s)
- Zheng Pu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Timothy I M Tree
- Department of Immunobiology, Guy's, King's, and St. Thomas' School of Medicine, King's College London, Denmark Hill Campus, London SE5 9NU, UK
| | | |
Collapse
|
20
|
Clarke S. Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damaged proteins for repair. Ageing Res Rev 2003; 2:263-85. [PMID: 12726775 DOI: 10.1016/s1568-1637(03)00011-4] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Deamidated, isomerized, and racemized aspartyl and asparaginyl residues represent a significant part of the spontaneous damage to proteins that results from the aging process. The accumulation of these altered residues can lead to the loss of protein function and the consequent loss of cellular function. However, almost all cells in nature contain a methyltransferase that can recognize the major damaged form of the L-isoaspartyl residue, and some of these enzymes can also recognize the racemized D-aspartyl residue. The methyl esterification reaction can initiate the conversion of these altered residues to the normal L-aspartyl form, although there is no evidence yet that the L-asparaginyl form can be regenerated. This enzyme, the protein L-isoaspartate (D-aspartate) O-methyltransferase (EC 2.1.1.77), thus functions as a protein repair enzyme. The importance of this enzyme in attenuating age-related protein damage can be seen by the phenotypes of organisms where the gene encoding has been disrupted, or where its expression has been augmented.
Collapse
Affiliation(s)
- Steven Clarke
- Department of Chemistry and Biochemistry, the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
21
|
Lovitch SB, Walters JJ, Gross ML, Unanue ER. APCs present A beta(k)-derived peptides that are autoantigenic to type B T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4155-60. [PMID: 12682247 DOI: 10.4049/jimmunol.170.8.4155] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type B T cells recognize peptide provided exogenously but are ignorant of the same epitope derived from intracellular processing. In this study, we demonstrate the existence of type B T cells to an abundant autologous peptide derived from processing of the I-A(k) beta-chain. T cell hybridomas raised against this peptide fail to recognize syngeneic APC despite abundant presentation of the naturally processed epitope but react in a dose-dependent manner to exogenous peptide. Moreover, these hybridomas respond to Abeta(k) peptide extracted from the surface of I-A(k)-expressing APC. This peptide was isolated from B cell lines where it was found in high abundance; it was also present in lines lacking HLA-DM, but in considerably lower amounts. Therefore, type B T cells exist in the naive repertoire to abundant autologous peptides. We discuss the implications of these findings to the potential biological role of type B T cells in immune responses and autoimmune pathology.
Collapse
Affiliation(s)
- Scott B Lovitch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
22
|
Abstract
The phenomenon of antigen processing and presentation and the concept that T cells recognize peptides resulting from the partial catabolism of proteins, are relatively new. These concepts were first recognized and developed at a time when lymphocyte immunity - the adaptive system - and cellular immunity, with its major component of activated macrophages, were not perceived as part of one integrated system. To me, it was the fundamental findings on the role of major histocompatibility (MHC) molecules that set the framework for understanding how phagocytes and the antigen presenting cell (APC) system interact with the adaptive cellular system, in a truly symbiotic relationship (1). In this chapter we make a historical review of the developments that, in my biased opinion, led to the understanding of antigen presentation as a central event. I emphasize my own work, placing it in my perspective of how I saw the field moving.
Collapse
Affiliation(s)
- Emil R Unanue
- Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Pu Z, Carrero JA, Unanue ER. Distinct recognition by two subsets of T cells of an MHC class II-peptide complex. Proc Natl Acad Sci U S A 2002; 99:8844-9. [PMID: 12084929 PMCID: PMC124386 DOI: 10.1073/pnas.092260499] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We examine here the nature of the differential recognition by CD4+ T cells of a single peptide from hen-egg white lysozyme (HEL) presented by I-A(k) class II MHC molecules. Two subsets of T cells (called A and B) interact with the same peptide, each in unique ways that reflect the nature of the complex of peptide and MHC. We show that the A and B set of T cells can be distinguished by their functional interaction with the three T cell receptor (TCR) contact residues of the bound peptide. The dominant peptide of HEL selected from processing is bound in a single register where a critical TCR contact residue is situated about the middle of the core segment of the peptide: all T cells establish functional contact with it. Three sets of T cells, however, can be distinguished by their differential recognition of two TCR contacts situated at the amino and carboxyl sides of the central TCR contact residue. Type A T cells, the conventional cells that see the peptide after processing of HEL, need to recognize all three TCR contact residues. In contrast, the type B T cells recognize the peptide given exogenously, but not when processed: these T cells recognize either one of the peripheral TCR contact residues, indicating a much more flexible interaction of peptide with I-A(k) molecules. We discuss the mode of generation of the various T cells and their biological relevance.
Collapse
Affiliation(s)
- Zheng Pu
- Department of Pathology and Immunology, and Center for Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|