1
|
Bohat R, Liang X, Chen Y, Xu C, Zheng N, Guerrero A, Hou J, Jaffery R, Egan NA, Li Y, Tang Y, Unsal E, Robles A, Chen S, Major AM, Elldakli H, Chung SH, Liang H, Hicks MJ, Du Y, Lin JS, Chen X, Mohan C, Peng W. Fas lpr gene dosage tunes the extent of lymphoproliferation and T cell differentiation in lupus. Clin Immunol 2024; 258:109874. [PMID: 38113962 DOI: 10.1016/j.clim.2023.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Sle1 and Faslpr are two lupus susceptibility loci that lead to manifestations of systemic lupus erythematosus. To evaluate the dosage effects of Faslpr in determining cellular and serological phenotypes associated with lupus, we developed a new C57BL/6 (B6) congenic lupus strain, B6.Sle1/Sle1.Faslpr/+ (Sle1homo.lprhet) and compared it with B6.Faslpr/lpr (lprhomo), B6.Sle1/Sle1 (Sle1homo), and B6.Sle1/Sle1.Faslpr/lpr (Sle1homo.lprhomo) strains. Whereas Sle1homo.lprhomo mice exhibited profound lymphoproliferation and early mortality, Sle1homo.lprhet mice had a lifespan comparable to B6 mice, with no evidence of splenomegaly or lymphadenopathy. Compared to B6 monogenic lupus strains, Sle1homo.lprhet mice exhibited significantly elevated serum ANA antibodies and increased proteinuria. Additionally, Sle1homo.lprhet T cells had an increased propensity to differentiate into Th1 cells. Gene dose effects of Faslpr were noted in upregulating serum IL-1⍺, IL-2, and IL-27. Taken together, Sle1homo.lprhet strain is a new C57BL/6-based model of lupus, ideal for genetic studies, autoantibody repertoire investigation, and for exploring Th1 effector cell skewing without early-age lymphoproliferative autoimmunity.
Collapse
Affiliation(s)
- Ritu Bohat
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Xiaofang Liang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Yanping Chen
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States of America
| | - Chunyu Xu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Ningbo Zheng
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Ashley Guerrero
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Jiakai Hou
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Roshni Jaffery
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Nicholas A Egan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States of America
| | - Yitao Tang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America; UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson, Houston, TX 77030, United States of America
| | - Esra Unsal
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Adolfo Robles
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Si Chen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Angela M Major
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Hadil Elldakli
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Sang-Hyuk Chung
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - M John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Yong Du
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, United States of America
| | - Jamie S Lin
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Xiqun Chen
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States of America; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
2
|
Elevated expression of receptors for EGF, PDGF, transferrin and folate within murine and human lupus nephritis kidneys. Clin Immunol 2023; 246:109188. [PMID: 36396012 DOI: 10.1016/j.clim.2022.109188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a chronic autoimmune disease where the body's immune system targets cells and tissue in numerous organs, including the kidneys. Lupus nephritis (LN) is a highly heterogeneous disease, and diagnosis is difficult because clinical manifestations vary widely among patients. Comprehensive proteomic studies reported recently in LN have identified several urinary proteins which are also cell-surface receptors. If indeed these receptor proteins are also hyper-expressed within the kidneys, ligands to these receptors may be useful for drug targeting. METHODS scRNA sequence data analysis and immunohistochemistry were performed on LN kidneys for expression of four implicated receptors, EGFR, FOL2R2, PDGF-RB, and TFRC. RESULTS In reported scRNA sequencing studies from 21 LN patients and 3 healthy control renal biopsies or renal-infiltrating immune cells from 24 LN biopsies, EGFR, FOLR2, PDGF-Rb, and TFRC were all hyper expressed within LN kidneys in comparison to healthy kidneys, either within resident renal cells or infiltrating leukocytes. Immunohistochemistry staining of murine lupus renal biopsies from lupus mice revealed EGFR, FOLR2, TFRC and PDGF-RB were elevated in LN kidneys. Immunohistochemistry staining of human Class II, Class III, and Class IV kidney tissue sections revealed EGFR, TFRC, and PDGF-RB were significantly elevated in proliferative LN kidneys. CONCLUSION These findings underscore the potential of EGFR, TFRC, FOLR2, and PDGF-RB as promising receptors for potential drug-targeting in LN.
Collapse
|
3
|
Chalmers SA, Ayilam Ramachandran R, Garcia SJ, Der E, Herlitz L, Ampudia J, Chu D, Jordan N, Zhang T, Parodis I, Gunnarsson I, Ding H, Shen N, Petri M, Mok CC, Saxena R, Polu KR, Connelly S, Ng CT, Mohan C, Putterman C. The CD6/ALCAM pathway promotes lupus nephritis via T cell-mediated responses. J Clin Invest 2022; 132:e147334. [PMID: 34981775 PMCID: PMC8718154 DOI: 10.1172/jci147334] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
T cells are central to the pathogenesis of lupus nephritis (LN), a common complication of systemic lupus erythematosus (SLE). CD6 and its ligand, activated leukocyte cell adhesion molecule (ALCAM), are involved in T cell activation and trafficking. Previously, we showed that soluble ALCAM is increased in urine (uALCAM) of patients with LN, suggesting that this pathway contributes to disease. To investigate, uALCAM was examined in 1038 patients with SLE and LN from 5 ethnically diverse cohorts; CD6 and ALCAM expression was assessed in LN kidney cells; and disease contribution was tested via antibody blockade of CD6 in murine models of SLE and acute glomerulonephritis. Extended cohort analysis offered resounding validation of uALCAM as a biomarker that distinguishes active renal involvement in SLE, irrespective of ethnicity. ALCAM was expressed by renal structural cells whereas CD6 expression was exclusive to T cells, with elevated numbers of CD6+ and ALCAM+ cells in patients with LN. CD6 blockade in models of spontaneous lupus and immune-complex glomerulonephritis revealed significant decreases in immune cells, inflammatory markers, and disease measures. Our data demonstrate the contribution of the CD6/ALCAM pathway to LN and SLE, supporting its use as a disease biomarker and therapeutic target.
Collapse
Affiliation(s)
- Samantha A. Chalmers
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Sayra J. Garcia
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Evan Der
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Leal Herlitz
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Nicole Jordan
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ting Zhang
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute and Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute and Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Huihua Ding
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Shen
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Ramesh Saxena
- Division of Nephrology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | | | | | | | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Chaim Putterman
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
4
|
Abstract
Systemic lupus erythematosus is associated with a small overall increased cancer risk compared with the general population. This risk includes a 4-fold increased risk of non-Hodgkin lymphoma, but a decreased risk of other cancers (such as breast cancer). The pathophysiology underlying the increased risk of hematologic cancer is not fully understood, but many potential mechanisms have been proposed, including dysfunction of the tumor necrosis factor and other pathways. A decreased risk of breast, ovarian, and endometrial cancer might be driven by hormonal factors or lupus-related antibodies, but these links have not been proved.
Collapse
|
5
|
Meynier S, Rieux-Laucat F. FAS and RAS related Apoptosis defects: From autoimmunity to leukemia. Immunol Rev 2019; 287:50-61. [PMID: 30565243 DOI: 10.1111/imr.12720] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
The human adaptive immune system recognizes almost all the pathogens that we encounter and all the tumor antigens that may arise during our lifetime. Primary immunodeficiencies affecting lymphocyte development or function therefore lead to severe infections and tumor susceptibility. Furthermore, the fact that autoimmunity is a frequent feature of primary immunodeficiencies reveals a third function of the adaptive immune system: its self-regulation. Indeed, the generation of a broad repertoire of antigen receptors (via a unique strategy of random somatic rearrangements of gene segments in T cell and B cell receptor loci) inevitably creates receptors with specificity for self-antigens and thus leads to the presence of autoreactive lymphocytes. There are many different mechanisms for controlling the emergence or action of autoreactive lymphocytes, including clonal deletion in the primary lymphoid organs, receptor editing, anergy, suppression of effector lymphocytes by regulatory lymphocytes, and programmed cell death. Here, we review the genetic defects affecting lymphocyte apoptosis and that are associated with lymphoproliferation and autoimmunity, together with the role of somatic mutations and their potential involvement in more common autoimmune diseases.
Collapse
Affiliation(s)
- Sonia Meynier
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
6
|
Funes SC, Ríos M, Gómez‐Santander F, Fernández‐Fierro A, Altamirano‐Lagos MJ, Rivera‐Perez D, Pulgar‐Sepúlveda R, Jara EL, Rebolledo‐Zelada D, Villarroel A, Roa JC, Mackern‐Oberti JP, Kalergis AM. Tolerogenic dendritic cell transfer ameliorates systemic lupus erythematosus in mice. Immunology 2019; 158:322-339. [PMID: 31509246 PMCID: PMC6856940 DOI: 10.1111/imm.13119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Current treatments for systemic autoimmune diseases partially improve the health of patients displaying low pharmacological efficacy and systemic immunosuppression. Here, the therapeutic potential of transferring tolerogenic dendritic cells (tolDCs) generated with heme-oxygenase inductor cobalt (III) protoporphyrin IX (CoPP), dexamethasone and rosiglitazone for the treatment of systemic autoimmunity was evaluated in two murine models of systemic lupus erythematosus (SLE), MRL-Faslpr and NZM2410 mice. Dendritic cells treated ex vivo with these drugs showed a stable tolerogenic profile after lipopolysaccharide stimulation. Regular doses of tolDCs were administered to anti-nuclear antibody-positive mice throughout 60-70 days, and the clinical score was evaluated. Long-term treatment with these tolDCs was well tolerated and effective to improve the clinical score on MRL-Faslpr lupus-prone mice. Additionally, decreased levels of anti-nuclear antibodies in NZM2410 mice were observed. Although tolDC treatment increased regulatory T cells, no significant reduction of renal damage or glomerulonephritis could be found. In conclusion, these results suggest that the transfer of histone-loaded tolDCs could improve only some SLE symptoms and reduced anti-nuclear antibodies. This is the first study to evaluate antigen-specific tolDC administration to treat SLE. Our report strengthens the clinical relevance of tolDC generation with CoPP, dexamethasone and rosiglitazone and the use of these modified cells as a therapy for systemic autoimmunity.
Collapse
Affiliation(s)
- Samanta C. Funes
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Mariana Ríos
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Felipe Gómez‐Santander
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Ayleen Fernández‐Fierro
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - María J. Altamirano‐Lagos
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Daniela Rivera‐Perez
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Raul Pulgar‐Sepúlveda
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Evelyn L. Jara
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- Present address:
Facultad de CienciasDepartamento de Ciencias BásicasUniversidad Santo TomásTemucoChile
| | - Diego Rebolledo‐Zelada
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Alejandra Villarroel
- Departamento de Anatomía PatológicaFacultad de MedicinaPontificia Universidad Católica de ChileSantiagoChile
| | - Juan C. Roa
- Departamento de Anatomía PatológicaFacultad de MedicinaPontificia Universidad Católica de ChileSantiagoChile
| | - Juan P. Mackern‐Oberti
- Instituto de Medicina y Biología Experimental de CuyoIMBECU CCT Mendoza‐ CONICETMendozaArgentina
- Instituto de FisiologíaFacultad de Ciencias MédicasUniversidad Nacional de CuyoMendozaArgentina
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- Departamento de EndocrinologíaEscuela de Medicina, Facultad de MedicinaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
7
|
Luo H, Wang L, Bao D, Wang L, Zhao H, Lian Y, Yan M, Mohan C, Li QZ. Novel Autoantibodies Related to Cell Death and DNA Repair Pathways in Systemic Lupus Erythematosus. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:248-259. [PMID: 31494269 PMCID: PMC6818352 DOI: 10.1016/j.gpb.2018.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/16/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune syndrome characterized by various co-existing autoantibodies (autoAbs) in patients’ blood. However, the full spectrum of autoAbs in SLE has not been comprehensively elucidated. In this study, a commercial platform bearing 9400 antigens (ProtoArray) was used to identify autoAbs that were significantly elevated in the sera of SLE patients. By comparing the autoAb profiles of SLE patients with those of healthy controls, we identified 437 IgG and 1213 IgM autoAbs that the expression levels were significantly increased in SLE (P < 0.05). Use of the ProtoArray platform uncovered over 300 novel autoAbs targeting a broad range of nuclear, cytoplasmic, and membrane antigens. Molecular interaction network analysis revealed that the antigens targeted by the autoAbs were most significantly enriched in cell death, cell cycle, and DNA repair pathways. A group of autoAbs associated with cell apoptosis and DNA repair function, including those targeting APEX1, AURKA, POLB, AGO1, HMGB1, IFIT5, MAPKAPK3, PADI4, RGS3, SRP19, UBE2S, and VRK1, were further validated by ELISA and Western blot in a larger cohort. In addition, the levels of autoAbs against APEX1, HMGB1, VRK1, AURKA, PADI4, and SRP19 were positively correlated with the level of anti-dsDNA in SLE patients. Comprehensive autoAb screening has identified novel autoAbs, which may shed light on potential pathogenic pathways leading to lupus.
Collapse
Affiliation(s)
- Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ling Wang
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Nephrology, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Ding Bao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Li Wang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongjun Zhao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yun Lian
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mei Yan
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
| | - Quan-Zhen Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
The Autoimmune Lymphoproliferative Syndrome with Defective FAS or FAS-Ligand Functions. J Clin Immunol 2018; 38:558-568. [PMID: 29911256 DOI: 10.1007/s10875-018-0523-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/06/2018] [Indexed: 02/08/2023]
Abstract
The autoimmune lymphoproliferative syndrome (ALPS) is a non-malignant and non-infectious uncontrolled proliferation of lymphocytes accompanied by autoimmune cytopenia. The genetic etiology of the ALPS was described in 1995 by the discovery of the FAS gene mutations. The related apoptosis defect accounts for the accumulation of autoreactive lymphocytes as well as for specific clinical and biological features that distinguish the ALPS-FAS from other monogenic defects of this apoptosis pathway, such as FADD and CASPASE 8 deficiencies. The ALPS-FAS was the first description of a monogenic cause of autoimmunity, but its non-Mendelian expression remained elusive until the description of somatic and germline mutations in ALPS patients. The recognition of these genetic diseases brought new information on the role of this apoptotic pathway in controlling the adaptive immune response in humans.
Collapse
|
9
|
Xu Z, Xu J, Ju J, Morel L. A Skint6 allele potentially contributes to mouse lupus. Genes Immun 2017; 18:111-117. [DOI: 10.1038/gene.2017.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/06/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022]
|
10
|
Maqbool F, Niaz K, Hassan FI, Khan F, Abdollahi M. Immunotoxicity of mercury: Pathological and toxicological effects. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:29-46. [PMID: 28055311 DOI: 10.1080/10590501.2016.1278299] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mercury (Hg) is toxic and hazardous metal that causes natural disasters in the earth's crust. Exposure to Hg occurs via various routes; like oral (fish), inhalation, dental amalgams, and skin from cosmetics. In this review, we have discussed the sources of Hg and its potential for causing toxicity in humans. In addition, we also review its bio-chemical cycling in the environment; its systemic, immunotoxic, genotoxic/carcinogenic, and teratogenic health effects; and the dietary influences; as well as the important considerations in risk assessment and management of Hg poisoning have been discussed in detail. Many harmful outcomes have been reported, which will provide more awareness.
Collapse
Affiliation(s)
- Faheem Maqbool
- a International Campus, Tehran University of Medical Sciences , Tehran , Iran
- b Toxicology and Diseases Group , Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Kamal Niaz
- a International Campus, Tehran University of Medical Sciences , Tehran , Iran
- b Toxicology and Diseases Group , Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Fatima Ismail Hassan
- a International Campus, Tehran University of Medical Sciences , Tehran , Iran
- b Toxicology and Diseases Group , Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Fazlullah Khan
- a International Campus, Tehran University of Medical Sciences , Tehran , Iran
- b Toxicology and Diseases Group , Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Abdollahi
- a International Campus, Tehran University of Medical Sciences , Tehran , Iran
- b Toxicology and Diseases Group , Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran , Iran
- c Department of Toxicology and Pharmacology , Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
- d Endocrinology and Metabolism Research Center , Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
11
|
Zhao M, Chen H, Ding Q, Xu X, Yu B, Huang Z. Nuclear Factor Erythroid 2-related Factor 2 Deficiency Exacerbates Lupus Nephritis in B6/lpr mice by Regulating Th17 Cell Function. Sci Rep 2016; 6:38619. [PMID: 27941837 PMCID: PMC5150244 DOI: 10.1038/srep38619] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/11/2016] [Indexed: 02/08/2023] Open
Abstract
Lupus nephritis (LN) is the major clinical manifestation of systemic lupus erythematosus. LN is promoted by T helper 17 (Th17) cells, which are the major pro-inflammatory T cell subset contributing to autoimmunity regulation. Nuclear factor erythroid 2-related factor 2 (NRF2) is critical for suppressing reactive oxygen species (ROS) and relieving oxidant stress by regulating antioxidant gene expression. Previous studies have demonstrated that Nrf2 deficiency promotes drug-induced or spontaneous LN. However, whether NRF2 regulates Th17 function during LN development is still unclear. In this study, we introduced Nrf2 deficiency into a well-known LN model, the B6/lpr mouse strain, and found that it promoted early-stage LN with altered Th17 activation. Th17 cells and their relevant cytokines were dramatically increased in these double-mutant mice. We also demonstrated that naïve T cells from the double-mutant mice showed significantly increased differentiation into Th17 cells in vitro, with decreased expression of the Th17 differentiation suppressor Socs3 and increased phosphorylation of STAT3. Our results demonstrated that Nrf2 deficiency promoted Th17 differentiation and function during LN development. Moreover, our results suggested that the regulation of Th17 differentiation via NRF2 could be a therapeutic target for the treatment of subclinical LN patients.
Collapse
Affiliation(s)
- Mei Zhao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education in China, Guangzhou, China
| | - Huanpeng Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education in China, Guangzhou, China
| | - Qingfeng Ding
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education in China, Guangzhou, China
| | - Xiaoxie Xu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education in China, Guangzhou, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education in China, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Dowling JP, Nair A, Zhang J. A novel function of RIP1 in postnatal development and immune homeostasis by protecting against RIP3-dependent necroptosis and FADD-mediated apoptosis. Front Cell Dev Biol 2015; 3:12. [PMID: 25767797 PMCID: PMC4341114 DOI: 10.3389/fcell.2015.00012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/10/2015] [Indexed: 01/10/2023] Open
Abstract
RIP1 is an adaptor kinase originally identified as being able to associate with TNFR1 and Fas, and is later shown to be involved in signaling induced by TLRs. Major signaling pathways regulated by RIP1 include necroptosis, apoptosis, and pro-survival/inflammation NF-κB activation. Previous studies show that RIP1 deficiency has no effect on mouse embryogenesis, but blocks postnatal development. This phenotype could not readily be explained, since mice lacking TNFR1, Fas, or TLRs show no apparent developmental defect. Certain types of RIP1-deficient cells are hypersensitive to TNF-induced apoptosis. However, in our previous study, deletion of the apoptotic adaptor protein, FADD, provides marginal improvement of postnatal development of rip1−/− mice. Remarkably, the current data shows that haploid insufficiency of RIP3, a known mediator of necroptosis, allowed survival of rip1−/−fadd−/− mice beyond weaning age, although the resulting rip1−/−fadd−/− rip3+/− mice were significant smaller in size and weight. Moreover, complete absence of RIP3 further improved postnatal development of the resulting rip1−/−fadd−/−rip3−/− mice, which display normal size and weight. In such triple knockout (TKO) mice, lymphocytes underwent normal development, but progressively accumulated as mice age. This lymphoproliferative (lpr) disease in TKO mice is, however, less severe than that of fadd−/−rip3−/− double knockout mice. In total, the data show that the postnatal developmental defect in rip1−/− mice is due in part to FADD-mediated apoptosis as well as RIP3-dependent necroptosis. Moreover, the function of RIP1 contributes to development of lpr diseases.
Collapse
Affiliation(s)
- John P Dowling
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University Philadelphia, PA, USA
| | - Anirudh Nair
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University Philadelphia, PA, USA
| | - Jianke Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University Philadelphia, PA, USA
| |
Collapse
|
13
|
Wu T, Ye Y, Min SY, Zhu J, Khobahy E, Zhou J, Yan M, Hemachandran S, Pathak S, Zhou XJ, Andreeff M, Mohan C. Prevention of murine lupus nephritis by targeting multiple signaling axes and oxidative stress using a synthetic triterpenoid. Arthritis Rheumatol 2015; 66:3129-39. [PMID: 25047252 DOI: 10.1002/art.38782] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 07/08/2014] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Current treatment options for lupus are far from optimal. Previously, we reported that phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin, MEK-1/ERK-1,2, p38, STAT-3, STAT-5, NF-κB, multiple Bcl-2 family members, and various cell cycle molecules were overexpressed in splenic B cells in an age-dependent and gene dose-dependent manner in mouse strains with spontaneous lupus. Since the synthetic triterpenoid methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me) has been shown to inhibit AKT, MEK-1/2, and NF-κB, and to induce caspase-mediated apoptosis, we tested the therapeutic potential of this agent in murine lupus nephritis. METHODS The synthetic triterpenoid CDDO-Me or placebo was administered to 2-month-old B6.Sle1.Sle3 mice or MRL/lpr mice, which develop spontaneous lupus. All mice were phenotyped for disease. RESULTS CDDO-Me-treated mice exhibited significantly reduced splenic cellularity, with decreased numbers of both CD4+ T cells and activated CD69+/CD4+ T cells compared to the placebo-treated mice. These mice also exhibited a significant reduction in serum autoantibody levels, including anti-double-stranded DNA (anti-dsDNA) and antiglomerular antibodies. Finally, CDDO-Me treatment attenuated renal disease in mice, as indicated by reduced 24-hour proteinuria, blood urea nitrogen, and glomerulonephritis. At the mechanistic level, CDDO-Me treatment dampened MEK-1/2, ERK, and STAT-3 signaling within lymphocytes and oxidative stress. Importantly, the NF-E2-related factor 2 pathway was activated after CDDO-Me treatment, indicating that CDDO-Me may modulate renal damage in lupus via the inhibition of oxidative stress. CONCLUSION These findings underscore the importance of AKT/MEK-1/2/NF-κB signaling in engendering murine lupus. Our findings indicate that the blockade of multiple signaling nodes and oxidative stress may effectively prevent and reverse the hematologic, autoimmune, and pathologic manifestations of lupus.
Collapse
Affiliation(s)
- Tianfu Wu
- University of Texas Southwestern Medical Center at Dallas and University of Houston, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kanari Y, Sugahara-Tobinai A, Takahashi H, Inui M, Nakamura A, Hirose S, Takai T. Dichotomy in FcγRIIB deficiency and autoimmune-prone SLAM haplotype clarifies the roles of the Fc receptor in development of autoantibodies and glomerulonephritis. BMC Immunol 2014; 15:47. [PMID: 25339546 PMCID: PMC4209029 DOI: 10.1186/s12865-014-0047-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/09/2014] [Indexed: 11/25/2022] Open
Abstract
Background The significance of a unique inhibitory Fc receptor for IgG, FcγRIIB (RIIB), in the prevention of spontaneous production of autoantibodies remains controversial, due mainly to the fact that the RIIB locus is adjacent to the autoimmune-related SLAM locus harboring the genes coding for signaling lymphocyte activation molecules, making it difficult to isolate the effect of RIIB deletion from that of SLAM in gene-targeted mice. Our objective was to determine the influence of RIIB deletion on the spontaneous development of autoimmune diseases and to compare it with that of potentially pathogenic SLAM. Results We established two congenic C57BL/6 (B6) strains, one with the RIIB deletion and the other with SLAM, by backcrossing 129/SvJ-based RIIB-deficient mice into the B6 genetic background extensively. The RIIB deficiency indeed led to the production and/or accumulation of a small amount of anti-nuclear autoantibodies (ANAs) and to weak IgG immune-complex deposition in glomeruli without any obvious manifestation of lupus nephritis. In contrast, pathogenic SLAM in the B6 genetic background induced ANAs but no IgG immune-complex deposition in the kidneys. Naïve SLAM mice but not RIIB-deficient mice exhibited hyperplasia of splenic germinal centers. Conclusion The present results clarify the roles of RIIB in preventing production and/or accumulation of a small amount of ANAs, and development of glomerulonephritis. The combined effects of RIIB deletion and pathogenic SLAM can lead to severe lupus nephritis in the B6 genetic background. Electronic supplementary material The online version of this article (doi:10.1186/s12865-014-0047-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Toshiyuki Takai
- Department of Experimental Immunology and CREST Program of JST, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Sendai 980-8575, Japan.
| |
Collapse
|
15
|
Tessier-Cloutier B, Clarke AE, Ramsey-Goldman R, Gordon C, Hansen JE, Bernatsky S. Systemic Lupus Erythematosus and Malignancies. Rheum Dis Clin North Am 2014; 40:497-506, viii. [DOI: 10.1016/j.rdc.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Cyclic GMP catabolism up-regulation in MRL/lpr lupus-prone mice is associated with organ remodeling. Biochim Biophys Acta Mol Basis Dis 2014; 1842:916-26. [PMID: 24631654 DOI: 10.1016/j.bbadis.2014.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/19/2014] [Accepted: 03/03/2014] [Indexed: 11/21/2022]
Abstract
Production of high titer of antibodies against nuclear components is a hallmark of systemic lupus erythematosus, an autoimmune disease characterized by the progressive chronic inflammation of multiple joints and organs. Organ damage and dysfunction such as renal failure are typical clinical features in lupus. Cell hypermetabolism and hypertrophy can accelerate organ dysfunction. In this study we focus on a specific murine model of lupus, the MRL/lpr strain, and investigated the role of cyclic guanosine monophosphate (cGMP) catabolism in organ remodeling of main target tissues (kidney, spleen and liver) in comparison with age-matched control mice. In MRL/lpr-prone mice, the cGMP-phosphodiesterase (PDE) activities were significantly increased in the kidney (3-fold, P<0.001), spleen (2-fold, P<0.001) and liver (1.6-fold, P<0.05). These raised activity levels were paralleled by both an increased activity of PDE1 in the kidney (associated with nephromegaly) and in the liver, and PDE2 in the spleen of lupus-prone mice. The up-regulation of PDE1 and PDE2 activities were associated with a decrease in intracellular cGMP levels. This underlines an alteration of cGMP-PDE signaling in the kidney, spleen and liver targeting different PDEs according to organs. In good agreement with these findings, a single intravenous administration to MRL/lpr mice of nimodipine (PDE1 inhibitor) but not of EHNA (PDE2 inhibitor) was able to significantly lower peripheral hypercellularity (P=0.0401), a characteristic feature of this strain of lupus-prone mice. Collectively, our findings are important for generating personalized strategies to prevent certain forms of the lupus disease as well as for understanding the role of PDEs and cGMP in the pathophysiology of lupus.
Collapse
|
17
|
The combination of two Sle2 lupus-susceptibility loci and Cdkn2c deficiency leads to T-cell-mediated pathology in B6.Fas(lpr) mice. Genes Immun 2013; 14:373-9. [PMID: 23698709 PMCID: PMC3752316 DOI: 10.1038/gene.2013.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 01/12/2023]
Abstract
The NZM2410 Sle2c1 lupus susceptibility locus is responsible for the expansion of the B1a cell compartment, and for the induction of T-cell induced renal and skin pathology on a CD95-deficient (Fas(lpr)) background. We have previously shown that deficiency in the cyclin-dependent kinase inhibitor p18(INK4c) (p18) was responsible for the B1a cell expansion but was not sufficient to account for the pathology in B6.lpr mice. This study was designed to map the additional Sle2c1 loci responsible for autoimmune pathology when co-expressed with CD95 deficiency. The production, fine-mapping and phenotypic characterization of five recombinant intervals indicated that three interacting subloci were responsive for inducting autoimmune pathogenesis in B6.lpr mice. One of these subloci corresponds most likely to p18 deficiency. Another major locus mapping to a 2-Mb region at the telomeric end of Sle2c1 is necessary to both renal and skin pathology. Finally, a third locus centromeric to p18 enhances the severity of lupus nephritis. These results provide new insights into the genetic interactions leading to systemic lupus erythematosus disease presentation, and represent a major step towards the identification of novel susceptibility genes involved in T-cell-mediated organ damage.
Collapse
|
18
|
Arai S, Maehara N, Iwamura Y, Honda SI, Nakashima K, Kai T, Ogishi M, Morita K, Kurokawa J, Mori M, Motoi Y, Miyake K, Matsuhashi N, Yamamura KI, Ohara O, Shibuya A, Wakeland E, Li QZ, Miyazaki T. Obesity-Associated Autoantibody Production Requires AIM to Retain the Immunoglobulin M Immune Complex on Follicular Dendritic Cells. Cell Rep 2013; 3:1187-98. [DOI: 10.1016/j.celrep.2013.03.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/31/2013] [Accepted: 03/06/2013] [Indexed: 12/28/2022] Open
|
19
|
Xu Z, Cuda CM, Croker BP, Morel L. The NZM2410-derived lupus susceptibility locus Sle2c1 increases Th17 polarization and induces nephritis in fas-deficient mice. ACTA ACUST UNITED AC 2013; 63:764-74. [PMID: 21360506 DOI: 10.1002/art.30146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Sle2 is a lupus susceptibility locus that has been linked to glomerulonephritis in the NZM2410 mouse. By itself, Sle2 does not induce any autoimmune pathology but results in the accumulation of B-1a cells. This study was designed to assess the contribution of Sle2 to the pathogenesis of autoimmunity. METHODS Sle2 or its subcongenic intervals (Sle2a, Sle2b, and Sle2c1) were bred to Fas-deficient B6.lpr mice. Lymphoid phenotypes, which were focused on T cells, were assessed by flow cytometry, and histopathologic changes were compared between cohorts of B6.Sle2.lpr congenic mice and B6.lpr mice of ages up to 6 months. RESULTS Sle2 synergized with lpr, resulting in a greatly accelerated lymphadenopathy that largely targeted T cells and mapped to the Sle2c1 locus. This locus has been identified as the main contributor to B-1a cell expansion. Further analyses showed that Sle2c1 expression skewed the differentiation and polarization of Fas-deficient T cells, with a reduction of the CD4+CD25+FoxP3+ regulatory T cell subset and an expansion of the Th17 cells. This was associated with a high number of T cell infiltrates that promoted severe nephritis and dermatitis in the B6.Sle2c1.lpr mice. CONCLUSION These results show that Sle2c1 contributes to lupus pathogenesis by affecting T cell differentiation in combination with other susceptibility loci, such as lpr. The significance of the cosegregation of this phenotype and B-1a cell expansion in Sle2c1-expressing mice in relation to the pathogenesis of lupus is discussed.
Collapse
Affiliation(s)
- Zhiwei Xu
- University of Florida, Gainesville, FL 32610-0275, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Autoreactive B and T cells are present in healthy, autoimmunity-free individuals, but they are kept in check by various regulatory mechanisms. In systemic lupus erythematosus (SLE) patients, however, autoreactive cells are expanded, activated, and produce large quantities of autoantibodies, directed especially against nuclear antigens. These antibodies form immune complexes with self-nucleic acids present in SLE serum. Since self-DNA and self-RNA in the form of protein complexes can act as TLR9 and TLR7 ligands, respectively, TLR stimulation is suggested as an additional signal contributing to activation and/or modulation of the aberrant adaptive immune response. Data from mouse models suggest a pathogenic role for TLR7 and a protective role for TLR9 in the pathogenesis of SLE. Future investigations are needed to elucidate the underlying modulatory mechanisms and the role of TLR7 and TLR9 in the complex pathogenesis of human SLE.
Collapse
Affiliation(s)
- T Celhar
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03 Immunos, Singapore
| | | | | |
Collapse
|
21
|
Huang Z, Zhang Z, Zha Y, Liu J, Jiang Y, Yang Y, Shao J, Sun X, Cai X, Yin Y, Chen J, Dong L, Zhang J. The effect of targeted delivery of anti-TNF-α oligonucleotide into CD169+ macrophages on disease progression in lupus-prone MRL/lpr mice. Biomaterials 2012; 33:7605-12. [PMID: 22795853 DOI: 10.1016/j.biomaterials.2012.06.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/26/2012] [Indexed: 01/12/2023]
Abstract
Systemic blockade of TNF-α via monoclonal antibodies and soluble receptors has shown considerable effects against several typical autoimmune disorders, but remains unconvincing for the treatment of lupus. Based on our previous study, a CD169(+) macrophage-specific therapy using TNF-α antisense oligonucleotides (ASO) was tested for its efficacy in MRL/lpr lupus-prone mice. ASO-containing cationic agarose hydrogel were injected into mice subcutaneously. Tissue distribution and cellular localization of ASO were determined. The therapeutic effects and possible mechanism were further studied in MRL/lpr lupus-prone mice. The results showed that specifically accumulation of the anti-TNF-α ASO in CD169(+) macrophages could significantly reduce TNF-α expression in CD169(+) macrophages and inhibit lymphocytes over-proliferation, finally resulted in the relief of the lupus-like symptoms of the animals. The nucleic acid drug based on CD169(+) macrophage-specific TNF-α regulation represents a potential therapeutic approach that may be valuable for lupus therapy.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Systemic lupus erythematosus (SLE) patients with discoid lupus erythematosus (DLE) were reported to have milder disease. To test this observation, we used sandwich arrays containing 98 autoantigens to compare autoantibody profiles of SLE subjects without DLE (DLE-SLE+) (N=9), SLE subjects with DLE (DLE+SLE+) (N=10), DLE subjects without SLE (DLE+SLE-) (N=11), and healthy controls (N=11). We validated differentially expressed autoantibodies using immunoassays in DLE-SLE+ (N=18), DLE+SLE+ (N=17), DLE+SLE- (N=23), and healthy subjects (N=22). Arrays showed 15 IgG autoantibodies (10 against nuclear antigens) and 4 IgM autoantibodies that were differentially expressed (q-value<0.05). DLE-SLE+ subjects had higher IgG autoantibodies against double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), double-stranded RNA (dsRNA), histone H2A and H2B, and SS-A (52 kDa) compared with all other groups including DLE+SLE+ subjects (P<0.05). Immunoassays measuring anti-dsDNA, -ssDNA, and -SS-A (52 kDa) IgG autoantibodies showed similar trends (P<0.05). Healthy and DLE+SLE- subjects expressed higher IgM autoantibodies against alpha beta crystallin, lipopolysaccharide, heat-shock cognate 70, and desmoglein-3 compared with DLE+SLE+ and DLE-SLE+ subjects. IgG:IgM ratios of autoantibodies against nuclear antigens progressively rose from healthy to DLE-SLE+ subjects. In conclusion, lower IgG autoantibodies against nuclear antigens in DLE+SLE+ versus DLE-SLE+ subjects suggest that DLE indicates lower disease severity. Higher IgM autoantibodies against selected antigens in healthy and DLE+SLE- subjects may be nonpathogenic.
Collapse
|
23
|
|
24
|
Jog NR, Frisoni L, Shi Q, Monestier M, Hernandez S, Craft J, Prak ETL, Caricchio R. Caspase-activated DNase is required for maintenance of tolerance to lupus nuclear autoantigens. ACTA ACUST UNITED AC 2011; 64:1247-56. [PMID: 22127758 DOI: 10.1002/art.33448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Caspase-activated DNase (CAD) is an endonuclease that is activated by active caspase 3 during apoptosis and is responsible for degradation of chromatin into nucleosomal units. These nucleosomal units are then included in apoptotic bodies. The presence of apoptotic bodies is considered important for the generation of autoantigen in autoimmune diseases, such as systemic lupus erythematosus (SLE), that are characterized by the presence of antinuclear antibodies. The present study was carried out to determine the role of CAD in SLE and to investigate the ability of lupus autoantibodies to bind to CAD-deficient or CAD-sufficient apoptotic cells. METHODS The Sle1, Sle123, and 3H9 mouse models of SLE, in which autoimmunity is genetically predetermined, were used. To determine the role of chromatin fragmentation in SLE, CAD deficiency was introduced in these mouse models. RESULTS Deficiency of CAD resulted in increased anti-double-stranded DNA antibody titers in lupus-prone mice. Surprisingly, the absence of CAD exacerbated only genetically predetermined autoimmune responses. To further determine whether nuclear modifications are needed in order to maintain tolerance to nuclear autoantigens, we used the 3H9 mouse, an anti-DNA heavy chain knockin; in this model, the autoreactive B cells are tolerized by anergy. In accordance with findings in the CAD-mutant Sle1 and Sle123 mice, CAD-deficient 3H9 mice spontaneously generated anti-DNA antibodies. Finally, we showed that autoantibodies with specificities toward histone-DNA complexes bind more to CAD-deficient apoptotic cells than to CAD-sufficient apoptotic cells. CONCLUSION We propose that in mice that are genetically predisposed to lupus development, nuclear apoptotic modifications are needed to maintain tolerance. In the absence of these modifications, apoptotic chromatin is abnormally exposed, facilitating the autoimmune response.
Collapse
|
25
|
Guo L, Tian J, Guo Z, Zheng B, Han S. The absence of immunoglobulin D B cell receptor-mediated signals promotes the production of autoantibodies and exacerbates glomerulonephritis in murine lupus. Clin Exp Immunol 2011; 164:227-35. [PMID: 21352206 DOI: 10.1111/j.1365-2249.2011.04332.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulin (Ig)D is the major antigen receptor isotype co-expressed with IgM on the surface of most peripheral B cells in mice and humans. However, the biological role of IgD as B cell receptor (BCR) has remained unclear. Previous studies have indicated that IgD may play a role in B cell tolerance. To understand the role of IgD in B cell tolerance and autoimmunity, we have examined the development of autoimmune syndrome in lpr mice deficient for IgD. The present study showed that IgD deficiency did not alter lymphoproliferation and lymphocyte activation in lpr mice. The survival and proliferation of B cells were not affected by the absence of IgD, indicating that IgD BCR-mediated signals do not have an important role in negative selection of autoreactive B cell clones. Interestingly, compared to IgD-competent littermates, lpr mice with IgD deficiency had elevated autoantibody production, increased deposition of immune complex in the kidney and more severe nephritis. Accumulation of abnormal CD4(-) CD8(-) αβ(+) T cells was accelerated in IgD(-/-) lpr mice compared to lpr mice. These results suggest that IgD BCR-mediated signals may be involved in the differentiation of autoreactive B cells into plasma cells and abnormal T cell expansion.
Collapse
Affiliation(s)
- L Guo
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
26
|
Ramanujam M, Bethunaickan R, Huang W, Tao H, Madaio MP, Davidson A. Selective blockade of BAFF for the prevention and treatment of systemic lupus erythematosus nephritis in NZM2410 mice. ACTA ACUST UNITED AC 2010; 62:1457-68. [PMID: 20131293 DOI: 10.1002/art.27368] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To determine whether BAFF or combined BAFF/APRIL blockade is effective in a mouse model of systemic lupus erythematosus (SLE) nephritis characterized by rapidly progressive glomerulosclerosis. METHODS NZM2410 mice at early and late stages of SLE nephritis were treated with a short course of BAFF-R-Ig or TACI-Ig fusion protein. Proteinuria and serologic profile were evaluated every 2 weeks. Immunohistochemical, flow cytometric, and enzyme-linked immunospot analyses of the spleen, kidney, and bone marrow were performed after 8 weeks and after 33 weeks. RESULTS A short course of selective blockade of BAFF alone was sufficient to prevent and treat SLE nephritis in NZM2410 mice, despite the formation of pathogenic autoantibodies. Decreases in spleen size and B cell depletion persisted for more than 33 weeks after treatment and resulted in secondary decreases in CD4 memory T cell formation and activation of splenic and peripheral monocytes. Immune complex deposition in the kidneys was dissociated from renal damage and from activation of renal endothelial and resident dendritic cells. CONCLUSION Selective blockade of BAFF alone, which resulted in B cell depletion and splenic collapse, was sufficient to prevent and treat the disease in this model of noninflammatory SLE nephritis. This shows that the inflammatory microenvironment may be a determinant of the outcome of B cell modulation strategies.
Collapse
Affiliation(s)
- Meera Ramanujam
- Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chen L, Guo L, Tian J, Zheng B, Han S. Deficiency in activation-induced cytidine deaminase promotes systemic autoimmunity in lpr mice on a C57BL/6 background. Clin Exp Immunol 2009; 159:169-75. [PMID: 19922498 DOI: 10.1111/j.1365-2249.2009.04058.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Activation-induced deaminase (AID) is a prerequisite for immunoglobulin (Ig) class-switch recombination and somatic hypermutation, which is critical for antibody affinity maturation. IgM and IgG autoantibodies are characteristic of the systemic autoimmune disorders such as lupus. However, the relative contributions of hypermutated high-affinity IgG antibodies and germline-encoded IgM antibodies to systemic autoimmunity are not defined fully. The role of AID in autoimmunity is unclear. The current study used AID-deficient mice to investigate the role of AID in the development and pathogenesis of murine lupus. C57BL/6 mice deficient in both Fas and AID were generated. Compared to their AID-competent littermates, AID(-/-) lymphoproliferative (lpr) mice produced significantly elevated levels of IgM autoreactive antibodies with enhanced germinal centre (GC) response, developed more advanced splenomegaly and exhibited more severe glomerulonephritis. Thus, AID may play an important role in the negative regulation of systemic autoimmune manifestations in murine lupus. The results also indicate that hypermutated high-affinity IgG antibodies are not necessary for the development of autoimmune syndrome in lpr mice on a C57BL/6 background.
Collapse
Affiliation(s)
- L Chen
- Department of Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
28
|
Lartigue A, Colliou N, Calbo S, François A, Jacquot S, Arnoult C, Tron F, Gilbert D, Musette P. Critical role of TLR2 and TLR4 in autoantibody production and glomerulonephritis in lpr mutation-induced mouse lupus. THE JOURNAL OF IMMUNOLOGY 2009; 183:6207-16. [PMID: 19841185 DOI: 10.4049/jimmunol.0803219] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by pathogenic autoantibodies directed against nuclear Ags and immune complex deposits in damaged organs. Environmental factors have been thought to play a role in the onset of the disease. The recognition of these factors is mediated by TLRs, in particular TLR2 and TLR4 which bind pathogen-associated molecular patterns of Gram(+) and Gram(-) bacteria, respectively. We attempted to determine the role of these TLRs in SLE by creating TLR2- or TLR4-deficient C57BL/6(lpr/lpr) mice. These mice developed a less severe disease and fewer immunological alterations. Indeed, in C57BL/6(lpr/lpr)-TLR2 or -TLR4-deficient mice, glomerular IgG deposits and mesangial cell proliferation were dramatically decreased and antinuclear, anti-dsDNA, and anti-cardiolipin autoantibody titers were significantly reduced. However, the response against nucleosome remained unaffected, indicating a role of TLR2 and TLR4 in the production of Abs directed against only certain categories of SLE-related autoantigens. Analysis of B cell phenotype showed a significant reduction of marginal zone B cells, particularly in C57BL/6(lpr/lpr)-TLR4-deficient mice, suggesting an important role of TLR4 in the sustained activation of these cells likely involved in autoantibody production. Interestingly, the lack of TLR4 also affected the production of cytokines involved in the development of lupus disease.
Collapse
|
29
|
Kanta H, Mohan C. Three checkpoints in lupus development: central tolerance in adaptive immunity, peripheral amplification by innate immunity and end-organ inflammation. Genes Immun 2009; 10:390-6. [DOI: 10.1038/gene.2009.6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Fuchs H, Posovszky C, Lahr G, van der Werff ten Bosch J, Boehler T, Debatin KM. Residual CD95-pathway function in children with autoimmune lymphoproliferative syndrome is independent from clinical state and genotype of CD95 mutation. Pediatr Res 2009; 65:163-8. [PMID: 18948840 DOI: 10.1203/pdr.0b013e318191f7e4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human autoimmune lymphoproliferative syndrome (ALPS) is caused by defective CD95-mediated apoptosis of lymphocytes. In most patients, heterozygous mutations within the CD95 gene are found. Mutated proteins interfere with CD95-signaling in a dominant-negative way. However, the penetrance of clinical disease is variable. We describe 13 patients out of nine families with the clinical presentation of ALPS. Eight different mutations were detected. Sensitivity to CD95-induced cell-death, assembly of the CD95-death-inducing signaling complex (DISC), and activity of initiator caspases-8 and -10 were compared in EBV-transformed B-lymphoblastoid cells of these patients. All CD95-mutations led to a reduced DISC formation and diminished initiator caspase activity upon CD95-stimulation, whereas a marked heterogeneity in sensitivity to CD95-induced killing was found. Residual apoptosis sensitivity to almost normal levels could be achieved upon cross-linking by addition of protein A. Thus, no correlation between residual CD95 sensitivity and clinical phenotype or genotype of ALPS was found. This observation is only partially explained by the variable effects of the CD95-mutations themselves. It also points to a pronounced influence of additional factors, such as modifier pathways or exogenous effects apart from the CD95 pathway in the pathogenesis of ALPS.
Collapse
Affiliation(s)
- Hans Fuchs
- Children's Hospital, University of Ulm, Ulm 89073, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Heidari Y, Fossati-Jimack L, Carlucci F, Walport MJ, Cook HT, Botto M. A lupus-susceptibility C57BL/6 locus on chromosome 3 (Sle18) contributes to autoantibody production in 129 mice. Genes Immun 2008; 10:47-55. [PMID: 18843275 DOI: 10.1038/gene.2008.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Shi X, Xie C, Chang S, Zhou XJ, Tedder T, Mohan C. CD19 hyperexpression augments Sle1-induced humoral autoimmunity but not clinical nephritis. ACTA ACUST UNITED AC 2007; 56:3057-69. [PMID: 17763445 DOI: 10.1002/art.22825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE B cell hyperactivity is a common denominator in murine and human systemic lupus erythematosus. Some susceptibility genes in lupus are associated with B cell hyperactivity, but others are clearly not. While the Sle1 lupus susceptibility locus of NZM2410/NZW origin leads to chromatin-focused autoimmunity, genetically engineered overexpression of CD19 leads to "generalized" B cell hyperactivity. We undertook this study to determine the degree to which generalized B cell hyperactivity can amplify lupus pathogenesis. METHODS To elucidate the impact of generalized B cell hyperactivity on Sle1-triggered autoimmunity, B6 mice bearing the human CD19 transgene were rendered congenic for the Sle1(z) genetic locus and phenotyped for serologic, cellular, and pathologic evidence of lupus. RESULTS As expected, B6.Sle1.hCD19(Tg/Tg) mice, homozygous at Sle1 and bearing the hCD19 transgene, exhibited high levels of IgM and IgG anti-DNA/antiglomerular autoantibodies, skewed B cell subsets, and profoundly activated B and T cells. Despite exhibiting glomerular IgM, IgG, and complement deposits, these mice did not exhibit accelerated mortality or any clinical evidence of renal dysfunction. CONCLUSION Generalized B cell hyperactivity may augment humoral autoimmunity, but this may not suffice to engender end-organ disease in lupus. These findings allude to the presence of an additional distal checkpoint that dissociates pathogenic autoantibody formation and renal immunoglobulin deposition from the progression to clinical nephritis in lupus.
Collapse
Affiliation(s)
- Xiaoyan Shi
- University of Texas Southwestern Medical School, Dallas, TX 75390-8884, USA
| | | | | | | | | | | |
Collapse
|
33
|
Wu T, Xie C, Wang HW, Zhou XJ, Schwartz N, Calixto S, Mackay M, Aranow C, Putterman C, Mohan C. Elevated Urinary VCAM-1, P-Selectin, Soluble TNF Receptor-1, and CXC Chemokine Ligand 16 in Multiple Murine Lupus Strains and Human Lupus Nephritis. THE JOURNAL OF IMMUNOLOGY 2007; 179:7166-75. [DOI: 10.4049/jimmunol.179.10.7166] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Abstract
Patients with autoimmune lymphoproliferative syndrome (ALPS) and systemic lupus erythematosis (SLE) have T-cell dysregulation and produce abnormal, activated T lymphocytes and an atypical peripheral T-cell population, termed double negative T cells (DNTs). T-cell functions, including DNT transition in T-cell development and T-cell activation, are critically dependent on Notch signaling. We hypothesized that inhibiting Notch signaling would be effective in ALPS and SLE by reducing the production of abnormal DNTs and by blocking aberrant T-cell activation. We tested this hypothesis using murine models of ALPS and SLE. Mice were randomized to treatment with the notch pathway inhibitor (gamma-secretase inhibitor), N-S-phenyl-glycine-t-butyl ester (DAPT), or vehicle control. Response to treatment was assessed by measurement of DNTs in blood and lymphoid tissue, by monitoring lymph node and spleen size with ultrasound, by quantifying cytokines by bead-array, by ELISA for total IgG and anti-double-stranded DNA (dsDNA) specific antibodies, and by histopathologic assessment for nephritis. We found a profound and statistically significant decrease in all disease parameters, comparing DAPT-treated mice to controls. Using a novel dosing schema, we avoided the reported toxicities of gamma-secretase inhibitors. Inhibiting the Notch signaling pathway may thus present an effective, novel, and well-tolerated treatment for autoimmune and lymphoproliferative diseases.
Collapse
|
35
|
Wu T, Qin X, Kurepa Z, Kumar KR, Liu K, Kanta H, Zhou XJ, Satterthwaite AB, Davis LS, Mohan C. Shared signaling networks active in B cells isolated from genetically distinct mouse models of lupus. J Clin Invest 2007; 117:2186-96. [PMID: 17641780 PMCID: PMC1913486 DOI: 10.1172/jci30398] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 05/08/2007] [Indexed: 01/01/2023] Open
Abstract
Though B cells play key roles in lupus pathogenesis, the molecular circuitry and its dysregulation in these cells as disease evolves remain poorly understood. To address this, a comprehensive scan of multiple signaling axes using multiplexed Western blotting was undertaken in several different murine lupus strains. PI3K/AKT/mTOR (mTOR, mammalian target of rapamycin), MEK1/Erk1/2, p38, NF-kappaB, multiple Bcl-2 family members, and cell-cycle molecules were observed to be hyperexpressed in lupus B cells in an age-dependent and lupus susceptibility gene-dose-dependent manner. Therapeutic targeting of the AKT/mTOR axis using a rapamycin (sirolimus) derivative ameliorated the serological, cellular, and pathological phenotypes associated with lupus. Surprisingly, the targeting of this axis was associated with the crippling of several other signaling axes. These studies reveal that lupus pathogenesis is contingent upon the activation of an elaborate network of signaling cascades that is shared among genetically distinct mouse models and raise hope that targeting pivotal nodes in these networks may offer therapeutic benefit.
Collapse
Affiliation(s)
- Tianfu Wu
- Division of Rheumatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8884, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu Y, Li L, Kumar KR, Xie C, Lightfoot S, Zhou XJ, Kearney JF, Weigert M, Mohan C. Lupus susceptibility genes may breach tolerance to DNA by impairing receptor editing of nuclear antigen-reactive B cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:1340-52. [PMID: 17617627 DOI: 10.4049/jimmunol.179.2.1340] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An NZM2410-derived lupus susceptibility locus on murine chromosome 4, Sle2(z), has previously been noted to engender generalized B cell hyperactivity. To study how Sle2(z) impacts B cell tolerance, two Ig H chain site-directed transgenes, 3H9 and 56R, with specificity for DNA were backcrossed onto the C57BL/6 background with or without Sle2(z). Interestingly, the presence of the NZM2410 "z" allele of Sle2 on the C57BL/6 background profoundly breached B cell tolerance to DNA, apparently by thwarting receptor editing. Whereas mAbs isolated from the spleens of B6.56R control mice demonstrated significant usage of the endogenous (i.e., nontargeted) H chain locus and evidence of vigorous L chain editing; Abs isolated from B6.Sle2(z).56R spleens were largely composed of the transgenic H chain paired with a spectrum of L chains, predominantly recombined to J(k)1 or J(k)2. In addition, Sle2(z)-bearing B cells adopted divergent phenotypes depending on their Ag specificity. Whereas Sle2(z)-bearing anti-DNA transgenic B cells were skewed toward marginal zone B cells and preplasmablasts, B cells from the same mice that did not express the transgene were skewed toward the B1a phenotype. This work illustrates that genetic loci that confer lupus susceptibility may influence B cell differentiation depending on their Ag specificity and potentially contribute to antinuclear autoantibody formation by infringing upon B cell receptor editing. Taken together with a recent report on Sle1(z), these studies suggest that dysregulated receptor-editing of nuclear Ag-reactive B cells may be a major mechanism through which antinuclear Abs arise in lupus.
Collapse
Affiliation(s)
- Yang Liu
- Department of Internal Medicine and Center for Immunology, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu K, Li QZ, Yu Y, Liang C, Subramanian S, Zeng Z, Wang HW, Xie C, Zhou XJ, Mohan C, Wakeland EK. Sle3 and Sle5 can independently couple with Sle1 to mediate severe lupus nephritis. Genes Immun 2007; 8:634-45. [PMID: 17728789 DOI: 10.1038/sj.gene.6364426] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Genetic analyses of the lupus-prone NZM2410 mouse have identified multiple susceptibility loci on chromosome 7, termed Sle3 and Sle5. Both of these loci were contained within a large congenic interval, originally termed as Sle3 that strongly impacts a variety of myeloid and T-cell phenotypes and mediates fatal lupus nephritis when combined with Sle1. We have now produced two subcongenic strains, B6.Sle3 and B6.Sle5, carrying the Sle3 and Sle5 intervals separately and characterized their phenotypes as monocongenic strains and individually in combination with Sle1. Neither B6.Sle3 nor B6.Sle5 monocongenic strain develop severe autoimmunity; however, both of these intervals cause the development of severe glomerulonephritis when combined with Sle1. Thus, B6.Sle1Sle3 and B6.Sle1Sle5 exhibit splenomegaly, expansion of activated B and CD4+ T-cell populations and high levels of IgG and IgM autoantibodies targeting multiple nuclear antigens, intact glomeruli and various other autoantigens. In addition, B6.Sle1Sle3 mice also produced higher levels of IgA antinuclear autoantibodies, which were implicated in the development of IgA nephropathy. Our results indicate that Sle3 and Sle5 can independently complement with Sle1, through shared and unique mechanisms, to mediate the development of severe autoimmunity.
Collapse
Affiliation(s)
- K Liu
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9093, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Systemic lupus erythematosus is a generalized autoimmune disease affecting multiple end-organs including the kidneys. Glomerulonephritis is a leading cause of death in lupus, both in patients and murine models that develop disease spontaneously. Genetic mapping studies have uncovered several genetic intervals that confer susceptibility to nephritis both in human beings and in mice. This review surveys the genomic positions of these nephritis susceptibility loci in murine lupus. Currently we know very little about the molecular identities of the culprit genes within these mapped loci and whether these genetic elements contribute to nephritis directly in a renal-intrinsic fashion or indirectly by augmenting the formation of pathogenic autoantibodies. The next decade is likely to witness a significant broadening of our understanding of how different genes and molecules might facilitate end-organ damage in lupus.
Collapse
Affiliation(s)
- Li Li
- Department of Internal Medicine (Rheumatology) and the Center for Immunology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | | |
Collapse
|
39
|
Ayensu WK, Tchounwou PB. Microarray analysis of mercury-induced changes in gene expression in human liver carcinoma (HepG2) cells: importance in immune responses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2007; 3:141-73. [PMID: 16823088 PMCID: PMC3807506 DOI: 10.3390/ijerph2006030018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mercury is widely distributed in the biosphere, and its toxic effects have been associated with human death and several ailments that include cardiovascular diseases, anemia, kidney and liver damage, developmental abnormalities, neurobehavioral disorders, autoimmune diseases, and cancers in experimental animals. At the cellular level, mercury has been shown to interact with sulphydryl groups of proteins and enzymes, to damage DNA, and to modulate cell cycle progression and/or apoptosis. However, the underlying molecular mechanisms of mercury toxicity remain to be elucidated. Our laboratory has demonstrated that mercury exposure induces cytotoxicity and apoptosis, modulates cell cycle, and transcriptionally activates specific stress genes in human liver carcinoma cells. The liver is one of the few organs capable of regeneration from injury. Dormant genes in the liver are therefore capable of reactivation. In this research, we hypothesize that mercury-induced hepatotoxicity is associated with the modulation of specific gene expressions in liver cells that can lead to several disease states involving immune system dysfunctions. In testing this hypothesis, we used an Affymetrix oligonucleotide microarray with probe sets complementary to more than 20,000 genes to determine whether patterns of gene expressions differ between controls and mercury (1–3μg/mL) treated cells. There was a clear separation in gene expression profiles between controls and mercury-treated cells. Hierarchical cluster analysis identified 2,211 target genes that were affected. One hundred and thirty-eight of these genes were up-regulated, among which forty three were significantly over-expressed (p = 0.001) with greater than a two-fold change, and ninety five genes were moderately over-expressed with an increase of more than one fold (p = 0.004). Two thousand and twenty-three genes were down-regulated with only forty five of them reaching a statistically significant decline at p = 0.05 according to the Welch’s ANOVA/Welch’s t-test. Further analyses of affected genes identified genes located on all human chromosomes except chromosome 22 with higher than normal effects on genes found on chromosomes 1–14, 17–20 (sex-determining region Y)-box18SRY, 21 (splicing factor, arginine/serine-rich 15 and ATP-binding), and X (including BCL6-co-repressor). These genes are categorized as control and regulatory genes for metabolic pathways involving the cell cycle (cyclin-dependent kinases), apoptosis, cytokine expression, Na+/K+ ATPase, stress responses, G-protein signal transduction, transcription factors, DNA repair as well as metal-regulatory transcription factor 1, MTF1 HGNC, chondroitin sulfate proteoglycan 5 (neuroglycan C), ATP-binding cassette, sub-family G (WHITE), cytochrome b-561 family protein, CDC-like kinase 1 (CLK1 HGNC) (protein tyrosine kinase STY), Na+/H+ exchanger regulatory factor (NHERF HGNC), potassium voltage-gated channel subfamily H member 2 (KCNH2), putative MAPK activating protein (PM20, PM21), ras homolog gene family, polymerase (DNA directed), δ regulatory subunit (50kDa), leptin receptor involved in hematopoietin/interferon-class (D200-domain) cytokine receptor activity and thymidine kinase 2, mitochondrial TK2 HGNC and related genes. Significant alterations in these specific genes provide new directions for deeper mechanistic investigations that would lead to a better understanding of the molecular basis of mercury-induced toxicity and human diseases that may result from disturbances in the immune system.
Collapse
Affiliation(s)
- Wellington K Ayensu
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, Mississippi 39217, USA
| | | |
Collapse
|
40
|
Zhu J, Mohan C. SLE 1, 2, 3...genetic dissection of lupus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 601:85-95. [PMID: 17712995 DOI: 10.1007/978-0-387-72005-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic and complex autoimmune disease of unknown etiology, characterized by the presence of widespread immunological abnormalities and multiorgan injury. An important advance over the past decade has been our understanding of how different genetic loci (or genes) may dictate specific immune abnormalities in lupus. "Genetic dissection" has unveiled some of the mystery enshrouding lupus pathogenesis. It appears that there are at least two distinct events leading to disease. The first involves a breach in the adaptive immune system and the second involves a dysregulation of innate immunity. Co-ordinate dysregulation of both checkpoints is necessary for full-blown lupus to ensue. The challenge ahead is to understand how these two checkpoints are regulated in human SLE, and to devise therapeutic strategies that target both checkpoints.
Collapse
Affiliation(s)
- Jiankun Zhu
- Department of Internal Medicine, the Center for Immunology, University of Texas Southwestem Medical School, Dallas, TX, USA
| | | |
Collapse
|
41
|
Fairhurst AM, Wandstrat AE, Wakeland EK. Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Adv Immunol 2006; 92:1-69. [PMID: 17145301 DOI: 10.1016/s0065-2776(06)92001-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex polygenic autoimmune disease characterized by the presence of anti-nuclear autoantibodies (ANAs) that are often detectable years prior to the onset of clinical disease. The disease is associated with a chronic activation of the immune system, with the most severe forms progressing to inflammatory damage that can impact multiple organ systems in afflicted individuals. Current therapeutic strategies poorly control disease manifestations and are generally immunosuppressive. Recent studies in human patient populations and animal models have associated elements of the innate immune system and abnormalities in the immature B lymphocyte receptor repertoires with disease initiation. A variety of cytokines, most notably type I interferons, play important roles in disease pathogenesis and effector mechanisms. The genetic basis for disease susceptibility is complex, and analyses in humans and mice have identified multiple susceptibility loci, several of which are located in genomic regions that are syntenic between humans and mice. The complexities of the genetic interactions that mediate lupus have been investigated in murine model systems by characterizing the progressive development of disease in strains expressing various combinations of susceptibility alleles. These analyses indicate that genetic epistasis dramatically impact disease development and support the feasibility of identifying molecular pathways that can suppress disease progression without completely impairing normal immune function.
Collapse
Affiliation(s)
- Anna-Marie Fairhurst
- Center for Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
42
|
Lartigue A, Courville P, Auquit I, François A, Arnoult C, Tron F, Gilbert D, Musette P. Role of TLR9 in anti-nucleosome and anti-DNA antibody production in lpr mutation-induced murine lupus. THE JOURNAL OF IMMUNOLOGY 2006; 177:1349-54. [PMID: 16818796 DOI: 10.4049/jimmunol.177.2.1349] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Systemic lupus erythematosus is characterized by the production of autoantibodies directed against nuclear Ags, including nucleosome and DNA. TLR9 is thought to play a role in the production of these autoantibodies through the capacity of nuclear immunogenic particles to interact both with BCR and TLR9. To determine the role of TLR9 in SLE, C57BL/6-lpr/lpr-TLR9(-/-) and TLR9(+/+) mice were analyzed. The abrogation of TLR9 totally impaired the production of anti-nucleosome Abs, whereas no difference was observed in the frequency of anti-dsDNA autoantibodies whose titer was strikingly higher in TLR9(-/-) mice. In addition a higher rate of mesangial proliferation was observed in the kidney of TLR9-deficient animals. These results indicate that in C57BL/6-lpr/lpr mice, TLR9 is absolutely required for the anti-nucleosome Ab response but not for anti-dsDNA Ab production which is involved in mesangial proliferation.
Collapse
Affiliation(s)
- Aurelia Lartigue
- Institut National de la Santé et de la Recherche Médicale Unité 519 and Institut Fédératif de Recherche Multidisciplinaire sur les Peptides, Faculté de Médecine et Pharmacie, 22 boulevard Gambetta, 76183 Rouen Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J, Liang C, Bartov G, McDaniel LD, Zhou XJ, Schultz RA, Wakeland EK. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci U S A 2006; 103:9970-5. [PMID: 16777955 PMCID: PMC1502563 DOI: 10.1073/pnas.0603912103] [Citation(s) in RCA: 494] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The y-linked autoimmune accelerating (yaa) locus is a potent autoimmune disease allele. Transcription profiling of yaa-bearing B cells revealed the overexpression of a cluster of X-linked genes that included Tlr7. FISH analysis demonstrated the translocation of this segment onto the yaa chromosome. The resulting overexpression of Tlr7 increased in vitro responses to Toll-like receptor (TLR) 7 signaling in all yaa-bearing males. B6.yaa mice are not overtly autoimmune, but the addition of Sle1, which contains the autoimmune-predisposing Slam/Cd2 haplotype, causes the development of fatal lupus with numerous immunological aberrations. B6.Sle1yaa CD4 T cells develop the molecular signature for T(FH) cells and also show expression changes in numerous cytokines and chemokines. Disease development and all component autoimmune phenotypes were inhibited by Sles1, a potent suppressor locus. Sles1 had no effect on yaa-enhanced TLR7 signaling in vitro, and these data place Sles1 downstream from the lesion in innate immune responses mediated by TLR7, suggesting that Sles1 modulates the activation of adaptive immunity in response to innate immune signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guy Bartov
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Lisa D. McDaniel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Xin J. Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Roger A. Schultz
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Edward K. Wakeland
- *Center for Immunology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Liu K, Mohan C. What do mouse models teach us about human SLE? Clin Immunol 2006; 119:123-30. [PMID: 16517211 DOI: 10.1016/j.clim.2006.01.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 01/25/2006] [Indexed: 11/30/2022]
Affiliation(s)
- Kui Liu
- Division of Rheumatology, and Center for Immunology, Department of Internal Medicine/Rheumatology, University of Texas Southwestern Medical Center, Mail Code 8884, Y8.204, 5323 Harry Hines Boulevard, Dallas, TX 75390-8884, USA.
| | | |
Collapse
|
45
|
Li QZ, Zhen QL, Xie C, Wu T, Mackay M, Aranow C, Putterman C, Mohan C. Identification of autoantibody clusters that best predict lupus disease activity using glomerular proteome arrays. J Clin Invest 2006; 115:3428-39. [PMID: 16322790 PMCID: PMC1297234 DOI: 10.1172/jci23587] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 10/03/2005] [Indexed: 11/17/2022] Open
Abstract
Nephrophilic autoantibodies dominate the seroprofile in lupus, but their fine specificities remain ill defined. We constructed a multiplexed proteome microarray bearing about 30 antigens known to be expressed in the glomerular milieu and used it to study serum autoantibodies in lupus. Compared with normal serum, serum from B6.Sle1.lpr lupus mice (C57BL/6 mice homozygous for the NZM2410/NZW allele of Sle1 as well as the FAS defect) exhibited high levels of IgG and IgM antiglomerular as well as anti-double-stranded DNA/chromatin Abs and variable levels of Abs to alpha-actinin, aggrecan, collagen, entactin, fibrinogen, hemocyanin, heparan sulphate, laminin, myosin, proteoglycans, and histones. The use of these glomerular proteome arrays also revealed 5 distinct clusters of IgG autoreactivity in the sera of lupus patients. Whereas 2 of these IgG reactivity clusters (DNA/chromatin/glomeruli and laminin/myosin/Matrigel/vimentin/heparan sulphate) showed association with disease activity, the other 3 reactivity clusters (histones, vitronectin/collagen/chondroitin sulphate, and entactin/fibrinogen/hyaluronic acid) did not. Human lupus sera also displayed 2 distinct IgM autoantibody clusters, one reactive to DNA and the other apparently polyreactive. Interestingly, the presence of IgM polyreactivity in patient sera was associated with reduced disease severity. Hence, the glomerular proteome array promises to be a powerful analytical tool for uncovering novel autoantibody disease associations and for distinguishing patients at high risk for end-organ disease.
Collapse
Affiliation(s)
- Quan-Zhen Li
- Department of Internal Medicine-Rheumatology, Center for Immunology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8884, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bagavant H, Fu SM. New insights from murine lupus: disassociation of autoimmunity and end organ damage and the role of T cells. Curr Opin Rheumatol 2005; 17:523-8. [PMID: 16093828 DOI: 10.1097/01.bor.0000169361.23325.1e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review summarizes current literature on genetic regulation of different phenotypes in systemic lupus erythematosus in context of end-organ disease. Recent findings conflicting with the current paradigm that loss of tolerance to chromatin is the critical step for end-organ injury are discussed. RECENT FINDINGS Systemic lupus erythematosus is a prototype immune complex disease with circulating autoantibodies to chromatin, histone proteins, Sm/La, and other nuclear and cytoplasmic proteins. Extensive studies have been carried out on the regulation of B-cell and autoantibody production in lupus mice. However, the hypothesis that autoantibodies are primary mediators of organ damage fails to explain the heterogenous presentation in patients. Studies in murine models of systemic lupus erythematosus clearly dissociate genetic control of autoantibody responses to classic lupus antigens and kidney disease. There is increasing evidence to support the role of autoreactive T cells and genetic control of end organ susceptibility. These studies suggest complex interactions between innate and adaptive immunity resulting in end-organ damage. This review focuses on autoimmune responses and renal involvement in spontaneous systemic lupus erythematosus using murine models of lupus nephritis. SUMMARY Studies in murine models demonstrate complex genetic interactions regulating spontaneous systemic lupus erythematosus. Although detection of serum autoantibodies is considered a hallmark for clinical diagnosis of systemic lupus erythematosus, recent evidence shows that autoantibodies to classic lupus antigens are neither required nor sufficient for end-organ damage. Thus, murine models provide new insights into the pathogenesis of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Harini Bagavant
- Specialized Center of Research on Systemic Lupus Erythematosus, University of Virginia, Charlottesville, 22908, USA
| | | |
Collapse
|
47
|
Kumar KR, Zhu J, Bhaskarabhatla M, Yan M, Mohan C. Enhanced expression of stem cell antigen-1 (Ly-6A/E) in lymphocytes from lupus prone mice correlates with disease severity. J Autoimmun 2005; 25:215-22. [PMID: 16246522 DOI: 10.1016/j.jaut.2005.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 06/22/2005] [Accepted: 09/07/2005] [Indexed: 12/18/2022]
Abstract
B6.Sle1 mice, congenic for the NZM2410-derived lupus susceptibility locus, Sle1 on chromosome 1 exhibit many of the features seen in human lupus including activated lymphocytes and high titers of antinuclear autoantibodies. Among the different surface molecules that were aberrantly expressed on the B6.Sle1 lymphocytes was Ly-6A/E. Splenic B- and T-lymphocytes but not myeloid cells from B6.Sle1 mice exhibited enhanced levels of Ly-6A/E compared to B6 controls. In particular, MZ B cells, GC B cells and B-cell blasts expressed the highest levels of Ly-6A/E in both strains, with the levels being even higher on B6.Sle1 derived cells. Following stimulation with LPS or anti-IgM, there was a profound up-regulation in Ly-6A/E, particularly on MZ B cells and B-cell blasts. CD4 and CD8 T cells also up-regulated Ly-6A/E after stimulation with anti-CD3 and anti-CD28. These studies were extended to additional autoimmune strains including B6.Sle3, B6.Sle1.lpr and BXSB. Importantly, Ly-6A/E levels on lymphocytes were commensurate with the degree of disease exhibited by these lupus strains. Finally, it appears that increased interferon levels, in addition to antigen receptor stimulation, may also be a factor accounting for elevated Ly-6A/E in lupus. Given these observations it is important to elucidate the functional role of Ly-6A/E in lupus in future studies.
Collapse
Affiliation(s)
- Kirthi Raman Kumar
- Department of Internal Medicine, Rheumatology, and the Center for Immunology, University of Texas Southwestern Medical School, Dallas, 75235, USA
| | | | | | | | | |
Collapse
|
48
|
Subramanian S, Yim YS, Liu K, Tus K, Zhou XJ, Wakeland EK. Epistatic suppression of systemic lupus erythematosus: fine mapping of Sles1 to less than 1 mb. THE JOURNAL OF IMMUNOLOGY 2005; 175:1062-72. [PMID: 16002707 DOI: 10.4049/jimmunol.175.2.1062] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sle is a susceptibility locus for systemic autoimmunity derived from the lupus-prone NZM2410 mouse. The New Zealand White-derived suppressive modifier Sles1 was identified as a specific modifier of Sle1 and prevents the development of IgG anti-chromatin autoantibodies mediated by Sle1 on the C57BL/6 (B6) background. Fine mapping of Sles1 with truncated congenic intervals localizes it to a approximately 956-kb segment of mouse chromosome 17. Sles1 completely abrogates the development of activated T and B cell populations in B6.Sle1. Despite this suppression of the Sle1-mediated cell surface activation phenotypes, B6.Sle1 Sles1 splenic B cells still exhibit intrinsic ERK phosphorylation. Classic genetic complementation tests using the nonautoimmmune 129/SvJ mouse suggests that this strain possesses a Sles1 allele complementary to that of New Zealand White, as evidenced by the lack of glomerulonephritis, splenomegaly, and antinuclear autoantibody production seen in (129 x B6.Sle1 Sles1)F(1)s. These findings localize and characterize the suppressive properties of Sles1 and implicate 129 as a useful strain for aiding in the identification of this elusive epistatic modifier gene.
Collapse
MESH Headings
- Animals
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cells, Cultured
- Epistasis, Genetic
- Female
- Genetic Complementation Test
- Immunophenotyping
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lymphocyte Activation/genetics
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Inbred NZB
- Mice, Inbred Strains
- Physical Chromosome Mapping/methods
- Spleen/immunology
- Spleen/metabolism
- Suppression, Genetic/immunology
- T-Lymphocytes/immunology
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Srividya Subramanian
- Center for Immunology and Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
49
|
Zhu J, Liu X, Xie C, Yan M, Yu Y, Sobel ES, Wakeland EK, Mohan C. T cell hyperactivity in lupus as a consequence of hyperstimulatory antigen-presenting cells. J Clin Invest 2005; 115:1869-78. [PMID: 15951839 PMCID: PMC1143586 DOI: 10.1172/jci23049] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 05/09/2005] [Indexed: 11/17/2022] Open
Abstract
Sle3 is an NZM2410-derived lupus susceptibility locus on murine chromosome 7. Congenic recombination has resulted in a novel mouse strain, B6.Sle3, associated with serum antinuclear autoantibodies (ANAs), T cell hyperactivity, and elevated CD4/CD8 ratios. An OVA-specific TCR transgene was used as a tool to demonstrate that Sle3 facilitated heightened T cell expansion in vitro, and in vivo, following antigen challenge. Indeed, continued T cell expansion was noted even in response to a tolerogenic signal. However, these phenotypes did not appear to be T cell intrinsic but were dictated by hyperstimulatory B6.Sle3 APCs. Importantly, B6.Sle3-derived DCs and macrophages appeared to be significantly more mature/activated, less apoptotic, and more proinflammatory and were better at costimulating T cells in vitro, compared with the B6 counterparts. Finally, the adoptive transfer of B6.Sle3-derived DCs into healthy B6 recipients elicited increased CD4/CD8 ratios and serum ANAs, 2 cardinal Sle3-associated phenotypes. We posit that their heightened expression of various costimulatory molecules, including CD80, CD106, I-A, and CD40, and their elevated production of various cytokines, including IL-12 and IL-1beta, may explain why Sle3-bearing DCs may be superior at breaching self tolerance. These studies provide mechanistic evidence indicating that intrinsic abnormalities in DCs and possibly other myeloid cells may dictate several of the phenotypes associated with systemic lupus, including ANA formation and T cell hyperactivity.
Collapse
Affiliation(s)
- Jiankun Zhu
- Simmons Arthritis Research Center, Division of Rheumatology, Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen Y, Cuda C, Morel L. Genetic Determination of T Cell Help in Loss of Tolerance to Nuclear Antigens. THE JOURNAL OF IMMUNOLOGY 2005; 174:7692-702. [PMID: 15944270 DOI: 10.4049/jimmunol.174.12.7692] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sle1 is a major lupus susceptibility locus in NZM2410 lupus model that is associated with a loss of tolerance to nuclear Ags. At least three genes, Sle1a, Sle1b, and Sle1c contribute to Sle1, and their relative role in lupus pathogenesis is unknown. We show here that Sle1-expressing CD4(+) T cells present an activated phenotype associated with increased proliferation and cytokine production. In addition, Sle1 CD4(+) T cells provide help to anti-chromatin B cells to produce anti-nuclear antibodies, whether or not these B cells express Sle1. The Sle1a locus alone accounts for all these Sle1 phenotypes, implying that a specific genetic defect in Sle1a is necessary and sufficient to produce autoreactive T cells. However, Sle1c induces intermediate T cell activation and only provides help to Sle1-expressing anti-chromatin-producing B cells, demonstrating the synergic interactions between Sle1c T and Sle1 B cells. Moreover, Sle1a and Sle1c were associated with a significantly reduced level of CD4(+)CD25(+) regulatory T cells that precedes autoantibody production, suggesting a causal relationship with the generation of autoreactive T cells. Our study identifies for the first time that a specific genetic defect is responsible for lupus pathogenesis by inducing autoreactive T cells to break self-tolerance and that this genetic defect is also associated with a decreased number of regulatory T cells.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/biosynthesis
- Antigens, Nuclear/immunology
- Apoptosis/genetics
- Apoptosis/immunology
- B-Lymphocytes/immunology
- Cell Proliferation
- Cells, Cultured
- Chromatin/immunology
- Chromosome Mapping
- Cytokines/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Female
- Genetic Predisposition to Disease
- Histones/immunology
- Immune Tolerance/genetics
- Immunoglobulin G/biosynthesis
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lymphocyte Activation/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Yifang Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|