1
|
Valdivia-Silva J, Chinney-Herrera A. Chemokine receptors and their ligands in breast cancer: The key roles in progression and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:124-161. [PMID: 39260935 DOI: 10.1016/bs.ircmb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokines and their receptors are a family of chemotactic cytokines with important functions in the immune response in both health and disease. Their known physiological roles such as the regulation of leukocyte trafficking and the development of immune organs generated great interest when it was found that they were also related to the control of early and late inflammatory stages in the tumor microenvironment. In fact, in breast cancer, an imbalance in the synthesis of chemokines and/or in the expression of their receptors was attributed to be involved in the regulation of disease progression, including invasion and metastasis. Research in this area is progressing rapidly and the development of new agents based on chemokine and chemokine receptor antagonists are emerging as attractive alternative strategies. This chapter provides a snapshot of the different functions reported for chemokines and their receptors with respect to the potential to regulate breast cancer progression.
Collapse
Affiliation(s)
- Julio Valdivia-Silva
- Centro de Investigación en Bioingenieria (BIO), Universidad de Ingenieria y Tecnologia-UTEC, Barranco, Lima, Peru.
| | - Alberto Chinney-Herrera
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico-UNAM, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, Mexico
| |
Collapse
|
2
|
Pang X, Wang Y, Zhang Q, Qian S. A stemness-based signature with inspiring indications in discriminating the prognosis, immune response, and somatic mutation of endometrial cancer patients revealed by machine learning. Aging (Albany NY) 2024; 16:11248-11274. [PMID: 39079132 PMCID: PMC11315399 DOI: 10.18632/aging.205979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/02/2023] [Indexed: 08/06/2024]
Abstract
Endometrial cancer (EC) is a fatal gynecologic tumor. Bioinformatic tools are increasingly developed to screen out molecular targets related to EC. Our study aimed to identify stemness-related prognostic biomarkers for new therapeutic strategies in EC. In this study, we explored the prognostic value of cancer stem cells (CSCs), characterized by self-renewal and unlimited proliferation, and its correlation with immune infiltrates in EC. Transcriptome and somatic mutation profiles of EC were downloaded from TCGA database. Based on their stemness signature and DEGs, EC patients were divided into two subtypes via consensus clustering, and patients in Stemness Subtype I presented significantly better OS and DFS than Stemness Subtype II. Subtype I also displayed better clinicopathological features, and genomic variations demonstrated different somatic mutation from subtype II. Additionally, two stemness subtypes had distinct tumor immune microenvironment patterns. In the end, three machine learning algorithms were applied to construct a 7-gene stemness subtype risk model, which were further validated in an external independent EC cohort in our hospital. This novel stemness-based classification could provide a promising prognostic predictor for EC and may guide physicians in selecting potential responders for preferential use of immunotherapy. This novel stemness-dependent classification method has high value in predicting the prognosis, and also provides a reference for clinicians in selecting sensitive immunotherapy methods for EC patients.
Collapse
Affiliation(s)
- Xuecheng Pang
- Gynecology Department 2, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yu Wang
- Gynecology Department 2, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qiang Zhang
- Second Department of Anesthesia, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Sumin Qian
- Gynecology Department 2, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
3
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
4
|
Li B, Wei C, Zhong Y, Huang J, Li R. The CCL27-CCR10 axis contributes to promoting proliferation, migration, and invasion of lung squamous cell carcinoma. Histol Histopathol 2023; 38:349-357. [PMID: 36169116 DOI: 10.14670/hh-18-525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Lung cancer is characterized by its high mortality and morbidity. A deep understanding of the molecular mechanisms of lung cancer tumorigenesis helps to develop novel lung cancer diagnostic and therapeutic strategies. However, the picture of the associated molecular landscape is not yet complete. As understood, chemokine-receptor interactions contribute much to lung cancer tumorigenesis, in which CCR10 also plays an important role. This study aimed to expand the knowledge of CCR10 in lung squamous cell carcinoma (LUSC) in the manner of molecular mechanism and biological functions. Using GEPIA database, the survival analysis between LUSC patients with high and low CCR10 expressions was performed, showing that CCR10 could be regarded as a risk factor for LUSC patients. Subsequently, CCR10 protein and mRNA expressions in LUSC were examined by qRT-PCR and western blot respectively. The results indicated that CCR10 was highly expressed in LUSC cells. The results of CCK-8, colony formation, and Transwell assays presented that CCL27, the ligand of CCR10, promoted proliferative, migratory, and invasive abilities of LUSC cells by activating CCR10. Also, the PI3K/AKT signaling pathway was verified as the involved pathway by western blot. Overall, it could be concluded that the CCL27-CCR10 regulatory axis can activate the PI3K/AKT pathway fostering the malignant features of LUSC cells.
Collapse
Affiliation(s)
- Baijun Li
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| | - Caizhou Wei
- Department of Respiratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| | - Yonglong Zhong
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| | - Jianwei Huang
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| | - Rizhu Li
- Department of Cardiothoracic and Vascular Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, PR China.
| |
Collapse
|
5
|
Drouillard D, Craig BT, Dwinell MB. Physiology of chemokines in the cancer microenvironment. Am J Physiol Cell Physiol 2023; 324:C167-C182. [PMID: 36317799 PMCID: PMC9829481 DOI: 10.1152/ajpcell.00151.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 01/07/2023]
Abstract
Chemokines are chemotactic cytokines whose canonical functions govern movement of receptor-expressing cells along chemical gradients. Chemokines are a physiological system that is finely tuned by ligand and receptor expression, ligand or receptor oligomerization, redundancy, expression of atypical receptors, and non-GPCR binding partners that cumulatively influence discrete pharmacological signaling responses and cellular functions. In cancer, chemokines play paradoxical roles in both the directed emigration of metastatic, receptor-expressing cancer cells out of the tumor as well as immigration of tumor-infiltrating immune cells that culminate in a tumor-unique immune microenvironment. In the age of precision oncology, strategies to effectively harness the power of immunotherapy requires consideration of chemokine gradients within the unique spatial topography and temporal influences with heterogeneous tumors. In this article, we review current literature on the diversity of chemokine ligands and their cellular receptors that detect and process chemotactic gradients and illustrate how differences between ligand recognition and receptor activation influence the signaling machinery that drives cellular movement into and out of the tumor microenvironment. Facets of chemokine physiology across discrete cancer immune phenotypes are contrasted to existing chemokine-centered therapies in cancer.
Collapse
Affiliation(s)
- Donovan Drouillard
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian T Craig
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
6
|
Roles of CCR10/CCL27-CCL28 axis in tumour development: mechanisms, diagnostic and therapeutic approaches, and perspectives. Expert Rev Mol Med 2022; 24:e37. [PMID: 36155126 DOI: 10.1017/erm.2022.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cancer is now one of the major causes of death across the globe. The imbalance of cytokine and chemokine secretion has been reported to be involved in cancer development. Meanwhile, CC chemokines have received considerable interest in cancer research. CCR10, as the latest identified CC chemokine receptor (CCR), has been implicated in the recruitment and infiltration of immune cells, especially lymphocytes, into epithelia such as skin via ligation to two ligands, CCL27 and CCL28. Other than homoeostatic function, several mechanisms have been shown to dysregulate CCR10/CCL27-CCL28 expression in the tumour microenvironment. As such, these receptors and ligands mediate T-cell trafficking in the tumour microenvironment. Depending on the types of lymphocytes recruited, CCR10/CCL27-CCL28 interaction has been shown to play conflicting roles in cancer development. If they were T helper and cytotoxic T cells and natural killer cells, the role of this axis would be tumour-suppressive. In contrast, if CCR10/CCL27-CCL28 recruited regulatory T cells, cancer-associated fibroblasts or myeloid-derived suppressor cells, it would lead to tumour progression. In addition to the trafficking of lymphocytes and immune cells, CCR10 also leads to the migration of tumour cells or endothelial cells (called angiogenesis and lymphangiogenesis) to promote tumour metastasis. Furthermore, CCR10 signalling triggers tumour-promoting signalling such as PI3K/AKT and mitogen-activated protein kinase/extracellular signal-regulated kinase, resulting in tumour cell growth. Since CCR10/CCL27-CCL28 is dysregulated in the tumour tissues, it is suggested that analysis and measurement of them might predict tumour development. Finally, it is hoped using therapeutic approaches based on this axis might increase our knowledge to overcome tumour progression.
Collapse
|
7
|
He C, He L, Lu Q, Xiao J, Dong W. The functions and prognostic values of chemokine and chemokine receptors in gastric cancer. Am J Cancer Res 2022; 12:3034-3050. [PMID: 35968351 PMCID: PMC9360243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023] Open
Abstract
Chemokine and chemokine receptors (CCRs) play a significant role in tumor infiltration of immune cells, tumor angiogenesis and distant metastasis. In this study, we explored the importance of CCRs in gastric cancer (GC) by analyzing the datasets from TCGA database. First, we analyzed the characteristics of the CCRs mutations. Then, we screened the differentially expressed CCRs and performed GO functional annotation and KEGG pathway analyses to explore their potential biological functions. Using multivariate Cox regression analyses, we constructed a prediction model based on four-CCRs (CCL15, CCL21, CCR3 and ACKR3) signature, and we found that the risk score of the model was an independent prognostic factor of GC. Next, a nomogram was constructed to assess the prognosis of GC patients. GSEA indicated that the high-risk group was significantly enriched in immune response and immune system process. Moreover, GSVA was employed to investigate the up- and down-regulated signaling pathways in the high- and low-risk groups. The correlation between risk score and immune-cell infiltration indicated that the four-CCRs signature might play a pivotal role in GC immune microenvironment. In conclusion, we revealed the potential molecular mechanisms of CCRs in GC and constructed a prediction model which might guide personalized treatment and prognosis for GC patients.
Collapse
Affiliation(s)
- Chenglong He
- Department of Oncology, Zhongshan City People’s HospitalZhongshan 528400, Guangdong, China
| | - Liping He
- Guangdong Provincial People’s Hospital Zhuhai HospitalZhuhai 519040, Guangdong, China
| | - Qiaowei Lu
- Department of Oncology, Zhongshan City People’s HospitalZhongshan 528400, Guangdong, China
| | - Jianjun Xiao
- Department of Oncology, Zhongshan City People’s HospitalZhongshan 528400, Guangdong, China
| | - Wenjing Dong
- Department of Oncology, Zhongshan City People’s HospitalZhongshan 528400, Guangdong, China
| |
Collapse
|
8
|
Identification of a novel autophagy-related prognostic signature and small molecule drugs for glioblastoma by bioinformatics. BMC Med Genomics 2022; 15:111. [PMID: 35550147 PMCID: PMC9097333 DOI: 10.1186/s12920-022-01261-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To explore the autophagy-related prognostic signature (ARPs) via data mining in gene expression profiles for glioblastoma (GBM). METHODS Using the Cancer Genome Atlas (TCGA) database, we obtained 156 GBM samples and 5 adjacent normal samples, and denoted them as discovery cohort. Univariate Cox regression analysis was used to screen autophagy genes that related to GBM prognosis. Then, the least absolute shrinkage and selection operator Cox regression model was used to construct an autophagy-based ARPs, which was validated in an external cohort containing 80 GBM samples. The patients in the above-mentioned cohorts were divided into low-risk group and high-risk group according to the median prognostic risk score, and the diagnostic performance of the model was assessed by receiver operating characteristic curve analyses. The gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed between the high-risk and low-risk patients. Additionally, the genetic features of ARPs, such as genetic variation profiles, correlations with tumor-infiltrating lymphocytes (TILs), and potential drug sensitivity, were further assessed in the TCGA-GBM data set. RESULTS A signature of ARPs including NDUFB9, BAK1, SUPT3H, GAPDH, CDKN1B, CHMP6, and EGFR were detected and validated. We identified a autophagy-related prognosis 7-gene signature correlated survival prognosis, immune infiltration, level of cytokines, and cytokine receptor in tumor microenvironment. Furthermore, the signature was tested in several pathways related to disorders of tumor microenvironment, as well as cancer-related pathways. Additionally, a range of small molecular drugs, shown to have a potential therapeutic effect on GBM. CONCLUSIONS We constructed an autophagy-based 7-gene signature, which could serve as an independent prognostic indicator for cases of GBM and sheds light on the role of autophagy as a potential therapeutic target in GBM.
Collapse
|
9
|
Arora S, Khan S, Zaki A, Tabassum G, Mohsin M, Bhutto HN, Ahmad T, Fatma T, Syed MA. Integration of chemokine signaling with non-coding RNAs in tumor microenvironment and heterogeneity in different cancers. Semin Cancer Biol 2022; 86:720-736. [DOI: 10.1016/j.semcancer.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
10
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
11
|
Liu Z, Wu X, Hwang ST, Liu J. The Role of Tumor Microenvironment in Mycosis Fungoides and Sézary Syndrome. Ann Dermatol 2021; 33:487-496. [PMID: 34858000 PMCID: PMC8577908 DOI: 10.5021/ad.2021.33.6.487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common subtypes of cutaneous T-cell lymphomas (CTCLs). Most cases of MF display an indolent course during its early stage. However, in some patients, it can progress to the tumor stage with potential systematic involvement and a poor prognosis. SS is defined as an erythrodermic CTCL with leukemic involvements. The pathogenesis of MF and SS is still not fully understood, but recent data have found that the development of MF and SS is related to genetic alterations and possibly to environmental influences. In CTCL, many components interacting with tumor cells, such as tumor-associated macrophages, fibroblasts, dendritic cells, mast cells, and myeloid-derived suppressor cells, as well as with chemokines, cytokines and other key players, establish the tumor microenvironment (TME). In turn, the TME regulates tumor cell migration and proliferation directly and indirectly and may play a critical role in the progression of MF and SS. The TME of MF and SS appear to show features of a Th2 phenotype, thus dampening tumor-related immune responses. Recently, several studies have been published on the immunological characteristics of MF and SS, but a full understanding of the CTCL-related TME remains to be determined. This review focuses on the role of the TME in MF and SS, aiming to further demonstrate the pathogenesis of the disease and to provide new ideas for potential treatments targeted at the microenvironment components of the tumor.
Collapse
Affiliation(s)
- Zhaorui Liu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Xuesong Wu
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA, United States
| | - Sam T Hwang
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA, United States
| | - Jie Liu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
12
|
Adams R, Moser B, Karagiannis SN, Lacy KE. Chemokine Pathways in Cutaneous Melanoma: Their Modulation by Cancer and Exploitation by the Clinician. Cancers (Basel) 2021; 13:cancers13225625. [PMID: 34830780 PMCID: PMC8615762 DOI: 10.3390/cancers13225625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/01/2023] Open
Abstract
The incidence of cutaneous malignant melanoma is rising globally and is projected to continue to rise. Advances in immunotherapy over the last decade have demonstrated that manipulation of the immune cell compartment of tumours is a valuable weapon in the arsenal against cancer; however, limitations to treatment still exist. Cutaneous melanoma lesions feature a dense cell infiltrate, coordinated by chemokines, which control the positioning of all immune cells. Melanomas are able to use chemokine pathways to preferentially recruit cells, which aid their growth, survival, invasion and metastasis, and which enhance their ability to evade anticancer immune responses. Aside from this, chemokine signalling can directly influence angiogenesis, invasion, lymph node, and distal metastases, including epithelial to mesenchymal transition-like processes and transendothelial migration. Understanding the interplay of chemokines, cancer cells, and immune cells may uncover future avenues for melanoma therapy, namely: identifying biomarkers for patient stratification, augmenting the effect of current and emerging therapies, and designing specific treatments to target chemokine pathways, with the aim to reduce melanoma pathogenicity, metastatic potential, and enhance immune cell-mediated cancer killing. The chemokine network may provide selective and specific targets that, if included in current therapeutic regimens, harbour potential to improve outcomes for patients.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
| | - Bernhard Moser
- Division of Infection & Immunity, Henry Wellcome Building, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4YS, UK;
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
- Guy’s Cancer Centre, Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
- Correspondence: (S.N.K.); (K.E.L.); Tel.: +44-0-20-7188-6355 (K.E.L.)
| | - Katie E. Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
- Correspondence: (S.N.K.); (K.E.L.); Tel.: +44-0-20-7188-6355 (K.E.L.)
| |
Collapse
|
13
|
Bule P, Aguiar SI, Aires-Da-Silva F, Dias JNR. Chemokine-Directed Tumor Microenvironment Modulation in Cancer Immunotherapy. Int J Mol Sci 2021; 22:9804. [PMID: 34575965 PMCID: PMC8464715 DOI: 10.3390/ijms22189804] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that coordinates immune cell trafficking. In cancer, they have a pivotal role in the migration pattern of immune cells into the tumor, thereby shaping the tumor microenvironment immune profile, often towards a pro-tumorigenic state. Furthermore, chemokines can directly target non-immune cells in the tumor microenvironment, including cancer, stromal and vascular endothelial cells. As such, chemokines participate in several cancer development processes such as angiogenesis, metastasis, cancer cell proliferation, stemness and invasiveness, and are therefore key determinants of disease progression, with a strong influence in patient prognosis and response to therapy. Due to their multifaceted role in the tumor immune response and tumor biology, the chemokine network has emerged as a potential immunotherapy target. Under the present review, we provide a general overview of chemokine effects on several tumoral processes, as well as a description of the currently available chemokine-directed therapies, highlighting their potential both as monotherapy or in combination with standard chemotherapy or other immunotherapies. Finally, we discuss the most critical challenges and prospects of developing targeted chemokines as therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Joana Nunes Ribeiro Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal; (P.B.); (S.I.A.); (F.A.-D.-S.)
| |
Collapse
|
14
|
Saxena S, Singh RK. Chemokines orchestrate tumor cells and the microenvironment to achieve metastatic heterogeneity. Cancer Metastasis Rev 2021; 40:447-476. [PMID: 33959849 PMCID: PMC9863248 DOI: 10.1007/s10555-021-09970-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/22/2021] [Indexed: 01/26/2023]
Abstract
Chemokines, a subfamily of the cell cytokines, are low molecular weight proteins known to induce chemotaxis in leukocytes in response to inflammatory and pathogenic signals. A plethora of literature demonstrates that chemokines and their receptors regulate tumor progression and metastasis. With these diverse functionalities, chemokines act as a fundamental link between the tumor cells and their microenvironment. Recent studies demonstrate that the biology of chemokines and their receptor in metastasis is complex as numerous chemokines are involved in regulating site-specific tumor growth and metastasis. Successful treatment of disseminated cancer is a significant challenge. The most crucial problem for treating metastatic cancer is developing therapy regimes capable of overcoming heterogeneity problems within primary tumors and among metastases and within metastases (intralesional). This heterogeneity of malignant tumor cells can be related to metastatic potential, response to chemotherapy or specific immunotherapy, and many other factors. In this review, we have emphasized the role of chemokines in the process of metastasis and metastatic heterogeneity. Individual chemokines may not express the full potential to address metastatic heterogeneity, but chemokine networks need exploration. Understanding the interplay between chemokine-chemokine receptor networks between the tumor cells and their microenvironment is a novel approach to overcome the problem of metastatic heterogeneity. Recent advances in the understanding of chemokine networks pave the way for developing a potential targeted therapeutic strategy to treat metastatic cancer.
Collapse
Affiliation(s)
- Sugandha Saxena
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| |
Collapse
|
15
|
Huang L, Guo Y, Liu S, Wang H, Zhu J, Ou L, Xu X. Targeting regulatory T cells for immunotherapy in melanoma. MOLECULAR BIOMEDICINE 2021; 2:11. [PMID: 34806028 PMCID: PMC8591697 DOI: 10.1186/s43556-021-00038-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are essential in the maintenance of immunity, and they are also a key to immune suppressive microenvironment in solid tumors. Many studies have revealed the biology of Tregs in various human pathologies. Here we review recent understandings of the immunophenotypes and suppressive functions of Tregs in melanoma, including Treg recruitment and expansion in a tumor. Tregs are frequently accumulated in melanoma and the ratio of CD8+ T cells versus Tregs in the melanoma is predictive for patient survival. Hence, depletion of Tregs is a promising strategy for the enhancement of anti-melanoma immunity. Many recent studies are aimed to target Tregs in melanoma. Distinguishing Tregs from other immune cells and understanding the function of different subsets of Tregs may contribute to better therapeutic efficacy. Depletion of functional Tregs from the tumor microenvironment has been tested to induce clinically relevant immune responses against melanomas. However, the lack of Treg specific therapeutic antibodies or Treg specific depleting strategies is a big hurdle that is yet to be overcome. Additional studies to fine-tune currently available therapies and more agents that specifically and selectively target tumor infiltrating Tregs in melanoma are urgently needed.
Collapse
Affiliation(s)
- Lili Huang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yeye Guo
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Huaishan Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Jinjin Zhu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Lingling Ou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
16
|
Martínez-Rodríguez M, Monteagudo C. CCL27 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:113-132. [PMID: 34286445 DOI: 10.1007/978-3-030-62658-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemokines are a group of small proteins which play an important role in leukocyte migration and invasion. They are also involved in the cellular proliferation and migration of tumor cells.Chemokine CCL27 (cutaneous T cell-attracting chemokine, CTACK) is mainly expressed by keratinocytes of the normal epidermis. It is well known that this chemokine plays an important role in several inflammatory diseases of the skin, such as atopic dermatitis, contact dermatitis, and psoriasis. Moreover, several studies have shown an association between CCL27 expression and a variety of neoplasms including skin cancer.In this chapter, we address the role of chemokine CCL27 in the tumor microenvironment in the most relevant cancers of the skin and other anatomical locations. We also make a brief comment on future perspectives and the potential relation of CCL27 with different immunotherapeutic modalities.
Collapse
Affiliation(s)
| | - Carlos Monteagudo
- Department of Pathology, University Clinic Hospital-INCLIVA, University of Valencia, Valencia, Spain.
| |
Collapse
|
17
|
Korbecki J, Grochans S, Gutowska I, Barczak K, Baranowska-Bosiacka I. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. Int J Mol Sci 2020; 21:ijms21207619. [PMID: 33076281 PMCID: PMC7590012 DOI: 10.3390/ijms21207619] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
CC chemokines (or β-chemokines) are 28 chemotactic cytokines with an N-terminal CC domain that play an important role in immune system cells, such as CD4+ and CD8+ lymphocytes, dendritic cells, eosinophils, macrophages, monocytes, and NK cells, as well in neoplasia. In this review, we discuss human CC motif chemokine ligands: CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 (CC motif chemokine receptor CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands). We present their functioning in human physiology and in neoplasia, including their role in the proliferation, apoptosis resistance, drug resistance, migration, and invasion of cancer cells. We discuss the significance of chemokine receptors in organ-specific metastasis, as well as the influence of each chemokine on the recruitment of various cells to the tumor niche, such as cancer-associated fibroblasts (CAF), Kupffer cells, myeloid-derived suppressor cells (MDSC), osteoclasts, tumor-associated macrophages (TAM), tumor-infiltrating lymphocytes (TIL), and regulatory T cells (Treg). Finally, we show how the effect of the chemokines on vascular endothelial cells and lymphatic endothelial cells leads to angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
18
|
Pennycuick A, Teixeira VH, AbdulJabbar K, Raza SEA, Lund T, Akarca AU, Rosenthal R, Kalinke L, Chandrasekharan DP, Pipinikas CP, Lee-Six H, Hynds RE, Gowers KHC, Henry JY, Millar FR, Hagos YB, Denais C, Falzon M, Moore DA, Antoniou S, Durrenberger PF, Furness AJ, Carroll B, Marceaux C, Asselin-Labat ML, Larson W, Betts C, Coussens LM, Thakrar RM, George J, Swanton C, Thirlwell C, Campbell PJ, Marafioti T, Yuan Y, Quezada SA, McGranahan N, Janes SM. Immune Surveillance in Clinical Regression of Preinvasive Squamous Cell Lung Cancer. Cancer Discov 2020; 10:1489-1499. [PMID: 32690541 PMCID: PMC7611527 DOI: 10.1158/2159-8290.cd-19-1366] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/27/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Before squamous cell lung cancer develops, precancerous lesions can be found in the airways. From longitudinal monitoring, we know that only half of such lesions become cancer, whereas a third spontaneously regress. Although recent studies have described the presence of an active immune response in high-grade lesions, the mechanisms underpinning clinical regression of precancerous lesions remain unknown. Here, we show that host immune surveillance is strongly implicated in lesion regression. Using bronchoscopic biopsies from human subjects, we find that regressive carcinoma in situ lesions harbor more infiltrating immune cells than those that progress to cancer. Moreover, molecular profiling of these lesions identifies potential immune escape mechanisms specifically in those that progress to cancer: antigen presentation is impaired by genomic and epigenetic changes, CCL27-CCR10 signaling is upregulated, and the immunomodulator TNFSF9 is downregulated. Changes appear intrinsic to the carcinoma in situ lesions, as the adjacent stroma of progressive and regressive lesions are transcriptomically similar. SIGNIFICANCE: Immune evasion is a hallmark of cancer. For the first time, this study identifies mechanisms by which precancerous lesions evade immune detection during the earliest stages of carcinogenesis and forms a basis for new therapeutic strategies that treat or prevent early-stage lung cancer.See related commentary by Krysan et al., p. 1442.This article is highlighted in the In This Issue feature, p. 1426.
Collapse
Affiliation(s)
- Adam Pennycuick
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Vitor H Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Shan E Ahmed Raza
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Tom Lund
- Cancer Immunology Unit, University College London Cancer Institute, University College London, London, United Kingdom
- Research Department of Haematology, University College London Cancer Institute, University College London, London, United Kingdom
- UCL Manchester Lung Cancer Centre of Excellence, London, United Kingdom
| | - Ayse U Akarca
- Department of Cellular Pathology, University College London Hospital, London, United Kingdom
| | - Rachel Rosenthal
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lukas Kalinke
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Deepak P Chandrasekharan
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | | | - Henry Lee-Six
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- University College London Cancer Institute, London, United Kingdom
| | - Kate H C Gowers
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Jake Y Henry
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Cancer Immunology Unit, University College London Cancer Institute, University College London, London, United Kingdom
| | - Fraser R Millar
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Yeman B Hagos
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Celine Denais
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Mary Falzon
- Department of Cellular Pathology, University College London Hospital, London, United Kingdom
| | - David A Moore
- UCL Manchester Lung Cancer Centre of Excellence, London, United Kingdom
- Department of Cellular Pathology, University College London Hospital, London, United Kingdom
| | - Sophia Antoniou
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Pascal F Durrenberger
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Andrew J Furness
- Cancer Immunology Unit, University College London Cancer Institute, University College London, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Bernadette Carroll
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Claire Marceaux
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Marie-Liesse Asselin-Labat
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Knight Cancer Institute, Cancer Early Detection and Advanced Research (CEDAR) Center, Oregon Health & Science University, Portland, Oregon
| | - William Larson
- Knight Cancer Institute, Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Courtney Betts
- Knight Cancer Institute, Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Lisa M Coussens
- Knight Cancer Institute, Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Ricky M Thakrar
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Jeremy George
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Charles Swanton
- UCL Manchester Lung Cancer Centre of Excellence, London, United Kingdom
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- University College London Cancer Institute, London, United Kingdom
| | - Christina Thirlwell
- University College London Cancer Institute, London, United Kingdom
- University of Exeter College of Medicine and Health, Exeter, United Kingdom
| | - Peter J Campbell
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospital, London, United Kingdom
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Sergio A Quezada
- Cancer Immunology Unit, University College London Cancer Institute, University College London, London, United Kingdom
- Research Department of Haematology, University College London Cancer Institute, University College London, London, United Kingdom
- UCL Manchester Lung Cancer Centre of Excellence, London, United Kingdom
| | - Nicholas McGranahan
- University College London Cancer Institute, London, United Kingdom.
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom.
- UCL Manchester Lung Cancer Centre of Excellence, London, United Kingdom
| |
Collapse
|
19
|
Caligiuri A, Pastore M, Lori G, Raggi C, Di Maira G, Marra F, Gentilini A. Role of Chemokines in the Biology of Cholangiocarcinoma. Cancers (Basel) 2020; 12:cancers12082215. [PMID: 32784743 PMCID: PMC7463556 DOI: 10.3390/cancers12082215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous tumor with poor prognosis, can arise at any level in the biliary tree. It may derive from epithelial cells in the biliary tracts and peribiliary glands and possibly from progenitor cells or even hepatocytes. Several risk factors are responsible for CCA onset, however an inflammatory milieu nearby the biliary tree represents the most common condition favoring CCA development. Chemokines play a key role in driving the immunological response upon liver injury and may sustain tumor initiation and development. Chemokine receptor-dependent pathways influence the interplay among various cellular components, resulting in remodeling of the hepatic microenvironment towards a pro-inflammatory, pro-fibrogenic, pro-angiogenic and pre-neoplastic setting. Moreover, once tumor develops, chemokine signaling may influence its progression. Here we review the role of chemokines in the regulation of CCA development and progression, and the modulation of angiogenesis, metastasis and immune control. The potential role of chemokines and their receptors as possible biomarkers and/or therapeutic targets for hepatobiliary cancer is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabio Marra
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| | - Alessandra Gentilini
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| |
Collapse
|
20
|
Groblewska M, Litman-Zawadzka A, Mroczko B. The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. Int J Mol Sci 2020; 21:ijms21103704. [PMID: 32456359 PMCID: PMC7279280 DOI: 10.3390/ijms21103704] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. Additionally, the diagnostic significance and usefulness of the measurement of some chemokines and their receptors in the blood and cerebrospinal fluid (CSF) of glioma patients is also presented.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
- Correspondence: ; Tel.: +48-85-831-8785
| |
Collapse
|
21
|
Huang R, Mao M, Lu Y, Yu Q, Liao L. A novel immune-related genes prognosis biomarker for melanoma: associated with tumor microenvironment. Aging (Albany NY) 2020; 12:6966-6980. [PMID: 32310824 PMCID: PMC7202520 DOI: 10.18632/aging.103054] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/29/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Melanoma is a cancer of the skin with potential to spread to other organs and is responsible for most deaths due to skin cancer. It is imperative to identify immune biomarkers for early melanoma diagnosis and treatment. RESULTS 63 immune-related genes of the total 1039 unique IRGs retrieved were associated with overall survival of melanoma. A multi-IRGs classifier constructed using eight IRGs showed a powerful predictive ability. The classifier had better predictive power compared with the current clinical data. GSEA analysis showed multiple signaling differences between high and low risk score group. Furthermore, biomarker was associated with multiple immune cells and immune infiltration in tumor microenvironment. CONCLUSIONS The immune-related genes prognosis biomarker is an effective potential prognostic classifier in the immunotherapies and surveillance of melanoma. METHODS Melanoma samples of genes were retrieved from TCGA and GEO databases while the immune-related genes (IRGs) were retrieved from the ImmPort database. WGCNA, Cox regression analysis and LASSO analysis were used to classify melanoma prognosis. ESTIMATE and CIBERSORT algorithms were used to explore the relationship between risk score and tumor immune microenvironment. GSEA analysis was performed to explore the biological signaling pathway.
Collapse
Affiliation(s)
- Rongzhi Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| | - Min Mao
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| | - Yunxin Lu
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| | - Qingliang Yu
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| | - Liang Liao
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China.,Department of Traumatic Orthopedics and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
22
|
van der Kooij MK, Speetjens FM, van der Burg SH, Kapiteijn E. Uveal Versus Cutaneous Melanoma; Same Origin, Very Distinct Tumor Types. Cancers (Basel) 2019; 11:E845. [PMID: 31248118 PMCID: PMC6627906 DOI: 10.3390/cancers11060845] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
Here, we critically evaluated the knowledge on cutaneous melanoma (CM) and uveal melanoma (UM). Both cancer types derive from melanocytes that share the same embryonic origin and display the same cellular function. Despite their common origin, both CM and UM display extreme differences in their genetic alterations and biological behavior. We discuss the differences in genetic alterations, metastatic routes, tumor biology, and tumor-host interactions in the context of their clinical responses to targeted- and immunotherapy.
Collapse
Affiliation(s)
- Monique K van der Kooij
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Frank M Speetjens
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
23
|
Mollica Poeta V, Massara M, Capucetti A, Bonecchi R. Chemokines and Chemokine Receptors: New Targets for Cancer Immunotherapy. Front Immunol 2019; 10:379. [PMID: 30894861 PMCID: PMC6414456 DOI: 10.3389/fimmu.2019.00379] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is a clinically validated treatment for many cancers to boost the immune system against tumor growth and dissemination. Several strategies are used to harness immune cells: monoclonal antibodies against tumor antigens, immune checkpoint inhibitors, vaccination, adoptive cell therapies (e.g., CAR-T cells) and cytokine administration. In the last decades, it is emerging that the chemokine system represents a potential target for immunotherapy. Chemokines, a large family of cytokines with chemotactic activity, and their cognate receptors are expressed by both cancer and stromal cells. Their altered expression in malignancies dictates leukocyte recruitment and activation, angiogenesis, cancer cell proliferation, and metastasis in all the stages of the disease. Here, we review first attempts to inhibit the chemokine system in cancer as a monotherapy or in combination with canonical or immuno-mediated therapies. We also provide recent findings about the role in cancer of atypical chemokine receptors that could become future targets for immunotherapy.
Collapse
Affiliation(s)
- Valeria Mollica Poeta
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Matteo Massara
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Arianna Capucetti
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
24
|
Karnezis T, Farnsworth RH, Harris NC, Williams SP, Caesar C, Byrne DJ, Herle P, Macheda ML, Shayan R, Zhang YF, Yazar S, Takouridis SJ, Gerard C, Fox SB, Achen MG, Stacker SA. CCL27/CCL28-CCR10 Chemokine Signaling Mediates Migration of Lymphatic Endothelial Cells. Cancer Res 2019; 79:1558-1572. [PMID: 30709930 DOI: 10.1158/0008-5472.can-18-1858] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/01/2018] [Accepted: 01/29/2019] [Indexed: 11/16/2022]
Abstract
Metastasis via the lymphatic vasculature is an important step in cancer progression. The formation of new lymphatic vessels (lymphangiogenesis), or remodeling of existing lymphatics, is thought to facilitate the entry and transport of tumor cells into lymphatic vessels and on to distant organs. The migration of lymphatic endothelial cells (LEC) toward guidance cues is critical for lymphangiogenesis. While chemokines are known to provide directional navigation for migrating immune cells, their role in mediating LEC migration during tumor-associated lymphangiogenesis is not well defined. Here, we undertook gene profiling studies to identify chemokine-chemokine receptor pairs that are involved in tumor lymphangiogenesis associated with lymph node metastasis. CCL27 and CCL28 were expressed in tumor cells with metastatic potential, while their cognate receptor, CCR10, was expressed by LECs and upregulated by the lymphangiogenic growth factor VEGFD and the proinflammatory cytokine TNFα. Migration assays demonstrated that LECs are attracted to both CCL27 and CCL28 in a CCR10-dependent manner, while abnormal lymphatic vessel patterning in CCR10-deficient mice confirmed the significant role of CCR10 in lymphatic patterning. In vivo analyses showed that LECs are recruited to a CCL27 or CCL28 source, while VEGFD was required in combination with these chemokines to enable formation of coherent lymphatic vessels. Moreover, tumor xenograft experiments demonstrated that even though CCL27 expression by tumors enhanced LEC recruitment, the ability to metastasize was dependent on the expression of VEGFD. These studies demonstrate that CCL27 and CCL28 signaling through CCR10 may cooperate with inflammatory mediators and VEGFD during tumor lymphangiogenesis. SIGNIFICANCE: The study shows that the remodeling of lymphatic vessels in cancer is influenced by CCL27 and CCL28 chemokines, which may provide a future target to modulate metastatic spread.
Collapse
Affiliation(s)
- Tara Karnezis
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | | | - Nicole C Harris
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Steven P Williams
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Carol Caesar
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - David J Byrne
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Prad Herle
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Maria L Macheda
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ramin Shayan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - You-Fang Zhang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sezer Yazar
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Simon J Takouridis
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Craig Gerard
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephen B Fox
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Marc G Achen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Steven A Stacker
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Jacquelot N, Duong CPM, Belz GT, Zitvogel L. Targeting Chemokines and Chemokine Receptors in Melanoma and Other Cancers. Front Immunol 2018; 9:2480. [PMID: 30420855 PMCID: PMC6215820 DOI: 10.3389/fimmu.2018.02480] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is highly heterogeneous. It is composed of a diverse array of immune cells that are recruited continuously into lesions. They are guided into the tumor through interactions between chemokines and their receptors. A variety of chemokine receptors are expressed on the surface of both tumor and immune cells rendering them sensitive to multiple stimuli that can subsequently influence their migration and function. These features significantly impact tumor fate and are critical in melanoma control and progression. Indeed, particular chemokine receptors expressed on tumor and immune cells are strongly associated with patient prognosis. Thus, potential targeting of chemokine receptors is highly attractive as a means to quench or eliminate unconstrained tumor cell growth.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Connie P M Duong
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM U1015, Villejuif, France
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM U1015, Villejuif, France.,Faculty of Medicine, Paris Sud/Paris XI University, LeKremlin-Bicêtre, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| |
Collapse
|
26
|
Ueda J, Yoshida H, Makino H, Maruyama H, Yokoyama T, Hirakata A, Takata H, Seki N, Kikuchi Y, Uchida E. A case of sigmoid colon adenocarcinoma diagnosed as facial cutaneous metastasis for survival after operation for 37 months. Clin J Gastroenterol 2017; 10:420-425. [PMID: 28776316 DOI: 10.1007/s12328-017-0767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 07/21/2017] [Indexed: 11/29/2022]
Abstract
Cutaneous metastasis of an internal malignancy is uncommon and is estimated to occur in 0.7-9% of patients with internal cancer including autopsy cases. We would like to report a case of long survival of sigmoid colon adenocarcinoma diagnosed as an instance of facial cutaneous metastasis. A 68-year-old male was admitted to our hospital for a tumor mass on the left side of his cheek. In his past history, acute myocardial infarction had occurred 2 years earlier. He also had chronic renal failure and chronic obstructive pulmonary disease. Histologic findings from the biopsy sample of this facial lesion were moderately differentiated adenocarcinoma. Colonoscopy revealed a tumor 20 mm × 30 mm in diameter in the sigmoid colon. Histologic findings of the biopsy sample of this tumor also indicated moderately differentiated adenocarcinoma. The patient was diagnosed with sigmoid colon cancer with cutaneous metastasis to the face. We performed a sigmoidectomy with lymph node dissection and resection of the facial cutaneous metastasis. After being discharged, low dose chemotherapy was performed in consideration of the patient's renal function. Although long-term management of his general condition was provided, the patient died 37 months after surgery because of chronic heart failure.
Collapse
Affiliation(s)
- Junji Ueda
- Department of Surgery, Nippon Medical School Tamanagayama Hospital, 1-7-1 Nagayama, Tama-shi, Tokyo, 206-8512, Japan.
| | - Hiroshi Yoshida
- Department of Surgery, Nippon Medical School Tamanagayama Hospital, 1-7-1 Nagayama, Tama-shi, Tokyo, 206-8512, Japan
| | - Hiroshi Makino
- Department of Surgery, Nippon Medical School Tamanagayama Hospital, 1-7-1 Nagayama, Tama-shi, Tokyo, 206-8512, Japan
| | - Hiroshi Maruyama
- Department of Surgery, Nippon Medical School Tamanagayama Hospital, 1-7-1 Nagayama, Tama-shi, Tokyo, 206-8512, Japan
| | - Tadashi Yokoyama
- Department of Surgery, Nippon Medical School Tamanagayama Hospital, 1-7-1 Nagayama, Tama-shi, Tokyo, 206-8512, Japan
| | - Atsushi Hirakata
- Department of Surgery, Nippon Medical School Tamanagayama Hospital, 1-7-1 Nagayama, Tama-shi, Tokyo, 206-8512, Japan
| | - Hideyuki Takata
- Department of Surgery, Nippon Medical School Tamanagayama Hospital, 1-7-1 Nagayama, Tama-shi, Tokyo, 206-8512, Japan
| | - Natsuki Seki
- Department of Surgery, Nippon Medical School Tamanagayama Hospital, 1-7-1 Nagayama, Tama-shi, Tokyo, 206-8512, Japan
| | - Yuta Kikuchi
- Department of Surgery, Nippon Medical School Tamanagayama Hospital, 1-7-1 Nagayama, Tama-shi, Tokyo, 206-8512, Japan
| | - Eiji Uchida
- Department of Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
27
|
Yang XL, Liu KY, Lin FJ, Shi HM, Ou ZL. CCL28 promotes breast cancer growth and metastasis through MAPK-mediated cellular anti-apoptosis and pro-metastasis. Oncol Rep 2017; 38:1393-1401. [PMID: 28713975 PMCID: PMC5549038 DOI: 10.3892/or.2017.5798] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 05/29/2017] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancers worldwide and the second leading cause of cancer-related deaths among females. CCL28 (mucosa-associated epithelial chemokine, MEC), a CC subfamily chemokine, has been well studied in the process of inflammation, and recently increasing evidence indicates that CCL28 is related to tumor progression. However, little is known concerning its function in breast cancer. In the present study, we generated a CCL28-overexpressing breast cancer cell line MDA-MB-231HM/CCL28 from parental MDA-MB-231HM cells. We found that overexpression of CCL28 promoted cell proliferation and tumor formation, and also enhanced migration, invasion and metastasis both in vitro and in vivo. Mechanistic studies revealed that CCL28 mediated intracellular activation of the mitogen-activated protein kinase (MAPK) signaling pathway to promote breast cancer cell proliferation and metastasis by upregulating anti-apoptotic protein Bcl-2 and suppressing cell adhesion protein β-catenin. However, overexpression of CCL28 did not influence the expression of metastasis-related protein matrix metalloproteinase MMP2 and MMP9 and VEGF. Tissue sample analysis from animal models also indicated that overexpression of CCL28 was associated with enhanced pERK expression and reduced β-catenin expression in breast carcinomas. Thus, our results show for the first time that CCL28 contributes to breast cancer progression through the ERK/MAPK-mediated anti-apoptotic and metastatic signaling pathway. Antagonists of CCL28 and the MAPK signaling pathway may be used synergistically to treat breast cancer patients.
Collapse
Affiliation(s)
- Xiao Li Yang
- Breast Cancer Institute, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Kai Yi Liu
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Feng Juan Lin
- Breast Cancer Institute, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Hui Min Shi
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Zhou Luo Ou
- Breast Cancer Institute, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
28
|
Roy I, Boyle KA, Vonderhaar EP, Zimmerman NP, Gorse E, Mackinnon AC, Hwang R, Franco-Barraza J, Cukierman E, Tsai S, Evans DB, Dwinell MB. Cancer cell chemokines direct chemotaxis of activated stellate cells in pancreatic ductal adenocarcinoma. J Transl Med 2017; 97:302-317. [PMID: 28092365 PMCID: PMC5334280 DOI: 10.1038/labinvest.2016.146] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/18/2022] Open
Abstract
The mechanisms by which the extreme desmoplasia observed in pancreatic tumors develops remain unknown and its role in pancreatic cancer progression is unsettled. Chemokines have a key role in the recruitment of a wide variety of cell types in health and disease. Transcript and protein profile analyses of human and murine cell lines and human tissue specimens revealed a consistent elevation in the receptors CCR10 and CXCR6, as well as their respective ligands CCL28 and CXCL16. Elevated ligand expression was restricted to tumor cells, whereas receptors were in both epithelial and stromal cells. Consistent with its regulation by inflammatory cytokines, CCL28 and CCR10, but not CXCL16 or CXCR6, were upregulated in human pancreatitis tissues. Cytokine stimulation of pancreatic cancer cells increased CCL28 secretion in epithelial tumor cells but not an immortalized activated human pancreatic stellate cell line (HPSC). Stellate cells exhibited dose- and receptor-dependent chemotaxis in response to CCL28. This functional response was not linked to changes in activation status as CCL28 had little impact on alpha smooth muscle actin levels or extracellular matrix deposition or alignment. Co-culture assays revealed CCL28-dependent chemotaxis of HPSC toward cancer but not normal pancreatic epithelial cells, consistent with stromal cells being a functional target for the epithelial-derived chemokine. These data together implicate the chemokine CCL28 in the inflammation-mediated recruitment of cancer-associated stellate cells into the pancreatic cancer parenchyma.
Collapse
Affiliation(s)
- Ishan Roy
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee Wisconsin
| | - Kathleen A. Boyle
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee Wisconsin
| | - Emily P. Vonderhaar
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee Wisconsin
| | - Noah P. Zimmerman
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee Wisconsin,MCW Cancer Center, Medical College of Wisconsin, Milwaukee Wisconsin
| | - Egal Gorse
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee Wisconsin
| | - A. Craig Mackinnon
- Department of Pathology, Medical College of Wisconsin, Milwaukee Wisconsin
| | - Rosa Hwang
- Department of Surgical Oncology, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Edna Cukierman
- Cancer Biology Department, Fox Chase Cancer Center, Temple Health. Philadelphia, PA
| | - Susan Tsai
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee Wisconsin,Department of Surgery, Medical College of Wisconsin, Milwaukee Wisconsin
| | - Douglas B. Evans
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee Wisconsin,Department of Surgery, Medical College of Wisconsin, Milwaukee Wisconsin
| | - Michael B. Dwinell
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee Wisconsin,MCW Cancer Center, Medical College of Wisconsin, Milwaukee Wisconsin
| |
Collapse
|
29
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
30
|
Ignacio RMC, Kabir SM, Lee ES, Adunyah SE, Son DS. NF-κB-Mediated CCL20 Reigns Dominantly in CXCR2-Driven Ovarian Cancer Progression. PLoS One 2016; 11:e0164189. [PMID: 27723802 PMCID: PMC5056735 DOI: 10.1371/journal.pone.0164189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is an inflammation-associated malignancy with a high mortality rate. CXCR2 expressing ovarian cancers are aggressive with poorer outcomes. We previously demonstrated that CXCR2-driven ovarian cancer progression potentiated NF-κB activation through EGFR-transactivated Akt. Here, we identified the chemokine signature involved in CXCR2-driven ovarian cancer progression using a mouse peritoneal xenograft model for ovarian cancer spreading with CXCR2-negative (SKA) and positive (SKCXCR2) cells generated previously from parental SKOV-3 cells. Compared to SKA bearing mice, SKCXCR2 bearing mice had the following characteristics: 1) shorter survival time, 2) greater tumor spreading in the peritoneal cavity and 3) higher tumor weight in the omentum and pelvic site. Particularly, SKCXCR2-derived tumor tissues induced higher activation of the NF-κB signaling pathway, while having no change in EGFR-activated signaling such as Raf, MEK, Akt, mTOR and Erk compared to SKA-derived tumors. Chemokine PCR array revealed that CCL20 mRNA levels were significantly increased in SKCXCR2-derived tumor tissues. The CCL20 promoter activity was regulated by NF-κB dependent pathways. Interestingly, all three κB-like sites in the CCL20 promoter were involved in regulating CCL20 and the proximal region between -92 and -83 was the most critical κB-like site. In addition, SKCXCR2-derived tumor tissues maintained high CCL20 mRNA expression and induced greater CCL24 and CXCR4 compared to SKCXCR2 cells, indicating the shift of chemokine network during the peritoneal spreading of tumor cells via interaction with other cell types in tumor microenvironment. Furthermore, we compared expression profiling array between human ovarian cancer cell lines and tumor tissues based on GEO datasets. The expression profiles in comparison with cell lines revealed that dominant chemokines expressed in ovarian tumor tissues are likely shifted from CXCL1-3 and 8 to CCL20. Taken together, the progression of ovarian cancer in the peritoneal cavity involves NF-κB-mediated CCL20 as a main chemokine network, which is potentiated by CXCR2 expression.
Collapse
Affiliation(s)
- Rosa Mistica C. Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Syeda M. Kabir
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| | - Samuel E. Adunyah
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
31
|
Roy I, Getschman AE, Volkman BF, Dwinell MB. Exploiting agonist biased signaling of chemokines to target cancer. Mol Carcinog 2016; 56:804-813. [PMID: 27648825 DOI: 10.1002/mc.22571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022]
Abstract
As knowledge of growth-independent functions of cancer cells is expanding, exploration into the role of chemokines in modulating cancer pathogenesis, particularly metastasis, continues to develop. However, more study into the mechanisms whereby chemokines direct the migration of cancer cells is needed before specific therapies can be generated to target metastasis. Herein, we draw attention to the longstanding conundrum in the field of chemokine biology that chemokines stimulate migration in a biphasic manner; and explore this phenomenon's impact on chemokine function in the context of cancer. Typically, low concentrations of chemokines lead to chemotactic migration and higher concentrations halt migration. The signaling mechanisms that govern this phenomenon remain unclear. Over the last decade, we have defined a novel signaling mechanism for regulation of chemokine migration through ligand oligomerization and biased agonist signaling. We provide insight into this new paradigm for chemokine signaling and discuss how it will impact future exploration into chemokine function and biology. In the pursuit of producing more novel cancer therapies, we suggest a framework for pharmaceutical application of the principles of chemokine oligomerization and biased agonist signaling in cancer. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ishan Roy
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin.,MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
32
|
Atretkhany KSN, Drutskaya MS, Nedospasov SA, Grivennikov SI, Kuprash DV. Chemokines, cytokines and exosomes help tumors to shape inflammatory microenvironment. Pharmacol Ther 2016; 168:98-112. [PMID: 27613100 DOI: 10.1016/j.pharmthera.2016.09.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Relationship between inflammation and cancer is now well-established and represents a paradigm that our immune response does not necessarily serves solely to protect us from infections and cancer. Many specific mechanisms that link chronic inflammation to cancer promotion and metastasis have been uncovered in the recent years. Here we are focusing on the effects that tumors may exert on inflammatory cascades, tuning the immune system ability to cause tumor promotion or regression. In particular, we discuss the contributions of chemokines, cytokines and exosomes to the processes such as induction of inflammation and tumorigenesis. Overall, tumor-elicited inflammation is a key driver of tumor progression and an essential component of tumor microenvironment.
Collapse
Affiliation(s)
- K-S N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - M S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - S A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia; German Rheumatology Research Center (DRFZ), Berlin, Germany
| | - S I Grivennikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Fox Chase Cancer Center, Cancer Prevention and Control Program, Philadelphia, PA, USA.
| | - D V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
33
|
Panda S, Padhiary SK, Routray S. Chemokines accentuating protumoral activities in oral cancer microenvironment possess an imperious stratagem for therapeutic resolutions. Oral Oncol 2016; 60:8-17. [PMID: 27531867 DOI: 10.1016/j.oraloncology.2016.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/01/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022]
Abstract
Chemokines, the chemotactic cytokines have established their role in tumorigenesis and tumor progression. Studies, which explored their role in oral cancer for protumoral activity, point towards targeting chemokines for oral squamous cell carcinoma therapy. The need of the hour is to emphasize/divulge in the activities of chemokine ligands and their receptors in the tumor microenvironment for augmentation of such stratagems. This progressing sentience of chemokines and their receptors has inspired this review which is an endeavour to comprehend their role as an aid in accentuating hallmarks of cancer and targeted therapy.
Collapse
Affiliation(s)
- Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India.
| | - Subrat Kumar Padhiary
- Department of Oral and Maxillofacial Surgery, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India.
| | - Samapika Routray
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India.
| |
Collapse
|
34
|
Kimura T, Sugaya M, Oka T, Blauvelt A, Okochi H, Sato S. Lymphatic dysfunction attenuates tumor immunity through impaired antigen presentation. Oncotarget 2016; 6:18081-93. [PMID: 26098776 PMCID: PMC4627236 DOI: 10.18632/oncotarget.4018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/11/2015] [Indexed: 01/08/2023] Open
Abstract
Tumor growth and metastasis of cancer involve autonomous tumor cell growth and host-tumor interactions. While tumor-specific immunity has been intensively studied in vitro, dynamic roles of lymphatic transport on tumor immunity in vivo have not been fully elucidated. In this study, we examined tumor growth and anti-tumor immune responses using kCYC mice, which demonstrate severe lymphatic dysfunction. Primary tumor growth was augmented in kCYC mice (compared to wild-type mice) when B16 melanoma or EL-4 lymphoma cells were subcutaneously injected. Expression of inflammatory cytokines such as IFN-γ, TNF-α, and IL-2 as well as IL-10 expression in draining lymph nodes (LNs) was significantly reduced in kCYC mice after tumor inoculation. Moreover, decreased levels of tumor-associated antigens were detected in draining LNs in kCYC mice, together with impaired antigen presentation. CD8+ T cells in draining LNs derived from kCYC mice bearing B16 melanoma also showed significantly decreased cytotoxic activity in vitro. Finally, tumor suppression activity of CD8+ T cells derived from kCYC mice bearing B16 melanoma was reduced when adoptively transferred to naive wild-type mice. In summary, these findings suggest that lymphatic transport is essential in generating optimal tumor-specific immune responses mediated by CD8+ T cells.
Collapse
Affiliation(s)
- Takayuki Kimura
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.,Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Makoto Sugaya
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.,Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomonori Oka
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.,Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Melanoma cell lysosome secretory burst neutralizes the CTL-mediated cytotoxicity at the lytic synapse. Nat Commun 2016; 7:10823. [PMID: 26940455 PMCID: PMC4785227 DOI: 10.1038/ncomms10823] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Human melanoma cells express various tumour antigens that are recognized by CD8(+) cytotoxic T lymphocytes (CTLs) and elicit tumour-specific responses in vivo. However, natural and therapeutically enhanced CTL responses in melanoma patients are of limited efficacy. The mechanisms underlying CTL effector phase failure when facing melanomas are still largely elusive. Here we show that, on conjugation with CTL, human melanoma cells undergo an active late endosome/lysosome trafficking, which is intensified at the lytic synapse and is paralleled by cathepsin-mediated perforin degradation and deficient granzyme B penetration. Abortion of SNAP-23-dependent lysosomal trafficking, pH perturbation or impairment of lysosomal proteolytic activity restores susceptibility to CTL attack. Inside the arsenal of melanoma cell strategies to escape immune surveillance, we identify a self-defence mechanism based on exacerbated lysosome secretion and perforin degradation at the lytic synapse. Interfering with this synaptic self-defence mechanism might be useful in potentiating CTL-mediated therapies in melanoma patients.
Collapse
|
36
|
Hessner F, Dlugos CP, Chehab T, Schaefer C, Homey B, Gerke V, Weide T, Pavenstädt H, Rescher U. CC chemokine receptor 10 cell surface presentation in melanocytes is regulated by the novel interaction partner S100A10. Sci Rep 2016; 6:22649. [PMID: 26941067 PMCID: PMC4778132 DOI: 10.1038/srep22649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/17/2016] [Indexed: 11/09/2022] Open
Abstract
The superfamily of G-protein-coupled receptors (GPCR) conveys signals in response to various endogenous and exogenous stimuli. Consequently, GPCRs are the most important drug targets. CCR10, the receptor for the chemokines CCL27/CTACK and CCL28/MEC, belongs to the chemokine receptor subfamily of GPCRs and is thought to function in immune responses and tumour progression. However, there is only limited information on the intracellular regulation of CCR10. We find that S100A10, a member of the S100 family of Ca(2+) binding proteins, binds directly to the C-terminal cytoplasmic tail of CCR10 and that this interaction regulates the CCR10 cell surface presentation. This identifies S100A10 as a novel interaction partner and regulator of CCR10 that might serve as a target for therapeutic intervention.
Collapse
Affiliation(s)
- F Hessner
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - C P Dlugos
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - T Chehab
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - C Schaefer
- Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, and Interdisciplinary Clinical Research Centre, D-48149 Muenster, Germany
| | - B Homey
- Department of Dermatology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - V Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - T Weide
- Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, and Interdisciplinary Clinical Research Centre, D-48149 Muenster, Germany
| | - H Pavenstädt
- Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, and Interdisciplinary Clinical Research Centre, D-48149 Muenster, Germany
| | - U Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| |
Collapse
|
37
|
Chen L, Liu X, Zhang HY, Du W, Qin Z, Yao Y, Mao Y, Zhou L. Upregulation of chemokine receptor CCR10 is essential for glioma proliferation, invasion and patient survival. Oncotarget 2015; 5:6576-83. [PMID: 25149529 PMCID: PMC4196146 DOI: 10.18632/oncotarget.2134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human gliomas are characterized by their invasion of normal brain structures irrespective of their grade of malignancy. Tumor cell invasion share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptor CCR10 is highly expressed in human glioblastoma compared with control brain tissue. In vitro, signaling through CCL27-CCR10 mediates activation of p-Akt, and subsequently induces proliferation and invasive responses. Cell proliferation and invasion promoted by CCL27 were blocked by inhibition of p-Akt or CCR10. In vivo, down-regulation of CCR10 significantly impairs growth of glioma. Clinically, High CCR10 expression in GBM correlated with p-Akt, shorter overall survival and progression-free survival (P < 0.05). Together, these findings suggest that elevated CCR10 is a critical molecular event associated with gliomagenesis.
Collapse
Affiliation(s)
- Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xing Liu
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hai-Yan Zhang
- Department of Obstetrics and Gynecology, International Peace Maternal and Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wenzong Du
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liangfu Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Morimura S, Sugaya M, Kai H, Miyagaki T, Asano Y, Tada Y, Kadono T, Murakami T, Sato S. Depsipeptide and roxithromycin induce apoptosis of lymphoma cells by blocking extracellular signal-regulated kinase activation. J Dermatol 2015; 41:57-62. [PMID: 24438145 DOI: 10.1111/1346-8138.12351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/07/2013] [Indexed: 11/27/2022]
Abstract
Depsipeptide (FK228), a histone deacetylase inhibitor, was recently approved for use in cutaneous T-cell lymphoma. Roxithromycin (RXM) is a macrolide antibiotic that can induce apoptosis of some T-cell lines. In this study, we investigated whether combination of FK228 and RXM had a synergistic inhibitory effect on cell survival of various lymphoma cells and which signaling pathway was affected by the drugs in the presence or absence of chemokines, which were reported to inhibit apoptosis of some tumor cells. FK228 and RXM additively decreased the number of HUT-78, Ki-JK and EL-4 lymphoma cells at doses over 50 nmol/L and 50 μmol/L, respectively. These drugs inhibited phosphorylation of Akt and extracellular signal-regulated kinase (ERK) of EL-4 cells in a dose-dependent manner. Significant association between ERK phosphorylation and cell number or annexin V(+) cells suggested that the ERK pathway may be critical for survival of EL-4 cells. Combination of 10 or 50 nmol/L of FK228 and 10 μmol/L of RXM decreased cell number of HUT78 and EL-4 compared to a single use of each drug. Our in vitro study suggested that combination of FK228 and RXM may be helpful for enhancing tumor killing effects. Although further study is necessary, this combination may be applicable to patients with cutaneous T-cell lymphoma in the future.
Collapse
Affiliation(s)
- Sohshi Morimura
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lu L, Tao H, Chang AE, Hu Y, Shu G, Chen Q, Egenti M, Owen J, Moyer JS, Prince ME, Huang S, Wicha MS, Xia JC, Li Q. Cancer stem cell vaccine inhibits metastases of primary tumors and induces humoral immune responses against cancer stem cells. Oncoimmunology 2015; 4:e990767. [PMID: 25949905 PMCID: PMC4404925 DOI: 10.4161/2162402x.2014.990767] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/18/2014] [Indexed: 02/08/2023] Open
Abstract
The inability to target cancer stem cells (CSC) may be a significant factor contributing to treatment failure. We have developed a strategy to target the CSC populations in melanoma and squamous cell carcinoma using CSC lysate-pulsed dendritic cells (DCs). The CSC-DC vaccine was administered in the adjuvant setting after localized radiation therapy of established tumors. Using mouse models we demonstrated that DCs pulsed with CSCs enriched by virtue of their expression of the CSC marker ALDH (termed CSC-DC) significantly inhibited tumor growth, reduced development of pulmonary metastases and prolonged survival. The effect was associated with downregulation of chemokine (C-C motif) receptors CCR7 and CCR10 in tumor cells and decreased expression of the chemokine (C-C motif) ligands CCL21, CCL27 and CCL28 in lung tissue. The CSC-DC vaccine significantly reduced ALDHhigh CSC frequency in primary tumors. Direct targeting of CSCs was demonstrated by the specific binding of IgG produced by ALDHhigh CSC-DC vaccine-primed B cells to ALDHhigh CSCs, resulting in lysis of these target CSCs in the presence of complement. These data suggest that the CSC-DC vaccine approach may be useful in the adjuvant setting where local and systemic relapse are high after conventional treatment of cancers.
Collapse
Affiliation(s)
- Lin Lu
- University of Michigan Comprehensive Cancer Cente; Ann Arbor , MI USA ; State Key Laboratory of Oncology in Southern China and Department of Experimental Research; Sun Yat-sen University Cancer Center ; Guangzhou, China
| | - Huimin Tao
- University of Michigan Comprehensive Cancer Cente; Ann Arbor , MI USA ; Center for Stem Cell Research and Application; Institute of Hematology; Union Hospital, Tongji Medical College ; Huazhong University of Science and Technology ; Wuhan, China
| | - Alfred E Chang
- University of Michigan Comprehensive Cancer Cente; Ann Arbor , MI USA
| | - Yangyang Hu
- University of Michigan Comprehensive Cancer Cente; Ann Arbor , MI USA ; Center for Stem Cell Research and Application; Institute of Hematology; Union Hospital, Tongji Medical College ; Huazhong University of Science and Technology ; Wuhan, China
| | - Guoshun Shu
- University of Michigan Comprehensive Cancer Cente; Ann Arbor , MI USA ; Second Xiangya Hospital; Central South University ; Changsha, Hunan, China
| | - Quanning Chen
- University of Michigan Comprehensive Cancer Cente; Ann Arbor , MI USA ; Department of General Surgery; Tongji Hospital of Tongji University ; Shanghai, China
| | - Martin Egenti
- University of Michigan Comprehensive Cancer Cente; Ann Arbor , MI USA
| | - John Owen
- University of Michigan Comprehensive Cancer Cente; Ann Arbor , MI USA
| | - Jeffrey S Moyer
- University of Michigan Comprehensive Cancer Cente; Ann Arbor , MI USA
| | - Mark Ep Prince
- University of Michigan Comprehensive Cancer Cente; Ann Arbor , MI USA
| | - Shiang Huang
- Center for Stem Cell Research and Application; Institute of Hematology; Union Hospital, Tongji Medical College ; Huazhong University of Science and Technology ; Wuhan, China
| | - Max S Wicha
- University of Michigan Comprehensive Cancer Cente; Ann Arbor , MI USA
| | - Jian-Chuan Xia
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research; Sun Yat-sen University Cancer Center ; Guangzhou, China
| | - Qiao Li
- University of Michigan Comprehensive Cancer Cente; Ann Arbor , MI USA
| |
Collapse
|
40
|
Owusu L, Wang B, Du Y, Li W, Xin Y. The quantum of initial transformed cells potentially modulates the type of local inflammation mechanism elicited by surrounding normal epithelial tissues and systemic immune pattern for tumor arrest or progression. J Cancer 2015; 6:128-38. [PMID: 25561977 PMCID: PMC4280395 DOI: 10.7150/jca.10787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 11/20/2014] [Indexed: 12/03/2022] Open
Abstract
The immune/ inflammation system potentially serves to arrest, eliminate or promote tumor development. Nonetheless, factors that dictate the choice are not comprehensively known yet. Using a B16/F1 syngeneic wild type model, we evaluated the essentiality of initial transformed cells' density for overt tumor development, the molecular trends of inflammatory mediators in the normal tumor-adjacent epithelial tissues (NTAT), and how such local events may reflect systematically in the host. Overt tumors developed, within an observatory period of at least 45 days and 90 days at most, only in mice inoculated with cancer cells above a limiting threshold of 1× 10(3) cells. Immunoblots showed early, intense and transient presence of IL-1β, IFN-γ, and both the all-thiol and disulfide forms of HMGB1 in the NTAT of non-tumor bearing mice. However, all-thiol form of HMGB1 and delayed but aberrant IL-6 expression characterized chronic inflammation in tumor bearing hosts. These local epithelial tissue events uniquely reflected in host's systemic cytokines dynamics where stable Th1/Th2 signature (IFN-γ/ IL-4) coupled with early Th1 cells polarization (IL-12/ IL-4) evidenced in non-tumor hosts but highly fluctuating Th1/ Th2 profile in tumor hosts, even before tumors became overt. This hypothesizes that the physical quantum of transformed cells that may either spontaneously arise or accrue at a locus may be crucial in orchestrating the mechanism for the type of local epithelial tissue and systemic immune/ inflammatory responses essential for tumor progression or arrest.
Collapse
Affiliation(s)
- Lawrence Owusu
- 1. Department of Biotechnology, Dalian Medical University, Dalian 116044, P.R. China
- 3. Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Bo Wang
- 2. Department of Pathology, Dalian Medical University, Dalian 116044, P.R. China
| | - Yue Du
- 2. Department of Pathology, Dalian Medical University, Dalian 116044, P.R. China
| | - Weiling Li
- 1. Department of Biotechnology, Dalian Medical University, Dalian 116044, P.R. China
| | - Yi Xin
- 1. Department of Biotechnology, Dalian Medical University, Dalian 116044, P.R. China
| |
Collapse
|
41
|
Sarvaiya PJ, Guo D, Ulasov I, Gabikian P, Lesniak MS. Chemokines in tumor progression and metastasis. Oncotarget 2014; 4:2171-85. [PMID: 24259307 PMCID: PMC3926818 DOI: 10.18632/oncotarget.1426] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines play a vital role in tumor progression and metastasis. Chemokines are involved in the growth of many cancers including breast cancer, ovarian cancer, pancreatic cancer, melanoma, lung cancer, gastric cancer, acute lymphoblastic leukemia, colon cancer, non-small lung cancer, non-hodgkin's lymphoma, etc. The expression of chemokines and their receptors is altered in many malignancies and leads to aberrant chemokine receptor signaling. This review focuses on the role of chemokines in key processes that facilitate tumor progression including proliferation, senescence, angiogenesis, epithelial mesenchymal transition, immune evasion and metastasis.
Collapse
Affiliation(s)
- Purvaba J Sarvaiya
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
42
|
Zhou J, Xiang Y, Yoshimura T, Chen K, Gong W, Huang J, Zhou Y, Yao X, Bian X, Wang JM. The role of chemoattractant receptors in shaping the tumor microenvironment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:751392. [PMID: 25110692 PMCID: PMC4119707 DOI: 10.1155/2014/751392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Chemoattractant receptors are a family of seven transmembrane G protein coupled receptors (GPCRs) initially found to mediate the chemotaxis and activation of immune cells. During the past decades, the functions of these GPCRs have been discovered to not only regulate leukocyte trafficking and promote immune responses, but also play important roles in homeostasis, development, angiogenesis, and tumor progression. Accumulating evidence indicates that chemoattractant GPCRs and their ligands promote the progression of malignant tumors based on their capacity to orchestrate the infiltration of the tumor microenvironment by immune cells, endothelial cells, fibroblasts, and mesenchymal cells. This facilitates the interaction of tumor cells with host cells, tumor cells with tumor cells, and host cells with host cells to provide a basis for the expansion of established tumors and development of distant metastasis. In addition, many malignant tumors of the nonhematopoietic origin express multiple chemoattractant GPCRs that increase the invasiveness and metastasis of tumor cells. Therefore, GPCRs and their ligands constitute targets for the development of novel antitumor therapeutics.
Collapse
Affiliation(s)
- Jiamin Zhou
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Endoscopic Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Xiang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Jian Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ye Zhou
- Department of Gastric Cancer and Soft Tissue Surgery, Fudan University Cancer Center, Shanghai 200032, China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
43
|
Mukaida N, Sasaki SI, Baba T. Chemokines in cancer development and progression and their potential as targeting molecules for cancer treatment. Mediators Inflamm 2014; 2014:170381. [PMID: 24966464 PMCID: PMC4055660 DOI: 10.1155/2014/170381] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/02/2014] [Indexed: 12/15/2022] Open
Abstract
Chemokines were initially identified as bioactive substances, which control the trafficking of inflammatory cells including granulocytes and monocytes/macrophages. Moreover, chemokines have profound impacts on other types of cells associated with inflammatory responses, such as endothelial cells and fibroblasts. These observations would implicate chemokines as master regulators in various inflammatory responses. Subsequent studies have further revealed that chemokines can regulate the movement of a wide variety of immune cells including lymphocytes, natural killer cells, and dendritic cells in both physiological and pathological conditions. These features endow chemokines with crucial roles in immune responses. Furthermore, increasing evidence points to the vital effects of several chemokines on the proliferative and invasive properties of cancer cells. It is widely acknowledged that cancer develops and progresses to invade and metastasize in continuous interaction with noncancerous cells present in cancer tissues, such as macrophages, lymphocytes, fibroblasts, and endothelial cells. The capacity of chemokines to regulate both cancerous and noncancerous cells highlights their crucial roles in cancer development and progression. Here, we will discuss the roles of chemokines in carcinogenesis and the possibility of chemokine targeting therapy for the treatment of cancer.
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo 102-0075, Japan
| | - So-ichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
44
|
Identification of the genomic insertion site of Pmel-1 TCR α and β transgenes by next-generation sequencing. PLoS One 2014; 9:e96650. [PMID: 24827921 PMCID: PMC4020793 DOI: 10.1371/journal.pone.0096650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
The pmel-1 T cell receptor transgenic mouse has been extensively employed as an ideal model system to study the mechanisms of tumor immunology, CD8+ T cell differentiation, autoimmunity and adoptive immunotherapy. The ‘zygosity’ of the transgene affects the transgene expression levels and may compromise optimal breeding scheme design. However, the integration sites for the pmel-1 mouse have remained uncharacterized. This is also true for many other commonly used transgenic mice created before the modern era of rapid and inexpensive next-generation sequencing. Here, we show that whole genome sequencing can be used to determine the exact pmel-1 genomic integration site, even with relatively ‘shallow’ (8X) coverage. The results were used to develop a validated polymerase chain reaction-based genotyping assay. For the first time, we provide a quick and convenient polymerase chain reaction method to determine the dosage of pmel-1 transgene for this freely and publically available mouse resource. We also demonstrate that next-generation sequencing provides a feasible approach for mapping foreign DNA integration sites, even when information of the original vector sequences is only partially known.
Collapse
|
45
|
Roy I, Evans DB, Dwinell MB. Chemokines and chemokine receptors: update on utility and challenges for the clinician. Surgery 2014; 155:961-73. [PMID: 24856117 DOI: 10.1016/j.surg.2014.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/05/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Ishan Roy
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| | - Douglas B Evans
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
46
|
Yeudall WA, Miyazaki H. Chemokines and squamous cancer of the head and neck: targets for therapeutic intervention? Expert Rev Anticancer Ther 2014; 7:351-60. [PMID: 17338654 DOI: 10.1586/14737140.7.3.351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The biological properties of squamous carcinoma cells are intimately regulated by a multitude of cytokines and growth factors; the most well studied of these include epidermal growth factor receptor agonists and members of the transforming growth factor-beta family. The recent explosion of research in the field of chemokine function as a mediator of tumor progression has led to the possibility that these small, immunomodulatory proteins also play key roles in squamous carcinogenesis and may, therefore, be potential targets for novel therapeutic approaches.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Squamous Cell/blood supply
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/physiopathology
- Cell Survival
- Cell Transformation, Neoplastic
- Chemokines/antagonists & inhibitors
- Chemokines/physiology
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/physiology
- Disease Progression
- Drug Design
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/physiology
- Head and Neck Neoplasms/blood supply
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/physiopathology
- Humans
- Molecular Sequence Data
- Neoplasm Invasiveness
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/physiopathology
- Receptors, Chemokine/drug effects
- Receptors, Chemokine/physiology
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- W Andrew Yeudall
- Virginia Commonwealth University School of Dentistry, Philips Institute for Oral & Craniofacial Molecular Biology, Department of Biochemistry and Massey Cancer Center, Richmond, VA 23298, USA.
| | | |
Collapse
|
47
|
Lee N, Barthel SR, Schatton T. Melanoma stem cells and metastasis: mimicking hematopoietic cell trafficking? J Transl Med 2014; 94:13-30. [PMID: 24126889 PMCID: PMC3941309 DOI: 10.1038/labinvest.2013.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 12/16/2022] Open
Abstract
Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. In addition, MMICs are enriched among circulating tumor cells in the peripheral blood of cancer patients, suggesting that MMICs may be a critical factor in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced disease.
Collapse
Affiliation(s)
- Nayoung Lee
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven R. Barthel
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Schatton
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Transplantation Research Center, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA,To whom correspondence should be addressed: Tobias Schatton, Pharm.D., Ph.D., Department of Dermatology, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Rm. 673B, 77 Avenue Louis Pasteur, Boston, MA 02115, USA;
| |
Collapse
|
48
|
Takekoshi T, Wu X, Mitsui H, Tada Y, Kao MC, Sato S, Dwinell MB, Hwang ST. CXCR4 negatively regulates keratinocyte proliferation in IL-23-mediated psoriasiform dermatitis. J Invest Dermatol 2013; 133:2530-2537. [PMID: 23528817 PMCID: PMC3972890 DOI: 10.1038/jid.2013.151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 02/08/2023]
Abstract
CXCR4 is expressed by basal keratinocytes (KCs), but little is known about its function in inflamed skin. We crossed K14-Cre and CXCR4(flox/flox (f/f)) transgenic mice, resulting in mice with specific loss of the CXCR4 gene in K14-expressing cells (K14-CXCR4KO), including basal KCs. K14-CXCR4KO pups had no obvious skin defects. We compared K14-CXCR4KO and CXCR4(f/f) control mice in an IL-23-mediated psoriasiform dermatitis model and measured skin edema, and histologic and immunohistological changes. IL-23-treated K14-CXCR4KO mice showed a 1.3-fold increase in mean ear swelling, a 2-fold increase in epidermal thickness, and greater parakeratosis. IL-23-treated wild-type (WT) mice showed weak CXCR4 expression in areas of severe epidermal hyperplasia, but strong CXCR4 expression in nonhyperplastic regions, suggesting that CXCR4 may regulate KC proliferation. To test this hypothesis, we overexpressed CXCR4 in HaCaT KC cells and treated them with IL-22 and/or CXCL12 (chemokine (C-X-C motif) ligand 12). CXCL12 blocked IL-22-mediated HaCaT cell proliferation in vitro and synergized with IL-22 in upregulating SOCS3 (suppressor of cytokine signaling 3), a key regulator of STAT3 (signal transducer and activator of transcription 3). SOCS3 was required for CXCR4-mediated growth inhibition. In human psoriatic skin, both CXCR4 and SOCS3 were upregulated in the junctional region at the border of psoriatic plaques. Thus, CXCR4 has an unexpected role in inhibiting KC proliferation and mitigating the effects of proliferative T helper type 17 cytokines.
Collapse
Affiliation(s)
- Tomonori Takekoshi
- Department of Dermatology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, Wisconsin, USA; Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Xuesong Wu
- Department of Dermatology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, Wisconsin, USA
| | - Hiroshi Mitsui
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yayoi Tada
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mandy C Kao
- Department of Dermatology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, Wisconsin, USA
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sam T Hwang
- Department of Dermatology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, Wisconsin, USA.
| |
Collapse
|
49
|
Yang X, Hou J, Han Z, Wang Y, Hao C, Wei L, Shi Y. One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment. Cell Biosci 2013; 3:5. [PMID: 23336752 PMCID: PMC3693909 DOI: 10.1186/2045-3701-3-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/20/2012] [Indexed: 12/13/2022] Open
Abstract
The discovery of tissue reparative and immunosuppressive abilities of mesenchymal stem cells (MSCs) has drawn more attention to tumor microenvironment and its role in providing the soil for the tumor cell growth. MSCs are recruited to tumor which is referred as the never healing wound and altered by the inflammation environment, thereby helping to construct the tumor microenvironment. The environment orchestrated by MSCs and other factors can be associated with angiogenesis, immunosuppression, inhibition of apoptosis, epithelial-mesenchymal transition (EMT), survival of cancer stem cells, which all contribute to tumor growth and progression. In this review, we will discuss how MSCs are recruited to the tumor microenvironment and what effects they have on tumor progression.
Collapse
Affiliation(s)
- Xue Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medicial University, 225 Changhai Road, Shanghai 200438, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Mabuchi T, Singh TP, Takekoshi T, Jia GF, Wu X, Kao MC, Weiss I, Farber JM, Hwang ST. CCR6 is required for epidermal trafficking of γδ-T cells in an IL-23-induced model of psoriasiform dermatitis. J Invest Dermatol 2013; 133:164-71. [PMID: 22895364 PMCID: PMC3511632 DOI: 10.1038/jid.2012.260] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A subset of CC chemokine receptor-6(+) (CCR6(+)), γδ-low (GDL) T cells that express Th17 cytokines in mouse skin participates in IL-23-induced psoriasiform dermatitis. We use CCR6-deficient (knockout, KO) and wild-type (WT) mice to analyze skin trafficking patterns of GDL T cells and function-blocking mAbs to determine the role of CCR6 in IL-23-mediated dermatitis. Herein, CCL20 was highly upregulated in IL-23-injected WT mouse ear skin as early as 24 hours after initial treatment, and large numbers of CCR6(+) cells were observed in the epidermis of IL-23-injected WT mice. Anti-CCL20 mAbs reduced psoriasiform dermatitis and blocked recruitment of GDL T cells to the epidermis. In CCR6 KO mice, GDL T cells failed to accumulate in the epidermis after IL-23 treatment, but the total numbers of GDL T cells in the dermis of WT and CCR6 KO mice were equivalent. There was an ∼70% reduction in the proportion of IL-22(+) GDL T cells in the dermis of CCR6 KO mice (vs WT mice), suggesting that effector function and epidermal recruitment of GDL T cells are impaired in CCR6-deficient mice. Thus, these data show that CCR6 regulates epidermal trafficking of γδ-T-cell subsets in the skin and suggest the potential of CCR6 as a therapeutic target for psoriasis.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Cell Movement/drug effects
- Cell Movement/immunology
- Chemokine CCL20/immunology
- Dermatitis/immunology
- Dermatitis/pathology
- Epidermis/drug effects
- Epidermis/immunology
- Epidermis/pathology
- Interleukin-23/adverse effects
- Interleukins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Psoriasis/chemically induced
- Psoriasis/immunology
- Psoriasis/pathology
- Receptors, Antigen, T-Cell, gamma-delta/drug effects
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, CCR6/genetics
- Receptors, CCR6/immunology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- Interleukin-22
Collapse
Affiliation(s)
- Tomotaka Mabuchi
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53005
| | - Tej Pratap Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, NIAID, Bethesda, MD 20892
| | - Tomonori Takekoshi
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53005
| | - Guang-fu Jia
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53005
| | - Xuesong Wu
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53005
| | - Mandy C. Kao
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53005
| | - Ido Weiss
- Inflammation Biology Section, Laboratory of Molecular Immunology, NIAID, Bethesda, MD 20892
| | - Joshua M. Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, NIAID, Bethesda, MD 20892
| | - Sam T. Hwang
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53005
| |
Collapse
|