1
|
Laaker C, Hsu M, Fabry Z, Miller SD, Karpus WJ. Experimental Autoimmune Encephalomyelitis in the Mouse. Curr Protoc 2021; 1:e300. [PMID: 34870897 DOI: 10.1002/cpz1.300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article details the materials and methods required for both active induction and adoptive transfer of experimental autoimmune encephalomyelitis (EAE) in the SJL mouse strain using intact proteins or peptides from the two major myelin proteins: proteolipid protein (PLP) and myelin basic protein (MBP). Additionally, active induction of EAE in the C57BL/6 strain using myelin oligodendrocyte glycoprotein (MOG) peptide is also discussed. Detailed materials and methods required for the purification of both PLP and MBP are described, and a protocol for isolating CNS-infiltrating lymphocytes in EAE mice is included. Modifications of the specified protocols may be necessary for efficient induction of active or adoptive EAE in other mouse strains. © 2021 Wiley Periodicals LLC. Basic Protocol: Active induction of EAE with PLP, MBP, and MOG protein or peptide Alternate Protocol: Adoptive induction of EAE with PLP-, MBP-, or MOG-specific lymphocytes Support Protocol 1: Purification of proteolipid protein Support Protocol 2: Purification of myelin basic protein Support Protocol 3: Isolation of CNS-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Collin Laaker
- Department of Pathology and Lab Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Martin Hsu
- Department of Pathology and Lab Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zsuzsanna Fabry
- Department of Pathology and Lab Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William J Karpus
- Department of Pathology and Lab Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
2
|
Kim HN, Kim JY. A Systematic Review of Oropharyngeal Dysphagia Models in Rodents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4987. [PMID: 34067192 PMCID: PMC8125817 DOI: 10.3390/ijerph18094987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Oropharyngeal dysphagia is a condition characterized by swallowing difficulty in the mouth and pharynx, which can be due to various factors. Animal models of oropharyngeal dysphagia are essential to confirm the cause-specific symptoms, pathological findings, and the effect of treatment. Recently, various animal models of dysphagia have been reported. The purpose of this review is to organize the rodent models of oropharyngeal dysphagia reported to date. The articles were obtained from Medline, Embase, and the Cochrane library, and selected following the PRISMA guideline. The animal models in which oropharyngeal dysphagia was induced in rats or mice were selected and classified based on the diseases causing oropharyngeal dysphagia. The animal used, method of inducing dysphagia, and screening methods and results were collected from the selected 37 articles. Various rodent models of oropharyngeal dysphagia provide distinctive information on atypical swallowing. Applying and analyzing the treatment in rodent models of dysphagia induced from various causes is an essential process to develop symptom-specific treatments. Therefore, the results of this study provide fundamental and important data for selecting appropriate animal models to study dysphagia.
Collapse
Affiliation(s)
- Han-Na Kim
- Department of Dental Hygiene, College of Health and Medical Sciences, Cheongju University, Cheongju 28503, Korea;
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon 21936, Korea
| |
Collapse
|
3
|
Pradana KA, Widjaya MA, Wahjudi M. Indonesians Human Leukocyte Antigen (HLA) Distributions and Correlations with Global Diseases. Immunol Invest 2019; 49:333-363. [PMID: 31648579 DOI: 10.1080/08820139.2019.1673771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In Human, Major Histocompatibility Complex known as Human Leukocyte Antigen (HLA). The HLA grouped into three subclasses regions: the class I region, the class II region, and the class III region. There are thousands of polymorphic HLAs, many of them are proven to have correlations with diseases. Indonesia consists of diverse ethnicity people and populations. It carries a unique genetic diversity between one and another geographical positions. This paper aims to extract Indonesians HLA allele data, mapping the data, and correlating them with global diseases. From the study, it is found that global diseases, like Crohn's disease, rheumatoid arthritis, Graves' disease, gelatin allergy, T1D, HIV, systemic lupus erythematosus, juvenile chronic arthritis, and Mycobacterial disease (tuberculosis and leprosy) suspected associated with the Indonesian HLA profiles.
Collapse
Affiliation(s)
- Krisnawan Andy Pradana
- Faculty of Biotechnology, University of Surabaya, Surabaya City, Indonesia.,Department of Anatomy and Histology Faculty of Medicine, Airlangga University, Tambaksari, Surabaya City, Indonesia
| | | | - Mariana Wahjudi
- Faculty of Biotechnology, University of Surabaya, Surabaya City, Indonesia
| |
Collapse
|
4
|
Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol 2018; 18:325-339. [PMID: 29292391 DOI: 10.1038/nri.2017.143] [Citation(s) in RCA: 490] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fifty years since the first description of an association between HLA and human disease, HLA molecules have proven to be central to physiology, protective immunity and deleterious, disease-causing autoimmune reactivity. Technological advances have enabled pivotal progress in the determination of the molecular mechanisms that underpin the association between HLA genetics and functional outcome. Here, we review our current understanding of HLA molecules as the fundamental platform for immune surveillance and responsiveness in health and disease. We evaluate the scope for personalized antigen-specific disease prevention, whereby harnessing HLA-ligand interactions for clinical benefit is becoming a realistic prospect.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jan Petersen
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lars Fugger
- Danish National Research Foundation Centre PERSIMUNE, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark.,Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
5
|
Martin R, Sospedra M, Rosito M, Engelhardt B. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis. Eur J Immunol 2017; 46:2078-90. [PMID: 27467894 DOI: 10.1002/eji.201646485] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is the most common inflammatory disorder of the central nervous system (CNS) in young adults. When MS is not treated, it leads to irreversible and severe disability. The etiology of MS and its pathogenesis are not fully understood. The recent discovery that MS-associated genetic variants code for molecules related to the function of specific immune cell subsets is consistent with the concept of MS as a prototypic, T-cell-mediated autoimmune disease targeting the CNS. While the therapeutic efficacy of the currently available immunomodulatory therapies further strengthen this concept, differences observed in responses to MS treatment as well as additional clinical and imaging observations have also shown that the autoimmune pathogenesis underlying MS is much more complex than previously thought. There is therefore an unmet need for continued detailed phenotypic and functional analysis of disease-relevant adaptive immune cells and tissues directly derived from MS patients to unravel the immune etiology of MS in its entire complexity. In this review, we will discuss the currently available MS treatment options and approved drugs, including how they have contributed to the understanding of the immune pathology of this autoimmune disease.
Collapse
Affiliation(s)
- Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Maria Rosito
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
6
|
Yong H, Chartier G, Quandt J. Modulating inflammation and neuroprotection in multiple sclerosis. J Neurosci Res 2017; 96:927-950. [PMID: 28580582 DOI: 10.1002/jnr.24090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a neurological disorder of the central nervous system with a presentation and disease course that is largely unpredictable. MS can cause loss of balance, impaired vision or speech, weakness and paralysis, fatigue, depression, and cognitive impairment. Immunomodulation is a major target given the appearance of focal demyelinating lesions in myelin-rich white matter, yet progression and an increasing appreciation for gray matter involvement, even during the earliest phases of the disease, highlights the need to afford neuroprotection and limit neurodegenerative processes that correlate with disability. This review summarizes key aspects of MS pathophysiology and histopathology with a focus on neuroimmune interactions in MS, which may facilitate neurodegeneration through both direct and indirect mechanisms. There is a focus on processes thought to influence disease progression and the role of oxidative stress and mitochondrial dysfunction in MS. The goals and efficacy of current disease-modifying therapies and those in the pipeline are discussed, highlighting recent advances in our understanding of pathways mediating disease progression to identify and translate both immunomodulatory and neuroprotective therapeutics from the bench to the clinic.
Collapse
Affiliation(s)
- Heather Yong
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabrielle Chartier
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacqueline Quandt
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Abstract
During the past decade, the development of humanized mouse models and their general applications in biomedical research greatly accelerated the translation of outcomes obtained from basic research into potential diagnostic and therapeutic strategies in clinic. In this chapter, we firstly present an overview on the history and current progress of diverse humanized mouse models and then focus on those equipped with reconstituted human immune system. The update advancement in the establishment of humanized immune system mice and their applications in the studies of the development of human immune system and the pathogenesis of multiple human immune-related diseases are intensively reviewed here, while the shortcoming and perspective of these potent tools are discussed as well. As a valuable bridge across the gap between bench work and clinical trial, progressive humanized mouse models will undoubtedly continue to play an indispensable role in the wide area of biomedical research.
Collapse
|
8
|
He Y, Rangarajan S, Kerzic M, Luo M, Chen Y, Wang Q, Yin Y, Workman CJ, Vignali KM, Vignali DAA, Mariuzza RA, Orban J. Identification of the Docking Site for CD3 on the T Cell Receptor β Chain by Solution NMR. J Biol Chem 2015; 290:19796-805. [PMID: 26109064 DOI: 10.1074/jbc.m115.663799] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 12/23/2022] Open
Abstract
The T cell receptor (TCR)-CD3 complex is composed of a genetically diverse αβ TCR heterodimer associated noncovalently with the invariant CD3 dimers CD3ϵγ, CD3ϵδ, and CD3ζζ. The TCR mediates peptide-MHC recognition, whereas the CD3 molecules transduce activation signals to the T cell. Although much is known about downstream T cell signaling pathways, the mechanism whereby TCR engagement by peptide-MHC initiates signaling is poorly understood. A key to solving this problem is defining the spatial organization of the TCR-CD3 complex and the interactions between its subunits. We have applied solution NMR methods to identify the docking site for CD3 on the β chain of a human autoimmune TCR. We demonstrate a low affinity but highly specific interaction between the extracellular domains of CD3 and the TCR constant β (Cβ) domain that requires both CD3ϵγ and CD3ϵδ subunits. The mainly hydrophilic docking site, comprising 9-11 solvent-accessible Cβ residues, is relatively small (∼400 Å(2)), consistent with the weak interaction between TCR and CD3 extracellular domains, and devoid of glycosylation sites. The docking site is centered on the αA and αB helices of Cβ, which are located at the base of the TCR. This positions CD3ϵγ and CD3ϵδ between the TCR and the T cell membrane, permitting us to distinguish among several possible models of TCR-CD3 association. We further correlate structural results from NMR with mutational data on TCR-CD3 interactions from cell-based assays.
Collapse
Affiliation(s)
- Yanan He
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Departments of Chemistry and Biochemistry and
| | - Sneha Rangarajan
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Melissa Kerzic
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Ming Luo
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China, and
| | - Yihong Chen
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Qian Wang
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Yiyuan Yin
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Creg J Workman
- the Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Kate M Vignali
- the Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Dario A A Vignali
- the Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Roy A Mariuzza
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742,
| | - John Orban
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Departments of Chemistry and Biochemistry and
| |
Collapse
|
9
|
Neunkirchner A, Schmetterer KG, Pickl WF. Lymphocyte-based model systems for allergy research: a historic overview. Int Arch Allergy Immunol 2014; 163:259-91. [PMID: 24777172 PMCID: PMC7617143 DOI: 10.1159/000360163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the last decades, a multitude of studies applying distinct in vitro and in vivo model systems have contributed greatly to our better understanding of the initiation and regulation of inflammatory processes leading to allergic diseases. Over the years, it has become evident that among lymphocytes, not only IgE-producing B cells and allergy-orchestrating CD4(+) helper cells but also cytotoxic CD8(+) T cells, γδ-T cells and innate lymphoid cells, as well as regulatory lymphocytes, might critically shape the immune response towards usually innocuous allergens. In this review, we provide a historic overview of pioneering work leading to the establishment of important lymphocyte-based model systems for allergy research. Moreover, we contrast the original findings with our currently more refined knowledge to appreciate the actual validity of the respective models and to reassess the conclusions obtained from them. Conflicting studies and interpretations are identified and discussed. The tables are intended to provide an easy overview of the field not only for scientists newly entering the field but also for the broader readership interested in updating their knowledge. Along those lines, herein we discuss in vitro and in vivo approaches to the investigation of lymphocyte effector cell activation, polarization and regulation, and describe depletion and adoptive transfer models along with gene knockout and transgenic (tg) methodologies. In addition, novel attempts to establish humanized T cell antigen receptor tg mouse models for allergy research are described and discussed.
Collapse
Affiliation(s)
- Alina Neunkirchner
- Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
10
|
Naegele M, Martin R. The good and the bad of neuroinflammation in multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:59-87. [PMID: 24507513 DOI: 10.1016/b978-0-444-52001-2.00003-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is the most common inflammatory, demyelinating, neurodegenerative disorder of the central nervous system (CNS). It is widely considered a T-cell mediated autoimmune disease that develops in genetically susceptible individuals, possibly under the influence of certain environmental trigger factors. The invasion of autoreactive CD4+ T-cells into the CNS is thought to be a central step that initiates the disease. Several other cell types, including CD8+ T-cells, B-cells and phagocytes appear to be involved in causing inflammation and eventually neurodegeneration. But inflammation is not entirely deleterious in MS. Evidence has accumulated in the recent years that show the importance of regulatory immune mechanisms which restrain tissue damage and initiate regeneration. More insight into the beneficial aspects of neuroinflammation might allow us to develop new treatment strategies for this enigmatic disease.
Collapse
Affiliation(s)
- Matthias Naegele
- Institute for Neuroimmunology and Clinical Multiple Sclerosis Research, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital, Zurich, Switzerland.
| |
Collapse
|
11
|
Yin Y, Li Y, Mariuzza RA. Structural basis for self-recognition by autoimmune T-cell receptors. Immunol Rev 2013; 250:32-48. [PMID: 23046121 DOI: 10.1111/imr.12002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
T-cell receptors (TCRs) recognize peptides presented by major histocompatibility complex molecules (pMHC) to discriminate between foreign and self-antigens. Whereas T-cell recognition of foreign peptides is essential for protection against microbial pathogens, recognition of self-peptides by T cells that have escaped negative selection in the thymus can lead to autoimmune disease. Structural studies of autoimmune TCR-pMHC complexes have provided insights into the mechanisms underlying self-recognition and escape from thymic deletion. Two broad categories of self-reactive TCRs can be clearly distinguished: (i) TCRs with altered binding topologies to self-pMHC and (ii) TCRs that bind self-pMHC in the canonical diagonal orientation, but where there are structural defects or suboptimal anchors in the self-ligand. For both categories, however, the overall stability of the autoimmune TCR-pMHC complex is markedly reduced compared to anti-microbial complexes, allowing the autoreactive T cells to evade negative selection, yet retain the ability to be activated by self-antigens in target organs. Additionally, the structures provide insights into TCR cross-reactivity, which can contribute to autoimmunity by increasing the likelihood of self-pMHC recognition. Efforts are now underway to understand the impact of structural alterations in autoimmune TCR-pMHC complexes on higher order assemblies involved in TCR signaling, as well as on immunological synapse formation.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | | | | |
Collapse
|
12
|
Vidaurre OG, Liu J, Haines J, Sandoval J, Nowakowski R, Casaccia P. An integrated approach to design novel therapeutic interventions for demyelinating disorders. Eur J Neurosci 2012; 35:1879-86. [PMID: 22708599 DOI: 10.1111/j.1460-9568.2012.08118.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Therapeutic strategies are often based on two general principles: interference with the pathogenic process and repair of the damaged tissues. Recent studies, however, have suggested that several pathological conditions may result from the interplay between genetic susceptibility traits and environmental influences that, by modulating the epigenome, also affect disease onset and progression. Based on lessons from neural development, it is conceivable that new lines of preventive and possibly therapeutic intervention might be developed to modulate disease onset or decrease the severity of the symptoms. This review will discuss these concepts within the context of multiple sclerosis, the most common demyelinating disease of the central nervous system, and the leading cause of progressive neurological disability in young adults.
Collapse
Affiliation(s)
- Oscar G Vidaurre
- Department of Neuroscience and Genetics and Genomics, Mount Sinai School of Medicine, One Gustave Levy Place, Box 1065, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
13
|
Quandt JA, Huh J, Baig M, Yao K, Ito N, Bryant M, Kawamura K, Pinilla C, McFarland HF, Martin R, Ito K. Myelin basic protein-specific TCR/HLA-DRB5*01:01 transgenic mice support the etiologic role of DRB5*01:01 in multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2012; 189:2897-908. [PMID: 22888134 DOI: 10.4049/jimmunol.1103087] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic susceptibility to multiple sclerosis (MS) has been linked to the HLA-DR15 haplotype consisting of DRB1*15:01(DR2b) and DRB5*01:01(DR2a) alleles. Given almost complete linkage disequilibrium of the two alleles, recent studies suggested differential roles in susceptibility (DR2b) or protection from MS (DR2a). Our objective was to assess the potential contribution of DR2a to disease etiology in MS using a humanized model of autoimmunity. To assess the potential contribution of DR2a to disease etiology, we created DR2a humanized transgenic (Tg) mice and subsequently crossed them to Tg mice expressing TL3A6, an MS patient-derived myelin basic protein 83-99-specific TCR. In TL3A6/DR2a Tg mice, CD4 Tg T cells escape thymic and peripheral deletion and initiate spontaneous experimental autoimmune encephalomyelitis (EAE) at low rates, depending on the level of DR2a expression. The ability to induce active EAE was also increased in animals expressing higher levels of DR2a. Inflammatory infiltrates and neuronal damage were present throughout the spinal cord, consistent with a classical ascending EAE phenotype with minor involvement of the cerebellum, brainstem, and peripheral nerve roots in spontaneous, as well as actively induced, disease. These studies emphasize the pathologic contribution of the DR2a allele to the development of autoimmunity when expressed as the sole MHC class II molecule, as well as strongly argue for DR2a as a contributor to the CNS autoimmunity in MS.
Collapse
Affiliation(s)
- Jacqueline A Quandt
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yin Y, Li Y, Kerzic MC, Martin R, Mariuzza RA. Structure of a TCR with high affinity for self-antigen reveals basis for escape from negative selection. EMBO J 2011; 30:1137-48. [PMID: 21297580 DOI: 10.1038/emboj.2011.21] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/10/2011] [Indexed: 11/10/2022] Open
Abstract
The failure to eliminate self-reactive T cells during negative selection is a prerequisite for autoimmunity. To escape deletion, autoreactive T-cell receptors (TCRs) may form unstable complexes with self-peptide-MHC by adopting suboptimal binding topologies compared with anti-microbial TCRs. Alternatively, escape can occur by weak binding between self-peptides and MHC. We determined the structure of a human autoimmune TCR (MS2-3C8) bound to a self-peptide from myelin basic protein (MBP) and the multiple sclerosis-associated MHC molecule HLA-DR4. MBP is loosely accommodated in the HLA-DR4-binding groove, accounting for its low affinity. Conversely, MS2-3C8 binds MBP-DR4 as tightly as the most avid anti-microbial TCRs. MS2-3C8 engages self-antigen via a docking mode that resembles the optimal topology of anti-foreign TCRs, but is distinct from that of other autoreactive TCRs. Combined with a unique CDR3β conformation, this docking mode compensates for the weak binding of MBP to HLA-DR4 by maximizing interactions between MS2-3C8 and MBP. Thus, the MS2-3C8-MBP-DR4 complex reveals the basis for an alternative strategy whereby autoreactive T cells escape negative selection, yet retain the ability to initiate autoimmunity.
Collapse
Affiliation(s)
- Yiyuan Yin
- Institute for Bioscience and Biotechnology Research, University of Maryland, WM Keck Laboratory for Structural Biology, Rockville, MD, USA
| | | | | | | | | |
Collapse
|
15
|
Scheikl T, Pignolet B, Mars LT, Liblau RS. Transgenic mouse models of multiple sclerosis. Cell Mol Life Sci 2010; 67:4011-34. [PMID: 20714779 PMCID: PMC11115830 DOI: 10.1007/s00018-010-0481-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/08/2010] [Accepted: 07/27/2010] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease affecting the central nervous system (CNS) and a frequent cause of neurological disability in young adults. Multifocal inflammatory lesions in the CNS white matter, demyelination, oligodendrocyte loss, axonal damage, as well as astrogliosis represent the histological hallmarks of the disease. These pathological features of MS can be mimicked, at least in part, using animal models. This review discusses the current concepts of the immune effector mechanisms driving CNS demyelination in murine models. It highlights the fundamental contribution of transgenesis in identifying the mediators and mechanisms involved in the pathophysiology of MS models.
Collapse
Affiliation(s)
- Tanja Scheikl
- Institut National de la Santé et de la Recherche Médicale, Unité 563, Toulouse, France.
| | | | | | | |
Collapse
|
16
|
Stoeckle C, Tolosa E. Antigen processing and presentation in multiple sclerosis. Results Probl Cell Differ 2010; 51:149-72. [PMID: 19582405 DOI: 10.1007/400_2009_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
CD4(+) T cells play a central role in the pathogenesis of multiple sclerosis (MS). Generation, activation and effector function of these cells crucially depends on their interaction with MHC II-peptide complexes displayed by antigen presenting cells (APC). Processing and presentation of self antigens by different APC therefore influences the disease course at all stages. Selection by thymic APC leads to the generation of autoreactive T cells, which can be activated by peripheral APC. Reactivation by central nervous system APC leads to the initiation of the inflammatory response resulting in demyelination. In this review we will focus on how MHC class II antigenic epitopes are created by different APC from the thymus, the periphery and from the brain, and will discuss the relevance of the balance between creation and destruction of such epitopes in the context of MS. A solid understanding of these processes offers the possibility for designing future therapeutic strategies.
Collapse
Affiliation(s)
- Christina Stoeckle
- Department of General Neurology, Hertie Institute for Clinical Brain Research, Otfried-Mueller-Str. 27, 72076, Tuebingen, Germany.
| | | |
Collapse
|
17
|
Miller SD, Karpus WJ, Davidson TS. Experimental autoimmune encephalomyelitis in the mouse. CURRENT PROTOCOLS IN IMMUNOLOGY 2010; Chapter 15:15.1.1-15.1.20. [PMID: 20143314 DOI: 10.1002/0471142735.im1501s88] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit details the materials and methods required for both active induction and adoptive transfer of experimental autoimmune encephalomyelitis (EAE) in the SJL mouse strain using intact proteins or peptides from the two major myelin proteins: proteolipid protein (PLP) and myelin basic protein (MBP). Detailed materials and methods required for the purification of both PLP and MBP are also described. A protocol for isolating CNS-infiltrating lymphocytes in EAE mice is included. Modifications of the specified protocols may be necessary for efficient induction of active or adoptive EAE in other mouse strains.
Collapse
|
18
|
Schreiner B, Heppner FL, Becher B. Modeling multiple sclerosis in laboratory animals. Semin Immunopathol 2009; 31:479-95. [PMID: 19802608 DOI: 10.1007/s00281-009-0181-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 08/13/2009] [Indexed: 12/18/2022]
Abstract
Inflammatory demyelinating disease of the central nervous system is one of the most frequent causes of neurological disability in young adults. While in situ analysis and in vitro models do shed some light onto the processes of tissue damage and cellular interactions, the development of neuroinflammation and demyelination is a far too complex process to be adequately modeled by simple test tube systems. Thus, animal models using primarily genetically modified mice have been proven to be of paramount importance. In this chapter, we discuss recent advances in modeling brain diseases focusing on murine models and report on new tools to study the pathogenesis of complex diseases such as multiple sclerosis.
Collapse
|
19
|
Abstract
Two main etiological components are considered important in human autoimmune diseases including multiple sclerosis (MS), first the immunogenetic background and second environmental factors. Among the latter, infectious organisms are probably the most relevant, and epidemiological studies in MS firmly support that viral infections often precede disease exacerbations or the onset of MS. Infectious agents can contribute to disease development or phenotypic expression in different ways. Our focus will be directed on molecular mimicry, i.e. antigenic similarity between structural epitopes or peptide sequences from infectious organisms with those found in self proteins of the host. The intriguing concept of molecular mimicry has evolved substantially since its introduction over 20 years ago. We will summarize the most important developments and discuss puzzling questions, which remain open despite many claims that molecular mimicry is involved in the development of human autoimmune disease after infections or vaccinations.
Collapse
Affiliation(s)
- Mireia Sospedra
- Unitat de Neuroimmunologia Clinica, Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron, 119-129, Barcelona, 08035, Spain
| | | |
Collapse
|
20
|
Kawamura K, Yao K, Shukaliak-Quandt JA, Huh J, Baig M, Quigley L, Ito N, Necker A, McFarland HF, Muraro PA, Martin R, Ito K. Different development of myelin basic protein agonist- and antagonist-specific human TCR transgenic T cells in the thymus and periphery. THE JOURNAL OF IMMUNOLOGY 2008; 181:5462-72. [PMID: 18832703 DOI: 10.4049/jimmunol.181.8.5462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myelin basic protein (MBP)-specific T cells are thought to play a role in the development of multiple sclerosis. MBP residues 111-129 compose an immunodominant epitope cluster restricted by HLA-DRB1*0401. The sequence of residues 111-129 of MBP (MBP(111-129)) differs in humans (MBP122:Arg) and mice (MBP122:Lys) at aa 122. We previously found that approximately 50% of human MBP(111-129) (MBP122:Arg)-specific T cell clones, including MS2-3C8 can proliferate in response to mouse MBP(111-129) (MBP122:Lys). However, the other half of T cell clones, including HD4-1C2, cannot proliferate in response to MBP(111-129) (MBP122:Lys). We found that MBP(111-129) (MBP122:Lys) is an antagonist for HD4-1C2 TCR, therefore, MS2-3C8 and HD4-1C2 TCRs are agonist- and antagonist-specific TCRs in mice, respectively. Therefore, we examined the development of HD4-1C2 TCR and MS2-3C8 TCR transgenic (Tg) T cells in the thymus and periphery. We found that dual TCR expression exclusively facilitates the development of MBP(111-129) TCR Tg T cells in the periphery of HD4-1C2 TCR/HLA-DRB1*0401 Tg mice although it is not required for their development in the thymus. We also found that MS2-3C8 TCR Tg CD8(+) T cells develop along with MS2-3C8 TCR Tg CD4(+) T cells, and that dual TCR expression was crucial for the development of MS2-3C8 TCR Tg CD4(+) and CD8(+) T cells in the thymus and periphery, respectively. These results suggest that thymic and peripheral development of MBP-specific T cells are different; however, dual TCR expression can facilitate their development.
Collapse
Affiliation(s)
- Kazuyuki Kawamura
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kawamura K, McLaughlin KA, Weissert R, Forsthuber TG. Myelin-reactive type B T cells and T cells specific for low-affinity MHC-binding myelin peptides escape tolerance in HLA-DR transgenic mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:3202-11. [PMID: 18713991 DOI: 10.4049/jimmunol.181.5.3202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genes of the MHC show the strongest genetic association with multiple sclerosis (MS), but the underlying mechanisms have remained unresolved. In this study, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401, contribute to autoimmune CNS demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon back-crossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific type B T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific type B T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and type B T cells can escape the induction of T cell tolerance and may promote MS.
Collapse
Affiliation(s)
- Kazuyuki Kawamura
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | | | | | | |
Collapse
|
22
|
Abstract
Population studies have shown that among all the genetic factors linked with autoimmune disease development, MHC class II genes on chromosome 6 accounts for majority of familial clustering in the common autoimmune diseases. Despite the highly polymorphic nature of HLA class II genes, majority of autoimmune diseases are linked to a limited set of class II-DR or -DQ alleles. Thus a more detailed study of these HLA-DR and -DQ alleles were needed to understand their role in genetic predisposition and pathogenesis of autoimmune diseases. Although in vitro studies using class-II restricted CD4 T cells and purified class II molecules have helped us in understanding some aspects of HLA class-II association with disease, it is difficult to study the role of class II genes in vivo because of heterogeneity of human population, complexity of MHC, and strong linkage disequilibrium among different class II genes. To overcome this problem, we pioneered the generation of HLA-class II transgenic mice to study role of these molecule in inflammatory disease. These HLA class II transgenic mice were used to develop novel in vivo disease model for common autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, insulin-dependent diabetes mellitus, myasthenia gravis, celiac disease, autoimmune relapsing polychondritis, autoimmune myocarditis, thyroiditis, uveitis, as well as other inflammatory disease such as allergy, tuberculosis and toxic shock syndrome. As the T-cell repertoire in these humanized HLA transgenic mice are shaped by human class II molecules, they show the same HLA restriction as humans, implicate potential triggering mechanism and autoantigens, and identify similar antigenic epitopes seen in human. This review describes the value of these humanized transgenic mice in deciphering role of HLA class II molecules in immunopathogenesis of inflammatory diseases.
Collapse
|
23
|
|
24
|
Abstract
Understanding of autoimmune diseases, including multiple sclerosis, has expanded considerably in recent years. New insights have been provided by not only animal models but also studies of patients, often in conjunction with experimental therapies. It is accepted that autoimmune T cells mediate the early steps of new multiple sclerosis lesions, and although uncertainties remain about the specific targets of autoreactive T cells, several studies indicate myelin antigens. Recent findings obtained with both animal models and patients with multiple sclerosis indicate involvement of a T helper cell with a T(H)-17 phenotype, in contrast to previous data indicating that T helper type 1 cells are critical. Evidence has also been presented for CD8(+) and regulatory T cell populations, although their involvement remains to be established. Despite evidence supporting the idea that autoreactive T cells are involved in disease induction, cells of myeloid lineage, antibodies and complement as well as processes intrinsic to the central nervous system seem to determine the effector stages of tissue damage. Careful analysis of the alterations in immune processes should further advance knowledge of the relationship between the inflammatory component of this disease and the more diffuse degeneration of progressive multiple sclerosis.
Collapse
Affiliation(s)
- Henry F McFarland
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
25
|
Winquist RJ, Kwong A, Ramachandran R, Jain J. The complex etiology of multiple sclerosis. Biochem Pharmacol 2007; 74:1321-9. [PMID: 17537409 DOI: 10.1016/j.bcp.2007.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/25/2007] [Accepted: 04/27/2007] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis is a demyelinating disease which is presumed to be a consequence of infiltrating lymphocytes autoreactive to myelin proteins. This is substantiated by several lines of clinical evidence and supported by correlative studies in preclinical models. The development of new therapeutics for MS has been guided by this perspective; however, the pathogenesis of MS has proven to be quite complex as observations exist which question the role of autoreactive lymphocytes in the etiology of MS. In addition the current immunomodulatory therapeutics do not prevent most patients from progressing into more serious forms of the disease. The development of truly transformational therapeutics for MS will likely require a broad assault that expands beyond the concept of MS being an autoimmune disease.
Collapse
Affiliation(s)
- Raymond J Winquist
- Department of Pharmacology, Vertex Pharmaceuticals Inc., 130 Waverly Street, Cambridge, MA 02139, United States.
| | | | | | | |
Collapse
|
26
|
Krishnamoorthy G, Holz A, Wekerle H. Experimental models of spontaneous autoimmune disease in the central nervous system. J Mol Med (Berl) 2007; 85:1161-73. [PMID: 17569024 DOI: 10.1007/s00109-007-0218-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/18/2007] [Accepted: 05/04/2007] [Indexed: 12/11/2022]
Abstract
Animal models have become essential tools for studying the human autoimmune disease. They are of vital importance in explorations of disease aspects, where, for diverse reasons, human material is unavailable. This is especially true for disease processes preceding clinical diagnosis and for tissues, which are inaccessible to routine biopsy. Early developing multiple sclerosis (MS) makes an excellent point in case for these limitations. Useful disease models should be developing spontaneously, without a need of artificial, adjuvant-supported induction protocols, and they should reflect credibly at least some of the complex features of human disease. The aim of this review is to compile models that exhibit spontaneous organ-specific autoimmunity and explore their use for studying MS. We first evaluate a few naturally occurring models of organ-specific autoimmune diseases and then screen autoimmunity in animals with compromised immune regulation (neonatal thymectomy, transgenesis, etc.). While most of these models affect organs other than the nervous tissues, central nervous system (CNS)-specific autoimmune disease is readily noted either after transgenic overexpression of cytokines or chemokines within the CNS or by introducing CNS-specific immune receptors into the lymphocyte repertoire. Most recently, spontaneous autoimmunity resembling MS was obtained by transgenic expression of self-reactive T cell receptors and B cell receptors. These transgenic models are not only of promise for studying directly disease processes during the entire course of the disease but may also be helpful in drug discovery.
Collapse
Affiliation(s)
- Gurumoorthy Krishnamoorthy
- Department of Neuroimmunology, Max Planck Institute for Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | |
Collapse
|
27
|
Miller SD, Karpus WJ. Experimental autoimmune encephalomyelitis in the mouse. CURRENT PROTOCOLS IN IMMUNOLOGY 2007; Chapter 15:15.1.1-15.1.18. [PMID: 18432984 PMCID: PMC2915550 DOI: 10.1002/0471142735.im1501s77] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit details the materials and methods required for both active induction and adoptive transfer of experimental autoimmune encephalomyelitis (EAE) in the SJL mouse strain using intact proteins or peptides from the two major myelin proteins: proteolipid protein (PLP) and myelin basic protein (MBP). Detailed materials and methods required for the purification of both PLP and MBP are also described. Modifications of the specified protocols may be necessary for efficient induction of active or adoptive EAE in other mouse strains.
Collapse
|
28
|
Greenstein JI. Current concepts of the cellular and molecular pathophysiology of multiple sclerosis. Dev Neurobiol 2007; 67:1248-65. [PMID: 17514718 DOI: 10.1002/dneu.20387] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease. It poses many challenges both clinically and scientifically. Progress made in understanding the genetics, immunology, and neurobiology of MS to date has positioned the field for further breakthroughs both in understanding the etiology and pathogenesis as well as the development of rationally based therapeutics. This review will cover fundamental aspects of the clinical and pathologic features of MS. Identified genetic markers will be considered as well as the evolving understanding of immunologic and neurobiological aspects of the disease. The development of immune therapy based on this knowledge is already apparent and it is likely that neuroprotective therapies will evolve to complement immune modulation in treating the disease.
Collapse
|
29
|
Friese MA, Jensen LT, Willcox N, Fugger L. Humanized mouse models for organ-specific autoimmune diseases. Curr Opin Immunol 2006; 18:704-9. [PMID: 17008081 DOI: 10.1016/j.coi.2006.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 09/18/2006] [Indexed: 11/23/2022]
Abstract
Murine models for human autoimmune diseases are an essential tool for studying pathogenesis and for identifying new therapeutic targets. Mice are not the natural disease host, and conventional models have proved to be poor predictors of efficacy and safety in recent trials aiming to translate drug and biologic treatments to humans. Evidently, further steps towards recapitulating human diseases are urgently needed, for example using transgenic predisposing human HLA allele(s) plus T-cell receptor(s) implicated in a representative patient's autoimmune disease. The latest development - humanizing most of the immune system by transplanting human hematopoietic stem cells into severely immunodeficient mice - should lead to even better modeling.
Collapse
Affiliation(s)
- Manuel A Friese
- MRC Human Immunology Unit and Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | |
Collapse
|
30
|
Abstract
Multiple sclerosis (MS) develops in young adults with a complex predisposing genetic trait and probably requires an inciting environmental insult such as a viral infection to trigger the disease. The activation of CD4+ autoreactive T cells and their differentiation into a Th1 phenotype are a crucial events in the initial steps, and these cells are probably also important players in the long-term evolution of the disease. Damage of the target tissue, the central nervous system, is, however, most likely mediated by other components of the immune system, such as antibodies, complement, CD8+ T cells, and factors produced by innate immune cells. Perturbations in immunomodulatory networks that include Th2 cells, regulatory CD4+ T cells, NK cells, and others may in part be responsible for the relapsing-remitting or chronic progressive nature of the disease. However, an important paradigmatic shift in the study of MS has occurred in the past decade. It is now clear that MS is not just a disease of the immune system, but that factors contributed by the central nervous system are equally important and must be considered in the future.
Collapse
Affiliation(s)
- Mireia Sospedra
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1400, USA.
| | | |
Collapse
|
31
|
Mangalam AK, Khare M, Krco CJ, Rodriguez M, David CS. Delineation of the minimal encephalitogenic epitope of proteolipid protein peptide(91-110) and critical residues required for induction of EAE in HLA-DR3 transgenic mice. J Neuroimmunol 2005; 161:40-8. [PMID: 15748942 DOI: 10.1016/j.jneuroim.2004.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 12/07/2004] [Accepted: 12/07/2004] [Indexed: 11/16/2022]
Abstract
Previously, we have reported that proteolipid protein (PLP) peptide 91-110 can induce experimental autoimmune encephalomyelitis (EAE) in HLA-DR3 transgenic (tg) mice. Here we, report that residues spanning 97-108 are the minimal epitope required for induction of EAE in DR3 mice. Utilizing a series of alanine-substituted peptides, positions 99, 101, 102, 103, 104, and 106 are identified as residues necessary for an immune response. Further analysis indicated that amino acid isoleucine (99), aspartate (102) and lysine (104) are anchor residues facilitating binding to HLA-DR3 molecules. These results may have applications in the future design of peptide based immunotherapy.
Collapse
MESH Headings
- Alanine/immunology
- Animals
- Apoproteins/chemistry
- Apoproteins/toxicity
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Cell Proliferation/drug effects
- Cytokines/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- HLA-DR3 Antigen/genetics
- HLA-DR3 Antigen/immunology
- Humans
- Immunization, Passive
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/toxicity
- Major Histocompatibility Complex/physiology
- Mice
- Mice, Transgenic
- Models, Immunological
- Myelin Proteolipid Protein/chemistry
- Myelin Proteolipid Protein/toxicity
- Peptide Fragments/immunology
- Peptide Fragments/toxicity
- Receptors, Antigen, T-Cell/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Cord/pathology
- T-Lymphocytes/immunology
- Time Factors
Collapse
Affiliation(s)
- Ashutosh K Mangalam
- Department of Immunology, Mayo Clinic College of Medicine, 200, 1st Street SW Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|