1
|
Zhang Y, Ye J, Sun S, Li R, Tang S, Wang M, Sun G. Role of platelets and NETs in arterial thrombosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03921-6. [PMID: 39992420 DOI: 10.1007/s00210-025-03921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Arterial thrombosis is one of the main causes of mortality and mortality worldwide. Platelets are effectively targeted by antithrombotic strategies. However, current antiplatelet agents are often associated with a bleeding risk and single antiplatelet agent may not completely prevent thrombosis. Platelets, neutrophils, and neutrophil extracellular traps (NETs) have been found to play crucial synergistic roles in the pathological process of arterial thrombosis in recent years. Platelets play a key regulatory role in the formation of NETs, and NETs can enhance platelet aggregation and activation, further aggravating the process of arterial thrombosis. Targeting the interaction mechanisms of platelets and NETs may provide a promising approach to better prevent arterial thrombosis. This review highlights the current insight in the interaction of platelets and neutrophil-forming NETs and their mechanisms involved in the process of arterial thrombosis. Finally, we discuss the potential of interventions targeting platelets and NETs to treat arterial thrombosis.
Collapse
Affiliation(s)
- Yaqi Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiyi Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruoyun Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuang Tang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Chen Y, Gong S, Tang J, Wang X, Gao Y, Yang H, Chen W, Hu H, Tong W, Lv K. LNK/SH2B3 Loss Exacerbates the Development of Myeloproliferative Neoplasms in CBL-deficient Mice. Stem Cell Rev Rep 2025; 21:509-519. [PMID: 39560864 PMCID: PMC11976319 DOI: 10.1007/s12015-024-10825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Genetic variations of signaling modulator protein LNK (also called SH2B3) are associated with relatively mild myeloproliferative phenotypes in patients with myeloproliferative neoplasms (MPN). However, these variations can induce more severe MPN disease and even leukemic transformation when co-existing with other driver mutations. In addition to the most prevalent driver mutation JAK2V617F, LNK mutations have been clinically identified in patients harboring CBL inactivation mutations, but its significance remains unclear. Here, using a transgenic mouse model, we demonstrated that mice with the loss of both Lnk and Cbl exhibited severe splenomegaly, extramedullary hematopoiesis and exacerbated myeloproliferative characteristics. Moreover, a population of Mac1+ myeloid cells expressed c-Kit in aged mice. Mechanistically, we discovered that LNK could pull down multiple regulatory subunits of the proteosome. Further analysis confirmed a positive role of LNK in regulating proteasome activity, independent of its well-established function in signaling transduction. Thus, our work reveals a novel function of LNK in coordinating with the E3 ligase CBL to regulate myeloid malignancies.
Collapse
Affiliation(s)
- Yafei Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Shangyu Gong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Juan Tang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Xinying Wang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Yudan Gao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Hanying Yang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Wanze Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China.
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Kaosheng Lv
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410013, China.
| |
Collapse
|
3
|
Yipeng Z, Chao C, Ranran L, Tingting P, Hongping Q. Metabolism: a potential regulator of neutrophil fate. Front Immunol 2024; 15:1500676. [PMID: 39697327 PMCID: PMC11652355 DOI: 10.3389/fimmu.2024.1500676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Neutrophils are essential components of the innate immune system that defend against the invading pathogens, such as bacteria, viruses, and fungi, as well as having regulatory roles in various conditions, including tissue repair, cancer immunity, and inflammation modulation. The function of neutrophils is strongly related to their mode of cell death, as different types of cell death involve various cellular and molecular alterations. Apoptosis, a non-inflammatory and programmed type of cell death, is the most common in neutrophils, while other modes of cell death, including NETOsis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis, have specific roles in neutrophil function regulation. Immunometabolism refers to energy and substance metabolism in immune cells, and profoundly influences immune cell fate and immune system function. Intercellular and intracellular signal transduction modulate neutrophil metabolism, which can, in turn, alter their activities by influencing various cell signaling pathways. In this review, we compile an extensive body of evidence demonstrating the role of neutrophil metabolism in their various forms of cell death. The review highlights the intricate metabolic characteristics of neutrophils and their interplay with various types of cell death.
Collapse
Affiliation(s)
| | | | | | - Pan Tingting
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| | - Qu Hongping
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| |
Collapse
|
4
|
López-Mejía JA, Mantilla-Ollarves JC, Rocha-Zavaleta L. Modulation of JAK-STAT Signaling by LNK: A Forgotten Oncogenic Pathway in Hormone Receptor-Positive Breast Cancer. Int J Mol Sci 2023; 24:14777. [PMID: 37834225 PMCID: PMC10573125 DOI: 10.3390/ijms241914777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Tumors that express hormone receptors account for 75% of all cases. Understanding alternative signaling cascades is important for finding new therapeutic targets for hormone receptor-positive breast cancer patients. JAK-STAT signaling is commonly activated in hormone receptor-positive breast tumors, inducing inflammation, proliferation, migration, and treatment resistance in cancer cells. In hormone receptor-positive breast cancer, the JAK-STAT cascade is stimulated by hormones and cytokines, such as prolactin and IL-6. In normal cells, JAK-STAT is inhibited by the action of the adaptor protein, LNK. However, the role of LNK in breast tumors is not fully understood. This review compiles published reports on the expression and activation of the JAK-STAT pathway by IL-6 and prolactin and potential inhibition of the cascade by LNK in hormone receptor-positive breast cancer. Additionally, it includes analyses of available datasets to determine the level of expression of LNK and various members of the JAK-STAT family for the purpose of establishing associations between expression and clinical outcomes. Together, experimental evidence and in silico studies provide a better understanding of the potential implications of the JAK-STAT-LNK loop in hormone receptor-positive breast cancer progression.
Collapse
Affiliation(s)
- José A. López-Mejía
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Jessica C. Mantilla-Ollarves
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
- Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico
| |
Collapse
|
5
|
Blombery P, Pazhakh V, Albuquerque AS, Maimaris J, Tu L, Briones Miranda B, Evans F, Thompson ER, Carpenter B, Proctor I, Curtin JA, Lambert J, Burns SO, Lieschke GJ. Biallelic deleterious germline SH2B3 variants cause a novel syndrome of myeloproliferation and multi-organ autoimmunity. EJHAEM 2023; 4:463-469. [PMID: 37206266 PMCID: PMC10188477 DOI: 10.1002/jha2.698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
SH2B3 is a negative regulator of multiple cytokine receptor signalling pathways in haematopoietic tissue. To date, a single kindred has been described with germline biallelic loss-of-function SH2B3 variants characterized by early onset developmental delay, hepatosplenomegaly and autoimmune thyroiditis/hepatitis. Herein, we described two further unrelated kindreds with germline biallelic loss-of-function SH2B3 variants that show striking phenotypic similarity to each other as well as to the previous kindred of myeloproliferation and multi-organ autoimmunity. One proband also suffered severe thrombotic complications. CRISPR-Cas9 gene editing of zebrafish sh2b3 created assorted deleterious variants in F0 crispants, which manifest significantly increased number of macrophages and thrombocytes, partially replicating the human phenotype. Treatment of the sh2b3 crispant fish with ruxolitinib intercepted this myeloproliferative phenotype. Skin-derived fibroblasts from one patient demonstrated increased phosphorylation of JAK2 and STAT5 after stimulation with IL-3, GH, GM-CSF and EPO compared to healthy controls. In conclusion, these additional probands and functional data in combination with the previous kindred provide sufficient evidence for biallelic homozygous deleterious variants in SH2B3 to be considered a valid gene-disease association for a clinical syndrome of bone marrow myeloproliferation and multi-organ autoimmune manifestations.
Collapse
Affiliation(s)
- Piers Blombery
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- University of MelbourneMelbourneVictoriaAustralia
| | - Vahid Pazhakh
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoriaAustralia
| | | | - Jesmeen Maimaris
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
- Department of ImmunologyRoyal Free London NHS Foundation TrustLondonUK
| | - Lingge Tu
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoriaAustralia
| | | | - Florence Evans
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Ella R. Thompson
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- University of MelbourneMelbourneVictoriaAustralia
| | - Ben Carpenter
- Department of HaematologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Ian Proctor
- Department of HaematologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Julie A. Curtin
- Haematology DepartmentChildren's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Jonathan Lambert
- Department of HaematologyUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of HaematologyUCL Cancer InstituteUniversity College LondonLondonUK
| | - Siobhan O. Burns
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
- Department of ImmunologyRoyal Free London NHS Foundation TrustLondonUK
| | - Graham J. Lieschke
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
6
|
Desikan H, Kaur A, Pogozheva ID, Raghavan M. Effects of calreticulin mutations on cell transformation and immunity. J Cell Mol Med 2023; 27:1032-1044. [PMID: 36916035 PMCID: PMC10098294 DOI: 10.1111/jcmm.17713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are cancers involving dysregulated production and function of myeloid lineage hematopoietic cells. Among MPNs, Essential thrombocythemia (ET), Polycythemia Vera (PV) and Myelofibrosis (MF), are driven by mutations that activate the JAK-STAT signalling pathway. Somatic mutations of calreticulin (CRT), an endoplasmic reticulum (ER)-localized lectin chaperone, are driver mutations in approximately 25% of ET and 35% of MF patients. The MPN-linked mutant CRT proteins have novel frameshifted carboxy-domain sequences and lack an ER retention motif, resulting in their secretion. Wild type CRT is a regulator of ER calcium homeostasis and plays a key role in the assembly of major histocompatibility complex (MHC) class I molecules, which are the ligands for antigen receptors of CD8+ T cells. Mutant CRT-linked oncogenesis results from the dysregulation of calcium signalling in cells and the formation of stable complexes of mutant CRT with myeloproliferative leukemia (MPL) protein, followed by downstream activation of the JAK-STAT signalling pathway. The intricate participation of CRT in ER protein folding, calcium homeostasis and immunity suggests the involvement of multiple mechanisms of mutant CRT-linked oncogenesis. In this review, we highlight recent findings related to the role of MPN-linked CRT mutations in the dysregulation of calcium homeostasis, MPL activation and immunity.
Collapse
Affiliation(s)
- Harini Desikan
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Amanpreet Kaur
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Irina D. Pogozheva
- Department of Medicinal ChemistryCollege of Pharmacy, University of MichiganAnn ArborMichiganUSA
| | - Malini Raghavan
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
7
|
Brown JA, Sanidad KZ, Lucotti S, Lieber CM, Cox RM, Ananthanarayanan A, Basu S, Chen J, Shan M, Amir M, Schmidt F, Weisblum Y, Cioffi M, Li T, Rowdo FM, Martin ML, Guo CJ, Lyssiotis C, Layden BT, Dannenberg AJ, Bieniasz PD, Lee B, Inohara N, Matei I, Plemper RK, Zeng MY. Gut microbiota-derived metabolites confer protection against SARS-CoV-2 infection. Gut Microbes 2022; 14:2105609. [PMID: 35915556 PMCID: PMC9348133 DOI: 10.1080/19490976.2022.2105609] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome is intricately coupled with immune regulation and metabolism, but its role in Coronavirus Disease 2019 (COVID-19) is not fully understood. Severe and fatal COVID-19 is characterized by poor anti-viral immunity and hypercoagulation, particularly in males. Here, we define multiple pathways by which the gut microbiome protects mammalian hosts from SARS-CoV-2 intranasal infection, both locally and systemically, via production of short-chain fatty acids (SCFAs). SCFAs reduced viral burdens in the airways and intestines by downregulating the SARS-CoV-2 entry receptor, angiotensin-converting enzyme 2 (ACE2), and enhancing adaptive immunity via GPR41 and 43 in male animals. We further identify a novel role for the gut microbiome in regulating systemic coagulation response by limiting megakaryocyte proliferation and platelet turnover via the Sh2b3-Mpl axis. Taken together, our findings have unraveled novel functions of SCFAs and fiber-fermenting gut bacteria to dampen viral entry and hypercoagulation and promote adaptive antiviral immunity.
Collapse
Affiliation(s)
- Julia A. Brown
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Katherine Z. Sanidad
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Serena Lucotti
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Carolin M. Lieber
- Institute for Biomedical Sciences, Georgia State University; Atlanta, GA, United States of America
| | - Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University; Atlanta, GA, United States of America
| | - Aparna Ananthanarayanan
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Srijani Basu
- Department of Medicine, Weill Cornell Medicine; New York, NY, United States of America
| | - Justin Chen
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
| | - Mengrou Shan
- Rogel Cancer Center, University of Michigan; Ann Arbor, MI, United States of America
| | - Mohammed Amir
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University; New York, NY, United States of America
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University; New York, NY, United States of America
| | - Michele Cioffi
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Tingting Li
- Jill Roberts Institute for Inflammatory Bowel Disease, Weill Cornell Medicine; New York, NY, United States of America
| | - Florencia Madorsky Rowdo
- Englander Institute for Precision Medicine, Weill Cornell Medicine; New York, NY, United States of America
| | - M. Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine; New York, NY, United States of America
| | - Chun-Jun Guo
- Jill Roberts Institute for Inflammatory Bowel Disease, Weill Cornell Medicine; New York, NY, United States of America
| | - Costas Lyssiotis
- Department of Medicine, Weill Cornell Medicine; New York, NY, United States of America
| | - Brian T. Layden
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago; Chicago, Illinois, United States of America
- Jesse Brown Veterans Affairs Medical Center; Chicago, Illinois, United States of America
| | - Andrew J. Dannenberg
- Department of Medicine, Weill Cornell Medicine; New York, NY, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University; New York, NY, United States of America
- Howard Hughes Medical Institute, The Rockefeller University; New York, NY, United States of America
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, NY, United States of America
| | - Naohiro Inohara
- Rogel Cancer Center, University of Michigan; Ann Arbor, MI, United States of America
| | - Irina Matei
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University; Atlanta, GA, United States of America
| | - Melody Y. Zeng
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine; New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, United States of America
| |
Collapse
|
8
|
Morris R, Butler L, Perkins A, Kershaw NJ, Babon JJ. The Role of LNK (SH2B3) in the Regulation of JAK-STAT Signalling in Haematopoiesis. Pharmaceuticals (Basel) 2021; 15:ph15010024. [PMID: 35056081 PMCID: PMC8781068 DOI: 10.3390/ph15010024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
LNK is a member of the SH2B family of adaptor proteins and is a non-redundant regulator of cytokine signalling. Cytokines are secreted intercellular messengers that bind to specific receptors on the surface of target cells to activate the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signalling pathway. Activation of the JAK-STAT pathway leads to proliferative and often inflammatory effects, and so the amplitude and duration of signalling are tightly controlled. LNK binds phosphotyrosine residues to signalling proteins downstream of cytokines and constrains JAK-STAT signalling. Mutations in LNK have been identified in a range of haematological and inflammatory diseases due to increased signalling following the loss of LNK function. Here, we review the regulation of JAK-STAT signalling via the adaptor protein LNK and discuss the role of LNK in haematological diseases.
Collapse
Affiliation(s)
- Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (R.M.); (N.J.K.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Liesl Butler
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3001, Australia; (L.B.); (A.P.)
- Alfred Health, Melbourne, VIC 3001, Australia
| | - Andrew Perkins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3001, Australia; (L.B.); (A.P.)
- Alfred Health, Melbourne, VIC 3001, Australia
| | - Nadia J. Kershaw
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (R.M.); (N.J.K.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jeffrey J. Babon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (R.M.); (N.J.K.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: ; Tel.: +61-3-9345-2960; Fax: +61-3-9347-0852
| |
Collapse
|
9
|
Dou H, Kotini A, Liu W, Fidler T, Endo-Umeda K, Sun X, Olszewska M, Xiao T, Abramowicz S, Yalcinkaya M, Hardaway B, Tsimikas S, Que X, Bick A, Emdin C, Natarajan P, Papapetrou EP, Witztum JL, Wang N, Tall AR. Oxidized Phospholipids Promote NETosis and Arterial Thrombosis in LNK(SH2B3) Deficiency. Circulation 2021; 144:1940-1954. [PMID: 34846914 PMCID: PMC8663540 DOI: 10.1161/circulationaha.121.056414] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supplemental Digital Content is available in the text. Background: LNK/SH2B3 inhibits Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling by hematopoietic cytokine receptors. Genome-wide association studies have shown association of a common single nucleotide polymorphism in LNK (R262W, T allele) with neutrophilia, thrombocytosis, and coronary artery disease. We have shown that LNK(TT) reduces LNK function and that LNK-deficient mice display prominent platelet–neutrophil aggregates, accelerated atherosclerosis, and thrombosis. Platelet–neutrophil interactions can promote neutrophil extracellular trap (NET) formation. The goals of this study were to assess the role of NETs in atherosclerosis and thrombosis in mice with hematopoietic Lnk deficiency. Methods: We bred mice with combined deficiency of Lnk and the NETosis-essential enzyme PAD4 (peptidyl arginine deiminase 4) and transplanted their bone marrow into Ldlr–/– mice. We evaluated the role of LNK in atherothrombosis in humans and mice bearing a gain of function variant in JAK2 (JAK2V617F). Results: Lnk-deficient mice displayed accelerated carotid artery thrombosis with prominent NETosis that was completely reversed by PAD4 deficiency. Thrombin-activated Lnk–/– platelets promoted increased NETosis when incubated with Lnk–/– neutrophils compared with wild-type platelets or wild-type neutrophils. This involved increased surface exposure and release of oxidized phospholipids (OxPL) from Lnk–/– platelets, as well as increased priming and response of Lnk–/– neutrophils to OxPL. To counteract the effects of OxPL, we introduced a transgene expressing the single-chain variable fragment of E06 (E06-scFv). E06-scFv reversed accelerated NETosis, atherosclerosis, and thrombosis in Lnk–/– mice. We also showed increased NETosis when human induced pluripotent stem cell–derived LNK(TT) neutrophils were incubated with LNK(TT) platelet/megakaryocytes, but not in isogenic LNK(CC) controls, confirming human relevance. Using data from the UK Biobank, we found that individuals with the JAK2VF mutation only showed increased risk of coronary artery disease when also carrying the LNK R262W allele. Mice with hematopoietic Lnk+/– and Jak2VF clonal hematopoiesis showed accelerated arterial thrombosis but not atherosclerosis compared with Jak2VFLnk+/+ controls. Conclusions: Hematopoietic Lnk deficiency promotes NETosis and arterial thrombosis in an OxPL-dependent fashion. LNK(R262W) reduces LNK function in human platelets and neutrophils, promoting NETosis, and increases coronary artery disease risk in humans carrying Jak2VF mutations. Therapies targeting OxPL may be beneficial for coronary artery disease in genetically defined human populations.
Collapse
Affiliation(s)
- Huijuan Dou
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Andriana Kotini
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York (A.K., M.O., E.P.P.)
| | - Wenli Liu
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Trevor Fidler
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Kaori Endo-Umeda
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.).,Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan (K.E.-U.)
| | - Xiaoli Sun
- Department of Medicine, University of California, San Diego (X.S., S.T., X.Q., J.L.W.)
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York (A.K., M.O., E.P.P.)
| | - Tong Xiao
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Sandra Abramowicz
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Mustafa Yalcinkaya
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Brian Hardaway
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Sotirios Tsimikas
- Department of Medicine, University of California, San Diego (X.S., S.T., X.Q., J.L.W.)
| | - Xuchu Que
- Department of Medicine, University of California, San Diego (X.S., S.T., X.Q., J.L.W.)
| | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (A.B.)
| | - Conor Emdin
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (C.E., P.N.).,Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA (C.E., P.N.).,Department of Medicine, Harvard Medical School, Boston, MA (C.E., P.N.)
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (C.E., P.N.).,Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA (C.E., P.N.).,Department of Medicine, Harvard Medical School, Boston, MA (C.E., P.N.)
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York (A.K., M.O., E.P.P.)
| | - Joseph L Witztum
- Department of Medicine, University of California, San Diego (X.S., S.T., X.Q., J.L.W.)
| | - Nan Wang
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Alan R Tall
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| |
Collapse
|
10
|
LNK (SH2B3) Inhibition Expands Healthy and Fanconi Anemia Human Hematopoietic Stem and Progenitor Cells. Blood Adv 2021; 6:731-745. [PMID: 34844262 PMCID: PMC8945310 DOI: 10.1182/bloodadvances.2021004205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for a variety of hematological diseases. Allogenic HSCT requires hematopoietic stem cells (HSCs) from matched donors and comes with cytotoxicity and mortality. Recent advances in genome modification of HSCs have demonstrated the possibility of using autologous HSCT-based gene therapy to cure monogenic diseases, such as the inherited bone marrow failure (BMF) syndrome Fanconi Anemia (FA). However, for FA and other BMF syndromes insufficient HSC numbers with functional defects results in delayed hematopoietic recovery and increased risk of graft failure. We and others previously identified the adaptor protein Lnk (Sh2b3) as a critical negative regulator of murine HSC homeostasis. However, whether LNK (SH2B3) controls human HSCs has not been studied. Here, we demonstrate that depletion of LNK via lentiviral expression of miR30-based short hairpin RNAs (shRNAs) resulted in robust expansion of transplantable human HSCs that provided balanced multilineage reconstitution in primary and secondary mouse recipients. Importantly, LNK depletion enhanced cytokine mediated JAK/STAT activation in CD34+ hematopoietic stem and progenitor cells (HSPCs). Moreover, we demonstrate that LNK depletion expands primary HSPCs associated with FA. In xenotransplant, engraftment defects of FANCD2-depleted FA-like HSCs were markedly improved by LNK inhibition. Finally, targeting LNK in primary bone marrow HSPCs from FA patients enhanced their colony forming potential in vitro. Together, these results demonstrate the potential of targeting LNK to expand HSCs to improve HSCT and HSCT-based gene therapy.
Collapse
|
11
|
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
12
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 1235] [Impact Index Per Article: 308.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
13
|
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell (HSC) disorders with overproduction of mature myeloid blood cells, including essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). In 2005, several groups identified a single gain-of-function point mutation JAK2V617F in the majority of MPN patients. The JAK2V617F mutation confers cytokine independent proliferation to hematopoietic progenitor cells by constitutively activating canonical and non-canonical downstream pathways. In this chapter, we focus on (1) the regulation of JAK2, (2) the molecular mechanisms used by JAK2V617F to induce MPNs, (3) the factors that are involved in the phenotypic diversity in MPNs, and (4) the effects of JAK2V617F on hematopoietic stem cells (HSCs). The discovery of the JAK2V617F mutation led to a comprehensive understanding of MPN; however, the question still remains about how one mutation can give rise to three distinct disease entities. Various mechanisms have been proposed, including JAK2V617F allele burden, differential STAT signaling, and host genetic modifiers. In vivo modeling of JAK2V617F has dramatically enhanced the understanding of the pathophysiology of the disease and provided the pre-clinical platform. Interestingly, most of these models do not show an increased hematopoietic stem cell self-renewal and function compared to wildtype controls, raising the question of whether JAK2V617F alone is sufficient to give a clonal advantage in MPN patients. In addition, the advent of modern sequencing technologies has led to a broader understanding of the mutational landscape and detailed JAK2V617F clonal architecture in MPN patients.
Collapse
|
14
|
Morris R, Zhang Y, Ellyard JI, Vinuesa CG, Murphy JM, Laktyushin A, Kershaw NJ, Babon JJ. Structural and functional analysis of target recognition by the lymphocyte adaptor protein LNK. Nat Commun 2021; 12:6110. [PMID: 34671038 PMCID: PMC8528861 DOI: 10.1038/s41467-021-26394-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023] Open
Abstract
The SH2B family of adaptor proteins, SH2-B, APS, and LNK are key modulators of cellular signalling pathways. Whilst SH2-B and APS have been partially structurally and biochemically characterised, to date there has been no such characterisation of LNK. Here we present two crystal structures of the LNK substrate recognition domain, the SH2 domain, bound to phosphorylated motifs from JAK2 and EPOR, and biochemically define the basis for target recognition. The LNK SH2 domain adopts a canonical SH2 domain fold with an additional N-terminal helix. Targeted analysis of binding to phosphosites in signalling pathways indicated that specificity is conferred by amino acids one- and three-residues downstream of the phosphotyrosine. Several mutations in LNK showed impaired target binding in vitro and a reduced ability to inhibit signalling, allowing an understanding of the molecular basis of LNK dysfunction in variants identified in patients with myeloproliferative disease.
Collapse
Affiliation(s)
- Rhiannon Morris
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Yaoyuan Zhang
- grid.1001.00000 0001 2180 7477Australia Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT Australia ,grid.1001.00000 0001 2180 7477Australia Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT Australia
| | - Julia I. Ellyard
- grid.1001.00000 0001 2180 7477Australia Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT Australia ,grid.1001.00000 0001 2180 7477Australia Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT Australia
| | - Carola G. Vinuesa
- grid.1001.00000 0001 2180 7477Australia Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT Australia ,grid.1001.00000 0001 2180 7477Australia Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT Australia
| | - James M. Murphy
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Artem Laktyushin
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Nadia J. Kershaw
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Jeffrey J. Babon
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| |
Collapse
|
15
|
Roy A, Shrivastva S, Naseer S. In and out: Traffic and dynamics of thrombopoietin receptor. J Cell Mol Med 2021; 25:9073-9083. [PMID: 34448528 PMCID: PMC8500957 DOI: 10.1111/jcmm.16878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Thrombopoiesis had long been a challenging area of study due to the rarity of megakaryocyte precursors in the bone marrow and the incomplete understanding of its regulatory cytokines. A breakthrough was achieved in the early 1990s with the discovery of the thrombopoietin receptor (TpoR) and its ligand thrombopoietin (TPO). This accelerated research in thrombopoiesis, including the uncovering of the molecular basis of myeloproliferative neoplasms (MPN) and the advent of drugs to treat thrombocytopenic purpura. TpoR mutations affecting its membrane dynamics or transport were increasingly associated with pathologies such as MPN and thrombocytosis. It also became apparent that TpoR affected hematopoietic stem cell (HSC) quiescence while priming hematopoietic stem cells (HSCs) towards the megakaryocyte lineage. Thorough knowledge of TpoR surface localization, dimerization, dynamics and stability is therefore crucial to understanding thrombopoiesis and related pathologies. In this review, we will discuss the mechanisms of TpoR traffic. We will focus on the recent progress in TpoR membrane dynamics and highlight the areas that remain unexplored.
Collapse
Affiliation(s)
- Anita Roy
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Saurabh Shrivastva
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Saadia Naseer
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
16
|
Tremblay D, Yacoub A, Hoffman R. Overview of Myeloproliferative Neoplasms: History, Pathogenesis, Diagnostic Criteria, and Complications. Hematol Oncol Clin North Am 2021; 35:159-176. [PMID: 33641861 PMCID: PMC8669599 DOI: 10.1016/j.hoc.2020.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myeloproliferative disorders are a group of diseases morphologically linked by terminal myeloid cell expansion that frequently evolve from one clinical phenotype to another and eventually progress to acute myeloid leukemia. Diagnostic criteria for the Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) have been established by the World Health Organization and they are recognized as blood cancers. MPNs have a complex and incompletely understood pathogenesis that includes systemic inflammation, clonal hematopoiesis, and constitutive activation of the JAK-STAT pathway. Complications, such as thrombosis and progression to overt forms of myelofibrosis and acute leukemia, contribute significantly to morbidity and mortality of patients with MPN.
Collapse
Affiliation(s)
- Douglas Tremblay
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Abdulraheem Yacoub
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, The University of Kansas Cancer Center, 2330 Shawnee Mission Parkway, Westwood, KS 66205, USA
| | - Ronald Hoffman
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
17
|
Chen C, Sun MA, Warzecha C, Bachu M, Dey A, Wu T, Adams PD, Macfarlan T, Love P, Ozato K. HIRA, a DiGeorge Syndrome Candidate Gene, Confers Proper Chromatin Accessibility on HSCs and Supports All Stages of Hematopoiesis. Cell Rep 2021; 30:2136-2149.e4. [PMID: 32075733 DOI: 10.1016/j.celrep.2020.01.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 01/22/2023] Open
Abstract
HIRA is a histone chaperone that deposits the histone variant H3.3 in transcriptionally active genes. In DiGeorge syndromes, a DNA stretch encompassing HIRA is deleted. The syndromes manifest varied abnormalities, including immunodeficiency and thrombocytopenia. HIRA is essential in mice, as total knockout (KO) results in early embryonic death. However, the role of HIRA in hematopoiesis is poorly understood. We investigate hematopoietic cell-specific Hira deletion in mice and show that it dramatically reduces bone marrow hematopoietic stem cells (HSCs), resulting in anemia, thrombocytopenia, and lymphocytopenia. In contrast, fetal hematopoiesis is normal in Hira-KO mice, although fetal HSCs lack the reconstitution capacity. Transcriptome analysis reveals that HIRA is required for expression of many transcription factors and signaling molecules critical for HSCs. ATAC-seq analysis demonstrates that HIRA establishes HSC-specific DNA accessibility, including the SPIB/PU.1 sites. Together, HIRA provides a chromatin environment essential for HSCs, thereby steering their development and survival.
Collapse
Affiliation(s)
- Chao Chen
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-An Sun
- Mammalian Epigenome Reprogramming Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claude Warzecha
- Hematopoiesis and Lymphocyte Biology Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahesh Bachu
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anup Dey
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiyun Wu
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Todd Macfarlan
- Mammalian Epigenome Reprogramming Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Love
- Hematopoiesis and Lymphocyte Biology Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Ozato
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Kessler T, Schunkert H, von Hundelshausen P. Novel Approaches to Fine-Tune Therapeutic Targeting of Platelets in Atherosclerosis: A Critical Appraisal. Thromb Haemost 2020; 120:1492-1504. [PMID: 32772352 DOI: 10.1055/s-0040-1714352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathogenesis of atherosclerotic vascular disease is driven by a multitude of risk factors intertwining metabolic and inflammatory pathways. Increasing knowledge about platelet biology sheds light on how platelets take part in these processes from early to later stages of plaque development. Recent insights from experimental studies and mouse models substantiate platelets as initiators and amplifiers in atherogenic leukocyte recruitment. These studies are complemented by results from genetics studies shedding light on novel molecular mechanisms which provide an interesting prospect as novel targets. For instance, experimental studies provide further details how platelet-decorated von Willebrand factor tethered to activated endothelial cells plays a role in atherogenic monocyte recruitment. Novel aspects of platelets as atherogenic inductors of neutrophil extracellular traps and particularities in signaling pathways such as cyclic guanosine monophosphate and the inhibitory adaptor molecule SHB23/LNK associating platelets with atherogenesis are shared. In summary, it was our intention to balance insights from recent experimental data that support a plausible role for platelets in atherogenesis against a paucity of clinical evidence needed to validate this concept in humans.
Collapse
Affiliation(s)
- Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Philipp von Hundelshausen
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Partner Site Munich Heart Alliance, Munich, Germany.,Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Klinikum der Universität, Ludwig-Maximilians-Universität, Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
19
|
Bellanné-Chantelot C, Rabadan Moraes G, Schmaltz-Panneau B, Marty C, Vainchenker W, Plo I. Germline genetic factors in the pathogenesis of myeloproliferative neoplasms. Blood Rev 2020; 42:100710. [PMID: 32532454 DOI: 10.1016/j.blre.2020.100710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 04/08/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Myeloproliferative neoplasms (MPN) are clonal hematological malignancies that lead to overproduction of mature myeloid cells. They are due to acquired mutations in genes encoding for AK2, MPL and CALR that result in the activation of the cytokine receptor/JAK2 signaling pathway. In addition, it exists germline variants that can favor the initiation of the disease or may affect its phenotype. First, they can be common risk alleles, which correspond to frequent single nucleotide variants present in control population and that contribute to the development of either sporadic or familial MPN. Second, some variants predispose to the onset of MPN with a higher penetrance and lead to familial clustering of MPN. Finally, some extremely rare genetic variants can induce MPN-like hereditary disease. We will review these different subtypes of germline genetic variants and discuss how they impact the initiation and/or development of the MPN disease.
Collapse
Affiliation(s)
- Christine Bellanné-Chantelot
- Department of Genetics, Assistance Publique-Hôpitaux de Paris (APHP), Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Sorbonne Université, Paris, France; INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France
| | - Graciela Rabadan Moraes
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Université Paris Diderot (Paris 7), UMR1287, Gustave Roussy, Villejuif, France; Gustave Roussy, Villejuif, France
| | - Barbara Schmaltz-Panneau
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris XI, UMR1287, Gustave Roussy, Villejuif, France
| | - Caroline Marty
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris XI, UMR1287, Gustave Roussy, Villejuif, France
| | - William Vainchenker
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris XI, UMR1287, Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris XI, UMR1287, Gustave Roussy, Villejuif, France.
| |
Collapse
|
20
|
Lee D, Kim DW, Cho JY. Role of growth factors in hematopoietic stem cell niche. Cell Biol Toxicol 2020; 36:131-144. [PMID: 31897822 DOI: 10.1007/s10565-019-09510-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) produce new blood cells everyday throughout life, which is maintained by the self-renewal and differentiation ability of HSCs. This is not controlled by the HSCs alone, but rather by the complex and exquisite microenvironment surrounding the HSCs, which is called the bone marrow niche and consists of various bone marrow cells, growth factors, and cytokines. It is essential to understand the characteristic role of the stem cell niche and the growth factors in the niche formation. In this review, we describe the role of the bone marrow niche and factors for niche homeostasis, and also summarize the latest research related to stem cell niche.
Collapse
Affiliation(s)
- Dabin Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea.
| |
Collapse
|
21
|
Kessler T, Schunkert H. Genomic Strategies Toward Identification of Novel Therapeutic Targets. Handb Exp Pharmacol 2020; 270:429-462. [PMID: 32399778 DOI: 10.1007/164_2020_360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coronary artery disease, myocardial infarction, and secondary damages of the myocardium in the form of ischemic heart disease remain major causes of death in Western countries. Beyond traditional risk factors such as smoking, hypertension, dyslipidemia, or diabetes, a positive family history is known to increase risk. The genetic factors underlying this observation remained unknown for decades until genetic studies were able to identify multiple genomic loci contributing to the heritability of the trait. Knowledge of the affected genes and the resulting molecular and cellular mechanisms leads to improved understanding of the pathophysiology leading to coronary atherosclerosis. Major goals are also to improve prevention and therapy of coronary artery disease and its sequelae via improved risk prediction tools and pharmacological targets. In this chapter, we recapitulate recent major findings. We focus on established novel targets and discuss possible further targets which are currently explored in translational studies.
Collapse
Affiliation(s)
- Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany. .,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., partner site Munich Heart Alliance, Munich, Germany.
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
22
|
Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 2019; 27:1984-2009. [PMID: 30267440 DOI: 10.1002/pro.3519] [Citation(s) in RCA: 574] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
More than 50 cytokines signal via the JAK/STAT pathway to orchestrate hematopoiesis, induce inflammation and control the immune response. Cytokines are secreted glycoproteins that act as intercellular messengers, inducing proliferation, differentiation, growth, or apoptosis of their target cells. They act by binding to specific receptors on the surface of target cells and switching on a phosphotyrosine-based intracellular signaling cascade initiated by kinases then propagated and effected by SH2 domain-containing transcription factors. As cytokine signaling is proliferative and often inflammatory, it is tightly regulated in terms of both amplitude and duration. Here we review molecular details of the cytokine-induced signaling cascade and describe the architectures of the proteins involved, including the receptors, kinases, and transcription factors that initiate and propagate signaling and the regulatory proteins that control it.
Collapse
Affiliation(s)
- Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| |
Collapse
|
23
|
Cielo D, Galatola M, Fernandez-Jimenez N, De Leo L, Garcia-Etxebarria K, Loganes C, Tommasini A, Not T, Auricchio R, Greco L, Bilbao JR. Combined Analysis of Methylation and Gene Expression Profiles in Separate Compartments of Small Bowel Mucosa Identified Celiac Disease Patients' Signatures. Sci Rep 2019; 9:10020. [PMID: 31292504 PMCID: PMC6620355 DOI: 10.1038/s41598-019-46468-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
By GWAS studies on celiac disease, gene expression was studied at the level of the whole intestinal mucosa, composed by two different compartments: epithelium and lamina propria. Our aim is to analyse the gene-expression and DNA methylation of candidate genes in each of these compartments. Epithelium was separated from lamina propria in biopsies of CeD patients and CTRs using magnetic beads. Gene-expression was analysed by RT-PC; methylation analysis required bisulfite conversion and NGS. Reverse modulation of gene-expression and methylation in the same cellular compartment was observed for the IL21 and SH2B3 genes in CeD patients relative to CTRs. Bioinformatics analysis highlighted the regulatory elements in the genomic region of SH2B3 that altered methylation levels. The cREL and TNFAIP3 genes showed methylation patterns that were significantly different between CeD patients and CTRs. In CeD, the genes linked to inflammatory processes are up-regulated, whereas the genes involved in the cell adhesion/integrity of the intestinal barrier are down-regulated. These findings suggest a correlation between gene-expression and methylation profile for the IL21 and SH2B3 genes. We identified a “gene-expression phenotype” of CeD and showed that the abnormal response to dietary antigens in CeD might be related not to abnormalities of gene structure but to the regulation of molecular pathways.
Collapse
Affiliation(s)
- D Cielo
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples "Federico II", Naples, Italy
| | - M Galatola
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy. .,European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples "Federico II", Naples, Italy.
| | - N Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), BioCruces Health Research Institute, Leioa, Spain
| | - L De Leo
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - K Garcia-Etxebarria
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), BioCruces Health Research Institute, Leioa, Spain
| | - C Loganes
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - A Tommasini
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - T Not
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), BioCruces Health Research Institute, Leioa, Spain.,Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - R Auricchio
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples "Federico II", Naples, Italy
| | - L Greco
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples "Federico II", Naples, Italy
| | - J R Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), BioCruces Health Research Institute, Leioa, Spain
| |
Collapse
|
24
|
The BRISC deubiquitinating enzyme complex limits hematopoietic stem cell expansion by regulating JAK2 K63-ubiquitination. Blood 2019; 133:1560-1571. [PMID: 30755420 DOI: 10.1182/blood-2018-10-877563] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/05/2019] [Indexed: 01/13/2023] Open
Abstract
Hematopoietic stem cell (HSC) homeostasis is controlled by cytokine receptor-mediated Janus kinase 2 (JAK2) signaling. We previously found that JAK2 is promptly ubiquitinated upon cytokine stimulation. Whether a competing JAK2 deubiquitination activity exists is unknown. LNK is an essential adaptor protein that constrains HSC expansion through dampening thrombopoietin (TPO)-induced JAK2 signaling. We show here that a LNK-associated lysine-63 (K63)-deubiquitinating enzyme complex, Brcc36 isopeptidase complex (BRISC), attenuates HSC expansion through control of JAK2 signaling. We pinpoint a direct interaction between the LNK SH2 domain and a phosphorylated tyrosine residue in KIAA0157 (Abraxas2), a unique and defining BRISC component. Kiaa0157 deficiency in mice led to an expansion of phenotypic and functional HSCs. Endogenous JAK2 and phospho-JAK2 were rapidly K63-ubiquitinated upon TPO stimulation, and this action was augmented in cells depleted of the BRISC core components KIAA0157, MERIT40, or BRCC36. This increase in JAK2 ubiquitination after BRISC knockdown was associated with increased TPO-mediated JAK2 activation and protein levels, and increased MPL receptor presence at the cell surface. In addition, BRISC depletion promoted membrane proximal association between the MPL receptor and pJAK2/JAK2, thus enhancing activated JAK2/MPL at the cell membrane. These findings define a novel pathway by which K63-ubiquitination promotes JAK2 stability and activation in a proteasome-independent manner. Moreover, mutations in BRCC36 are found in clonal hematopoiesis in humans. This research may shed light on the mechanistic understanding of a potential role of BRCC36 in human HSCs.
Collapse
|
25
|
Abstract
Platelets are anuclear blood cells required for haemostasis and are implicated in other processes including inflammation and metastasis. Platelets are produced by megakaryocytes, specialized cells that are themselves generated by a process of controlled differentiation and maturation of bone-marrow stem and progenitor cells. This process of megakaryopoiesis involves the coordinated interplay of transcription factor-controlled cellular programming with extra-cellular cues produced locally in supporting niches or as circulating factors. This review focuses on these external cues, the cytokines and chemokines, that drive production of megakaryocytes and support the terminal process of platelet release. Emphasis is given to thrombopoietin (Tpo), the major cytokine regulator of steady-state megakaryopoiesis, and its specific cell surface receptor, the Mpl protein, including normal and pathological roles as well as clinical application. The potential for alternative or supplementary regulatory mechanisms for platelet production, particularly in times of acute need, or in states of infection or inflammation are also discussed.
Collapse
Affiliation(s)
- Kira Behrens
- a The Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
- b Department of Medical Biology , University of Melbourne , Melbourne , Australia
| | - Warren S Alexander
- a The Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
- b Department of Medical Biology , University of Melbourne , Melbourne , Australia
| |
Collapse
|
26
|
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer. Oncotarget 2017; 7:11033-55. [PMID: 26788993 PMCID: PMC4905456 DOI: 10.18632/oncotarget.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.
Collapse
Affiliation(s)
- Cécile Naudin
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Clément Chevalier
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: SFR Biosit (UMS CNRS 3480/US INSERM 018), MRic Photonics Platform, University Rennes, Rennes, France
| | - Serge Roche
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Equipe Labellisée LIGUE 2014, Ligue Contre le Cancer, Paris, France
| |
Collapse
|
27
|
Christiansen MK, Larsen SB, Nyegaard M, Neergaard-Petersen S, Würtz M, Grove EL, Hvas AM, Jensen HK, Kristensen SD. The SH2B3 and KCNK5 loci may be implicated in regulation of platelet count, volume, and maturity. Thromb Res 2017; 158:86-92. [PMID: 28865245 DOI: 10.1016/j.thromres.2017.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 01/11/2023]
Abstract
INTRODUCTION In recent genome-wide association studies, coronary artery disease (CAD) and myocardial infarction (MI) have been linked to a number of genetic variants, but their role in thrombopoiesis is largely unknown. AIM We investigated the association between CAD and MI-associated genetic variants and five thrombopoiesis-related indices: platelet count (PC), mean platelet volume (MPV), immature platelet count (IPC), immature platelet fraction (IPF), and serum thrombopoietin (TPO). METHODS We genotyped 45 genome-wide significant CAD/MI-markers in 879 stable CAD patients. A genetic risk score was calculated to assess the combined risk associated with all the genetic variants. Platelet indices were analysed using the Sysmex XE-2100 haematology analyser. TPO was measured by ELISA. RESULTS Two variants were nominally associated with several indices; for rs10947789 (KCNK5), the adjusted geometric mean was 2% higher for MPV (95% confidence interval: 1-2%, p=0.002), 6% for IPC (0-12%, p=0.033), and 9% for IPF (3-16%, p=0.004) per CAD risk allele. Moreover, an 11% lower TPO (3-19%, p=0.010) was observed. Rs3184504 (SH2B3) was associated with a higher adjusted geometric mean of 3% (1-6%, p=0.003) per CAD risk allele for PC, and an 11% (5-17%, p<0.001) lower TPO. Furthermore, the adjusted IPC was 5% (0-9%, p=0.037) lower per CAD risk allele for PC, whereas IPF levels did not vary across genotypes. CONCLUSION As a novel finding, our study suggests a role for KCNK5 in the regulation of platelet size and maturity. Furthermore, our findings confirm an association between the SH2B3-locus and platelet count.
Collapse
Affiliation(s)
- Morten K Christiansen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sanne B Larsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Morten Würtz
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Erik L Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Hvas
- Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik K Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steen D Kristensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Lv K, Jiang J, Donaghy R, Riling CR, Cheng Y, Chandra V, Rozenova K, An W, Mohapatra BC, Goetz BT, Pillai V, Han X, Todd EA, Jeschke GR, Langdon WY, Kumar S, Hexner EO, Band H, Tong W. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies. Genes Dev 2017; 31:1007-1023. [PMID: 28611190 PMCID: PMC5495118 DOI: 10.1101/gad.297135.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023]
Abstract
Here, Lv et al. report that the CBL family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. Their results reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies. Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b. Importantly, primary human CBL mutated (CBLmut) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies.
Collapse
Affiliation(s)
- Kaosheng Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jing Jiang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ryan Donaghy
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Ying Cheng
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Vemika Chandra
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Krasimira Rozenova
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Benjamin T Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Vinodh Pillai
- Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Xu Han
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Emily A Todd
- Progenra, Inc., Malvern, Pennsylvania 19355, USA
| | - Grace R Jeschke
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Suresh Kumar
- Progenra, Inc., Malvern, Pennsylvania 19355, USA
| | - Elizabeth O Hexner
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
29
|
Wang JY, Ye S, Zhong H. The role of bone marrow microenvironment in platelet production and their implications for the treatment of thrombocytopenic diseases. ACTA ACUST UNITED AC 2017; 22:630-639. [PMID: 28569613 DOI: 10.1080/10245332.2017.1333274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Impaired platelet production has been found to be an important pathological mechanism of thrombocytopenia in many diseases. Platelet generation is a complex process that mainly occurs in the bone marrow, and thus is closely regulated by the bone marrow microenvironment. This review attempts to summarize the most current knowledge referring the role of bone marrow microenvironment in the regulation of platelet production. METHODS The effects of multiple microenvironment ingredients in regulating megakaryopoiesis and thrombocytopoiesis have been discussed. Abnormalities of these components in thrombocytopenic diseases are also described. DISCUSSIONS Thrombocytopenia is a common clinical manifestation of a variety of diseases. The functional importance of platelets has driven the developments of a broad range of studies. Platelet generation mainly occurs within the bone marrow, where the cells, soluble factors, and extracellular matrix proteins collaboratively form a complex regulatory network, directing megakaryocytic proliferation and differentiation. Alteration in any part of the regulating network may result in defective platelet formation, and eventually lead to thrombocytopenia. A variety of thrombocytopenic diseases have been found to be related with the disregulated bone marrow microenvironment. Identification of the variations of these niche ingredients in certain diseases has facilitated the developments of multiple therapeutic regimes. Further studies that can combine these niche factors with their downstream regulatory factors will be beneficial for developing more effective therapies. CONCLUSIONS Further definition of the role of bone marrow microenvironment in platelet generation may deepen our understanding of the underlying mechanisms as well as provide new therapeutic targets for thrombocytopenic diseases.
Collapse
Affiliation(s)
- Jun-Ying Wang
- a Department of Hematology, South Campus Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , PR China
| | - Shuang Ye
- b Department of Rheumatology, South Campus Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , PR China
| | - Hua Zhong
- a Department of Hematology, South Campus Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , PR China
| |
Collapse
|
30
|
Maslah N, Cassinat B, Verger E, Kiladjian JJ, Velazquez L. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders. Leukemia 2017; 31:1661-1670. [PMID: 28484264 DOI: 10.1038/leu.2017.139] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
Malignant hematological diseases are mainly because of the occurrence of molecular abnormalities leading to the deregulation of signaling pathways essential for precise cell behavior. High-resolution genome analysis using microarray and large-scale sequencing have helped identify several important acquired gene mutations that are responsible for such signaling deregulations across different hematological malignancies. In particular, the genetic landscape of classical myeloproliferative neoplasms (MPNs) has been in large part completed with the identification of driver mutations (targeting the cytokine receptor/Janus-activated kinase 2 (JAK2) pathway) that determine MPN phenotype, as well as additional mutations mainly affecting the regulation of gene expression (epigenetics or splicing regulators) and signaling. At present, most efforts concentrate in understanding how all these genetic alterations intertwine together to influence disease evolution and/or dictate clinical phenotype in order to use them to personalize diagnostic and clinical care. However, it is now evident that factors other than somatic mutations also play an important role in MPN disease initiation and progression, among which germline predisposition (single-nucleotide polymorphisms and haplotypes) may strongly influence the occurrence of MPNs. In this context, the LNK inhibitory adaptor protein encoded by the LNK/SH2B adaptor protein 3 (SH2B3) gene is the target of several genetic variations, acquired or inherited in MPNs, lymphoid leukemia and nonmalignant hematological diseases, underlying its importance in these pathological processes. As LNK adaptor is a key regulator of normal hematopoiesis, understanding the consequences of LNK variants on its protein functions and on driver or other mutations could be helpful to correlate genotype and phenotype of patients and to develop therapeutic strategies to target this molecule. In this review we summarize the current knowledge of LNK function in normal hematopoiesis, the different SH2B3 mutations reported to date and discuss how these genetic variations may influence the development of hematological malignancies.
Collapse
Affiliation(s)
- N Maslah
- APHP, Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Paris, France.,Inserm UMRS 1131, IUH, Université Paris-Diderot, Paris, France
| | - B Cassinat
- APHP, Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Paris, France.,Inserm UMRS 1131, IUH, Université Paris-Diderot, Paris, France
| | - E Verger
- APHP, Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Paris, France.,Inserm UMRS 1131, IUH, Université Paris-Diderot, Paris, France
| | - J-J Kiladjian
- Inserm UMRS 1131, IUH, Université Paris-Diderot, Paris, France.,APHP, Centre d'investigations Cliniques, Hôpital Saint-Louis, Paris, France
| | - L Velazquez
- INSERM UMRS-MD1197, Institut André Lwoff/Université Paris XI, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
31
|
Olivos DJ, Alvarez M, Cheng YH, Hooker RA, Ciovacco WA, Bethel M, McGough H, Yim C, Chitteti BR, Eleniste PP, Horowitz MC, Srour EF, Bruzzaniti A, Fuchs RK, Kacena MA. Lnk Deficiency Leads to TPO-Mediated Osteoclastogenesis and Increased Bone Mass Phenotype. J Cell Biochem 2017; 118:2231-2240. [PMID: 28067429 DOI: 10.1002/jcb.25874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/06/2017] [Indexed: 11/11/2022]
Abstract
The Lnk adapter protein negatively regulates the signaling of thrombopoietin (TPO), the main megakaryocyte (MK) growth factor. Lnk-deficient (-/-) mice have increased TPO signaling and increased MK number. Interestingly, several mouse models exist in which increased MK number leads to a high bone mass phenotype. Here we report the bone phenotype of these mice. MicroCT and static histomorphometric analyses at 20 weeks showed the distal femur of Lnk-/- mice to have significantly higher bone volume fraction and trabecular number compared to wild-type (WT) mice. Notably, despite a significant increase in the number of osteoclasts (OC), and decreased bone formation rate in Lnk-/- mice compared to WT mice, Lnk-/- mice demonstrated a 2.5-fold greater BV/TV suggesting impaired OC function in vivo. Additionally, Lnk-/- mouse femurs exhibited non-significant increases in mid-shaft cross-sectional area, yet increased periosteal BFR compared to WT femurs was observed. Lnk-/- femurs also had non-significant increases in polar moment of inertia and decreased cortical bone area and thickness, resulting in reduced bone stiffness, modulus, and strength compared to WT femurs. Of note, Lnk is expressed by OC lineage cells and when Lnk-/- OC progenitors are cultured in the presence of TPO, significantly more OC are observed than in WT cultures. Lnk is also expressed in osteoblast (OB) cells and in vitro reduced alkaline phosphatase activity was observed in Lnk-/- cultures. These data suggest that both direct effects on OB and OC as well as indirect effects of MK in regulating OB contributes to the observed high bone mass. J. Cell. Biochem. 118: 2231-2240, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Olivos
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Marta Alvarez
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard Adam Hooker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wendy A Ciovacco
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Monique Bethel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Haley McGough
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher Yim
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Pierre P Eleniste
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Edward F Srour
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Angela Bruzzaniti
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Robyn K Fuchs
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, Indianapolis, Indiana
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
32
|
Stanley RF, Piszczatowski RT, Bartholdy B, Mitchell K, McKimpson WM, Narayanagari S, Walter D, Todorova TI, Hirsch C, Makishima H, Will B, McMahon C, Gritsman K, Maciejewski JP, Kitsis RN, Steidl U. A myeloid tumor suppressor role for NOL3. J Exp Med 2017; 214:753-771. [PMID: 28232469 PMCID: PMC5339683 DOI: 10.1084/jem.20162089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/31/2023] Open
Abstract
Despite the identification of several oncogenic driver mutations leading to constitutive JAK-STAT activation, the cellular and molecular biology of myeloproliferative neoplasms (MPN) remains incompletely understood. Recent discoveries have identified underlying disease-modifying molecular aberrations contributing to disease initiation and progression. Here, we report that deletion of Nol3 (Nucleolar protein 3) in mice leads to an MPN resembling primary myelofibrosis (PMF). Nol3-/- MPN mice harbor an expanded Thy1+LSK stem cell population exhibiting increased cell cycling and a myelomonocytic differentiation bias. Molecularly, this phenotype is mediated by Nol3-/--induced JAK-STAT activation and downstream activation of cyclin-dependent kinase 6 (Cdk6) and MycNol3-/- MPN Thy1+LSK cells share significant molecular similarities with primary CD34+ cells from PMF patients. NOL3 levels are decreased in CD34+ cells from PMF patients, and the NOL3 locus is deleted in a subset of patients with myeloid malignancies. Our results reveal a novel genetic PMF-like mouse model and identify a tumor suppressor role for NOL3 in the pathogenesis of myeloid malignancies.
Collapse
Affiliation(s)
- Robert F Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Wendy M McKimpson
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Swathi Narayanagari
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Dagmar Walter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Tihomira I Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Cassandra Hirsch
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH 44195.,Leukemia Program, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH 44195.,Leukemia Program, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461.,Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461.,Department of Medicine, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY 10461
| | - Christine McMahon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461.,Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461.,Department of Medicine, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY 10461
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH 44195.,Leukemia Program, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195
| | - Richard N Kitsis
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461.,Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461.,Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461.,Department of Medicine, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY 10461
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461 .,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461.,Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461.,Department of Medicine, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY 10461
| |
Collapse
|
33
|
Plo I, Bellanné-Chantelot C, Mosca M, Mazzi S, Marty C, Vainchenker W. Genetic Alterations of the Thrombopoietin/MPL/JAK2 Axis Impacting Megakaryopoiesis. Front Endocrinol (Lausanne) 2017; 8:234. [PMID: 28955303 PMCID: PMC5600916 DOI: 10.3389/fendo.2017.00234] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Megakaryopoiesis is an original and complex cell process which leads to the formation of platelets. The homeostatic production of platelets is mainly regulated and controlled by thrombopoietin (TPO) and the TPO receptor (MPL)/JAK2 axis. Therefore, any hereditary or acquired abnormality affecting this signaling axis can result in thrombocytosis or thrombocytopenia. Thrombocytosis can be due to genetic alterations that affect either the intrinsic MPL signaling through gain-of-function (GOF) activity (MPL, JAK2, CALR) and loss-of-function (LOF) activity of negative regulators (CBL, LNK) or the extrinsic MPL signaling by THPO GOF mutations leading to increased TPO synthesis. Alternatively, thrombocytosis may paradoxically result from mutations of MPL leading to an abnormal MPL trafficking, inducing increased TPO levels by alteration of its clearance. In contrast, thrombocytopenia can also result from LOF THPO or MPL mutations, which cause a complete defect in MPL trafficking to the cell membrane, impaired MPL signaling or stability, defects in the TPO/MPL interaction, or an absence of TPO production.
Collapse
Affiliation(s)
- Isabelle Plo
- INSERM UMR 1170, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1170, Villejuif, France
| | - Christine Bellanné-Chantelot
- INSERM UMR 1170, Gustave Roussy, Villejuif, France
- Department of Genetics, AP-HP Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, UPMC Univ Paris 06, Paris, France
| | - Matthieu Mosca
- INSERM UMR 1170, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1170, Villejuif, France
| | - Stefania Mazzi
- INSERM UMR 1170, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France
- Université Paris-Diderot, Paris, France
| | - Caroline Marty
- INSERM UMR 1170, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1170, Villejuif, France
| | - William Vainchenker
- INSERM UMR 1170, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1170, Villejuif, France
- *Correspondence: William Vainchenker,
| |
Collapse
|
34
|
Wang W, Tang Y, Wang Y, Tascau L, Balcerek J, Tong W, Levine RL, Welch C, Tall AR, Wang N. LNK/SH2B3 Loss of Function Promotes Atherosclerosis and Thrombosis. Circ Res 2016; 119:e91-e103. [PMID: 27430239 DOI: 10.1161/circresaha.116.308955] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/15/2016] [Indexed: 01/01/2023]
Abstract
RATIONALE Human genome-wide association studies have revealed novel genetic loci that are associated with coronary heart disease. One such locus resides in LNK/SH2B3, which in mice is expressed in hematopoietic cells and suppresses thrombopoietin signaling via its receptor myeloproliferative leukemia virus oncogene. However, the mechanisms underlying the association of LNK single-nucleotide polymorphisms with coronary heart disease are poorly understood. OBJECTIVE To understand the functional effects of LNK single-nucleotide polymorphisms and explore the mechanisms whereby LNK loss of function impacts atherosclerosis and thrombosis. METHODS AND RESULTS Using human cord blood, we show that the common TT risk genotype (R262W) of LNK is associated with expansion of hematopoietic stem cells and enhanced megakaryopoiesis, demonstrating reduced LNK function and increased myeloproliferative leukemia virus oncogene signaling. In mice, hematopoietic Lnk deficiency leads to accelerated arterial thrombosis and atherosclerosis, but only in the setting of hypercholesterolemia. Hypercholesterolemia acts synergistically with LNK deficiency to increase interleukin 3/granulocyte-macrophage colony-stimulating factor receptor signaling in bone marrow myeloid progenitors, whereas in platelets cholesterol loading combines with Lnk deficiency to increase activation. Platelet LNK deficiency increases myeloproliferative leukemia virus oncogene signaling and AKT activation, whereas cholesterol loading decreases SHIP-1 phosphorylation, acting convergently to increase AKT and platelet activation. Together with increased myelopoiesis, platelet activation promotes prothrombotic and proatherogenic platelet/leukocyte aggregate formation. CONCLUSIONS LNK (R262W) is a loss-of-function variant that promotes thrombopoietin/myeloproliferative leukemia virus oncogene signaling and platelet and leukocyte production. In mice, LNK deficiency is associated with both increased platelet production and activation. Hypercholesterolemia acts in platelets and hematopoietic progenitors to exacerbate thrombosis and atherosclerosis associated with LNK deficiency.
Collapse
Affiliation(s)
- Wei Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yang Tang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Liana Tascau
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joanna Balcerek
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wei Tong
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ross L Levine
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carrie Welch
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alan R Tall
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nan Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
35
|
|
36
|
Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood 2016; 128:1121-8. [PMID: 27365426 DOI: 10.1182/blood-2015-06-652941] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 06/05/2016] [Indexed: 12/11/2022] Open
Abstract
We conducted a genome-wide association study (GWAS) to identify novel predisposition alleles associated with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) and JAK2 V617F clonal hematopoiesis in the general population. We recruited a web-based cohort of 726 individuals with polycythemia vera, essential thrombocythemia, and myelofibrosis and 252 637 population controls unselected for hematologic phenotypes. Using a single-nucleotide polymorphism (SNP) array platform with custom probes for the JAK2 V617F mutation (V617F), we identified 497 individuals (0.2%) among the population controls who were V617F carriers. We performed a combined GWAS of the MPN cases plus V617F carriers in the control population (n = 1223) vs the remaining controls who were noncarriers for V617F (n = 252 140). For these MPN cases plus V617F carriers, we replicated the germ line JAK2 46/1 haplotype (rs59384377: odds ratio [OR] = 2.4, P = 6.6 × 10(-89)), previously associated with V617F-positive MPN. We also identified genome-wide significant associations in the TERT gene (rs7705526: OR = 1.8, P = 1.1 × 10(-32)), in SH2B3 (rs7310615: OR = 1.4, P = 3.1 × 10(-14)), and upstream of TET2 (rs1548483: OR = 2.0, P = 2.0 × 10(-9)). These associations were confirmed in a separate replication cohort of 446 V617F carriers vs 169 021 noncarriers. In a joint analysis of the combined GWAS and replication results, we identified additional genome-wide significant predisposition alleles associated with CHEK2, ATM, PINT, and GFI1B All SNP ORs were similar for MPN patients and controls who were V617F carriers. These data indicate that the same germ line variants endow individuals with a predisposition not only to MPN, but also to JAK2 V617F clonal hematopoiesis, a more common phenomenon that may foreshadow the development of an overt neoplasm.
Collapse
|
37
|
Chen Y, Fang F, Hu Y, Liu Q, Bu D, Tan M, Wu L, Zhu P. The Polymorphisms in LNK Gene Correlated to the Clinical Type of Myeloproliferative Neoplasms. PLoS One 2016; 11:e0154183. [PMID: 27111338 PMCID: PMC4844169 DOI: 10.1371/journal.pone.0154183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/11/2016] [Indexed: 01/10/2023] Open
Abstract
Objective LNK is an adapter protein negatively regulating the JAK/STAT cell signaling pathway. In this study, we observed the correlation between variation in LNK gene and the clinical type of myeloproliferative neoplasms (MPN). Methods A total of 285 MPN cases were recruited, including essential thrombocythemia (ET) 154 cases, polycythemia vera (PV) 76 cases, primary myelofibrosis (PMF) 19 cases, and chronic myeloid leukemia (CML) 36 cases. Ninety-three healthy individuals were used as normal controls. V617F mutation in JAK2 was identified by allele-specific PCR method, RT-PCR was used for the detection of BCR/ABL1 fusion gene, and mutations and variations in coding exons and their flanking sequences of LNK gene were examined by PCR-sequencing. Results Missense mutations of A300V, V402M, and R415H in LNK were found in 8 patients including ET (4 cases, all combined with JAK2-V617F mutation), PV (2 cases, one combined with JAK2-V617F mutation), PMF (one case, combined with JAK2-V617F mutation) and CML (one case, combined with BCR/ABL1 fusion gene). The genotype and allele frequencies of the three SNPs (rs3184504, rs111340708 and rs78894077) in LNK were significantly different between MPN patients and controls. For rs3184504 (T/C, in exon2), the T allele (p.262W) and TT genotype were frequently seen in ET, PV and PMF (P<0.01), and C allele (p.262R) and CC genotype were frequently seen in CML (P<0.01). For rs78894077 (T/C, in exon1), the T allele (p.242S) was frequently found in ET (P<0.05). For rs111340708 (TGGGGx5/TGGGGx4, in intron 5), the TGGGG x4 allele was infrequently found in ET, PMF and CML(P<0.01). Conclusion Mutations in LNK could be found in some of MPN patients in the presence or absence of JAK2-V617F mutation. Several polymorphisms in LNK gene may affect the clinical type or the genetic predisposition of MPN.
Collapse
MESH Headings
- 3' Flanking Region
- 5' Flanking Region
- Adaptor Proteins, Signal Transducing
- Adult
- Aged
- Alleles
- Base Sequence
- Case-Control Studies
- Exons
- Female
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation
- Gene Frequency
- Genetic Predisposition to Disease
- Genotype
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Intracellular Signaling Peptides and Proteins
- Janus Kinase 2/genetics
- Janus Kinase 2/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Mutation
- Open Reading Frames
- Phenotype
- Polycythemia Vera/diagnosis
- Polycythemia Vera/genetics
- Polycythemia Vera/metabolism
- Polycythemia Vera/pathology
- Polymorphism, Single Nucleotide
- Primary Myelofibrosis/diagnosis
- Primary Myelofibrosis/genetics
- Primary Myelofibrosis/metabolism
- Primary Myelofibrosis/pathology
- Proteins/genetics
- Proteins/metabolism
- Signal Transduction
- Thrombocythemia, Essential/diagnosis
- Thrombocythemia, Essential/genetics
- Thrombocythemia, Essential/metabolism
- Thrombocythemia, Essential/pathology
Collapse
Affiliation(s)
- Yan Chen
- Department of Hematology, Peking University First Hospital, Beijing, China
- Zunyi Medical College Affiliated Hospital, Zunyi, Guizhou, China
| | - Fang Fang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yang Hu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Qian Liu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Dingfang Bu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Mei Tan
- Zunyi Medical College Affiliated Hospital, Zunyi, Guizhou, China
| | - Liusong Wu
- Zunyi Medical College Affiliated Hospital, Zunyi, Guizhou, China
| | - Ping Zhu
- Department of Hematology, Peking University First Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
38
|
Damnernsawad A, Kong G, Wen Z, Liu Y, Rajagopalan A, You X, Wang J, Zhou Y, Ranheim EA, Luo HR, Chang Q, Zhang J. Kras is Required for Adult Hematopoiesis. Stem Cells 2016; 34:1859-71. [PMID: 26972179 DOI: 10.1002/stem.2355] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Previous studies indicate that Kras is dispensable for fetal liver hematopoiesis, but its role in adult hematopoiesis remains unclear. Here, we generated a Kras conditional knockout allele to address this question. Deletion of Kras in adult bone marrow (BM) is mediated by Vav-Cre or inducible Mx1-Cre. We find that loss of Kras leads to greatly reduced thrombopoietin (TPO) signaling in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), while stem cell factor-evoked ERK1/2 activation is not affected. The compromised TPO signaling is associated with reduced long term- and intermediate-term HSC compartments and a bias toward myeloid differentiation in MPPs. Although granulocyte macrophage colony-stimulating factor (GM-CSF)-evoked ERK1/2 activation is only moderately decreased in Kras(-/-) myeloid progenitors, it is blunted in neutrophils and neutrophil survival is significantly reduced in vitro. At 9-12 months old, Kras conditional knockout mice develop profound hematopoietic defects, including splenomegaly, an expanded neutrophil compartment, and reduced B cell number. In a serial transplantation assay, the reconstitution potential of Kras(-/-) BM cells is greatly compromised, which is attributable to defects in the self-renewal of Kras(-/-) HSCs and defects in differentiated hematopoietic cells. Our results demonstrate that Kras is a major regulator of TPO and GM-CSF signaling in specific populations of hematopoietic cells and its function is required for adult hematopoiesis. Stem Cells 2016;34:1859-1871.
Collapse
Affiliation(s)
- Alisa Damnernsawad
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Guangyao Kong
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Zhi Wen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Yangang Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Adhithi Rajagopalan
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xiaona You
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Jinyong Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Yun Zhou
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hongbo R Luo
- Department of Pathology, Harvard Medical School and Boston Children's Hospital, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Qiang Chang
- Department of Medical Genetics and Department of Neurology, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
39
|
McMullin MF, Cario H. LNK mutations and myeloproliferative disorders. Am J Hematol 2016; 91:248-51. [PMID: 26660394 DOI: 10.1002/ajh.24259] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/15/2022]
Abstract
The lymphocyte adaptor protein (LNK) is one of a family of adaptor proteins involved cell signaling and control of B cell populations. It has a critical role in regulation of signaling in hematopoiesis. Lnk negatively regulates cytokine initiated cell signaling and it functions as a negative regulator of the mutant protein in myeloproliferative neoplasms JAK2V617F. A number of mutations in LNK have been described in a variety of myeloproliferative neoplasms some of which have been demonstrated to cause increased cellular proliferation. The majority of mutations occur in exon 2. In a small number of cases idiopathic erythrocytosis with subnormal erythropoietin levels LNK mutations have been found which may account for the clinical phenotype. Thus investigation for LNK mutations should be considered in the investigation of idiopathic erythrocytosis and perhaps other myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Mary Frances McMullin
- Centre for Cancer Research and Cell Biology, Queen's University; Belfast Northern Ireland
| | - Holger Cario
- Department of Pediatrics and Adolescent Medicine; University Medical Center Ulm; Ulm Germany
| |
Collapse
|
40
|
Linkage between the mechanisms of thrombocytopenia and thrombopoiesis. Blood 2016; 127:1234-41. [PMID: 26787737 DOI: 10.1182/blood-2015-07-607903] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022] Open
Abstract
Thrombocytopenia is defined as a status in which platelet numbers are reduced. Imbalance between the homeostatic regulation of platelet generation and destruction is 1 potential cause of thrombocytopenia. In adults, platelet generation is a 2-stage process entailing the differentiation of hematopoietic stem cells into mature megakaryocytes (MKs; known as megakaryopoiesis) and release of platelets from MKs (known as thrombopoiesis or platelet biogenesis). Until recently, information about the genetic defects responsible for congenital thrombocytopenia was only available for a few forms of the disease. However, investigations over the past 15 years have identified mutations in genes encoding >20 different proteins that are responsible for these disorders, which has advanced our understanding of megakaryopoiesis and thrombopoiesis. The underlying pathogenic mechanisms can be categorized as (1) defects in MK lineage commitment and differentiation, (2) defects in MK maturation, and (3) defect in platelet release. Using these developmental stage categories, we here update recently described mechanisms underlying megakaryopoiesis and thrombopoiesis and discuss the association between platelet generation systems and thrombocytopenia.
Collapse
|
41
|
Saeidi K. Myeloproliferative neoplasms: Current molecular biology and genetics. Crit Rev Oncol Hematol 2015; 98:375-89. [PMID: 26697989 DOI: 10.1016/j.critrevonc.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 09/10/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal disorders characterized by increased production of mature blood cells. Philadelphia chromosome-negative MPNs (Ph-MPNs) consist of polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). A number of stem cell derived mutations have been identified in the past 10 years. These findings showed that JAK2V617F, as a diagnostic marker involving JAK2 exon 14 with a high frequency, is the best molecular characterization of Ph-MPNs. Somatic mutations in an endoplasmic reticulum chaperone, named calreticulin (CALR), is the second most common mutation in patients with ET and PMF after JAK2 V617F mutation. Discovery of CALR mutations led to the increased molecular diagnostic of ET and PMF up to 90%. It has been shown that JAK2V617F is not the unique event in disease pathogenesis. Some other genes' location such as TET oncogene family member 2 (TET2), additional sex combs-like 1 (ASXL1), casitas B-lineage lymphoma proto-oncogene (CBL), isocitrate dehydrogenase 1/2 (IDH1/IDH2), IKAROS family zinc finger 1 (IKZF1), DNA methyltransferase 3A (DNMT3A), suppressor of cytokine signaling (SOCS), enhancer of zeste homolog 2 (EZH2), tumor protein p53 (TP53), runt-related transcription factor 1 (RUNX1) and high mobility group AT-hook 2 (HMGA2) have also identified to be involved in MPNs phenotypes. Here, current molecular biology and genetic mechanisms involved in MNPs with a focus on the aforementioned factors is presented.
Collapse
Affiliation(s)
- Kolsoum Saeidi
- Department of Medical Genetics, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
42
|
Danggui sini decoction ameliorates myelosuppression in animal model by upregulating Thrombopoietin expression. Cell Biochem Biophys 2015; 71:945-50. [PMID: 25308860 DOI: 10.1007/s12013-014-0291-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Danggui Sini decoction (DSD), a famous Chinese medicine, has been used therapeutically in various diseases. In this study, we tried to investigate whether and how DSD could ameliorate myelosuppression in an animal model, in which myelosuppression is induced by cyclophosphamide treatment. The myelosuppression model was established by intraperitoneal injection of 100 mg/kg cyclophosphamide in mice. Flow cytometry was used to assess cell numbers and evaluate the bone marrow cell cycle distribution. Spleen samples were collected, and the mRNA expression levels of thrombopoietin (TPO) and c-Mpl were analyzed by RT-PCR. Our results demonstrated that DSD could significantly elevate the level of bone marrow hematopoietic stem progenitor cells in myelosuppression mice model. DSD also accelerated cell proliferation by switching cell cycles from G0/G1 phase to S and G2/M phase. Moreover, DSD significantly elevated the mRNA expression level of TPO, but not c-Mpl in spleen. Overall, the present results indicated that DSD is a promising Chinese medicine that is highly potent to ameliorate myelosuppression induced by chemotherapy by upregulating TPO expression.
Collapse
|
43
|
Meijome TE, Ekwealor JTB, Hooker RA, Cheng YH, Ciovacco WA, Balamohan SM, Srinivasan TL, Chitteti BR, Eleniste PP, Horowitz MC, Srour EF, Bruzzaniti A, Fuchs RK, Kacena MA. C-Mpl Is Expressed on Osteoblasts and Osteoclasts and Is Important in Regulating Skeletal Homeostasis. J Cell Biochem 2015; 117:959-69. [PMID: 26375403 DOI: 10.1002/jcb.25380] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 11/10/2022]
Abstract
C-Mpl is the receptor for thrombopoietin (TPO), the main megakaryocyte (MK) growth factor, and c-Mpl is believed to be expressed on cells of the hematopoietic lineage. As MKs have been shown to enhance bone formation, it may be expected that mice in which c-Mpl was globally knocked out (c-Mpl(-/-) mice) would have decreased bone mass because they have fewer MKs. Instead, c-Mpl(-/-) mice have a higher bone mass than WT controls. Using c-Mpl(-/-) mice we investigated the basis for this discrepancy and discovered that c-Mpl is expressed on both osteoblasts (OBs) and osteoclasts (OCs), an unexpected finding that prompted us to examine further how c-Mpl regulates bone. Static and dynamic bone histomorphometry parameters suggest that c-Mpl deficiency results in a net gain in bone volume with increases in OBs and OCs. In vitro, a higher percentage of c-Mpl(-/-) OBs were in active phases of the cell cycle, leading to an increased number of OBs. No difference in OB differentiation was observed in vitro as examined by real-time PCR and functional assays. In co-culture systems, which allow for the interaction between OBs and OC progenitors, c-Mpl(-/-) OBs enhanced osteoclastogenesis. Two of the major signaling pathways by which OBs regulate osteoclastogenesis, MCSF/OPG/RANKL and EphrinB2-EphB2/B4, were unaffected in c-Mpl(-/-) OBs. These data provide new findings for the role of MKs and c-Mpl expression in bone and may provide insight into the homeostatic regulation of bone mass as well as bone loss diseases such as osteoporosis.
Collapse
Affiliation(s)
- Tomas E Meijome
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - Jenna T B Ekwealor
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - R Adam Hooker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - Wendy A Ciovacco
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Sanjeev M Balamohan
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - Trishya L Srinivasan
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | | | - Pierre P Eleniste
- Department of Oral Biology, Indiana University School of Dentistry, Indiana, Indianapolis
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Edward F Srour
- Department of Medicine, Indiana University School of Medicine, Indiana, Indianapolis
| | - Angela Bruzzaniti
- Department of Oral Biology, Indiana University School of Dentistry, Indiana, Indianapolis
| | - Robyn K Fuchs
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, Indiana, Indianapolis
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
44
|
Zhu X, Fang J, Jiang DS, Zhang P, Zhao GN, Zhu X, Yang L, Wei X, Li H. Exacerbating Pressure Overload-Induced Cardiac Hypertrophy: Novel Role of Adaptor Molecule Src Homology 2-B3. Hypertension 2015; 66:571-581. [PMID: 26101343 DOI: 10.1161/hypertensionaha.115.05183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Abstract
The adaptor protein Src homology 2-B3 (SH2B3), which belongs to a subfamily of Src homology 2 proteins, is a broad inhibitor of growth factors and cytokine signaling in hematopoietic cells. However, the role of SH2B3 in nonhematopoietic systems, particularly cardiomyocytes, has not been defined. In this study, we observed noticeable increase in SH2B3 protein expression during pathological cardiac remodeling in both humans and rodents. Follow-up in vitro gain- and loss-of-function studies suggested that SH2B3 promotes the cardiomyocyte hypertrophy response. Consistent with the cell phenotype, SH2B3 knockout (SH2B3(-/-)) mice exhibited attenuated cardiac remodeling with preserved cardiac function after chronic pressure overload. Conversely, cardiac-specific SH2B3 overexpression aggravated pressure overload-triggered cardiac hypertrophy, fibrosis, and dysfunction. Mechanistically, SH2B3 accelerates and exacerbates cardiac remodeling through the activation of focal adhesion kinase, which, in turn, activates the prohypertrophic downstream phosphoinositide 3-kinase-AKT-mammalian target of rapamycin/glycogen synthase kinase 3β signaling pathway. Finally, we generated a novel SH2B3 knockout rat line and further confirmed the protective effects of SH2B3 deficiency on cardiac remodeling across species. Collectively, our data indicate that SH2B3 functions as a novel and effective modulator of cardiac remodeling and failure.
Collapse
Affiliation(s)
- Xuehai Zhu
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Jing Fang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Ding-Sheng Jiang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Peng Zhang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Guang-Nian Zhao
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Xueyong Zhu
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Ling Yang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Xiang Wei
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.).
| | - Hongliang Li
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.).
| |
Collapse
|
45
|
Bethel M, Barnes CLT, Taylor AF, Cheng YH, Chitteti BR, Horowitz MC, Bruzzaniti A, Srour EF, Kacena MA. A novel role for thrombopoietin in regulating osteoclast development in humans and mice. J Cell Physiol 2015; 230:2142-51. [PMID: 25656774 DOI: 10.1002/jcp.24943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 11/10/2022]
Abstract
Emerging data suggest that megakaryocytes (MKs) play a significant role in skeletal homeostasis. Indeed, osteosclerosis observed in several MK-related disorders may be a result of increased numbers of MKs. In support of this idea, we have previously demonstrated that MKs increase osteoblast (OB) proliferation by a direct cell-cell contact mechanism and that MKs also inhibit osteoclast (OC) formation. As MKs and OCs are derived from the same hematopoietic precursor, in these osteoclastogenesis studies we examined the role of the main MK growth factor, thrombopoietin (TPO) on OC formation and bone resorption. Here we show that TPO directly increases OC formation and differentiation in vitro. Specifically, we demonstrate the TPO receptor (c-mpl or CD110) is expressed on cells of the OC lineage, c-mpl is required for TPO to enhance OC formation in vitro, and TPO activates the mitogen-activated protein kinases, Janus kinase/signal transducer and activator of transcription, and nuclear factor-kappaB signaling pathways, but does not activate the PI3K/AKT pathway. Further, we found TPO enhances OC resorption in CD14+CD110+ human OC progenitors derived from peripheral blood mononuclear cells, and further separating OC progenitors based on CD110 expression enriches for mature OC development. The regulation of OCs by TPO highlights a novel therapeutic target for bone loss diseases and may be important to consider in the numerous hematologic disorders associated with alterations in TPO/c-mpl signaling as well as in patients suffering from bone disorders.
Collapse
Affiliation(s)
- Monique Bethel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Calvin L T Barnes
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Amanda F Taylor
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Angela Bruzzaniti
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, Indiana.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Edward F Srour
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
46
|
Abstract
Major progress has been recently made in understanding the molecular pathogenesis of myeloproliferative neoplasms (MPN). Mutations in one of four genes-JAK2, MPL, CALR, and CSF3R-can be found in the vast majority of patients with MPN and represent driver mutations that can induce the MPN phenotype. Hyperactive JAK/STAT signaling appears to be the common denominator of MPN, even in patients with CALR mutations and the so-called "triple-negative" MPN, where the driver gene mutation is still unknown. Mutations in epigenetic regulators, transcription factors, and signaling components modify the course of the disease and can contribute to disease initiation and/or progression. The central role of JAK2 in MPN allowed development of small molecular inhibitors that are in clinical use and are active in almost all patients with MPN. Advances in understanding the mechanism of JAK2 activation open new perspectives of developing the next generation of inhibitors that will be selective for the mutated forms of JAK2.
Collapse
|
47
|
Malara A, Abbonante V, Di Buduo CA, Tozzi L, Currao M, Balduini A. The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci 2015; 72:1517-36. [PMID: 25572292 PMCID: PMC4369169 DOI: 10.1007/s00018-014-1813-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
Megakaryocytes are rare cells found in the bone marrow, responsible for the everyday production and release of millions of platelets into the bloodstream. Since the discovery and cloning, in 1994, of their principal humoral factor, thrombopoietin, and its receptor c-Mpl, many efforts have been directed to define the mechanisms underlying an efficient platelet production. However, more recently different studies have pointed out new roles for megakaryocytes as regulators of bone marrow homeostasis and physiology. In this review we discuss the interaction and the reciprocal regulation of megakaryocytes with the different cellular and extracellular components of the bone marrow environment. Finally, we provide evidence that these processes may concur to the reconstitution of the bone marrow environment after injury and their deregulation may lead to the development of a series of inherited or acquired pathologies.
Collapse
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Christian A. Di Buduo
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Lorenzo Tozzi
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Manuela Currao
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
48
|
MERIT40 deficiency expands hematopoietic stem cell pools by regulating thrombopoietin receptor signaling. Blood 2015; 125:1730-8. [PMID: 25636339 DOI: 10.1182/blood-2014-07-588145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cell (HSC) self-renewal and multilineage reconstitution are controlled by positive and negative signaling cues with perturbations leading to disease. Lnk is an essential signaling adaptor protein that dampens signaling by the cytokine thrombopoietin (Tpo) to limit HSC expansion. Here, we show that MERIT40 (Mediator of RAP80 Interactions and Targeting 40 kDa [M40]), a core subunit of an Lnk-associated Lys63 deubiquitinating (DUB) complex, attenuates HSC expansion. M40 deficiency increases the size of phenotypic and functional HSC pools. M40(-/-) HSCs are more resistant to cytoablative stress, and exhibit superior repopulating ability and self-renewal upon serial transplantation. M40(-/-) HSCs display increased quiescence and decelerated cell cycle kinetics accompanied by downregulation of gene sets associated with cell division. Mechanistically, M40 deficiency triggers hypersensitivity to Tpo stimulation and the stem cell phenotypes are abrogated on a background null for the Tpo receptor Mpl. These results establish M40-containing DUB complexes as novel HSC regulators of HSC expansion, implicate Lys63 ubiquitination in HSC signaling, and point to DUB-specific inhibitors as reagents to expand stem cell populations.
Collapse
|
49
|
Abstract
The production of platelets is a complex process that involves hematopoietic stem cells (HSCs), their differentiated progeny, the marrow microenvironment and hematopoietic cytokines. Much has been learned in the 110 years since James Homer Wright postulated that marrow megakaryocytes were responsible for blood platelet production, at a time when platelets were termed the "dust of the blood". In the 1980s a number of in vitro culture systems were developed that could produce megakaryocytes, followed by the identification of several cytokines that could stimulate the process in vitro. However, none of these cytokines produced a substantial thrombocytosis when injected into animals or people, nor were blood levels inversely related to platelet count, the sine qua non of a physiological regulator. A major milestone in our understanding of thrombopoiesis occurred in 1994 when thrombopoietin, the primary regulator of platelet production was cloned and initially characterized. Since that time many of the molecular mechanisms of thrombopoiesis have been identified, including the effects of thrombopoietin on the survival, proliferation, and differentiation of hematopoietic stem and progenitor cells, the development of polyploidy and proplatelet formation, the final fragmentation of megakaryocyte cytoplasm to yield blood platelets, and the regulation of this process. While much progress has been made, several outstanding questions remain, such as the nature of the signals for final platelet formation, the molecular nature of the regulation of marrow stromal thrombopoietin production, and the role of these physiological processes in malignant hematopoiesis.
Collapse
|
50
|
Ye B, Li C, Yang Z, Wang Y, Hao J, Wang L, Li Y, Du Y, Hao L, Liu B, Wang S, Xia P, Huang G, Sun L, Tian Y, Fan Z. Cytosolic carboxypeptidase CCP6 is required for megakaryopoiesis by modulating Mad2 polyglutamylation. ACTA ACUST UNITED AC 2014; 211:2439-54. [PMID: 25332286 PMCID: PMC4235637 DOI: 10.1084/jem.20141123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ye et al. identify cytosolic carboxypeptidase CCP6 as a protein required for the regulation of bone marrow megakaryopoiesis in mice. The authors find that Mad2 (a core component of spindle checkpoint in mitosis) is a substrate of CCP6 in megakaryocytes and is polyglutamylated by proteins TTLL6 and TTLL4, subsequently affecting the activity of Aurora B kinase. Mad2 is thus additionally implicated in megakaryopoiesis regulation. Bone marrow progenitor cells develop into mature megakaryocytes (MKs) to produce platelets for hemostasis and other physiological functions. However, the molecular mechanisms underlying megakaryopoiesis are not completely defined. We show that cytosolic carboxypeptidase (CCP) 6 deficiency in mice causes enlarged spleens and increased platelet counts with underdeveloped MKs and dysfunctional platelets. The prominent phenotypes of CCP6 deficiency are different from those of CCP1-deficient mice. We found that CCP6 and tubulin tyrosine ligase-like family (TTLL) members TTLL4 and TTLL6 are highly expressed in MKs. We identify Mad2 (mitotic arrest deficient 2) as a novel substrate for CCP6 and not CCP1. Mad2 can be polyglutamylated by TTLL4 and TTLL6 to modulate the maturation of MKs. CCP6 deficiency causes hyperglutamylation of Mad2 to promote activation of Aurora B, leading to suppression of MK maturation. We reveal that Mad2 polyglutamylation plays a critical role in the regulation of megakaryopoiesis.
Collapse
Affiliation(s)
- Buqing Ye
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chong Li
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao Yang
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanying Wang
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Junfeng Hao
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Wang
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Hao
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Benyu Liu
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengyan Xia
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanling Huang
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Sun
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Tian
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, Center for Laboratory Animal Research, Center for Biological Imaging, Key Laboratory of RNA Biology and Beijing Noncoding RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|